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Abstract—Sufficient stability conditions are derived for si-
multaneous uncoordinated impulsive maneuvers in distributed
mean orbit element spacecraft formations. Lyapunov stability
formalisms are used in conjunction with distributed mean orbit
element spacecraft formation definitions. Special cases of the
sufficient stability conditions are examined. Simulated results
demonstrate the efficacy of the approach, and conclusions and
future work are discussed.

I. INTRODUCTION

On-orbit Formation Flight (FF) Guidance, Navigation, &
Control (GNC) has received significant attention over the last
decade. The need for solutions to this problem has become
more defined in recent years due to emerging mission con-
cepts such as fractionation [1]. The fractionation approach
is predicated on functionally decomposing large spacecraft
into smaller, specialized spacecraft, drastically increasing the
system complexity of on-board autonomous fault management
systems. Ground station operational burdens combined with
large gaps in uplink/downlink connectivity mean then central-
ized ground control of the entire formation is infeasible. On-
orbit centralized control of the formation conditions the safety
of the entire formation on the continued operation of a single
spacecraft, incentivizing decentralized GNC implementations.

The on-orbit dynamic environment subjects individual
spacecraft to significant oscillating, gross, and differential
perturbations. Mean orbit elements effectively ‘average out’
oscillating disturbances and are valid for all orbit regimes [2],
[3]. This makes differential mean orbit elements particularly
useful for specifying relative spacecraft geometry. Gross per-
turbations affect the entire formation, and can incur substantial
Awv costs if they are rejected. Rather, it is preferable for long-
term orbit maintenance that gross perturbations be ignored in
the short term and relative formation maintenance enforced.
Differential mean orbit elements relative to a weighted for-
mation barycenter are used for a number of reasons. First,
unperturbed differential elements are constants of motion for
arbitrary Keplerian orbit regimes (depending of course on
the orbit elements chosen) and as such do not change with
time, making formation ‘slot’ definitions easy and intuitive.
Second, differential motion can be examined under the effects
of perturbations (e.g., Earth oblateness) and partially mitigated
using intelligent differential mean orbit element choices [4],
[5], [6]. Third, because differential mean orbit elements change
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slowly under perturbations, they are ideal consensus variables.

The challenge facing on-orbit formation guidance, naviga-
tion, and control, in a decentralized fashion, is 1) for the in-
dividual spacecraft to agree on where the perturbed formation
barycenter is located, 2) to know their desired relative state to
achieve formation objectives, and 3) actuate to reduce relative
state error while minimizing Av (fuel). This paper focuses
on deriving admissible maneuver constraints on uncoordinated
individual or simultaneous impulsive maneuvers.

Recent advances in cooperative control are immediately
useful in addressing this challenge. The problem of spacecraft
in a formation with intermittent communications agreeing on
the location of the moving barycenter may be directly framed
as a consensus problem over random directed graphs [7], [8],
[9], [10]. As each spacecraft is assumed to have its own on-
board estimation capabilities (e.g. Extended Kalman Filters
or Unscented Kalman Filters), the consensus problem needs
to leverage provided estimation knowledge to quantify the
uncertainty of the consensus barycenter (in a fashion similar
to Distributed Kalman Filters [11] or Distributed Bayesian
Estimation[12]). Distributed spacecraft formation flight has
been previously investigated using graph theory [13], [14].

This paper derives sufficient stability conditions on simulta-
neous uncoordinated impulsive control laws for the decentral-
ized mean orbit element formation flight GNC approach out-
lined in previous work [15], [16]. Special cases for sufficient
stability conditions of asynchronous uncoordinated impulsive
control are also examined. Analytical predictions are verified
using simulations. Conclusions and future work are discussed.

II. BACKGROUND

Before detailing the contributions of this paper, it is neces-
sary to introduce the formalisms developed in previous work
[15] to define the distributed spacecraft formation, barycenter,
and individual formation ‘slots.’

Definition 1: Weighted Formation Barycenter

The formation mean orbit element barycenter ¢! at time
given spacecraft weights w! and reference differential mean
orbit elements 50*efﬂ, ;. 18 defined as
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where the weights w} € R are such that 0 < w} < 1,7 =
1,...,Nf,andw,£+-~-+wlivf:1,

The differential mean orbit element reference offset (or
formation ‘slot’) 5@3,]@ may also be defined implicitly given
a weighted formation barycenter o‘ez and instantaneous refer-
ence mean orbit element o‘ei,k
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Note that o’ei i 1s the reference mean orbit elements, not the
instantaneous orbit elements ce..

Definition 2: Formation Slot

A formation slot is defined by a spacecraft’s choice of 60‘efn7 -
The only constraints placed on 56‘3?1@ is that they be well
defined on the orbit element space (e.g., differential mean
eccentricity €} such that 0 < €% + dei, < 1) and satisfy
user-defined constraints, such as collision avoidance and other
operational needs.

Note, specific ‘user-defined constraints’ are introduced and
discussed in McMahon & Holzinger [16], however in summary
they include invariance to gravitational perturbations and con-
straints due to collision safety. The definition for a relative
formation is now given.

Definition 3: Relative Formation

A spacecraft formation is said to be a relative formation when
each spacecraft is aware of all other formation spacecraft (i.e.
given a set of formation spacecraft F, the size of F, Ny,
is known, and a specific spacecraft is associated with each
i € F), their respective current mean orbit elements de};, and
barycenter weightings w? . Further, each spacecraft must know
its own differential mean orbit element formation slot 5o’ef,’ i

The instantaneous value of the differential mean orbit ele-
ments is given by

deel = el — b 3)

Explicitly, the instantaneous differential mean orbit element
error is defined as

dej, = dce,. ), — oce}, 4)

Necessarily, when (56}; — 0 Vi € F, the formation has
exactly zero error. The following section contains the primary
contributions of this paper, wherein sufficient conditions on
changes in spacecraft mean orbit elements due to impulsive
maneuvers are developed and discussed.

III. STABILITY ANALYSIS

General stability analysis results are first discussed, fol-
lowed by special cases for uncoordinated maneuvers by single
or multiple spacecraft in formations.

A. General Results

The following Definitions, Lemmas, and Corollaries identify
sufficient conditions for formation stability, then continue to
discuss consequences of these results. As a matter of notational
convenience, the time subscript (+), is dropped and considered
to be implicit for the remainder of the theoretical derivation.
First, the Lyapunov function used to measure stability is given
in Definition 4.

Definition 4: Formation Error Lyapunov Function
The formation error Lyapunov function is defined as
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The mean orbit element state error for each spacecraft j in the

formation F is weighted equally. Note the definition of V' in
(5) is such that V' > 0 for all e/, j € F.

An impulsive maneuver must necessarily produce an instan-
taneous change in a spacecraft mean orbit elements. However,
because impulses in 3-DoF Newtonian systems are restricted
to a 3 dimensional subspace of R®, They may only instanta-
neously change a 3 dimensional subspace of the mean orbit
elements of a spacecraft. This is notationally captured as

Ace, = B(ce})Avi, (6)

with B(cel,) € R6*3, which allows the mean orbit elements
both immediately before and after an impulsive maneuver to
be written as
@, = el + Ac, = ) + B(e})Av,

Now that the Lyapunov function has been defined, the suffi-
cient condition for formation stability when a single spacecraft
maneuvers impulsively is given in Lemma 1.

Lemma 1: Impulsive Formation Control Stability Suffi-
cient Condition

Given (i) a formation F with Ny spacecraft, (ii) a set of IV,
simultaneously maneuvering spacecraft M C F, M # 0, (iii)
a set of IV, quiescent spacecraft Q C F, where MU Q = F
and MNQ = (), and (iv) if all weights w’ and Formation Slots
dcel are known and agreed upon by the formation, a sufficient
condition for formation stability under impulsive maneuvers
for each satellite ¢+ maneuvering at any time-step & is

> {2k(wl,Nf)Aoel A’ — | de' —w' Y del | - Ace’
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where
k(w', Nf) =1 —2w' + Ny(w')? (8)



and N
c(w!,Ny) = waj -1 )

Proof: To demonstrate stability, the Lyapunov function defined
in (5) both before (V) and after (V) the impulse is used.
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The relationship between de, deé™, and Ace can be found
using the definition of the formation barycenter in Eq. (1)
and the instantaneous differential mean orbit element error in
Eq. (4) for both maneuvering and quiescent spacecraft. For
maneuvering spacecraft it can be shown that,

jett =de' — A’ + > wPAc’
peEM

Similarly, for the quiescent spacecraft a similar relation can
be formulated:

selt = sel + Z wP Ace?
peEM

Substituting J&’* and de’* into the relation for VT, com-
puting V* — V' < 0, and engaging in significant algebraic
manipulation, the following form can be obtained:

AEAEDY {i (120 + Ny(')?) A’ - Ace!
ieEM
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For the Lyapunov error function (5) to strictly decrease, it is
sufficient to require that V* — V' < 0. Using the definition of
k(w®, Ny¢) given in (8) and c(w?, Ny) given in (9), the final
form of the sufficient condition for Lyapunov stability shown
in (7) is obtained.

O

Remark 1: Control Law Agnosticism

From inspection of the sufficiency condition in Lemma 1 for
stability with multiple simultaneous impulsive maneuvers in
a distributed mean orbit element spacecraft formation, it can
be seen that (7) is independent of any control policy used
by individual spacecraft. Rather, (7) should be considered a
conservative constraint on control policies implemented on
individual spacecraft in scenarios where formation stability is
desirable.

The form of (7) is, in general, a quadratic inequality
with respect to Ace’ and Ace’. A matrix representation of

(7) provides insight on how admissible maneuvers may be
generated. Let

" =] (Aeh)” (Ace’)” (Ace™Nm)T ]
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Then, (7) may be written as
1
5zTAz —bTz<0 (10)
As a trivial solution, (7) admits z = 0 (e.g., maneuvers of zero
magnitude).

Corollary 1: Min. Lyapunov Error Solution Existence

A minimum unique Lyapunov error maneuver solution to (7)
always exists for a formation F containing Ny spacecraft with
maneuvering spacecraft i € M, w; € [0,1], > ,crw" = 1.
Further, the minimum Lyapunov error solution can be de-
scribed by

z-=A"'b (11)

Proof: The first and second-order necessary conditions of
optimality provide a solution to (7) in the form of (11),
provided that A~! exists. The existence of A™' is shown
by demonstrating that every row in A for arbitrary spacecraft
i # j are linearly independent. The approach here demon-
strates this using proof by contradiction. The row blocks
corresponding to the i*” and j** spacecraft may be written
as

A]‘i

Ai:[...
Aj:["'

Aij
Ajj

Ajp - ]
Because each A . . is a scalar multiplied by an identity matrix,
if A; is linearly dependent on Aj, it is simply required that

k(w', Ny) = a2w!c(w’, Ny)
2w'e(w!, Ny) = ak(w’, Ny)
2w'c(w®, Nt) = a2w’c(w®, Ny)

here, kK € F, k # 4,j. It can be seen that for the final
equality to be true, & = w®/w’. Substuting this relationship
for a in to the first equation reduces to wl = 1. Then,
with o = w'/w’ and w’/ = 1, the second equation requires
that w* = /1 /N t. However, this is not possible, because
>ierw’ = 1 where w' € [0,1]. Thus, the rows cannot
possibly be linearly dependant on one another and must
therefor be linearly independent. If this is the case for any
arbitrary combination of rows, then all the rows of A are
linearly independent, and A" exists. Thus, a unique z* always



exists
O

Corollary 2: Stationary Barycenter Simultaneous Maneu-
ver Stability

Under the same conditions as Corollary 1, the unique
minimum Lyapunov error solution to (7) with the additional
constraint that the formation barycenter (1) remain stationary
is

z=A"! {B +(Ww?) ™! WA‘IB} (12)
where
W= [ wll w'l whm] ]T

captures the weights of the simultaneously maneuvering space-
craft.
Proof: The barycenter location immediately after impulsive

maneuvers by spacecraft in M can be written as

Pt =" w (et —deel) + Y w' (! — dee))
ieM JEQ
For each maneuvering spacecraft in M, e’ = e’ + Ace'.
After some manipulation, it can be seen that

> w'Ae =Wz=10

iEM
The result in (12) is then found by applying the first- and
second-order necessary conditions of optimality to the aug-

mented Lyapunov error decrease function.
O

Until now, it has been tacitly assumed that all maneuver
information is available to each spacecraft (i.e., spacecraft ¢ is
aware of all simultaneous maneuvers Ace’, j € M. Next,
necessary formation information sharing and uncoordinated
maneuvers are discussed.

Remark 2: Formation Spacecraft Knowledge Require-
ments

Further examination of the information necessary to satisfy
(7) reveals that, for each maneuvering spacecraft i € M,
all differential mean orbit element errors Je’, j € F must
be known. Additionally, it is helpful (though not strictly
necessary) if it spacecraft is aware of both the members of

the set M as well as their respective maneuvers Ace’.

Definition 5: Uncoordinated Maneuvers

A formation F with spacecraft maneuvering (individually
or simultaneously) without sharing information about its/their
own individual maneuvers is defined to be executing uncoor-
dinated maneuvers. The assumption is made that no spacecraft
in F has any information about any maneuvers executed by
other spacecraft. Thus, in the absence of sharing, for each
spacecraft, it must assumed that M — F. Under both of these
assumptions, it is logically the responsibility of each spacecraft
to ensure that their corresponding term in (7) is individually
satisfied (< 0).

In the event that no knowledge of the simultaneous j;'"
spacecraft maneuver Ace’ or the membership of M exists,
the question that is now addressed is how the i*" spacecraft
(Vi € F) must maneuver, should it choose to do so, to ensure
formation error Lyapunov stability. Before discussing special
cases for multiple and single impulse formation maneuvers, the
definitions for leader / follower and democratic formations are
given.

Definition 6: Leader / Follower Formation

A formation F is a leader / follower formation if and only if
w® = 1 (designating the *" spacecraft as the leader) and all
other j # i € F have weightings such that w’ = 0.

Definition 7: Democratic Formation

A formation F is a democratic formation if and only if for
allie F,wi=1 /N ¢, where Ny is the number of spacecraft
in F.

B. Single-Impulse Simplifications

For a leader / follower formation, the following single-
spacecraft uncoordinated maneuver sufficient stability condi-
tion is developed here.

Corollary 3: Single-impulse maximum formation error
reduction

The mean orbit element state change resulting from a maneu-
ver that maximally decreases the formation state error is

. 1 ) . .
A" = : : oe’ —uw' oe’
1 — 2w + Nyp(w?)? ;__
13)
Proof: This is seen by simplifying (11) in Corollary 1.
O

Again, it must be emphasized that a null maneuver (e.g.,
remaining stationary) also satisfies the sufficient condition. As
w"® — 0 (a “follower’ spacecraft),

A" | = e’

w?—0
In this case w' — 0, the state change Ace® does not effect the
state error of any other spacecraft in the formation, and thus
the optimal policy is to simply remove the state error for the
it" spacecraft. As w’ — 1 (a ‘leader’ spacecraft),

, 1 ,
i _ _
A’ |wi—>1 = 1 A;‘e}_ oe’

Ve

Importantly, the i*" spacecraft error no longer appears in the
equation, and the policy for the i*" spacecraft (with w® = 1)
that maximally decreases the formation state error is to move
such that the equally-weighted mean spacecraft error for all
follower spacecraft is zero. Note that, for a leader spacecraft,

A’ = 0 is also admissible, per Lemma 1.



Examining (13) for a Democratic formation as w® — 1/N ¥
produces
“’1—’1\%, Ny —1

A(—Ei,*

. 1 .
e’ — — oe’
N |2
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Corollary 4 now describes admissible Ace’ for each non-
simultaneous uncoordinated maneuver of spacecraft i € F.

Corollary 4: Spherical Admissible Regions for Individual
Stable Maneuvers

Under the same assumptions as Lemma 1, but with M
containing only the i*" spacecraft, any maneuver resulting in

a state change Ace’ that may be parameterized as

A@' = A" + &f||Ac”* ||t (14)

where ¢’ € [0,1] and ¥ is any unit vector, is a maneuver
that satisfies (7) in Lemma 1, and is therefore a formation
stabilizing maneuver.

Proof: This is seen by substituting (14) into (7):

k(wi, Nf)

5 A& <0

Ny
A&l - Acx! — | d&' — w! Zdéj
j=1

Which can be rearranged such that

1., , , , a1 .
AN Ac 4 & At Adet - F + S()?| Acet

— A (Aciei’* + si|\A6ei’*\\f'i> <0

which, after further simplification, reduces to (14)
O

It is important to note that Eq. (14) allows for admissible
maneuvers which are not required to arbitrarily modify an orbit
element set, which is crucial due to the previous issue raised
concerning an arbitrary Av’ only affecting a subspace of the
mean orbit element space. This result implies that there are a
range of admissible Av? maneuvers that are stabilizing.

C. Multiple-Impulse Simplifications

The following results apply when any number of spacecraft
in F may be maneuvering, but are not aware of other maneu-
vers being simultaneously executed by other spacecraft.

Corollary 5: Leader / Follower Admissible Uncoordinated
Maneuvers

For a leader / follower formation F (per Definition 6) with
all spacecraft potentially conducting uncoordinated maneuvers
(per Definition 5), admissible Ace’ and Ace’ maneuvers
(where spacecraft ¢ is the leader and j # ¢ € F are the
follower spacecraft) are

A’ =0
A’ = §&l + &7 |0’ || ¢

Where 7 and # are defined in Corollary 4.
Proof: Under Definition 6, when w® = 1 and w? = 0 Vj # i,

15)
(16)

(7) reduces relationships for the leader and the followers. For
each of the j followers (w’ = 0), using Corollaries 3 and 4
it is straightforward to show that (7) is satisfied for the ;"
spacecraft when

A&’ = §&’ + &7 || 0el ||t

Note that A’ = 0 is admissible. Using this solution for
Ace’, the summation term in (7) spacecraft is

Nl i Al + > sel - Ac!
JAIEF
-y (éj +5j||5éj\|f*j) A& <0

JAIEF
Realizing that the summation over de’ cancels and i - Ace! =
+||Ace’||, the sufficient condition for the leader spacecraft
then becomes
N;—1
2

lac'|? 3 (7)16e [ Ace'l]) <0
JAIEF
Which, because the sign of the second term cannot be known

without sharing information with the follower spacecraft,
requires that ||[Ace’|| = 0, producing A’ = 0. O

Thus, Corollary 5 has demonstrated that in the absence of
planned maneuver sharing, it is necessary that the leader not
maneuver (Ace’ = 0), while the follower spacecraft are free
to maneuver as described in (16). Selected results developed
in the Theory section are now examined using simulation.

IV. SIMULATION & RESULTS

The central results in the of this paper are verified here
using simulation. Primarily, the formation stability sufficient
condition (7) proven in Lemma 1 is exercised for a formation
with simultaneous, uncoordinated maneuvers. For the example
in this section, the mean orbit element states used are

e=[a e i o 0 M]" (17)
where @ is the semi major axis, € is the eccentricity, 7 is the
inclination, @ is the argument of periapsis, (2 is the ascending
node, and M is the mean anomaly. The propagated dynamics
include Keplerian orbital motion with J, perturbations. To
emphasize the central results of this paper, no navigation
uncertainty or control input noise is considered. The formation

consists of three spacecraft. The nominal design barycenter is

®@"? = [R.y +500 km 0.05 28° 30° 45° 150°]7
(18)
where R, is the radius of Earth’s equator. The desired
formation slots were made arbitrarily by setting 4, dw, €2,
and 6M for each of the spacecraft in the formation, and
computing da and de to make the formation slots .J, invariant
to the designed barycenter in Eq. (18). The formation slots
that are used for the simulations are given in Table I. In the
simulation each spacecraft is initialized with states that are

substantially perturbed from desired formation slots.



TABLE I
DESIRED FORMATION SLOTS

| @] H SC1 [ SC2 [ SC3 |
da -2.558 m -2.558 m 0.0255 m
e 4.607e-4 4.607e-4 4.628e-6
5 0.01° 0.01° 0.0001°
dw 0.1cos(@®"(3))° | —0.33 cos(@®®(3))° —-1°
5 —0.1° 0.1° 0°
SM 0° 0.2° 1°

To demonstrate the veracity of the sufficient condition
(7) derived in Lemma 1, at each control execution time
step (arbitrarily chosen to be every 25 seconds), formation
spacecraft simultaneously execute maneuvers drawn from a
random distribution satisfying the spherical admissible region
(Corollary 4) for an uncoordinated leader/follower formation
(Corollary 5). In this example with 3 spacecraft, spacecraft 1 is
the leader and may not maneuver (w! = 1 and w? = w3 = 0).

Figure 1 plots the formation error Lyapunov function (4) for
16 separate simulated formation responses. No effort is made
to minimize maneuver size or fuel usage - it is the purpose of
this example to emphasize the sufficient condition inequality.

10° ] —
10" — |
10" ‘\:\—‘ﬁ

Lyapunov Function

o 1 2 3 4 5 6 7 8 9 10 M
Control Execution

12 13 14 15 16 17 18 19 20

Fig. 1. Formation Lyapunov error for uncoordinated simultaneous
leader/follower formation maneuvers. 16 cases are simulated and shown

As seen in Figure 1, the Lyapunov error is consistently
driven down using randomly chosen admissible stabilizing
controls. As the Lyapunov error becomes sufficiently small,
Jo perturbations induced by small errors with the updated for-
mation orbits and the Js-invariant orbit design can be seen to
limit the Lyapunov error descent to a steady state V' ~ 10716,
This level of error is consistent with numerical precision error.
Operationally, this level of error is orders of magnitude lower
than propulsion system impulse and formation state estimation
error. Based on the results shown in Figure 1 with random
maneuvers in spacecrafts 2 and 3, it is clear that the formation
stability sufficient condition (7) is consistent with and verified
by simulated results.

V. CONCLUSIONS

The background motivation, literature, and state of dis-
tributed formation flight is introduced. Previous related work
is reviewed, wherein the concept of a formation barycenter,

formation slot, and distributed formation is formally defined
defined and discussed. A distributed formation Lyapunov error
function is constructed, and combined with the definitions
for the barycenter and differential mean orbit formation error,
used to rigorously derive sufficient conditions for simultane-
ous uncoordinated impulsive formation maneuvers. Solution
existence of maneuvers that minimize the Lyapunov error
is proven. Special cases for single-impulse and simultaneous
multiple-impulse maneuvers are discussed, and further simpli-
fications are discussed. A simulation is used to demonstrate
the validity of the analytical results in this paper. Potential
future work may investigate the case of a formation with
arbitrary weights and uncoordinated simultaneous maneuvers
or examine regions of admissible maneuvers in Av’ space to
find acceptable and optimal real controllers
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