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PROBABILITY DENSITY TRANSFORMATIONS ON ADMISSIBLE
REGIONS FOR DYNAMICAL SYSTEMS

Johnny L. Worthy III∗, Marcus J. Holzinger†

The admissible region as used for initial orbit determination is often expressed as a
uniform multivariate probability density function (PDF). A multivariate PDF may
be transformed and expressed in an alternate state space if the total probability is
preserved over the transformation. This paper applies the general multivariate PDF
transformation method to an admissible region to develop the conditions required
for such a transformation. Because the probability must be preserved, it is shown
that in general an admissible region PDF may not be transformed by a nonlinear
transformation unless specific mapping conditions are met over all the state space
volume. If this condition is not met then the transformation of an admissible region
PDF yields incorrect probabilities over the state space. Further, it is also shown
that if each state in an admissible region is locally observable then the constant
gradient condition is lifted.

INTRODUCTION

Observation systems often act in information deprived environments where a single observation
cannot fully determine the state of an observed object. Characterizing the orbit of a space object
from optical or radar measurements is an example of such an observation system since a single
optical or radar measurement does not provide enough information to uniquely determine the state
of the space object. However, with the increasing number of objects in orbit around the Earth,
characterizing these space objects is an active area of research. Currently, over 20,000 objects
larger than 10 cm are tracked and it is estimated that catastrophic collisions are likely to occur every
5 to 9 years [1]. These objects are currently tracked in the United States by a group of optical and
radar sensors in the Space Surveillance Network (SSN) [2]. Both types of observing sensors operate
in data deprived environments as optical measurements cannot determine the range to the target and
radar measurements cannot determine the angular position of the space object. However, over long
observation periods it is possible to use approaches such as Gauss’s method or Lambert’s method to
fully estimate the state of a space object [3]. The difficulty with these types of observations is that
over short observation periods (relative to the time scale of the dynamics) there is an unobservable
subspace causing traditional methods, such as Gauss’s, to fail. Because of this, the development of
initial orbit determination approaches based on short-arc optical and radar measurements is a very
active area of research.

Several nonlinear initial orbit determination approaches are based on the admissible region method.
When an observation is too short to provide enough geometric data for an initial orbit estimate, a
continuum of possible solution exist. The admissible region method uses hypothesized constraints
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to bound the feasible solutions to a closed and computationally tractable state space volume [4].
First proposed by Milani et. al., the admissible region method constrains the possible solutions for
a given too-short arc (TSA) observation using the dynamics of the orbiting bodies and hypothesized
constraints [4] [5]. Many have extended the admissible region’s applicability to SSA since Milani
et. al. For example, methods have been presented that discretize the admissible region and consider
solutions at discrete points [6] [7]. Multiple hypothesis filter or particle filter methods can also be
initialized from discretized admissible regions [8]. Optimization methods to identify a best fitting
orbit solution are presented by Siminski et. al. [9]. A boundary value problem approach is ap-
plied to the admissible region by Fujimoto and Alfriend which uses the angle-rate information to
eliminate hypotheses [10].

In general, Bayesian estimation techniques utilize an a priori probability distribution of the initial
state. Thus, admissible regions must be expressed probabilistically when used as a-priori distribu-
tions to initiate Bayesian estimation schemes. Fujimoto et. al. showed that the admissible region
possesses a uniform probability density over the constrained unobservable state space volume; every
state satisfying the constraint is equally likely to be true [11]. Without the inclusion of measure-
ment, observer, and parameter uncertainty, however, a uniform probability distribution results in a
probability discontinuity at the admissible region boundary. It is important to include uncertainty
effects to remove this discontinuity when generating an admissible region in order to account for
states that would otherwise have been assigned 0 probability. DeMars and Jah accomplish this by
using a Gaussian mixture model (GMM) to approximate the the admissible region [12]. The GMM
accounts for uncertainty in the Gaussian mixture approximation component size. An approximate
analytical expression for the exact probability distribution of an admissible region is presented by
Worthy and Holzinger by directly accounting for uncertainty and errors in the measurements and
observer state [13]. Hussein et. al. generate a probabilistic admissible region by uniformly sampling
from an admissible region constructed in a given state space [14]. The uniformly sampled points
are then mapped into the desired state space and a Gaussian mixture is used to describe the new
admissible region. This work motivates the question as to whether it is possible to mathematically
transform an admissible region from a given state space into a different state space.

An admissible region is formulated in a specific state space based on the hypothesized constraints,
however operational requirements may necessitate estimation schemes which operate in a different
state space implying a probability mapping is needed. In general, probability mappings are only re-
stricted by the requirement that the transformation be left invertible [15]. This condition preserves
probability across the transformation and it is possible that additional conditions exist for admissi-
ble region probabilities. Due to this, care must be taken when transforming the admissible region
probabilities between state spaces. The approach presented in [13] can be extended to assess the
conditions under which an approximate admissible region may be initialized in a state space dif-
ferent from the original formulation. To address probability transformations of admissible regions,
this paper comprises 1) formal analytical results regarding valid admissible region state space trans-
formations, 2) a formal expression of the constant gradient condition which enables an admissible
region probability distribution to be arbitrarily transformed into a different state space and 3) a novel
extension of the approximate analytical probability distribution function for the transformation of
an admissible region.

This paper is organized as follows. The general requirements and approach to transform proba-
bility distributions are described in §II.A with applicability to admissible regions shown in §II.B. In
§III.A the theory is applied to assess the validity of the transformation of probability from topocen-
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tric spherical to cartesian coordinates and show the conditions for observability of the system.

PROBABILITY TRANSFORMATIONS FOR ADMISSIBLE REGIONS

The general theory of probability transformations is an exhaustively studied topic in statistics
and probability [15] [16] [17] with a wide range of applications. The purpose of this section is to
introduce fundamental results regarding general probability mappings and apply it to the admissible
region.

General Probability Transformations

Given the probability density function (PDF) fX : Rn → R+ of a random variable X ∈ Rn,
x ∼ fx(x), the cumulative distribution function (CDF) can be written as

FX(x) = P[X ≤ x] =

∫
A
fX(x)dx (1)

where the volume of integration is given by A = (−∞, x1] × · · · × (−∞, xn]. Define a transfor-
mation g : Rn → Rm where n ≥ m. Applying the transformation x̃ = g(x), the CDF for the
transformed variable is obtained using integration by substitution and is given by

FX̃(x̃) = P[X̃ ≤ x̃] =

∫
Ã
fX(g−1(x̃)) · abs

(∣∣∣∣∂g−1(x̃)

∂x̃

∣∣∣∣) (2)

where Ã = (−∞, x̃1]×· · ·× (−∞, x̃n] and abs
(∣∣∂g−1(x̃)/∂x̃

∣∣) is the determinant of the Jacobian
matrix and the absolute value ensures fX̃(x̃) is non-negative for all values of x̃ [15]. The integrand
of Eqn. (2) is by definition the PDF of X̃ = g(X) and thus the following foundational theorem in
multivariate statistics gives the PDF of the transformed variable.

Theorem 1 (Transformation theorem for continuous random variables [15]). Given a PDF fX(x)
and a left-invertible transformation x̃ = g(x) then the PDF of the transformed variable fx̃(x̃u) is
given by

fX̃(x̃) =

{
fX(g−1(x̃)) · abs(

∣∣ ∂
∂x̃ g−1(x̃)

∣∣) for x̃ ∈ R(g(x̃))

0 otherwise
(3)

Proof. The proof of Theorem 1 is given in [15].

This transformation of X into X̃ must also satisfy [18]

FX̃(x̃) = FX(g−1(x̃)) (4)

where F(·) denotes the CDF over x̃ or x. This implies that for a given transformation x̃ = g(x), the
CDF must not be changed. In other words, if the CDF is known for X then the CDF is known for X̃.

Corollary 1 (Equivalence of CDFs). Given a known CDF FX(x) for x and a once differentiable
and right-invertible transformation x̃ = g(x), the CDF FX̃(x̃) for x̃ must satisfy FX̃(x̃) = FX(x̃).

Proof. The proof of Corollary 1 follows directly from the derivation and analysis of Eqn. (1). By
definition Eqn. (1) is equal to Eqn. (2) and thus Eqn. (4) must hold.
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Admissible Region Transformations

The purpose of the following subsections is to outline why, in general, and admissible region PDF
cannot be transformed. The first subsection shows the application of the derivation of Eqn. (3) to
the admissible region problem. Then the necessary conditions for an admissible region PDF to be
transformed based on the definition of an admissible region are defined, followed by a discussion
of the limitation of practical transformations satisfying these necessary conditions. The second
subsection considers the case when an admissible region PDF is not considered to be uniform.
The third subsection discusses the observability condition in the admissible region problem and
discusses when Eqn. (3) may be applied to a PDF based on an admissible region without any
additional conditions. As this section will prove, a uniform PDF representation is in contradiction
to Theorem 1.

Defining the Admissible Region
The previous probability transformation techniques operate specifically on a PDF, thus it is impor-

tant to distinguish the admissible region from a true PDF. The admissible region is generally taken
to be a uniform PDF [11], however mathematically it is not a true PDF. Since every state within an
admissible region satisfies the hypothesized constraints, there is no information available to indicate
whether one admissible state is more probable than any other admissible state. Admissible regions
are then often represented as uniform PDFs over the admissible region.

Defining the admissible region requires knowledge of a measurement model for the system being
observed. Consider the a general nonlinear measurement model given by

y = h(x; k, t) (5)

where the measurement function is defined as h : Rn × Rl × R → Rm and y ∈ Rm is the
measurement vector, x ∈ Rn is the state, k ∈ Rl is the parameter vector, which may include the
observer state and any other necessary parameters, and t is the time. As done in all admissible region
approaches, the state vector can be partitioned in to determined states xd ∈ Rd and undetermined
states xu ∈ Ru where u+ d = n [13]. This means that

y = h(xd; k, t) (6)

Admissible region approaches constrain this continuum of solutions using hypothesized constraints
in the form κi(xu, y,k, t) ≤ 0 where κi : Ru × Rm × Rl × R → R. The admissible region for the
ith hypothesized constraint κi(·) is then defined as

Ai := {xu ∈ Ru | κi(xu, y,k, t) ≤ 0} (7)

whereAi ⊆ Ru. Furthermore, if there are c such hypotheses then the total combined admissible
region is given by

A =
c⋂
i=1

Ai (8)

whereA must be a compact set [19]. The requirement thatA be compact ensures the assumed
uniform distribution has non-zero probability. Thus, each state x ∈ A can be assigned a non-zero
uniform probability.
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Observability of Admissible States
The admissible region approach allows the continuum of solutions possible for an underdeter-

mined system to be bounded based on hypothesized constraints. The continuum of solutions for
an underdetermined system indicates that the system is unobservable. The undetermined states are
the unobservable states, and the admissible region bounds this unobservable subspace. Consider the
general nonlinear dynamical and measurement model

ẋ = f(x, t) (9)

y = h(x; k, t) (10)

The conditions for observability of this system, given a single measurement, can be assessed by the
observability gramian P ∈ Sn×n+ [20] which is given as

P(tf , t0, x(t)) =

∫ t

t0

ΦT (τ, t0)
∂h(x(τ); k, τ)

∂x(τ)

T ∂h(x(τ); k, τ)

∂x(τ)
Φ(τ, t0)dτ (11)

where Φ : Rn×R→ Rn is the state transition matrix (STM). Consider the solution to the dynamical
system given by Eqn. (9)

x(t) = φ(t; x(t0), t0) (12)

where φ is the flow function. The rank of the above observability gramian gives the dimension of the
unobservable subspace of the system along x(t), t ∈ [t0, tf ]. A point in state space x(t) is observable
if and only if rankP(tf , t0, x(t)) = n. If rankP(tf , t0, x(t)) < n then there is an unobservable
subspace which is realized as N (P(tf , t0, x(t))), the nullspace of the local observability gramian
about x(t) over the time interval t ∈ [t0, tf ], and a state estimate admits a continuum of solutions
that generate the same measurement sequence.

Lemma 1 (Admissible Regions and System Observability). For all x(t) with xu ∈ A the observ-
ability gramian P(tf , t0, x(t)) has rank P(tf , t0, x(t)) = d < n for the observation of a space
object following Keplerian dynamics. Every point xu subspace is therefore unobservable.

Proof. Consider the Taylor series approximation of the state transition matrix.

Φ(τ, t0) = I6 +
∂f
∂x

(τ − t0) + H.O.T (13)

Taking the first order terms and assuming two body dynamics,

f(x, t) =

[
ṙ

− µ
‖r‖3 r

]
(14)

where x =
[
rT ṙT

]T
which allows,

∂f
∂x

=

[
0 I3
M 0

]
(15)
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where Iv is the v × v identity matrix and

M =


3µr2x
‖r‖5 −

µ
‖r‖3

3µrxry
‖r‖5

3µrxrz
‖r‖5

3µryrx
‖r‖5

3µr2y
‖r‖5 −

µ
‖r‖3

3µryrz
‖r‖5

3µrzrx
‖r‖5

3µrzry
‖r‖5

3µr2z
‖r‖5 −

µ
‖r‖3

 (16)

If the time interval is sufficiently small, then M(τ − t0) can be approximated to have a negligible
contribution. To quantify sufficiently small, if

(τ − t0)�
‖r‖3

3µ
(17)

then each of the terms in M(τ − t0) are very small and considered negligible. Then,

Φ(τ, t0) ≈ I6 +

[
0 (τ − t0)I3
0 0

]
(18)

Over this time period satisfying Eqn. (17), the matrix ∂h(x(τ); k, τ)/∂x(τ) may be considered a
constant. With this, the observability gramian may be analytically integrated. Consider the parti-
tioned state variables which allow,

∂h
∂x

=
[
∂h
∂xd

∂h
∂xu

]
(19)

By definition, ∂h/∂xu = 0 leaving

∂h
∂x

=
[
0 ∂h

∂xd

]
(20)

Given n = 6 and d = 4, the integration of Eqn. (11) using Eqn. (18) and assuming t0 = 0 gives
that

P1 =



c1,1 t c1,2 t c1,3 t
c2,1 t c2,2 t c2,3 t
c3,1 t c3,2 t c3,3 t

t (c4,11 t+ c4,12) t (c4,21 t+ c4,22) t (c4,31 t+ c4,32)

c5,1 t
2 c5,2 t

2 c5,3 t
2

c6,1 t
2 c6,2 t

2 c6,3 t
2

 (21)

P2 =



1
2 t (c1,41 t+ c1,42) c1,5 t

2 c1,6 t
2

t (c2,41 t+ c2,42) c2,5 t
2 c2,6 t

2

t (c3,41 t+ c3,42) c3,5 t
2 c3,6 t

2

t
(
c4,41 t

2 + c4,42 t+ c4,43
)

t2 (c4,51 t+ c4,52) c4,61 t
2 (t+ c4,62)

t2 (c5,41 t+ c5,42) c5,5 t
3 c5,6 t

3

t2 (c6,41t+ c6,42) c6,5 t
3 c6,6 t

3

 (22)

where

P(tf , t0, x(t)) =
[
P1 P2

]
(23)
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and each of the ci,j terms are constants which depend on ∂h/∂xd. Under the conditions given by
Eqn. (17), it can be seen that for sufficiently short observations the rank of this matrix becomes 4.
In particular, the higher order terms, t2 and t3, in the last two rows and last two columns cause these
rows and columns to go to zero. Without loss of generality, the form of this matrix holds for any
values of n and d. The rank in this case is defined by the number of rows, or columns, containing
terms to the 1st order of t. It can be shown that the number of rows, or columns, with t is equal to
the rank of ∂h/∂xd. This implies that the rank of P(tf , t0, x(t)) is d as long as Eqn. (17) is satisfied.
It can be stated that rank P(tf , t0, x(t)) = n− u = d < n. Because this is true for any point xu, all
such points are unobservable.

The Admissible Region PDF
The probability that a given state xu ∈ Ru lies in the ith admissible region is then given by

P[xu ∈Ai] = P[κi(xu, y,k, t) ≤ 0] (24)

Without any additional information, the inequality defining Ai in Equation (7) is a binary con-
straint and P[xu ∈Ai] ∈ {0, 1} since each xu has either 100% or 0% probability of satisfying the
constraint. Thus the probability that xu satisfies a given constraint κi can be exactly expressed as a
piecewise membership function defined as

mi(xu) =

{
1, κi(xu, y,k, t) ≤ 0
0, κi(xu, y,k, t) > 0

(25)

Thus P[xu ∈Ai] = mi(xu), and the probability mass function for a particular constraint hypothesis
can then be defined as [16]

fi,xu(xu) =
mi(xu)∫
Ai

dxu
(26)

Eqn. (26) results in a uniform distribution, which is demonstrated in [11]. Applying the chain rule
of probabilities, the general joint probability function can be written as [17]

fxu(xu) =
P[xu ∈A]∫
A

dxu

=
1∫

A
dxu

c∏
k=1

P

xu ∈Ak

∣∣ xu ∈
k−1⋂
j=1

Aj

 (27)

where the bracketed term gives the probability that kth constraint is satisfied given that each of the
k− 1 previous constraints are satisfied. If the constraints κi are assumed to be independent, then by
Bayes’ rules the conditional probability terms evaluate to 1 and Eqn. (27) simplifies to

fxu(xu) =

∏c
k=1 P [xu ∈Ak]∫

A
dxu

(28)

=

∏c
k=1mk(xu)∫
A

dxu
(29)
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By this formulation, every xu ∈A is a candidate solution that satisfies the c constraints and without
additional information; no one state can be considered more likely than another. Thus fxu(xu) is a
constant overA and as such the admissible region must be considered a uniform distribution. This
fact exactly agrees with work presented by Fujimoto and Scheeres stating that without any a priori
information regarding the observation, an admissible region is expressed as a uniform PDF [21].

Transformation of the Admissible Region PDF
Suppose a user wishes to use the admissible region method to initiate an estimation procedure

in a state space other than the state spate in which the admissible region constraints are formed.
Following the general probability transformation approach a transformation g : Rn → Rn can be
defined. This transformation can also be partitioned into gu : Ru → Ru and gd : Rd → Rd such
that

x̃u = gu(xu, y,k, t) (30)

x̃d = gd(xd, y,k, t) (31)

For simplicity, this transformation will be expressed as gu(xu; ·) for the remainder of this paper. In
general, the transformation gu(xu; ·) must be left invertible for Eqn (3) to be applicable. Addition-
ally, the transformation must satisfy the condition that the underdetermined and determined states
in the transformed space are still capable of being partitioned, leading to the following Lemma.

Lemma 2 (Partitioned Transformed State). A PDF of an admissible region expressed in state space
xu may be transformed to state space x̃u = gu(xu; ·) only if there exist some x̃d = ḡd(y; ·), ḡd :
Rm → Rd such that y = h(xd, k, t) = h̃(x̃d, k, t), h̃ : Rd × Rl × R→ Rm.

Proof. The undetermined states xu are independent of the determined states xd as defined in [13].
This enables the partitioning of the state space such that the measurement y is only a function of the
determined states, the parameters k, and time and can be expressed by

y = h(xu, xd,k, t) = h(xd,k, t)

which by definition means xd = h−1(y,k, t). If there is a transformation of xu, then the transfor-
mation can be given by

x̃d = gd(xd)
= gd(h−1(y,k, t))

which can be defined as ḡd = gd ◦ h−1 : Rm → Rd giving,

x̃d = ḡd(y; ·)

Thus, the measurement function is now expressed by

y = h̃(gu(xu; ·), ḡd(y; ·),k, t)

For the admissible region problem, it is required that x̃ can be partitioned into x̃u and x̃d such that y is
independent of x̃u. In general h̃(gu(xu; ·), ḡd(y; ·),k, t) 6= h̃(ḡd(y; ·),k, t) since the transformation
is not necessarily a function solely of xu. Thus, the function ḡd(y; ·) must be defined to ensure
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that the determined variables are transformed such that the transformed undetermined states remain
independent of the measurements. If a transformation ḡu(y; ·) cannot be defined such that this is
true then

y = h̃(gu(xu; ·), ḡd(y; ·),k, t) 6= h̃(ḡd(y; ·),k, t)

and the admissible region formulation is invalid.

The result of Lemma 2 essentially requires that if the undetermined states can be transformed then
they must remain independent of the observations. Because this is a requirement for the formation
of an admissible region, any transformation that does not satisfy Lemma 2 necessarily generates a
region that can no longer be defined anA.

Assuming a transformation satisfying Lemma 2 exists, the admissible region in the transformed
space can be defined. For the admissible region problem, since the constraint hypothesis is a func-
tion of a unique state xu,

κi(xu, y,k, t) = κ̃i(gu(xu; ·), y,k, t) (32)

κ̃i(x̃u, y,k, t) = κi(g−1u (x̃u; ·), y,k, t) (33)

Eqns. (32) and (33) then imply that P[x̃u ∈ Ãi] = P[xu ∈Ai] and mi(xu) = mi(x̃u) where,

Ãi := {x̃u ∈ Ru | κ̃i(x̃u, y,k, t) ≤ 0} (34)

and

m̃i(x̃u) =

{
1, κ̃i(x̃u, y,k, t) ≤ 0
0, κ̃i(x̃u, y,k, t) > 0

(35)

The general PDF in the transformed space is given by

fX̃u
(x̃u) =

1∫
Ã

dx̃u

c∏
k=1

P

x̃u ∈ Ãk

∣∣ x̃u ∈
k−1⋂
j=1

Ãj

 (36)

Assuming again that the constraint hypotheses are independent, the PDF expressed in x̃u is given
by,

fX̃u
(x̃u) =

∏c
k=1 m̃k(x̃u)∫
Ã

dx̃u
(37)

A general nonlinear transformation of a uniform PDF will yield a non-uniform PDF according
to Eqn. (3). The uniform PDF of an admissible region is a probabilistic representation of the fact
that each state xu ∈A is consistent with the measurement y. Without any additional information,
each state necessarily has equal probability which must also be true if xu is expressed in any other
state space. Given this fact, the necessary relationship between fXu(xu) and fX̃u

(x̃u) is given by
Theorem 2.

Theorem 2 (Equivalence of Admissible Regions). Given xu ∈A and an invertible transformation
x̃u = gu(xu; ·), a PDF transformation for the admissible region problem is only valid if the trans-
formation g satisfies |∂xu/∂x̃u| = ζ ∀ xu ∈A where ζ is the ratio of the volume of the admissible
region as expressed in both state spaces and fX̃u

(x̃u) = ζfxu(xu).
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Proof. The proof of Theorem 2 is given by way of contradiction. Assume there exists an invertible
transformation gu(xu; ·) for which |∂xu/∂x̃u| 6= ζ for some x ∈ A. The relationship between
fxu(xu) and fx̃u(x̃u) may be determined by applying Eqn. (3) as follows

fX̃u
(x̃u) =

∏c
k=1mk

(
g−1(x̃u)

)∫
A

dxu
abs

(∣∣∣∣∂g−1u (x̃u)

∂x̃u

∣∣∣∣) (38)

Each of the terms in Eqn. (38) have been defined thus far except for the Jacobian term
∣∣∂g−1(x̃u)/∂x̃u

∣∣.
Rearranging Eqn. (38), by substituting the x̃u PDF on the left hand side and multiplying by the de-
nominator of the right hand side,∏c

k=1 m̃k (x̃u)∫
Ã

dx̃u

∫
A

dxu =

c∏
k=1

mk

(
g−1u (x̃u)

)
abs

(∣∣∣∣∂g−1u (x̃u)

∂x̃u

∣∣∣∣) (39)

Note that for the admissible region approach mk(xu) = m̃k(x̃u) since it is necessary that P[xu ∈
Ai] = P[x̃u ∈ Ãi]. Thus, dividing each side by

∏c
k=1 m̃k (x̃u) results in,∫

A
dxu∫

Ã
dx̃u

= ζ = abs

(∣∣∣∣∂g−1u (x̃u)

∂x̃u

∣∣∣∣) (40)

If |∂xu/∂x̃u| 6= ζ then, ∫
A

dxu∫
Ã

dx̃u
6= ζ (41)

which then implies P[xu ∈ Ai] 6= P[x̃u ∈ Ãi] for Eqn. (39) to hold. But this is a contradiction
since the admissible region requires P[xu ∈ Ai] = P[x̃u ∈ Ãi] regardless of the transformation.

Theorem 2 imposes a geometric constraint on the transformation g through the determinant of
the Jacobian. The constraint requires the determinant to be constant which implies the distortion
of the x̃u state space relative to the xu state space is the same at every point. This is necessary to
ensure that any one point inside the admissible region in xu remains inside the equivalent admissible
region expressed in x̃u. Furthermore, this constraint limits the practical applicability of probability
transformations to admissible region because useful state space transformation are often complex,
nonlinear functions.

Given that a transformation g exists which satisfies Theorem 2, it is possible to define the trans-
formed PDF. The final expression for the transformed PDF is then given by

fX̃u
(x̃u) = ζ

∏c
k=1mk (xu)∫
A

dxu
(42)

Eqn. (42) signifies that for the admissible region problem with no additional information, the admis-
sible region of xu expressed in any transformed state space x̃u such that g−1(x̃u) exists is necessarily
uniform and simply scaled by a factor ζ. Thus, the admissible region can be expressed in any state
space, given that the transformation satisfies Theorem 2, as a uniform PDF which agrees with the
work shown in [11]. It should be noted that useful transformations are often highly non-linear and
as such will not typically satisfy the conditions presented by Theorem 2. It is likely that, in general,
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an admissible region PDF cannot be transformed since no practical transformations exists satisfying
Theorem 2. If an admissible region PDF is transformed by a transformation not satisfying Theorem
2, then the PDF in the transformed space is no longer a uniform representation of the state space,
and this non-uniform representation is not based on statistical information but based only on the
transformation function. Because of this, any transformation not satisfying Theorem 2 generates an
admissible region PDF misrepresenting the true distribution.

Non-UniformA PDFs
While Eqn. (42) applies for transformations of uniform PDFs, it may also be applied to non-

uniform admissible region PDFs. An approach for generating a non-uniform PDF of xu is shown in
[13]. The approximate analytical probability for a given admissible region is given by

P[(xu ∈Ai)] = mi(xu) =
1

2

1 + erf

‖xu − xu,B⊥,i‖√
2trPxu,B⊥,i

 (43)

which updates the piecewise membership function given by Eqn. (25) to a continuous membership
function by including uncertainty effects. These uncertainties are quantified as the covariance matrix
Pz where z is the combined matrix of the measurements, parameters, and time. The quantity xu,B⊥,i
is the point on the boundary ofAi orthogonal to xu and Pxu,B⊥,i is the covariance calculated at this
boundary point. Substituting Eqn. (43) into Eqn. (29) then gives the non-uniform PDF.

Corollary 2 (Systematic Uncertainty in Admissible Regions). If the combined measurements, pa-
rameters, and time covariance matrix Pz is known then transformation of the non-uniform admissi-
ble region probability is given by

P[(x̃u ∈ Ãi)] = m̃i(x̃u) =
1

2

1 + erf

‖gu(xu; ·)− gu(xu,B⊥,i; ·)‖√
2trPx̃u,B⊥,i

 (44)

where Px̃u,B⊥,i
is the modified covariance matrix.

Proof. Given the previous transformation x̃u = gu(xu; ·), Eqn. (43) can be derived for x̃u. The
simplified Taylor series expansion from Eqn. (17) in [13] now becomes

− ∂κi
∂x̃u

∂x̃u
∂xu

δXu =
∂κi
∂z

δZ (45)

Carrying the notation defined in [13], a new perpendicular vector p̃ is defined as

p̃ =
∂κi
∂x̃u

∂g−1u (xu; ·)
∂xu

∣∣∣∣∣
xu

(46)

The rest of the derivation can be carried out as specified in [13] by replacing p with p̃ resulting in

M̃ =

[
p̃T

T

]−1 [−∂κi
∂z

0

]
where T ∈ Ru−1×u is a matrix of tangential unit vectors which gives

Px̃u = M̃PzM̃
T

(47)

Eqn. (44) is obtained by substituting Px̃u and g(xu) into Eqn. (43).
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Eqn. (44) defines the approximate analytical probability distribution function for an admissible
regionAi in the x̃u space. Alternatively, from Eqns. (32) and (33)

P[(xu ∈Ai)] = P[(x̃u ∈ Ãi)] (48)

=
1

2

1 + erf

‖gu(xu; ·)− gu(xu; ·)u,B⊥‖√
2trPx̃u,B⊥

 (49)

≈ 1

2

1 + erf

‖xu − xu,B⊥‖√
2trPxu,B⊥

 (50)

Because of this, it is equivalent to directly map each xu to x̃u and assign each x̃u = g(xu) the
probability of set membership P[x ∈Ai] or vice-versa.

The Observability Condition
Lemma 1 shows that the existence of the admissible region implies that there is a non-trivial un-

observable subspace of the system given a short enough observation. However, it is possible for the
system to become fully observable given enough observations or a long enough observation of the
system. Thus, it is of interest to understand how the observability of a system affects the transfor-
mation of the PDF associated with an admissible region. By definition, after the initial measurement
any state in the admissible region is locally unobservable and cannot be transformed by Eqn. (3)
unless Theorem 2 is satisfied. However, if an additional measurement can be taken at a time t such
that each state xu ∈ A is locally observable, then an a posteriori PDF can be constructed. This a
posteriori PDF represents a true PDF over the state space and can be used directly with Eqn. (3) to
transform probabilities between state spaces. As such, it is of interest to determine when the states
xu ∈A become locally observable.

Corollary 3 (Observability in Admissible Region Problems). If the observability gramian for the
admissible region system satisfies rankP(tf , t0, x(t)) = n where x(t) = [xd(t) xu(t)]∀ xu ∈
A then the PDF associated with the admissible region estimate may be transformed without the
condition |∂xu/∂x̃u| = ζ ∀ xu ∈A.

Proof. The admissible regionA is, as defined, a subset of the unobservable state space where each
state xu ∈ A has no effect on the measurements. Since the mapping h from x to y cannot be a
one-to-one and onto, each xu ∈ A must necessarily have a uniform probability. Because this is
also true in any transformed state space x̃, the admissible region must necessarily be uniform in
any state space. If a system is locally observable at xk ∈ Rn, where k is an arbitrary index, then
there exists a measurement function ho : Rn → Rm where ho is a one-to-one and onto function.
Thus, xj 6= xk =⇒ ho(xj) 6= ho(xk) and each unique observation corresponds to a unique state
x. If the transformation g(x) is also one-to-one and onto then there must also exist a measurement
function h̃o : Rn → Rm such that x̃j 6= x̃k =⇒ h̃o(x̃j) 6= h̃o(x̃k) and ho(xj) = h̃o(x̃j) = y. A
unique solution exists for a given observation, or set of observations, and a PDF can then be defined
about that solution. Because this unique PDF cannot be identical in both state spaces, the condition
given by |∂xu/∂x̃u| = ζ can no longer hold, and for an observable system the PDF can simply be
transformed by Eqn. (3).
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The main result of Corollary 3 is that the PDF associated with a givenA may generally not be
transformed until it is observable. Since there are likely no practical transformations that satisfy
Theorem 2, the significance of Corollary 3 is in the fact that general admissible region PDF trans-
formations are possible, but only once each state inA becomes locally observable. Furthermore,
by Lemma 1, if every xu ∈A is locally observable, then the region is necessarily not an admissible
region.

Additional Transformations

This section discusses additional transformations that apply to the probability transformation
theorems, corollaries, and lemmas presented in this work.

Linear Transformations
The only set of functions that will always satisfy Theorem 2 are linear transformations leading to

Remark 1.

Remark 1: Any linear transformation x̃u = gu(xu) = Tuxu such that Tu ∈ Rn×n, rankTu = n
that can be defined ∀xu ∈ A will satisfy the requirements given by Lemma 1 and Theorem 2.
Thus, for any linear transformation of an admissible region, ζ can be defined such that fX̃u

(x̃u) =
ζfXu(xu).

Any invertible linear transformation of covariance in extended Kalman filters satisfies Theorem
2 as long as the covariance is sufficiently small []. Since linear transformations are trivial for an
admissible region problem, it can be stated that in generalA cannot be transformed due to Theorem
2.

Sigma Point Transformations
An additional application of the general probability transformation comes from sigma point trans-

formations and filters [25]. Sigma point filters use transformations of the sigma points of a Gaussian
PDF to map the PDF over nonlinear transformations, used largely in the Unscented Kalman Filter.
The sigma point transformation as originally defined relies on the fact that the transformation pre-
serves the mean and covariance [26]. Alternatively, the sigma point transformation must preserve
the PDF. Assume a PDF fx(x) is known for a given x, then the first order Taylor Series expansion
of the inverse of the transformation x̃ = g(x) is given by

x + δx = g−1(x̃) +
∂g−1(x̃)

∂x̃
δx̃ (51)

x + δx = x +
∂g−1(x̃)

∂x̃
δx̃ (52)

δx =
∂g−1(x̃)

∂x̃
δx̃ (53)

Since a sigma point transformation aims to preserve the mean and covariance a transformation given
by |∂g−1(x̃)/∂x̃| = 1 is a valid sigma point transformation since the PDFs of x and x̃ are the same.
However, if |∂g−1(x̃)/∂x̃| = c where c is a constant for all x in the vicinity of the Gaussian PDF
parameterized by the sigma points then the PDF is also preserved by the scaling factor c and the
PDFs can be written as fx(x) = fx̃(x̃)/c. This result is analogous to Theorem 2, since the PDF must
be preserved for admissible regions and the PDF must be preserved for sigma point transformations,
the scaling factor c is similar to ζ for admissible regions.
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Transformations Over Time
General probability transformations also apply to transformations through time as shown by Park

and Scheeres [22]. Here it is shown that the framework presented in this paper is consistent with
these existing methods. Given an initial PDF for a system, it is often useful to know how that PDF
changes over time. Consider the following system dynamics

ẋ = f(x, t) (54)

where x ∈ Rn and t ∈ R. The solution is expressed as

x(t) = φ(t; x0, t0) (55)

where the subscript ‘0’ denotes the initial state, x(t0) = x0 and φ is the flow function satisfying

dφ

dt
= f(φ(t; x0, t0), t) (56)

φ(t0; x0, t0) = x0 (57)

In the case of time transformations, the function φ is the transformation function g(·). The PDF
transformation of a dynamical system over time comes from analysis of the Fokker-Planck equa-
tion. If the system introduced above satisfies the Itô stochastic differential equation, then the time
evolution of the PDF stochastic variable X over time is given by the Fokker-Planck equation [23]

∂fx(x, t)
∂t

= −
n∑
i=1

∂

∂xi
(fx(x, t)fi(x, t)) (58)

assuming no diffusion terms. Park and Scheeres show the integral invariance of a PDF through the
solution to this simplified Fokker-Planck equation for a system with no diffusion resulting in [22]
[24].

f(t,φ(x0, t0), t) = f(x0, t0)

∣∣∣∣ ∂x
∂x0

∣∣∣∣−1 (59)

which is the exact form given in Eqn. (3). Under Hamiltonian dynamics, Liouville’s theorem proves
that |∂x/∂x0| = 1 for all time t since the transformation over time is a Canonical transformation
[22]. Thus, for a Hamiltonian system Eqn. (59) simplifies further since the Jacobian term evaluates
to unity and if the PDF is known at any time, it is known for all time. This exactly matches with
Theorem 2 since |∂x/∂x0| = ζ = 1 and at any time t the PDF is given by ζf(x0, t0) = f(x0, t0).

Discussion

The results presented in this paper show that in general, transformations of admissible region
probabilities are only possible under strict conditions outlined by Theorem 2. Notable acceptable
transformations include linear transformations and transformations with constant Jacobians over
the admissible region. If a nonlinear transformation is applied to an admissible region PDF that
does not satisfy Theorem 2, then the resulting PDF is necessarily a mis-representation of the true
PDF. Furthermore, if a filter is instantiated from this improperly transformed PDF then it may
cause unnecessary inefficiency in filter convergence. However, once every state in the admissible
region becomes observable then Theorem 1 can be applied to transform the PDF with appropriate
x̃ = g(x)as desired. As such, for any filter to be properly instantiated, it must remain in the state
space of the original admissible region PDF formulation unless either Theorem 2 or Corollary 3 is
satisfied.
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SIMULATION AND RESULTS

To demonstrate probability transformations as applied to admissible regions, consider the obser-
vation of an object in LEO from an observer in Socorro, NM. Following the approach described in
[13], the measurement vector is given by,

y =
[
α δ α̇ δ̇

]T
(60)

with the object state vector,

x =
[
r v

]
(61)

where r and v are position and velocity of the space object. The state matrix may also be represented
by the topocentric spherical coordinates,

x̃ =
[
α δ α̇ δ̇ ρ ρ̇

]T
(62)

For this observation model the undetermined states are given by x̃u = [ρ ρ̇], where ρ is the range
and ρ̇ is the range-rate. The true state of the object at time t0 is given in canonical units as

r =

−0.9281
−0.0489
0.6167

DU v =

−0.5171
0.1292
−0.7662

DU/TU (63)

where 1 DU = 6378 km and 1 DU/TU = 7.90538 km/s. An initial series of 2 measurements of
the inertial bearings are gathered at 20 second intervals producing the following determined states,
or observation, vector

xd =
[
−3.0337 rad −0.0538 rad −0.1003 rad/TU −0.4482 rad/TU

]
(64)

From this information an admissible region can be constructed. The admissible region is then
constructed such that the constraint hypotheses give a region where 10000 km ≤ a ≤ 50000 km
and e < 0.4. A set of 4000 points are uniformly sampled from the admissible region to demonstrate
the requirements on admissible region transformations and are shown in Figure 1. The upper bound
on semi major axis is given by the solid line and the upper bound on eccentricity is given by the
dotted line in Figure 1.

Initial orbit determination methods can then use these sampled points to initiate particle filters
or multiple hypothesis filters to process new observations. For these particle filter methods, the
state vector can be converted to cartesian coordinates for propagation. However, this involves a
transformation of the state space which implies either Theorem 2 or Eqn. (3) must be applied. The
transformation from x̃ to x is given by,

r = o + ρ̂l (65)

v = ȯ + ρ̇̂l + ρα̇̂lα + ρδ̇̂lδ (66)

where,

l̂T =
[
cosα cos δ sinα cos δ sin δ

]
l̂Tα =

[
− sinα cos δ cosα cos δ 0

]
l̂Tδ =

[
cosα sin δ − sinα sin δ cos δ

]
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Figure 1. A set of 4000 points sampled uniformly from the admissible region.

and o ∈ R3 is the observer position and ȯ ∈ R3 is the observer velocity. This transformation is both
one-to-one and onto as there is only one cartesian state corresponding to a given ρ, ρ̇, and observa-
tion vector. The Jacobian of this transformation is clearly a function of ρ and ρ̇ and thus cannot be
constant over the admissible region. After a single observation, the admissible region must still be
expressed as a uniform distribution and transforming the sampled points into cartesian coordinates
and expressing the PDF of the admissible region in cartesian coordinates violates Theorem 2. To
demonstrate this, Figure 2 shows the values of the determinant of the Jacobian over the admissi-
ble region. Since the probability transformation of an admissible region requires this value to be
constant, it is clear that the transformation to cartesian coordinates violates Theorem 2.

With a single observation and no consideration of uncertainty, each of the points sampled from
the admissible region necessarily has a uniform spatial distribution. New measurements should
allow the admissible region to become observable by taking into account the new information pro-
vided by the measurements. Once the system is observable, by Corollary 3, the admissible region
PDF becomes a true PDF and the transformation is given directly by Eqn. (3). To test for observ-
ability, the condition number, K(P(t, t0, x(t))), for the observability gramian is computed for each
value of ρ and ρ̇ shown in Figure 1. The inverse of the machine epsilon value δ−1m is also plotted,
which indicates that any K(P(t, t0, x(t)) > δ−1m is essentially infinity due to the precision of the
computer. Then an additional observation is made 120 seconds after the initial set of observations.
The additional observations are ingested by the particle filter and the updated observability gramian
is computed. Figure 4 shows how the condition numbers for the observability gramian for each
particle changes after the second observation is made. This change in condition number implies
that the observability gramian becomes full rank after a second observation is made. At this point it
is possible to transform the PDF expressed in terms of ρ and ρ̇ into cartesian coordinates by direct
application of Eqn. (3). Figure 5 shows the updated PDF after the second observation is made and
can equivalently be expressed in cartesian coordinates by Eqn. (3).

To demonstrate the importance of Theorem 2 and Corollary 3, consider the process shown in Fig-
ure 3 by which the cartesian PDF for these observations can be determined. The original admissible
region in ρ and ρ̇ is represented by Ãt0 and after the second observation is made the PDF over
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Figure 2. Values of |∂x/∂x̃| evaluated for each particle x(t)

the particles is given by fX̃u
(x̃u). The admissible region given byA represents the transformation

of Ãt0 while the system is still unobservable. It has already been shown that this particular trans-
formation does not satisfy Theorem 2, thus it is expected that the resulting PDF in cartesian space
given by fXu(xu) will not be equal to the transformation of fX̃u

(x̃u) into cartesian coordinates once
the system is observable. This subtle difference in approach will generate two different PDFs for
the particles resulting from the second observation and mathematically the PDF generated from the
unobservable transformation is incorrect. Figure 6 shows the resulting PDF for the unobservable
and observable transformations outlined in Figure 3. The PDFs shown are represented as histograms
of the particles for each cartesian state after the resampling step in the particle filter. As can be seen
the PDFs are fairly different between the approaches. In general, once a particle filter is instantiated
in a given state space using an admissible region, the PDF must remain expressed in that state space
until the system is observable. The general exception to this are linear transformations which always
satisfy the requirements of Theorem 2.

CONCLUSIONS

The general theory of probability transformations is presented and then applied directly to the
admissible region problem. It is found that general probability transformations are invalid for ad-
missible regions, thus a constraint on transformations for admissible region problems is defined.
The constraint is shown to ensure the admissible region remains a uniform distribution regardless
of the state space it is expressed in. Furthermore it is shown that this requirement is only necessary
while the system is unobservable, as once the system becomes observable the admissible region
becomes a true PDF. It is also shown that probability transformations of admissible regions can also
take into account measurement, parameter, and observer uncertainties.
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Figure 3. Outline of the two approaches for generating the PDF in cartesian coordinates

Figure 4. Condition number of P(t, t0, x(t)) computed for each particle xu(t)

Figure 5. PDF expressed in ρ and ρ̇ after the second observation
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Figure 6. Difference between the cartesian PDFs if the transformation from ρ and ρ̇
is applied before the system is observable.
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