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OPTICAL SENSOR FOLLOW-UP TASKING ON HIGH PRIORITY
UNCORRELATED TRACK

Timothy S. Murphy∗, Marcus J. Holzinger†, K. Kim Luu‡, Chris Sabol‡,

This work proposes a methodology for tasking of electro-optical sensors to search
an area of state space for a particular object. This work enables current space sit-
uational awareness programs to more efficiently follow-up on an unknown object.
In particular, this work looks at searching for an unknown space object with prior
knowledge in the form of a set, which can be defined via an uncorrelated track.
The follow-up can occur from a different location at a different time, which often
requires searching a large region of the sky. This work analyzes the divergence of
a search region to inform a time optimal search method. Simulation work is in-
cluded to explore the effects of sensor geometry, initial detection uncertainty, and
handoff delay time on total time and feasibility of follow-up.

INTRODUCTION

Background

The space domain awareness (SDA) mission continues to require increased efficiency for catalog
upkeep and catalog expansion [2]. As the Space Surveillance Network expands, increased numbers
of sensors will become available, allowing for more complex operations. Additional pushes have
been made to look for alternative data collection via either dedicated space based sensors or un-
conventional optical sensors in space such as star trackers [1]. This work in particular will focus
on the electro-optical sensor (EOS), that is, cameras. In many cases, these sensors will make large
numbers of detections on space objects (SO), some of which may appear with a unique trajectory
and photometric signature that warrants follow-up. As of now, there is limited work on how to act
on this information without collocated sensors.

A variety of sensor tasking strategies have been proposed, which typically look at the tasking
problem in terms of catalog upkeep [5, 14, 10]. These techniques tend to look at the strategic
tasking problem, that is, how to use a network of sensor to look at a catelog of objects. This work
looks at the tactical tasking problem, that is, given an object and a sensor, how should the sensor
look for the object? In particular, this work builds off a particle based search strategy proposed by
Hobson [9]. Long term, this work will be combined with modern models for prior information in
space objects, namely sequential Bayesian filters [4, 3].

This paper will look at how to search through a set of orbits. In particular, an uncorrelated track
(UCT), obtained from an EOS, can be used to define an admissible region [12, 16]. This set of
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orbits can be propagated and projected into the field of regard of new sensors. In general, this
region can be much larger than the field of view of a sensor, and requires multiple observations [7].
Existing methods are based on a greedy maximum probability observation technique, which looks at
observing the densest region of probability [8]. The biggest problems facing this technique are how
to choose an optimal trajectory, and what type of optimality is desirable. This paper argues that time
optimality is the highest priority. Many SDA sensor systems have a problem of too many objects
and not enough sensors, making time on high sensitivity sensors a priority. When searching a set of
orbits, there typically is no maximum probability observation that makes sense. Furthermore, when
searching a PDF, a greedy maximum probability observation may take significantly more time if
an object appears on the fringes of the PDF. Finally, an EOS can be prone to false detections; it is
typically more wise to search the entire follow up space than to trust the first detection that is made.

This optimization problem is the covering salesman problem (CSP), a variation of the traveling
salesman problem [6]. The CSP looks for the optimal path to take between a series of points such
that every point, or a point within a limiting distance, is visited. The tasking problem outlined above
has a further complication over the classic CSP, in that the points to be visited have dynamics, and
typically spread out as time passes. This problem will in general be NP-hard, and obtaining optimal
solutions is difficult. This paper will therefore both attempt the time optimal optimization, but also
develop tools that can efficiently analyze the search. Once an observation is made, there exist a
variety of techniques for making correlation [18]. This problem is also relevant to allowing non-
collocated EOS to observe a single object simultaneously for fast orbit determination [13]. This
work looks at the feasibility of different handoff techniques.

Broad Categories of Search

This paper acknowledges two categories in which the search described in this paper would be
useful. The first is the problem of how to search an area of state space in order to maintain custody
of objects in it. In order to protect a certain asset, it is useful to be able to assure that the set of
intercept orbits does not contain a hostile threat. There are a variety of other ways to pose this
problem, but the common theme is constantly searching a large set of orbits to find previously
unknown objects.

The second type of search is to perform follow up on an object where its location is not entirely
known. A prime example of this is the follow up on an object with a prior characterized by an
admissible region. This can be broadened to searching for debris after a break up event, to search
for an object that has maneuvered, and reacquisition of an catalog object with sufficiently large
uncertainties. If the search region for this object is large, the search strategies may be similar to that
of the custody problem, while for a small search region it becomes more feasible.

Methodology

The first requirement is an analytic formulation of the problem. An EOS tasking scheme will
be thought of as a series of observations taken at a series of fixed angular coordinates. These
discrete task locations can consist of any number of observations taken at any locations in any
order. Quantities like exposure time and number of observations taken at each location could be
varied, as well as characteristics of the sensor, though this particular work fixes these quantities for
simplicity. This paper will assume for simplicity that if a sensor looks in the direction of an object,
the object is detected. In other words, missed detections are not considered. As this work matures, a
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believe and plausibility filter will be incorporated into the search algorithm to better quantify missed
detections and false detections.

An analysis on divergence of a search region is presented. By integrating over the divergence of
the velocity vector field, the rate of change of the area of a region can be calculated. A region of
high divergence will grow quickly, increasing the total number of observations needed to observe
it. The implication is, a time optimal algorithm will prioritize high divergence. The goal of this
analysis is to provide physical insight into search region divergence and to develop a way exploit
instantaneous divergence to develop better search.

An optimization cost function is then proposed as a way to choose a trajectory. This work will
look to minimize the amount of time spent searching for the object, while attempting to scan the
entire search area defined by prior information. Due to the high dimensional and non-convex search
space, this optimization can be difficult to successfully implement. A second cost function which
looks at maximizing the divergence at a given time step is also proposed. This cost function is suited
for a finite time horizon control approach.

The specific optimization algorithm is a variation on simulated annealing [11]. Because the
number of necessary observations determines the size of the state space that must be searched,
for long trajectories this optimization becomes infeasible. Instead, the algorithm optimizes each
observation along the trajectory in a cycle. The number of observations is preset for this work, as
no effective way of varying this number has been found.

In order to test the optimization algorithm, and illustrate its performance behavior to the reader,
a series of increasingly complex tests are presented. First, a simple scan of a section of sky is
considered. This test case illustrates algorithm convergence and performance, without including
performance issues due to a difficult design space. Second, a full handoff scenario is presented.
This test case illustrates the difficulty of the tasking problem and the optimization performance on
a large, multi-modal, dynamic design space. This test case is also used to present results on the
divergence calculation.

A series of simulations are presented, primarily to explore the feasibility of different handoff
configurations. The primary independent factors being examined are uncertainty of initial detection,
number of follow-up sensors, and geometry of both the sensors and SO. In particular, the geometry
of sensors encompasses a large region of varying orbits and relative geometry which is hard to
quantify but extremely important to handoff performance and feasibility.

THEORY

Notation and Background

Consider a search region, S(t) ⊂ R6. For this paper, the search region elements are assumed
to be orbits consisting of position and velocity at a given time, x(t) = [rT (t),vT (t)]T ∈ R6.
This search region could be defined in a variety of ways, including from an admissible region, by
defining a region of state space to protect, etc. Note that this region is time varying, according to
orbital mechanics; the time notation will be dropped unless explicitly necessary.

This paper requires representing orbits within the field of regard of a sensor. An orbit, x, can be
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Figure 1. Example of a tasking trajectory over a portion of the sky

partitioned into three sub-components, based on notation used in [16],

x = [xd
T , ẋd

T ,xu
T ]T (1)

xd = [α, δ]T (2)

ẋd = [α̇, δ̇]T (3)

xu = [ρ, ρ̇]T . (4)

This notation for an optical observer distinguishes between the components instantaneously ob-
served, xd, the components observed through multiple measurements, ẋd, and the components
which are unobservable, xu. This notation can be generalized to any sensor type.

To find a time optimal tasking scheme, a mathematical model must be developed for the system.
A sensor is tasked to observe multiple points in the sky, at different time steps, represented by
u(k) = [α(k), δ(k)] ∈ S(2). Note that S(2) is the unit sphere and is the space in which all angle
pairs exist. Because of the many factors that contribute to when an observation takes place, time
steps are not necessarily equally spaced, but at arbitrary but known times. The full observation
campaign is represented as a pair of vectors of pointing angles,

U = [α, δ] (5)

where the entire campaign consists of N observations. This is illustrated in Figure 1. An EOS
makes a detection (or does not) by taking a series of images in a certain location in the sky. The
time spent attempting a detection at time step k, will be represented by tI(k). Once these series of
images have been taken, the EOS slews to a new location. Because every sensor mount is different,
an arbitrary function, ft(α(k), δ(k), α(k + 1), δ(k + 1)), represents the time it takes a particular
sensor to slew from location 1 to location 2.

A requirement for successful search is that every part of S(t) is observed, requiring a full coverage
constraint. Each observation is taken at a location and time in the sky, u(k), which observes a
conical region of state space, O(u). At each time step, a section of the search space is observed,
giving

S(t(k+)) = S(t(k−)) \ O(u(k)) (6)

where k is the time step. This casts the full observation requirement as attempting to reduce the
search space S to the null set. It should be noted that this constraint can be analytically incorporated
into admissible region theory. An admissible region is an intersection of a series of sets, each defined
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in terms of a constraint,

A =
⋂
Aj (7)

Aj = {xu ∈ Ru : gi(xu;xd, ẋd,k) ≤ 0} (8)

where gi is a constraint and k is a parameter vector. When a particular region is observed an no
detection is made, it can be assumed that a particular region does not contain the object. This
defines a new admissible region,

Aj = {xu ∈ Ru : φ(xu;xd, ẋd, to, t) /∈ O(u)} (9)

which in essence removes whatever section(s) of an admissible region that intersect a particular
observation.

Search Area Divergence

What this section looks to determine is both the growth rate of a search region as seen by a
particular sensor, and the local regions of expansion and contraction. This section will focus on
calculation while the following section will focus on how these calculations can be used to analyze
a search region. Assume that an observer, located at o(to), wants to take an observation in this
search space at time to. First, the search space must be propagated to the appropriate time, via the
flow function,

S(to) = φ(S(t); to, t) (10)

which is calculated by integrating orbital mechanics. Next, the search space must be propagated
into the field of regard of a sensor, through some measurement function h,

[xd
T , ẋd

T ]T = h(x) (11)

So = {[xd
T , ẋd

T ] : [xd
T , ẋd

T ] = h(x),x ∈ S}. (12)

The function h maps to [xd
T , ẋd

T ]T , the components an observer can measure, while the notation
hα will be used to represent the the component of h which calculates just α.

In order efficiently search an area, it would be useful to quantify the expansion of a particular
point or region of the sky. The expansion is mathematically captured by the divergence of the
angular rate, ẋd, with respect to angular position, xd. For an optical sensor, this is more simply,

Div = ∇xd
· ẋd =

dα̇
dα

+
dδ̇
dδ
. (13)

Figure 2 shows the divergence changing over a region.

There are two primary concerns with this calculation. First, because an arbitrary search region is
being projected into a subspace, multiple orbits, with multiple velocities could all project to a single
xd. This gives a vector field with multiple, and possibly infinite, values at each point. Second, even
if the vector field is defined, these derivatives are being calculate based on a set of orbits defined at
a previous time, which requires a state transition matrix for every point.

5



Figure 2. Vector field of α̇ and δ̇ as they vary with α and δ

For expansion of a search region as a whole, these problems can be side stepped using Green’s
Theorem. To review, Green’s theorem states that for functions A and B defined over a region So,
with boundary ∂So, ∮

∂So
(Adx+Bdy) =

∫ ∫
So

∂A

∂x
− ∂B

∂y
dxdy. (14)

By setting A = α̇, B = −δ̇, x = α, and y = δ, this integral implies that the total divergence over
the an area is equal to the line integral over the boundary of the orthogonal component of the vector
field.

For measuring local areas of divergence within a search region, the Green’s Theorem approach
provides some insight. In many scenarios, an entire search region may move through the field of
regard with some mean velocity, ˙̄xd. This mean velocity will act uniformally on a line integral and
will therefore integrate to zero. By calculating the orthogonal component of ẋd − ˙̄xd along the
boundary, ∂So, the local growth or recession of the boundary can be approximated.

When considering a prior set defined by two dimensional manifold, further analysis is possible.
An admissible region formed from optical observations is an example of a useful two dimensional
manifold of orbits. Such a manifold can be projected though h into the field of regard and form a
reasonable vectorfield. Due to manifold folding, finitely many orbits could project to a single xd,
but with differing values for ẋd. First consider the case such that no folding has occurred and each
xd has a single ẋd. The search space So can be arbitrarily partitioned into m sub regions,

So =
m⋃
Sio (15)

∅ = Sao ∩ Sbo ∀ a 6= b (16)

where Sio are the non-overlapping partitions. The integral over divergence can be calculated for each
partition using Green’s theorem. This allows an analytic calculation of local areas of expansion or
contraction over the manifold.

If folding occurs, finitely many vector fields, say n, may be defined over a partition, Sio. Calculat-
ing divergence becomes difficult as there are multiple values for divergence at any given point. This
paper proposes defining an upper bound to the divergence based on maximum possible line integral
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from a combination of vector fields. Given a series of vector fields, ẋd
j defined over xd,∮

∂So
(α̇jdα+ δ̇jdδ) =

∮
∂So

ẋd
jT dxd

≤
∮
∂So

max
j∈[1,n]

(
ẋd

jT dxd

)
(17)

where the maximum chooses the vector field with the largest outward orthogonal component at any
given point. This integral will be larger than any other piece-wise combination of vector fields and
will therefore err on the side of caution. This same method can be used for an infinite continuum of
orbits, by replacing the maximum with a supremum. As of now, this supremum is only calculable
through brute force methods. Further analysis of this supremum will be explored in a future paper.

The last question is this section explores is the determination of the boundary. Because the vector
field of xd must be defined on this boundary, the orbits associated with the boundary are needed as
well. This region which will be denoted by ∂S is defined as

∂S = {x ∈ S(to) : h(x) ∈ ∂So} (18)

= h−1(∂So). (19)

Note that ∂S is an abuse of notation as it is not the boundary of the region So and may not even lie
along the boundary. If no folding occurs for a 2 dimensional manifold, the original boundary of the
manifold will be associated with the projected boundary.

Exploitation of Divergence

This section focuses on how to use divergence to analyze different search regions. The divergence
integral represents the instantaneous rate of change of the area of a region,

2
d
dt
|So| =

d
dt

∫ ∫
So

2dαdδ

=
d
dt

∫ ∫
So

∂

∂α
α+

∂

∂δ
δ dαdδ

=

∫ ∫
So

∂

∂α
α̇+

∂

∂δ
δ̇ dαdδ. (20)

where | · | is a measure of the area of a region, measured in steradians. Given a particular sensor,
o, over every integration, tI , an known area of the sky can be observed, Oo(u(k)). Then the total
change in search region area can be calculated at each time step as,

|So(t(k))| ≈ |So(t(k − 1))|+ d
dt
|So(t(k − 1))|(t(k)− t(k − 1))− |So(t(k)) ∩ Oo(u(k))|.

(21)

which can easily be show through a Taylor series expansion, ignoring higher order terms. Note that
this equation is explicitly dependent on the proposed search trajectory, or control input, U. If U is
totally ineffective, |So(t(k + 1)) ∩ Oo(u(k + 1))| = 0 for all k, and the resulting area growth by
t(k) would be

|So(t(k))| ≈ |So(t(0))|+ d
dt
|So(t(0))|(t(k)− t(0)). (22)
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In order to fully observe the search region, the requirement is then

|So(t(0))|+ d
dt
|So(t(0))|(t(k)− t(0)) ≤

N∑
k=1

|So(t(k)) ∩ Oo(u(k))| (23)

A simpler way to see this is, if in general |So(t(k))| ≥ |So(t(k − 1))|, the search problem does
not close, while if |So(t(k))| < |So(t(k − 1))| the problem closes. This provides a simple and
efficient calculation for evaluating whether a search region is searchable. Furthermore, the amount
the area changes each time step provides insight into approximately how long a search should take.
This analysis is predicated on what is effectively a linearization on the expansion rate of the search
region; if d

dt |So(t)| is not approximately constant over the interval t(0) to t(k), then Equation (22)
does not hold. Orbit dynamics are non-linear are therefore the true solution can diverge from this
approximation. This approximation will provide more utility for high altitude orbits such as the
geostationary regime.

The partition divergence calculation gives a tool for defining short term high priority search areas.
Over a lower divergence region, a region of higher divergence, given equal time, will expand into
a larger, harder to search area. For example, in Figure 2, the region of high divergence on the left
should be prioritized over the region of low divergence on the right.

It should be noted that the divergence method is probability distribution function (PDF) agnostic.
When operating a pure set or a PDF whose effective boundaries are used to define a set, the method
gives the same result. This is particularly relevant to admissible region theory, where a set is used to
define a PDF. Divergence methods will operate identically on either representation of the admissible
region, avoiding analytic confusion.

Search regions can become sufficiently large that a region extends out of the field of regard on an
EOS. This may even extend to a ring of orbits around earth, or all of S(2). In these cases, the total
region divergence may no longer be a useful measure, but divergence of partitions is very much still
a useful measure. Furthermore, these test cases often encounter the singularity in α and δ at the
pole. The divergence integral is still defined and calculable, but care needs to be taken to take into
account the non linearity of the space. The best way to handle this involves rotating the definition
of α = 0 and δ = 0 so that the linearization is centered in whichever partition is being considered.

Time Optimal Cost Function

Typically, a search region has positive over all divergence, though there can exist cases where this
may not be the case. Regardless, it can be easily checked for a given search region. Time optimal
search is built on the assumption that sensor time is a valuable commodity, and the best way to
optimally use a sensor is to spend as little time accomplishing a task as possible. The cost function
is then the total time spent over the observation campaign,

ftime(α, δ) =

N−1∑
k=1

[tI,k + ft(α(k), δ(k), α(k + 1), δ(k + 1))] + tI,N (24)

The constraint is difficult to enforce directly as it depends upon the intersection of time varying sets.
Instead it can be enforced as a penalty function

fcost(α, δ) = ftime(α, δ) + fpenalty(α, δ;S) (25)
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Specifically, this is an exterior penalty function [15]; as the tasking scheme becomes inadmissible,
a large cost is added to the function forcing the constraint to be enforced. Penalty functions have
a known problem in that they can lead to inadmissible solutions to the optimization. The penalty
function in practice is enforced with a discrete point wise approximation of the search space, S(t),
to approximate the percentage of the set contained in the observation,

fpenalty(α, δ;S) = c |S(t(N))| (26)

keeping in mind that the search set is reduced in size at every time step, according to Equation
(6). The exterior penalty function includes a scaling parameter, c, which is typically increased as
iterations of the optimization progress, to better assure the constraint is enforced.

Divergence Greedy Cost Function

Because of the computational difficulty of doing a full optimization a second optimization method
is being proposed. This method is again based on the idea that search should be done quickly to
make best use of a sensor. Furthermore, it is assumed that there is no PDF to define the location of
an object, only a set. This is particularly relevant to follow up on an admissible region. Consider
Equation (21). At a given time step, k, the best control is the one which minimizes So(t) for all time.
This implies that the observed space should be as big as possible, but it also implies the divergence
is as big as possible. By maximizing the divergence in the observed space, the rate of change of area
at future time steps is minimized. This optimization can be solved at each time step, but is better
posed in a finite time horizon manner. Again, assume a series of observations defined in Equation
(5), but assume further that the total number of observations, N defines a finite horizon over which
the optimizer will search. A cost function which looks to search the largest area possible with the
largest divergence possible would then be

fDiv = −
N∑
k=1

d
dt
|Oo(u(k)) ∩ So(t(k))| (27)

keeping in mind that So(k) changes each time step based on both dynamics and sections being
removed by previous observations. Note that the total divergence is proportional to the area which
is integrated over, so this cost function will prefer large, highly divergent regions.

SIMULATION TEST RESULTS

Test Problem Results

The first basic problem that will be explored will be divorced from the dynamics of the handoff
problem. Because the full time optimization is highly complex, it first tested on a simple problem.
The problem on which the optimization will be tested first is coverage of a stationary area of the
sky above a particular sensor. This could be thought of as a scan of an area for search and initial
detection. The field of view of the sensor is 2 degrees and the space being searched is 4 degrees by
16 degrees. The results of this test can be seen in Figure 3.

The difficulty of the traveling salesman problem, implies that a true optimum is difficult to find.
Keep in mind that the final goal of this optimization is to operate on trajectories with hundreds of
observation. Because the optimization technique is highly stochastic, the final path is not repeatable.
While stochasticity makes final solutions unpredictable, but is needed to avoid the plethora of local
minima. Even with these caveats, the final trajectory finds good coverage.
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(a) (b)

Figure 3. Trajectory before and after proposed optimization algorithm

Figure 4. Geometry of first and second observers

Implementation Details

An initial detection is made by a space based sensor intended for search alone, as seen in Figure
4. The detection is determined to be high priority and follow-up is therefore needed. The detection
consists of a series of unit vectors over a short period of time.

The initial short arc observation is used to create an admissible region. The admissible region is
sampled by first generating random measurements from the uncertainties. For each sampled mea-
surement, a respective admissible region is sampled to complete the particle. This is the uncertain
formulation of an admissible region [16]. The admissible region is constrained with maximum en-
ergy, minimum radius of periapsis, maximum inclination of 90 degrees, and maximum eccentricity
of 0.9.

In practice, the initial guess given to the optimization algorithm is extremely important. Local
optima are dense, and it can be difficult for a search algorithm to make dramatic changes from ini-
tial conditions. Initial guesses have been set to intuitively good trajectories to begin with (such as
a bisecting path) and lead to similar, but more optimal final trajectory (such as a zig zagging path).
A variety of initial paths should be tried to fully explore the state space. This is a common proce-
dure in simulated annealing; while the stochastic algorithm provides some design space exploration,
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multiple runs are needed with different initial conditions to allow acceptable exploration. Another
observation from the variety of initial trajectories tried is that locations of high particle divergence
should be searched before areas of low divergence. Areas of high divergence will take more obser-
vations to achieve full coverage, the longer an observer waits to take observations. Conversely, low
divergence implies a lenience to delayed observations. This can be included in the initial trajectory
to manually explore a part of the design space known to contain a good minimum.

The primary optimization technique used is simulated annealing. Because many of the trajec-
tories consist of a large number of observations which all must be simultaneously optimized, each
point along the trajectory is optimized individually. A loop cycles through each point along the
trajectory, and a single iteration of simulated annealing is run on the point. This entire process is
then run multiple times.

Space to Ground Handoff Test

A group of ground based observers are located at Maui, [20.80o N, 156.33o W], o2, while a
space based observer, o1, is located in the 160o W geostationary orbit slot. An unknown space
object, xRSO, located in the 130o W geostationary orbit slot, is first detected by the space based
observer. The space based observer takes 5 measurements, each 1 second apart with Gaussian
distributive noise with 1 arc second standard deviation. Two ground based observers are tasked
with reacquiring the object based on the information in the measurements taken by the space based
observers. Follow up sensors have a one degree by one degree field of view, and take tI = 10
seconds to collect data in a certain area of the sky. The follow up observers are not allowed to
attempt follow up until 1 hour has passed.

First, the observations from o1 need to be quantified as a set of possible orbits. This is done
through admissible region theory, using a discrete point wise approximation, using 10,000 particles.
Because there will be significant uncertainty in the measurement used for the admissible region,
an uncertain admissible region is used [16]. The uncertain admissible region is generated by sam-
pling particles from the measurement uncertainties, and sampling a single point from the respective
admissible regions. The random samples from the admissible region are propagated over a suffi-
cient time period to encompass the entire observation campaign, and results are saved at one second
intervals. The cost function, when checking the observed particles of each observation, uses the
propagated particles from the most recent iteration.

This particular test uses two collocated sensors for follow-up. The initial trajectory has both
sensors observing at opposite ends of the search space and slewing toward the center. A preset
number of 120 observations is set based on the approximate size of the search space.

Results from the optimization are shown in the Figure 5. As time progresses, the particles (and
therefore search space) grows. The total observation time is around 10 minutes.

Divergence Analysis of Search Region

The observers in this example have a one degree by one degree field of view, which is equal
to approximately |Oo| = 3.0 × 10−4 sr, while the integration time is 10 s. The total area of the
region is |So(0)| = 0.033 sr, while the area rate of change, calculated using Green’s Theorem, is
d
dt |So(0)| = 6.0−6 sr per second. Over each time step

|So(t(k))| ≈ |So(t(k − 1))|+ 6.0−6
sr
s
× 10s− 2× 3.0× 10−4sr (28)
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(a) Trajectory after 150 seconds

(b) Trajectory after 300 seconds

(c) Trajectory after 450 seconds

(d) Trajectory after 600 seconds

Figure 5. Trajectory on expanding search space over time
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Figure 6. Local divergence of search region

Table 1. Table of results included
Offset inclination Results Shown

Table 3 30o 0o Percent coverage, expected campaign length
Table 2 60o 0o Percent coverage, expected campaign length
Table 4 10o 0o Follow-up time for 95% coverage
Table 5 10o 3o Follow-up time for 95% coverage
Table 6 10o 7o Follow-up time for 95% coverage

Given the initial area of 0.033 sr, it should take approximately 60 timesteps to fully observe the
region. The local regions of divergence are also analyzed across the search region. These local
areas of divergence are plotted as a function of right ascension in Figure 6.

RESULTS FOR DIFFERENT SPACE BASED SENSOR HANDOFF SCENARIOS

A primary motivation of this work is to explore different space based sensor scenarios. A variety
of simulations have been run to explore when follow-up is feasible or infeasible, and what type
of follow-up times can be expected. This section presents several tables exploring follow up time
and percent coverage. The results are shown over variable handoff times and tracklet lengths. The
handoff time is the time between the first measurement in the initial tracklet and the first observation
in the follow-up trajectory. The initial detection tracklet is a series of angles-only measurements 1
second apart, with 1 arc second standard deviation Gaussian noise. The tracklets are used to estimate
the angular rates, with appropriate uncertainties.

This section presents results of both the percent coverage and expected number of follow up
observations. In all cases the first observer is in the 160o W GEO slot geostationary orbit and the
second follow-up observer is located on Maui, [20.80o N, 156.33o W]. The unknown space object
is in a geostationary orbit, but the exact slot and inclination is altered between test cases, in order to
explore the effect of geometry. The offset of the unknown object is measured in degrees east of the
160 W GEO slot. For inclined orbits, the unknown object is assumed to be at the ascending node of
its orbit. Table 1 details the results included in this section.

Varying Range

The first set of results looks at the percent coverage achieved by two 1 × 1 degree field of view
sensors over a 300 observation campaign. The campaign takes around 25 minutes for all test cases.
300 observations may be more or less observations than needed, but using the same number for
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Table 2. Two observers, 300 observations, GEO to GEO, 60 degrees offset

Number of observations in initial detection tracklet

3 Obs 5 Obs 7 Obs 9 Obs 11 Obs

H
an

do
ff

Ti
m

e 60 min 89% , 244 98.5%, 90 100% , 54 100% , 40 100%, 33
90 min 72.5%, 458 93.5%, 155 98% , 96 98.5%, 74 99% , 62
120 min 63% , 1176 81.5%, 267 91% , 157 92% , 125 94% , 110
150 min 21.5%, N/A 57.5%, 601 55.5%, 317 53.5%, 228 53% , 208
180 min 15% , N/A 35.5%, N/A 38% , N/A 34% , 1287 34% , 239

Table 3. Two observers, 300 observations, GEO to GEO, 30 degree offset

Number of observations in initial detection tracklet

3 Obs 5 Obs 7 Obs 9 Obs 11 Obs

H
an

do
ff

Ti
m

e 60 min 97% , 143 99.5%, 54 99% , 34 99% , 25 99.5%, 20
90 min 90.5%, 256 99.5%, 96 99.5%, 59 99.5%, 45 99.5%, 38
120 min 80.5%, 470 95.5%, 151 98% , 98 99% , 77 99% , 67
150 min 61% , 1680 84.2%, 262 86.5%, 172 91% , 133 93.5%, 117
180 min 39.5%, N/A 38.5%, N/A 49.5%, 559 53.5%, 337 56.5%, 268

every case makes the results more comparable. The optimization was run for a fixed number of
iterations with the same parameters for every case (the stochastic optimization typically means true
convergence never occurs). The first set of results are displayed in terms of percent coverage, which
is calculated as the percentage of particles observed by the final trajectory. The second set of results
are displayed in terms of minimum number of observations, as calculated via Equation (23). Results
should be treated as initial findings, as with a better optimization method with variable numbers of
observations should perform better in certain test cases.

Tables 2 and 3 all look at a two-observer follow-up with an offset of 60 and 30 degrees. These
tables are an examination of what is possible given a certain number of sensors and certain amount
of time. As one would expect, feasibility improves with lower initial uncertainty and shorter handoff
times. Results showing 95% coverage or more imply that full coverage is possible, while results
under 50% coverage are typically indicative of a search space diverging faster than a sensor can
search. These results align with the predicted campaign length; the linearization used in Equations
(23) is not reliable after the 300 observation campaign. An interesting result of this analysis is,
assuming the short arc assumption holds, more observations in the initial tracklet give diminishing
gains after a certain point.

Varying Inclination

The second set of results looks at the total time necessary to achieve 95% coverage of the search
space. These results again use two follow-up observers, both with a 1×1 degrees field of view. The
offset is set at 10o for this entire section. These results primarily look at the effect of inclination
on total campaign length. Specifically, the inclination of the unknown space object is varied while
keeping the initial position fixed. The results shown in Tables 4, 5, and 6 correspond to zero, three,
and seven degrees inclination.
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Table 4. Time for follow-up, two observers, GEO to GEO, 10 degrees difference, 0 degrees inclination

Number of observations in initial detection tracklet

3 Obs 5 Obs 7 Obs 9 Obs 11 Obs

H
an

do
ff

Ti
m

e 30 min 7 min 5 min 5 min 5 min 5 min
60 min 16 min 6.5 min 6 min 6 min 6 min
90 min 14 min 7.5 min 7 min 6 min
120 min 16 min 12 min 10 min

Table 5. Time For follow-up, two observers, GEO to GEO, 10 degree difference, 3 degrees inclination

Number of observations in initial detection tracklet

3 Obs 5 Obs 7 Obs 9 Obs 11 Obs

H
an

do
ff

Ti
m

e 30 min 7.5 min 5 min 5 min 5 min 5 min
60 min 17 min 7 min 5.5 min 5 min 6 min
90 min >17 min 11 min 7 min 6 min 6 min
120 min >17 min

Table 6. Time for follow-up, two observers, GEO to GEO, 10 degree difference, 7 degree inclination

Number of observations in initial detection tracklet

3 Obs 5 Obs 7 Obs 9 Obs 11 Obs

H
an

do
ff

Ti
m

e 30 min 8 min 6 min 6 min 6 min 6 min
60 min ∼ 9 min 7.5 min 7 min 7 min
90 min ∼
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CONCLUSION

Intuitive Concepts and Conclusions

The first major result the paper shows is geometry is key in enabling feasibility of handoff and
follow-up. In particular the key is to avoid hypothesis orbits at low altitudes. Typically, hypothesis
orbits at high altitudes have low accelerations and therefore diverge slowly, while low altitudes
almost always have high accelerations and diverge quickly. This is why all examples use a GEO
observer and GEO target, as the line of site creates only orbits at high altitude. Inclination also leads
to high divergence. More specifically, if the initial observer and target are out of plane with each
other, the hypotheses tend to diverge more quickly. This is because the plane of the orbit is less well
understood. These results are intuitive and unsurprising.

Even with perfect knowledge of the initial short arc measurement, and a therefore perfectly known
admissible region (no uncertainties), the dynamics of the different admissible orbits will diverge af-
ter sufficient time. This implies that taking extra measurements does very little to help reacquisition
after sufficiently low uncertainties have been achieved. This also implies that for a given geometry,
there exists a handoff time after which reacquisition is fruitless.

Divergence provides a measure of the spread of a set. This tool provides a useful method for
analyzing regions of the sky, and further work should be done to tie in divergence with search
optimization.

Limitations of Method

As mentioned above, the relative geometry of initial observer and unknown space object is im-
mensely important to follow-up. Because these factors are largely out of the operator’s control,
this makes mission planning difficult. However region divergence provides an efficient method to
predict this.

For LEO based observers, full coverage is practically impossible without instantaneous handoff.
Typically, some feasible hypotheses will exist in a range of orbits in LEO all of which will quickly
circle the earth while the hypotheses at GEO will stay stationary with respect to the surface of the
earth.

Sufficient uncertainty can make re-acquisition impossible, but for reasonable uncertainty levels,
this is less of a concern than other factors. A sufficiently long handoff time exists for all cases,
past which reacquisition is impossible. In best case scenario, full coverage search can still require
extensive search time. There is no way to get around this for many of the scenarios considered, if
full coverage is the goal.

Opportunities for Future Work

This section describes results which appear to be possible based on the work presented, but are
not included in this paper. Results in certain cases are promising enough to show the utility of
space based sensors for domain awareness. Geometries do exist which allow handoff in an efficient
manner, and design work can be done to make these geometries more abundant. There is therefore
an opportunity to further explore SSA mission concepts using this work.

This work could provide high utility with an ability to define high priority subspaces. Instead
of attempting to perform a full space search, sub-regions can be defined based on, for example,
conjunction analysis. This may lead to opportunities to obtain search regions which can more
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feasibly be searched. Further applications are possible by utilizing new and different ways to define
a search space.
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