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MULTI-TIERED APPROACH TO CONSTELLATION MANEUVER
OPTIMIZATION FOR LOW-THRUST STATION-KEEPING

Andris D. Jaunzemis∗, Christopher W.T. Roscoe†, Marcus J. Holzinger‡

This paper presents a multi-tiered approach to constellation-wide optimization
of low-thrust station-keeping maneuvers. Starting from the general problem of
constellation maneuver optimization, a tractable solution is presented for station-
keeping. The approach utilizes a gradient-descent algorithm to efficiently drive
each satellite toward its nominal orbit, encapsulating this trajectory optimization in
an outer-loop genetic algorithm to optimize within discrete and non-differentiable
constellation-level constraints. The output trajectories are validated and refined in
a high-fidelity environment using NASA’s General Mission Analysis Tool. A con-
crete example with operational constraints is presented, and limits of the computation-
driven assumptions in the tractable solution are assessed.

INTRODUCTION

There is an ever-growing interest in satellite fractionation and constellations, which provide many
advantages over large monolithic satellites including increased coverage and lower unit cost.1 How-
ever, this increases system complexity and requires the development of new techniques for control-
ling these satellites through different phases of operation. During launch and deployment, a control
scheme might be applied that allows long thrust- and coast-arcs since the execution time for these
maneuvers is extended. However, during operation, time spent maneuvering typically impinges on
time spent performing the mission, so here maneuvers should be over short time-scales and not
disrupt the mission operations.

Since small satellites are often weight and power constrained, their propulsive capabilities are
limited. Many trajectory design approaches assume impulsive maneuvering,2 which is not appli-
cable to low-thrust propulsion. Additional previous work has approached the control problem for
a decentralized constellation, assessing stability and optimality of leader-follower and democratic
maneuvers.1, 3 These studies focus on constellation maneuvering from a solely fuel-optimization
perspective. While this is an important aspect of maneuvering, the operational constraints of the
constellation should also be considered. For instance, an operator might be concerned with ensur-
ing that satellites don’t maneuver while in eclipse so as to ensure power limits are not exceeded.
Alternately, regions-of-interest on the Earth might define areas where ground-observing satellites
should not be maneuvering but should instead be focusing on their mission. These constraints are
often non-differentiable and the decisions made are often discrete-valued actions, so typical opti-
mization methods (e.g. gradient descent), which can be applied to the dynamics of maneuvering,
are not readily applicable to the larger optimization within constellation constraints.
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This paper presents a general method for optimizing the maneuvers of a constellation of satel-
lites subject to both individual trajectory and constellation-wide constraints. Starting with a de-
velopment of the general problem without prescribing specific cost functions or constraints, as-
sumptions are explicitly stated to arrive at a computationally tractable problem and related solution
techique. The method incorporates both gradient-descent techniques to take advantage of the orbital
dynamics as well as metaheuristics to optimize in the face of mixed-integer decision variables and
non-differentiable constraints. The implementation of this method is discussed, and a trajectory
refinement step is added to adjust the trajectories using higher-fidelity dynamics, allowing simpli-
fied dynamics and reduced computational complexity in the optimization routines. Sample results
are then discussed, along with an analysis on the sensitivity of a set of simplifying assumptions
employed in the implementation.

Constellation Trajectory Optimization Problem

Spacecraft trajectory design aims to drive the spacecraft state toward some nominal desired state.
Extending this to a constellation-wide paradigm, the goal is to keep the minimize state error in every
satellite of the constellation. Trajectory optimization attempts to design trajectories which minimize
some parameters that may include maneuver time and/or control usage. Additional constraints may
be imposed on the maneuvers to ensure that they do not impact mission objectives, such as avoiding
maneuvers over observation areas. Therefore, constellation trajectory optimization is inherently is a
high-dimensional, mixed-integer, multi-objective optimization problem with non-linear constraints
on space object states and associated parameters.

Many existing satellite constellations are composed of relatively low numbers of monolithic satel-
lites with powerful propulsion and excess fuel for executing station-keeping maneuvers. Therefore,
maneuver constraints are easier to resolve simultaneously and near-impulsive maneuvers may be
used. The recent surge in interest in large constellations of smaller satellites (e.g. cubesats) imposes
a different set of constraints due to decreased propulsive capability and increased numbers of satel-
lites to consider. This increases the difficulty of simultaneously satisfying all the constraints, and
adds the difficulty of optimizing low-thrust trajectories.

This section intends to develop a general description of the constellation trajectory optimization
problem. Importantly, the full constellation trajectory optimization problem is shown to be compu-
tationally intractable, so solutions are proposed by imposing additional assumptions to arrive at a
computationally tractable sub-problem.

Constellation Geometry

For the general formulation, a satellite constellation is simply defined as a collection of N satel-
lites. These satellites may be distributed throughout different orbit planes and regimes, each with a
nominal orbit state defined at time t by an orbit state xi,nom ∈ R6 ∀ i ∈ 1, . . . ,N . The actual orbit
state for satellite i at time t is given by xi ∈ R6. Therefore, the state error for satellite i at time t is
given by δxi = xi − xi,nom. The satellite state dynamics are expressed by:

ẋi(t) = fx(xi, t) (1)

Satellite Trajectory Optimization

Consider the optimization of the trajectory of satellite i. This optimization may be subject to a
number of constraints and design objectives (e.g. maneuver time and control usage). In addition to
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the spacecraft state, a multitude of parameters may be required to express the design objective and
constraints, including the satellite attitude, control authority, fuel remaining. These parameters are
defined generically as pi(xi, t) ∈ Pi, as these may also be state- and/or time-dependent parameters.
These parameters may be partitioned into controlled parameters pi,c ∈ Pi,c, over which the trajec-
tory designer has direct control (e.g. control effort as a function of time, ui(t)), and uncontrolled
parameters pi,u ∈ Pi,u, such that Pi,c × Pi,u ∈ Pi.

A general design objective for the trajectory of satellite i may be expressed as:

f(xi,pi, t) : R6 × Pi 7→ R (2)

Similarly, general constraints based on the states and associated parameters may be expressed as:

gi,j(xi,pi, t) ≥ 0 ∀ j ∈ 1, . . . ,Ji (3)

hi,j(xi,pi, t) = 0 ∀ k ∈ 1, . . . ,Ki (4)

where Ji is the total number of inequality constraints imposed on and Ki is the total number of
equality constraints.

Therefore, the individual satellite trajectory design problem may be written as an optimization
problem as follows:

Problem 1 (satellite trajectory optimization): Designing a feasible trajectory for satellite i that
minimizes the trajectory design objective over a time interval T is equivalent to the following opti-
mization problem:

min
pi,c

f(xi,pi, t)

subject to

ẋi(t) = fx(xi, t) , t ∈ T
gi,j(xi,pi, t) ≥ 0 ∀ j ∈ 1, . . . ,Ji
hi,k(xi,pi, t) = 0 ∀ k ∈ 1, . . . ,Ki

Note that the design objective and constraints may be mixed-integer, non-linear, or non-differentiable,
and no assumptions on their form have been made yet in this general derivation.

Constellation Trajectory Optimization

Optimizing the trajectories for all the satellites in the constellation builds upon the individual
trajectory optimization developed above and adds constellation-specific constraints. For instance,
it may be an operational constraint that at least one satellite in a region is non-maneuvering at any
given time to avoid total coverage drop-out due to maneuvering. These types of constraints are
often mixed-integer and non-differentiable, which makes them hard to solve using gradient-based
methods.

Further complicating this problem is the fact that the design objectives for all N satellites may
conflict with each other. Therefore, a general design objective for optimizing the maneuvers for
each satellite in the constellation can be formulated as a multi-objective optimization as follows:

F (x1, . . . ,xN ,p1, . . . ,pN , w1, . . . , wN , t) : (R6 × P ×W)×N 7→ R (5)

=

N∑
i=1

wif(xi,pi, t) (6)
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where w1, . . . , wN ∈ W = [0, 1] are weights assigned to the individual objective functions for each
satellite, such that

∑N
i=1wi = 1.

Similarly, general constellation-wide constraints based on the states and associated parameters
may be expressed as:

Ga(x1, . . . ,xN ,p1, . . . ,pN ) ≥ 0 ∀ a ∈ 1, . . . ,A (7)

Hb(x1, . . . ,xN ,p1, . . . ,pN ) = 0 ∀ b ∈ 1, . . . ,B (8)

where A and B are the number of constellation-wide inequality and equality constraints, respec-
tively.

Therefore, the individual satellite trajectory design problem may be written as an optimization
problem as follows:

Problem 2 (constellation trajectory optimization): Designing feasible satellite trajectories that
minimize the constellation trajectory design objective over a time interval T is equivalent to the
following optimization problem:

min
p1,c,...,pN ,c,w1,...,wN

F (x1, . . . ,xN ,p1, . . . ,pN , w1, . . . , wN , t)

subject to

ẋi(t) = fx(xi, t) ∀ i ∈ 1, . . . ,N , t ∈ T
gi,j(xi,pi, t) ≥ 0 ∀ j ∈ 1, . . . ,Ji, i ∈ 1, . . . ,N
hi,k(xi,pi, t) = 0 ∀ k ∈ 1, . . . ,Ki, i ∈ 1, . . . ,N
Ga(x1, . . . ,xN ,p1, . . . ,pN ) ≥ 0 ∀ a ∈ 1, . . . ,A
Hb(x1, . . . ,xN ,p1, . . . ,pN ) = 0 ∀ b ∈ 1, . . . ,B
N∑
i=1

wi = 1

In this most-general form, the problem has yet to be specified enough for solutions to be devel-
oped. Expressions for the trajectory and constellation objective functions (Eqns. (2) and (5) must
be developed, as well as expressions for the associated constraints and dynamics. The following
sections will begin to apply assumptions to reduce the problem to a tractable, solvable form to be
analyzed through the rest of this paper. First, the specific dynamics used to model the spacecraft
trajectories are developed. Next, the individual trajectory optimization approach and overall con-
stellation optimization approach are developed. Finally, the method for validating and refining the
trajectories is discussed.

Spacecraft Dynamics

The spacecraft dynamics are modeled identically to Roscoe et al.,2 using a modified nearly non-
singular osculating orbit element set. This set of orbit elements is preferred over a classical Ke-
plerian orbit element set because it is defined over all orbit regimes except for equatorial orbits,
eliminating nearly all the non-singularities typically associated with classical orbit elements. The
assumption to exclude equatorial orbits is not terribly restrictive since even very small inclinations
may be used; the restriction is for orbits where the inclination is exactly zero, which is not com-
monly encountered in operation.
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The nearly non-singular orbit elements are defined as follows:

œ̃ =
[
a λ i q1 q2 Ω

]T (9)

where a is the semi-major axis, λ = M + ω is the mean argument of latitude, M is the mean
anomaly, ω is the argument of perigee, i is the inclination, q1 = e cos(ω) and q2 = e sin(ω) are
the components of the eccentricity vector in the orbital frame, e is the eccentricity, and Ω is the
right ascension of ascending node. This orbit element set is modified from the nearly non-singular
orbit element set used by Gim and Alfriend4 by using mean argument of latitude, λ, instead of true
argument of latitude, θ = f + ω where f is the true anomaly.

Using mean orbit element theory, a transformation from osculating orbit elements œ̃ to mean
orbit elements œ̄ is given by:

œ̄ = g (œ̃) (10)

Here we use a first order approximation5 to Brouwer’s full transformation.6

The osculating orbit elements evolve according to

˙̃œ = f (œ̃) + g (B (œ̃) u) (11)

where f describes the unforced dynamics including the effects of J2 gravitational perturbations, B
represents a modified form (using modified nearly non-singular orbit elements) of Gauss’ Varia-
tional Equations.2

The differential orbit element dynamics are derived similarly, following Roscoe et al.2 Assuming
the difference between the actual and nominal mean orbit elements are small, the dynamics of the
differential mean orbit elements are found by linearizing about the nominal orbit:

δœ̇(t) = Aδœ(t) + Bu(t) (12)

where A is the Jacobian of the dynamics f evaluated on the nominal orbit. The general solution to
these linearized dynamics is well known:

δœ(t) = Φ(t, t0)δœ(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (13)

where Φ(t2, t1) is the state transition matrix (STM) of A from t1 to t2, which is derived by Gim
and Alfriend.4

Station-Keeping Trajectory Optimization

In a constellation, there are a number of modes of operation which might require very different
maneuver approaches. For instance, raising a satellite from a deployed parking orbit into its oper-
ational orbit (orbit insertion) or lowering a satellite from its operational orbit at end-of-life (orbit
removal) both typically require significant propulsive effort due to the large state change. These ma-
neuvers may be planned using near-impulsive techniques if the satellite has high-thrust capability,
or otherwise may require long time-scale maneuvers, using long thrusting-arcs such as spiral tra-
jectories. On the other end of the spectrum are station-keeping maneuvers, which are mid-life orbit
corrections to maintain a nominal operational orbit. These typically require less propulsive effort
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due to the smaller state change required, and may be accomplished using either high- or low-thrust
propulsion in short time-scales.

To further specify the constellation trajectory optimization problem and develop a tractable solu-
tion, the following assumptions are made: First, all maneuvers considered in this study are station-
keeping maneuvers, so larger orbit changes are not considered here. Additionally, the satellites in
this constellation utilize low-thrust propulsion since this is a common design characteristic of pro-
posed cubesat constellation architectures. The low-thrust propulsion is assumed to have a known
maximum control authority limit, ulim.

Since station-keeping maneuvers are typically small and the spacecraft is likely to already be near
its nominal orbit, the dynamics can be linearized about the nominal orbit and a gradient-descent
optimization algorithm can be applied to control toward the nominal condition. The trajectory is
optimized in using a deterministic time-fixed two-point boundary-value optimization similar to the
trajectory optimizer utilized in previous work by Jaunzemis et. al.7 This will form the solution for
a sub-problem of the greater constellation optimization problem.

For a given maneuver start time t0, we know the estimated actual state œ(t0) and the desired
nominal state œnom(t0); therefore, we know the initial differential orbit elements, δœ(t0) = œ(t0)−
œnom(t0). At the maneuver end time tf , we know the desired nominal state, œnom(tf ), and we
know that we want to attain that state, so δœ(tf ) = 0. These boundary conditions are fixed for this
subproblem, and the job of the optimizer is to vary the control trajectory to find the trajectory that
minimizes the cost function f(·) from (2):

min
u(t)

f (δœ(t),u(t)) (14)

subj. to δœ(tf ) = 0

‖u(t)‖2 ≤ ulim

In the case of station-keeping optimization of a single spacecraft given fixed-time endpoints, it is
safe to assume that a reasonable optimization criterion is fuel consumption, as reducing fuel con-
sumption will extend operational life. For low-thrust spacecraft, typically one of two cost functions
is assumed based on the type of propulsion. With variable specific impulse (VSI) engines, both
the direction and magnitude of the thrust acceleration can be controlled (within control authority
limits). For constant specific impulse (CSI) engines, only the direction of the thrust magnitude may
be modified; the control magnitude is fixed. In this study, we proceed with the assumption of VSI
engines to explore the entire direction-magnitude control space, though CSI engines could also be
implemented using a slightly different cost function.

The cost functions for VSI and CSI trajectories can be found in Prussing and Conway.8 For VSI
propulsion, the trajectory cost function for satellite i is given in Eqn. (15):

Jvsi(ui(t)) =
1

2

∫ tf

t0

ui(τ)Tui(τ)dτ (15)

where u(t) are the control thrust accelerations, direction and magnitude. Furthermore, a solution
for the continuous-time optimal control trajectory ui(t) can be approximated through discretization
of the time-range t0 to tf . Using a discretization of NT steps results in the following discrete-time
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version of the VSI cost function:

Jvsi(ui(t)) =
1

2

NT−1∑
s=0

ui(ts)
Tui(ts)δts (16)

where δts is the time discretization step at time ts, defined as δts = ts+1 − ts. Therefore, using the
VSI cost function as the trajectory optimization design objective and the nearly non-singular orbit
element dynamics from Eqn. (11), we arrive at the following approximate solution to Problem 1:

Problem 1 Approximation (satellite trajectory optimization): Designing a feasible trajectory for
satellite i that minimizes the VSI control cost function over a time interval T is equivalent to the
following optimization problem:

min
ui(t0),...,ui(tf )

1

2

NT−1∑
s=0

ui(ts)
Tui(ts)δts (17)

subj. to ˙̃œi(t) = f(œ̃i) + g (B(œ̃i(t))ui(t)) , ∀ t ∈ T
gi = ulim,i − ‖ui(t)‖2 ≥ 0

hi = δœi(tf ) = 0

Note that this form does not require a constant time-step discretization, but that for the results shown
in this paper a constant time-step discretization is used for ease of application. Also note that the
constraints are vector-valued constraints, of the same dimension as the state vector for hi and of the
same dimension as the control vector for gi. Since only one equality and one inequality constraint
each are included in this formulation, the second subscript has been dropped for ease of notation.

The end result of this trajectory optimization is a discretized control thrust acceleration trajectory,
from t0 to tf that satisfies the time-fixed two-point boundary value problem. The following section
discusses the particular approach used in this paper to solve this problem.

Station-Keeping Trajectory Optimization via Gradient Descent

A benefit of the optimization formulation in Eqn. (17) is the ability to develop gradients of both
the cost function and the constraints with respect to the decision variables ui(tj) ∀tj ∈ T .7 This
allows a gradient descent algorithm to quickly navigate toward local minima, adjusting control tra-
jectories based on the predicted effect on the constraints. Therefore, expressions must be developed
for ∂Jvsi(ui)

∂ui
and ∂hi

∂ui
for all t ∈ T .

Using Eqns. (15) - (16), the first expression is trivial:

∂Jvsi(ui(tj))

∂ui(tj)
=

∂

∂ui(tj)

1

2

∫ tf

t0

ui(τ)Tui(τ)dτ (18)

' ∂

∂ui(tj)

1

2

NT−1∑
s=0

ui(ts)
Tui(ts)δts (19)

= u(tj) (20)

where the approximation becomes equality if the control accelerations are constant over each step
in the time discretization, δts.
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Recall the linearization to differential orbit elements in Eqns. (11) - (13), and recall that the time
range has been discretized to NT time steps between t0 and tf . Using these, the second expression
may be defined as follows:

∂hi(tj)

∂ui(tj)
=
∂δœ̃i(tf )

∂ui(tj)
(21)

=
∂

∂ui(tj)

[
Φi(tf , t0)δœi(t0) +

∫ tf

t0

Φi(tf , τ)B(œ̃i(τ))ui(τ)dτ

]
(22)

=
∂

∂ui(tj)

∫ tf

t0

Φi(tf , τ)B(œ̃i(τ))ui(τ)dτ (23)

' ∂

∂ui(tj)

NT−1∑
s=0

∫ ts+1

ts

Φi(tf , τ)B(œ̃i(τ))ui(τ)dτ (24)

=
∂

∂ui(tj)

NT−1∑
s=0

∫ ts+1

ts

Φi(tf , τ)B(œ̃i(τ))dτui(ts) (25)

since ui(τ) is constant for τ ∈ [ts, ts+1].

Notice that, since Φi and B(œi) are independent of ui, the partial derivative isolates the ts = tj
term from the summation:

=

∫ tj+1

tj

Φi(tf , τ)B(œ̃i(τ))dτ (26)

In the Gim and Alfriend STM formulation4 and the modified form of Gauss’ Variational Equations
for nearly non-singular orbit elements,2 the only time-varying terms are q1 and q2, which vary slowly
with time. Therefore, under the assumption that the STM Φi(tf , τ) is constant for τ ∈ [tj , tj+1]:

= Φi(tf , tj)

∫ tj+1

tj

B(œ̃i(τ))dτ (27)

Furthermore, under the assumption that the expression for B(œ(τ)) is also constant for τ ∈ [tj , tj+1]:

= Φi(tf , tj)B(œ̃i(tj))

∫ tj+1

tj

dτ (28)

= Φi(tf , tj)B(œ̃i(tj))δtj (29)

This final expression intuitively conveys the effect of this constraint gradient: B(œ̃i(tj))δtjui(tj)
is the state-change caused by control input ui(tj) over time interval δtj , and Φ(tf , tj) propagates
that state change to the final time tf . Equations (26) - (29) therefore describe how a change in the
control input at time tj affects the resolution of the equality constraint at tf to satisfy the two-point
boundary value problem. Equation (29) is a more computationally efficient approximation of (27),
which is in turn a more computationally efficient approximation of (26).

Since both q1 and q2 vary slowly, these assumptions are more valid for shorter time-steps δts. To
assess the validity of the simplifying assumptions, Eqns. (26), (27), and (29) (labeled as Method 1,
Method 2, and Method 3, respectively) are evaluated with increasing timesteps. Using a nominal,
near-circular LEO orbit with parameters in Table 1, the time-step is varied from 1 second to 30
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(a) Matrix trace (b) Evaluation time

Figure 1. Analysis of simplifications for equality constraint gradient as a function of time step.

minutes (ts ∈ [1, 1800] seconds), and the matrix δh
δu ∈ R6×3 is evaluated with a final target time of

tf = 90 minutes, approximately one orbit. Figure 1 shows the trace of this matrix for each method.
As expected all three methods agree well for small values of ts. Methods 1 and 2 are nearly identical
for across all values of ts, whereas the extra assumption involving Gauss’ variational equations for
Method 3 causes larger deviations for large ts. Since using the trace of the resultant matrix does not
lend much intuition, Fig. 2 also shows the the effect in differential orbit elements of a control input
on the final state at tf , one orbit after the start of the control input. A sample control acceleration,
u(t) = [1, 1, 1]m/s, is applied for ts seconds, using the three approximations to compute the
resultant change in state. Once again, Methods 1 and 2 mostly agree across all values of ts, whereas
Method 3 deviates in almost all orbit elements as ts increases.

These results confirm the expected result that these simplifying assumptions are less valid as ts
increases. However, the benefit of using the harshest assumptions is also seen in Fig. 1 by the
evaluation time results. The line for Method 3 is barely perceptible above the x axis of the plot. The
evaluation time of Method 3 is orders of magnitude faster than the other methods, independent of
time step, since Method 3 should be evaluated in the same amount of time regardless of the time-
step. The integral in Methods 1 and 2 significantly increases computational complexity. Therefore,
if the time step is kept to a low value, the assumptions of Method 3 offer significant computational
benefits while maintaining sufficient accuracy.

Station-Keeping Constellation Optimization

The previous section addressed optimizing the trajectory of one spacecraft to reach a desired state
within a fixed time horizon. This section returns to the broader problem: optimizing the maneuvers
of all the satellites in the constellation, represented by Problem 2, utilizing the trajectory optimiza-
tion method described by Eqn. (17). At the trajectory optimization level, the routine developed
earlier will solve for the fuel-optimal trajectory for a given actual state, desired final state, and time
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Figure 2. Differential orbit elements induced by sample control input after 1 orbit as
a function of time step.
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discretization. At the constellation optimization level, the decision variables are the maneuver start
times for each satellite which are used to generate the fuel-optimal trajectory. Additionally, since
the objective function for the constellation-wide problem is formulated as a weighted-sum of the in-
dividual trajectory objective function, those weighting factors are decision variables. Assigning the
weighting factors emphasizes the relative importance of minimizing control effort for each satellite;
this may appear in operation as attempts as changing weights to attempt to balance fuel-remaining
among the satellites. Encoding an algorithmic process for determining these weights is beyond the
scope of this paper; instead, the weights are assumed to be known and assigned prior to the begin-
ning of the constellation trajectory optimization. For instance, the most simple set of weights one
might consider is an equal weighting scheme: wi = 1

N ∀ i ∈ 1, . . . ,N .

The prescription of constellation-wide constraints is difficult to generalize due to the wide va-
riety of constraints. These constraints will often arise from operational requirements, especially
for cubesat constellations since a cubesat is unlikely to be able to simultaneously maneuver and
communicate or operate other instruments. Sample potential constraints include limited maneuver-
ing over regions-of-interest to accomplish science objectives, limited simultaneous maneuvering to
maintain coverage, limited maneuvering in eclipse to preserve battery charge, or even limitations
to ensure passive safety of the constellation over an extended time period. These constraints are
often integer-valued, meaning they are non-differentiable. Due to the wide variety of constellation
constraints applicable, this formulation does not specify further the particular inequality constraints
(Ga ∀a ∈ 1, . . . ,A) or equality constraints (Hb ∀b ∈ 1, . . . ,B). Instead, they are left in their general
form here but specified later in the implementation section. The application of the VSI control cost
function and associated constraints allows for the following approximate solution to Problem 2.

Problem 2 Approximation (constellation trajectory optimization): Designing feasible trajectories
for all N satellites to minimize the weighted-sum of the VSI control cost function over a time
interval T is equivalent to the following optimization problem:

min
t0,1,...,t0,N ,tf,1,...,tf,N

N∑
i=1

wi

NT−1∑
s=0

ui(ts)
Tui(ts)δts (30)

subj. to ˙̃œi(t) = f(œ̃i) + g (B(œ̃i(t))ui(t)) ∀i ∈ 1, . . . ,N , t ∈ T
gi = ulim,i − ‖ui(t)‖2 ≥ 0 ∀i ∈ 1, . . . ,N , t ∈ T
hi = δœi(tf ) = 0 ∀i ∈ 1, . . . ,N , t ∈ T
Ga(œ1(t), . . . ,œN (t), t0,1, . . . , t0,N ,u1(t), . . . ,uN (t)) ≥ 0 ∀ a ∈ 1, . . . ,A
Hb(œ1(t), . . . ,œN (t), t0,1, . . . , t0,N ,u1(t), . . . ,uN (t)) = 0 ∀ b ∈ 1, . . . ,B
N∑
i=1

wi = 1

This formulation minimizes the weighted sum of VSI control costs for a set of station-keeping
maneuvers forN satellites subject to constellation operational constraints. These constellation-wide
constraints have yet to be specified since they are operation-specific. In the following section, the
implementation of this algorithm will be discussed in detail, followed by some sample results that
show the application of this approach to a constellation.
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Station-Keeping Constellation Optimization via Genetic Algorithm

The constellation optimization task is a multi-objective, mixed-integer, non-linear programming
problem, which places it in a difficult class of problems known as NP-complete. As in the well-
known traveling-salesman problem, the worst-case running time for such an algorithm increases
superpolynomially with the number of spacecraft. Additionally, many of these constraints are non-
differentiable with respect to the decision variables; there is no analytical derivative for the fuel
use with respect to the (integer-valued) number of maneuvering satellites at a given time, for in-
stance. Therefore, a gradient-descent-type algorithm cannot be formulated to guide an optimizer
toward local minima. However, a different class of optimization algorithms, known as metaheuris-
tic optimization, is better-suited to address the discrete nature of the decision variables and the
non-differentiability of potential cost functions used in constellation design. As the name implies,
a metaheuristic algorithm employs heuristics (“rules of thumb”), as opposed to cost or constraint
gradients, to guide the optimizer. Popular metaheuristic algorithms include genetic algorithms9 and
simulated annealing,10 both of which are developed using physical phenomena as a background. A
major advantage of this class of algorithms is they resist convergence, at the expense of more design
point evaluations, to avoid getting stuck in local minima. Both algorithms contain stochastic mech-
anisms that enable exploration of the design space beyond just following gradients to the nearest
optimum. The benefit then is the ability to apply these algorithms to non-convex objective spaces
and avoid local minima; the draw-back is the lack of any guarantees as to the global optimality of
the solution.

In this paper, constellation optimization is handled through a genetic algorithm. Below is a brief
summary of the important aspects of a genetic algorithm.9 Genetic algorithms, also sometimes
referred to as evolutionary algorithms, emulate genetic processes involved in evolution. A set of
design points under consideration are encoded as chromosomes, gray-code binary vectors. Each
design point is represented by an allele, a subset of the chromosome. Given a set of chromosomes
(a population or generation) that represent points in the design space, these chromosomes undergo
a number of evolution-inspired processes. In the crossover or reproduction stage, a number of chro-
mosomes are chosen and, if a random draw exceeds some crossover threshold, the chromosomes
exchange sections of their binary string to generate a new pair of chromosomes. In the mutation
stage, a chosen chromosome will flip bits if another random draw exceeds some mutation threshold,
introducing additional variability in the generation. Typically the mutation threshold is much higher
than the crossover threshold, as mutation occurs less frequently. In the selection or tournament
stage, a number of chromosomes are chosen and compared, and the design point with the best fit-
ness (see Eqn. (30)) is typically chosen to advance the next generation, subject to some tournament
threshold. The selection process gives the genetic algorithm the “survival of the fittest” genetic
analogy. Each of these processes occurs many times within a single generation, and each process
can be performed in a myriad of ways, so the particular construction of the genetic algorithm is left
to the algorithm designer. The stochastic nature of each step allows the design space to be explored
and allows the algorithm to potentially escape local minima. For instance, the tournament threshold
ensures that, with some (often low) probability, a less-optimal (higher cost) design point will be
selected, encouraging diversity in the population. There are additional optional features of genetic
algorithms, such as elitism which ensures the best chromosomes (as judged by their cost function)
from a given generation will advance to the next generation, even if they lose in the tournament
stage.

To solve Eqn. (30), the fitness of a given design point is evaluated using the weighted sum of the
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individual optimal trajectories from Eqn. (17) which enforces the dynamics, control, and boundary-
value constraints. An exterior penalty function is added to enforce constellation-level constraints
Ga and Hb. Higher values of fitness indicate worse trajectories, either through more control effort
or violation of constellation constraints, and will therefore be pruned out as the genetic algorithm
advances in generations.

Trajectory Refinement

The optimization techniques thus far have been subject to a reduced dynamic model and a number
of assumptions in order to reduce computational complexity. However, in operation, operators are
typically also concerned with many other perturbations, such as high-order gravity effects (well
above J2 perturbations), solar radiation pressure, and 3rd body effects. Therefore, there is a need to
refine the preliminary optimal trajectories generated by the gradient-descent and genetic algorithm
combination in more realistic dynamics.

To address this, NASA’s General Mission Analysis Tool (GMAT) is used to refine the trajectories.
GMAT is a space mission design software system for the design and optimization of spacecraft
missions.11 The 2015a release includes both a Python interface and finite thrust components, both
essential in application to this project. Each spacecraft trajectory received from the optimizer is
loaded into a scenario in GMAT, and a differential corrector is used to refine the trajectory. Since
the final target state is 6 states and the differential corrector is able to vary three components at a
particular time step (direction), the initial and final control actions are chosen to be modified; there
are 6 target states and 6 control states. Allowing GMAT to modify each individual discrete thrust
input overwhelms the differential corrector. Therefore, the initial input is used since the propagation
of that initial input over the whole orbit can have a significant effect, and the final input is used to
aid in rejecting further disturbances during propagation.

IMPLEMENTATION

The constellation optimization procedure as defined above is implemented as shown in Fig. 3.
Relevant constellation parameters are embedded in a configuration JSON-file, including the number
of spacecraft, their nominal mean orbit states, their actual orbit states, and simulation timing param-
eters. Convergence tolerances for the trajectory optimization algorithm are prescribed in terms of
LVLH parameters.2 This allows an intuitive prescription of allowable drift and offset parameters,
implemented as convergence constraints on the optimization.

The trajectory optimizer is configured for low-thrust, VSI engines. For constellation constraints,
we impose that no two satellites may maneuver simultaneously. This restricts the maneuver start
time decision variables for the genetic algorithm, and if this constraint is violated a penalty is applied
to the overall cost.

The trajectory optimization routine is developed in Python 3.5, using the Spyder IDE bundled
with the Anaconda distribution. The scientific computing (SciPy) and included numerical comput-
ing (NumPy) packages are leveraged, particularly the optimization toolbox in SciPy. In particu-
lar, SciPy’s Sequential Least Squares Programming (SLSQP) provides a mechanism for gradient-
descent optimization. Since, in station-keeping, the actual orbits are typically near the nominal
orbits (small maneuvers), and with the addition of the cost- and constraint-gradients, the gradient-
descent algorithm is quick.

The constellation optimization routine is also developed in Python 3.5. Here, a number of other
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Figure 3. Constellation optimization algorithm flowchart.

packages are employed. The Distributed Evolutionary Algorithms for Python (DEAP) package pro-
vides the mechanisms for implementing a genetic algorithm.12 The previous trajectory optimization
function is wrapped inside the larger outer-loop as part of the fitness function, where the individual
alleles (maneuver start times) must be evaluated. Additionally, as the name implies, DEAP sup-
ports distributed computing. Genetic algorithms are known as “embarrassingly parallel,” which is
to say each chromosome can be evaluated in parallel; they do not rely on each other for information.
Parallelization is accomplished in DEAP through the use of the Scalable Concurrent Operations in
Python (SCOOP) package, which enables the use of multiple processors or multiple cores on one
processor.13

Finally, the trajectory is refined in higher-fidelity dynamics using GMAT. The GMAT-Python
interface allows direct integration of user-generated Python functions to handle mean-osculating
conversions. It also enables visualization in higher-dimensions than 2D plots. One drawback of
GMAT, though, is spotty performance. The same scenario file can be run multiple times to no
avail, but without changing it the analysis may then run successfully. To address this, a batch file
was written to attempt execution of one file at a time, with a maximum number of re-submissions
prescribed in settings. When the GMAT script is executed successfully, it generates files detailing
the refined control trajectories. The final, refined trajectories (states and controls) are embedded in
ephemeris files, and a final result GMAT script is generated to show the satellites performing their
trajectory optimization.

SCENARIO - 6 SATELLITES, CO-PLANAR

To investigate the algorithm as developed, a sample scenario is presented to demonstrate the abil-
ity to generate a valid constellation maneuver set that minimizes the quadratic control cost function,
satisfies end-point constraints, and also satisfies constellation constraints. In this scenario, the con-
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Table 1. Nominal orbit parameters

Parameter Value Units

Semi-major Axis (a) 7300 km
Inclination (i) 50 deg

Eccentricity, Cosine Component (q1) 0.001 -
Eccentricity, Sine Component (q2) −0.001 -

Right Ascension of Ascending Node (Ω) 230 deg

stellation consists of 6 satellites in one nearly-circular inclined LEO plane, with nominal initial
orbit parameters as shown in Table 1. The mean arguments of latitude λ are initialized so that the
satellites are distributed evenly through the orbit plane. Randomized differential orbit elements are
generated as actual initial conditions. The trajectory optimization time horizon is set to one orbit
period, discretized into 100 time steps, yielding a trajectory time step less than 100 seconds. This
trajectory time step is well within the range of acceptable times to take advantage of the constraint
gradient assumptions, as show in Figs. 1 and 2.

The constellation optimization time horizon is set to one sidereal day, discretized into 1000 equal
time steps, roughly 86 seconds apart. Each time step in this horizon is a valid starting time for any
satellite, and the constellation optimizer finds the optimal combination of starting times and maneu-
ver trajectories to minimize the cost function. Additionally, the operational constraint imposed is
that only one satellite may maneuver at a time to maintain coverage. For any solution that includes
satellites maneuvering at the same time, a large penalty is applied to the fitness function. Each popu-
lation in the genetic algorithm contains 60 individuals, and the crossover and mutation probabilities
are set to 50% and 20%, respectively. 10 generations are evaluated to arrive at the final optimized
solution. Finally, the resultant trajectories are refined in GMAT using a 70x70 geopotential gravity
model, much higher-fidelity than the J2 terms included in the nearly non-singular orbit dynamics.

Figure 4 shows the optimized trajectories of all 6 satellites in the LVLH frame, superimposed on
one plot. The origins of the plots represents the respective nominal state for each spacecraft. The
order of maneuvers can be implied from this plot by noting how many large ellipses a particular
trajectory makes before proceeding toward the origin. By the end of the simulation time, all 6
satellites have reached their respective LVLH origins, meaning they have arrived at the nominal
orbits. Similarly, Fig. 5 shows the LVLH errors for all 6 satellites, showing that they all settle to
convergence tolerances within the allotted simulation time.

Figure 6 shows the convergence performance of the genetic algorithm for constellation opti-
mization. The top-left plot shows the minimum and maximum fitness values in each generation.
Notably, the first two generations do not contain any feasible solutions, yielding very high fitness
values. Starting with generation 2, feasible solutions are found and improved. The bottom-left plot
highlights this, showing an increasing percentage of each population with lower fitness values. This
movement toward an optimal configuration occurs slowly, encouraging further exploration of the
design space. Note that the bottom-left plot only shows the fitness range for the feasible solutions.
While an increasing number of individuals in the population are feasible with each added gener-
ation, a few indiviuals still remain infeasible. This resistance to convergence to local minima is
an advantage of metaheuristics, encouraging design space exploration while keeping track of local
minima.
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Figure 4. LVLH trajectories for all six satellites, after trajectory refining in GMAT.

Figure 7 shows the control data for the same scenario. Note that both pre-GMAT refining (dashed
lines) and post-GMAT refining (solid lines) are represented to show the change in trajectory im-
posed by GMAT to reject the higher-order disturbances. The top three plots are the control thrust
accelerations, and the bottom plot is a running total of delta-v used. The effect of the GMAT control
refining, small adjustments in the initial and final thrust inputs, can be seen here.

This test case demonstrates the application of the solution to Problem 2 as expressed in Eqn.
(30) to a synthetic constellation with imposed operational constraints. Alternate test cases may be
constructed to apply various constellation-level constraints, as long as they can be formulated to
impact the fitness function.

CONCLUSIONS

This paper develops a multi-tiered approach to constellation-wide optimization of maneuvers.
The approach is first developed in a general manner consistent with optimization conventions, with-
out prescribing specific constraints, to allow for future studies to build upon this formulation. A con-
crete example of constellation optimization, for low-thrust station-keeping, is developed to demon-
strate application of the theoretical approach, explicitly stating the assumptions made in formulat-
ing the tractable problem and the solution. The approach utilizes a gradient-descent algorithm to
efficiently drive each satellite toward its nominal orbit, encapsulating this individual trajectory op-
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Figure 5. LVLH errors for all six satellites, after trajectory refining in GMAT.

timization in an outer-loop genetic algorithm to handle discrete and non-differentiable constellation
constraints.

The effect of the simplifying assumptions in the gradient-descent method (for the constraint gra-
dients) is presented to highlight their applicability in this formulation. The use of GMAT to refine
the trajectories in high-fidelity dynamics reduces the effect of the assumptions made in favor of
computational tractability, while further confirming that the effect of these assumptions is small on
the overall outcome of the trajectories. Results are provided for a 6 satellite scenario, demonstrat-
ing the ability for this optimization approach to generate valid trajectories to meet mixed-integer
constellation constraints alongside differentiable trajectory constraints. The trajectories generated
through the hybrid genetic algorithm gradient-descent method allow a solution to be obtained in
approximately one minute using a laptop computer. The final GMAT-refined trajectories show good
agreement with the control trajectories generated in Python, with corrections applied at the end-
points to reject disturbances.

This work shows promising application of a hybrid optimization approach to solve this multi-
objective, mixed-integer, non-linear programming problem by exploiting the dynamics in a gradient-
descent method and exploring the non-convex constellation design space using metaheuristics. The
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Figure 6. 6-satellite constellation, genetic algorithm convergence.

methodology presented is not limited to the specific constellation scenario presented; the general
form in Eqn. (30) could be used to formulate solutions to arbitrary constellation maneuvering
problems.
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Figure 7. 6-satellite constellation, control thrust accelerations and delta-v.
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