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Eccentric orbits in the third-body perturbed problem are evaluated in the context of 
planetary moon missions.  All possible motion in the doubly averaged problem is 
overviewed and concisely summarized via contour plots.  Special attention is paid to the 
well known class of orbits that cycle between low and high eccentricity while circulating 
in argument of periapse.  Applying the doubly averaged assumptions, the maximum 
sustainable inclinations and eccentricities for long-term, circulating, ballistic orbits are 
found and discussed for the dimensioned systems at Ganymede, Europa, Titan, 
Enceladus, and several other planetary moons.  The full cycle periods of the circulations 
and librations are reduced to quadratures that are functions only of the two integrals of 
motion and the moon and orbiter mean motions.  In the specific case of Ganymede, 
higher fidelity models are considered to analyze the validity of the doubly averaged 
assumptions.  Families of stable, long-repeat cycle, periodic orbits are demonstrated in 
the un-averaged Hill plus non-spherical potential model.  Several point designs are 
considered in a full ephemeris model, and promising results include long-term ephemeris 
stable orbits that enjoy maximum inclinations above 60 degrees.   These circulating “ball-
of-yarn” orbits cycle between high and low eccentricities while distributing close 
approaches throughout all longitudes.  Further, these largely non-Keplerian orbits are less 
expensive to achieve than low-altitude, circular orbits, and the orbital geometry and 
timing are favorable for a variety of both planetary moon and system science. 

 
 

NOMENCLATURE 
 

Symbol Description 
a, e, i, ω, Ω, υ Classical orbital elements: semi-major axis, eccentricity, inclination, argument of periapse, longitude 

of ascending node, true anomaly 
alt Altitude 
as Moon semi-major axis 
b1 , b2 Stability indices 
C  Jacobi integral of motion 
C1 , C2 Integrals of motion in the doubly averaged system 
Cn,m , Sn,m nth degree and mth order non-zonal gravity field coefficients 
Jn  nth degree zonal gravity field coefficient 
n Spacecraft mean motion 
Ns Moon mean motion 
r Radius magnitude of the spacecraft position 
R Moon radius 
rp Spacecraft periapse 
t Time 
T Spacecraft period 
Tc Full contour cycle period 
Ts Moon period 
U Non-spherical gravity potential  
x, y, z, u, v, w Rotating, body-fixed state components 
Γ Potential function  
ε Small number 
μp Planet gravitational parameter 
μs Moon gravitational parameter  
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INTRODUCTION 
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15,16,17,18,19] 

The topic of science orbit design around planetary moons is broad and has been the subject of many 
studies in recent years.  See, for example, Refs. [1-19].  In order to ensure global coverage, adequate surface 
mapping, and tidal bulge detection, science orbits are generally required to have high-inclination, low-altitude, and 
low-eccentricity.  Unfortunately, it is well known that most orbits about planetary satellites with these properties 
will eventually impact due to dynamic instability from the third-body perturbation.  While low altitude, near-polar 
orbits are unstable and expensive to achieve in many cases, eccentric high-altitude orbits have received much less 
attention in terms of mission design applications.  One recent application involves constellation design at the 
Earth’s moon [18] noting that the averaged third-body dynamics predict the existence of mid-inclination stable 
eccentric frozen orbits.  A second class of orbits predicted by the averaged third-body dynamics [2] and further 
demonstrated as periodic orbits in the un-averaged third-body problem [13,14] are the circulating and librating 
orbits that indefinitely cycle between various degrees of high and low eccentricities.  While these orbits have been 
observed and documented in the normalized Hill’s problem and a few dimensioned cases such as Europa, their 
general mission design application has yet to be fully explored.  In this study we review all types of motion 
predicted in the doubly averaged third-body problem with particular emphasis on eccentric orbits, regions of 
validity for doubly averaged motion, and implications of the different time and distance scales associated with 
planetary moons of interest.  In particular, we choose Ganymede as a promising application for these circulating 
eccentric orbits and several examples are demonstrated.  The doubly-averaged assumptions are verified with the 
identification of periodic orbits in the un-averaged model [14], and the preliminary robustness of the orbit designs 
to realistic force perturbations is verified with ephemeris propagations. 
 

While the low-altitude near-circular orbits are quite sensitive to non-spherical gravity, the inclusion of 
higher order terms is found to be a second order effect for the high-altitude eccentric orbits.  The largely analytical 
averaging techniques from [2] only include point mass effects of the bodies and [4,9,10] consider a few dominant 
non-spherical terms especially in the case of the circular orbits.  While the inclusion of the higher order terms may 
prove difficult using averaging techniques, including at least the dominant terms for detailed eccentric orbit 
applications is considered future work.  The periodic orbit approach implemented in this study is amenable to 
including these higher order terms, even in the case of a highly irregular shaped body [14].   The rapid 
identification of the periodic orbits in a full gravity field is well suited for future Monte-Carlo analyses that will 
certainly be required to investigate gravity field sensitivities.   

 
 
MODELS OVERVIEW 
 

The classic restricted three body model assumes that the moon and planet are point masses and that they 
orbit their common center with a constant radius.  The Hill’s model is the limiting case where the moon to planet 
mass ratio approaches zero†.  This assumption results in a tidal force field that is symmetric about the plane passing 
through the moon center and perpendicular to the planet moon line [2].  The Hill’s model becomes more valid as 
the mass ratio and spacecraft to moon distance decrease.  By using Hill’s model, the normalized equations of 
motion remain unchanged for all planetary moon systems, and the dimensioned states for specific moon systems 
are found simply through the un-normalization process.    

 
The dynamical model for the Hill problem superimposed by an n x n spherical harmonic moon gravity 

field is depicted in Figure 1.  Given the additional assumption that the rotation of the moon is synchronous with its 
orbital period, the moon-fixed reference frame is identical to the moon-centered rotating Hill’s frame.  Periodic 
orbits in this model represent dynamic equilibria in the un-averaged equations, and they are relied upon in this 
study to verify stability and motion predictions from the simplified doubly averaged system.   

                                                           
† formally, the Hill approximation requires (μs /μp)1/3 << 1 
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Figure 1:  Hill’s model plus nxn potential model 

 
Table 1 gives the dimensioned parameters and associated normalized Hill’s model units for a specific 

application at Ganymede.  For cases including non-spherical Ganymede gravity terms, the Appendix includes a 
representative 4x4 Ganymede gravity field.  The J2 and C22 terms were estimated with reasonable confidence based 
on Galileo flyby data, while the remaining terms are simply representative of an expected field. 

 

Table 1:  Jupiter-Ganymede system parameters 

Parameter Value 
Ganymede gravitational parameter 9886.99742842995  km3/s2 
Jupiter gravitational parameter 1.26618626797685e8 km3/s2 

Jupiter - Ganymede distance 1.0704e6 km 

Ganymede mean radius 2631.2 km 

Hill’s normalized time unit (derived) 98413.2095723724 s 
Hill’s normalized length unit (derived) 45749.9268762215 km 
System mean motion (derived) 1.016123754468760e-5 rad/s 

 
 The equations of motion for the Hill’s plus full gravity model (see Figure 1) are given in Eq. (1). 
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The potential function, Γ, is introduced in Eq. (2) where U is the contribution due to the non-spherical 

moon, and it is expressed via the standard spherical harmonic expansion [20].  Typically, canonical units (LU and 
TU) are derived based on normalizing the moon mean motion, Ns, to unity. 
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 The system is Hamiltonian and admits C, an integral of motion given in Eq. (3) that is analogous to the 
Jacobi constant. 
 

( )2 2 22C u v w= Γ − + +
 (3) 

In the case of a point mass moon, a reduction of the system leads to the doubly averaged model where the 
Hill’s model potential is averaged twice: once over one spacecraft orbit and once over one moon orbit.  The basic 
averaging assumption is that the spacecraft period is much smaller than the moon period.  Typically an order of 
magnitude difference in these periods justifies the use of the averaging approximation [10].  In the current study, 



   

  

we examine a range of system to spacecraft period ratios, evaluate the validity of the underlying averaging 
assumptions, and interpret the implications of this ratio to the broader context of mission design.  When the 
equations of motion from Eq. (1) are formulated using the partial derivatives of the potential and Lagrange’s 
planetary equations [2,10,21], the doubly averaged system leads to Eqs. (4)-(8). 
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Selected ephemeris propagations are carried out to demonstrate the robustness of simplified model 

solutions to perturbations associated with realistic force models.  The ephemeris states of the planets, moons, and 
the Sun are based on publicly available data from the Jet Propulsion Laboratory*.   The body poles and prime 
meridians are based on the most recent data from the IAU Working Group on Cartographic Coordinates and 
Rotational Elements of the Planets and Satellites [22]. 

 
 
 
DOUBLY AVERAGED THIRD-BODY SYSTEM 
 
 The first order dynamics of orbiters in the vicinity of point-mass planetary moon orbiters are captured 
nicely through averaging techniques that reduce the problem’s dimension from six to three, enabling a thorough 
characterization of possible motion.  For details on studies that rely on averaging see for example [2,4,9,10,23,24].   
 

From Eqs. (4)-(8), note that semi-major axis is constant and the evolutions of eccentricity, inclination, and 
argument of periapse do not depend on longitude of the ascending node.  Therefore, the basic characteristics of the 
orbit are practically reduced to the three variables e, i, and ω.  Further, Broucke [2] shows that the reduced system 
includes two constant integrals of motion shown in Eqs.  (9) and (10). 

 
( )2 2

1 1 cosC e i= −  (9) 

( )2 2 2
2 2 5 sin sinC e i ω= −  (10) 

 
Therefore, given an initial state for e, i, and ω, the system is reduced to one degree of freedom as it is 

confined to remain on constant contours of C1 and C2.  Figure 2 captures all types of motion allowed based on the 
feasible values of C1 and C2. The x-axis on each of the plots is e cosω and the y-axis is e sinω. Therefore, the plot 
can be thought of in polar coordinates where the eccentricity magnitude is the radius coordinate and the argument 
of periapse is the angle.  Each picture shows a constant value of C1 as indicated in the title. Note that C1 can take on 
any value in the range from zero to one, and the C2 range depends directly on C1 (see [2] for details about the 
feasible regions of the C1-C2 plane).  Contours of constant C2 values are illustrated on each sub-plot.  The figure-
eight shaped contour in each plot reflects a C2 of approximately zero (ε > 0) while the remaining contours are 
distributed among feasible values based on the given C1.   

 

                                                           
*URL: http://naif.jpl.nasa.gov/naif/spiceconcept.html [cited 21 Jun 2006]. 
 URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de414.bsp [cited 21 Jun 2006]. 
 URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup230.bsp [cited 21 Jun 2006]. 
 URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00008.tpc [cited 21 Jun 2006]. 



   

  

If a spacecraft is initiated with a particular C1 and C2, then its motion is limited to the corresponding 
contour line as long as no thrusting occurs. The rate at which the spacecraft moves around the contour line is 
influenced by a; however, the shape of the contour lines are independent of a. Inclination is indicated by different 
shades and is independent of the contour lines. Inverse of eccentricity, inclination finds its maximum at the center 
of each plot and its minimum (0°) along the outer circumference. Thus, as the system moves along the constant C2 
lines, e, i, and ω change accordingly. Note that eccentricities ranging from zero to one are feasible in the limit as C1 
approaches zero, while only e = 0 is valid in the limit as C1 approaches one. 

 

 
Figure 2: Overview of possible orbital motion in the doubly averaged system 

   
The motion illustrated in Figure 2 is characterized by two basic features. When C1 > 3/5, all contour lines 

circulate around the center of the plot; therefore, argument of periapse circulates. The shape of the contours is 
circular towards the center and the boundary of each plot, while the interior regions find vertically elongated 
contours indicating the eccentricity will grow and shrink during each pass around the contour.  Following a 
bifurcation at C1 = 3/5, two islands emerge and move away from the center as C1 decreases.  Figure 3 shows this 
specific range of motion in a similar fashion to Figure 2, with the addition of the normalized full cycle contour 
period, Tc, to be discussed later.  Here, the motion is restricted to either librate around one of the islands or circulate 
around both islands.  At the center of each island a frozen orbit exists that is stable because the neighboring orbits 
simply librate with near-constant eccentricity and argument of periapse.  The two frozen orbits are represented on 
each plot by contours that appear as small dots above and below the origin, and the ovular contours around them 
represent possible librating orbits.  For circulating orbits when C1 < 3/5, note that the maximum inclination occurs 
when e ~ 0 and each cycle around the contour leads to maximum eccentricity at the top and bottom of each plot 
(corresponding to ω = ±90°).  For e = 0, the emergence of the islands (the bifurcation at C1 = 3/5) corresponds to a 
stability boundary of i ~ 39°.  Thus, all initially circular orbits with i > 39° will repeatedly grow and shrink in e as 
the contours require either a librating or circulating cycle around one or both islands, respectively. 

 



   

  

 

 
 

Figure 3: Overview of post-bifurcation motion in the doubly averaged system 

 
As an example, if a spacecraft starts with (e0, i0, ω0) = (0.001, 56.8°, 0°), then C1 ~ 0.3.  Figure 4 shows 

that the resulting contour (♣) circulates around both islands, and e and i range from ~0 to ~0.7 and ~39° to ~56.8° 
respectively.  This type of circulating orbit is termed a “figure eight” orbit due to its contour’s shape.  Note that it 
achieves the highest possible inclination of all the circulating orbits and has a C2 of slightly above zero by 
definition.  For practical consideration, the figure-eight orbits are attractive to the science community because (1) 
their circulating nature distributes close approaches through different latitudes and longitudes, (2) they enjoy the 
maximum possible inclinations of all the circulating orbits, (3) their long periods and high altitudes enable unique 
opportunities for planet system science, and (4) they cost less to achieve in comparison to traditional low-altitude 
circular orbits.  



   

  

 

 
Figure 4: Sample post-bifurcation motion in doubly averaged third body problem 

 
If the initial conditions are the same as above except ω0 = 90°, the contour librates around just the top 

island with a very similar range in i and e. In terms of mission design, a circulating trajectory will find close 
approach locations distributed amongst different latitudes, while a librating trajectory will find the close approach 
locations centered near the orbit inclination latitudes on either the northern or southern hemisphere.  As seen in 
Figure 3 and Figure 4, each circulating contour has an associated full cycle period, which is defined as the amount 
of time necessary for the spacecraft to complete one trip around its constant C2 curve.  A circulating orbit’s full 
cycle period can be calculated by numerical integration of Eqs. (5)-(7) or more simply from the quadrature given in 
Eq. (11) using the bounds from Eqs. (12) and (13).   
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(13) 

 
 The quadrature for the full cycle contour period is derived from Eq. (5) by separating variables, expressing 
i and ω in terms of e, C1 , and C2 using Eqs. (9) and (10), simplifying, and integrating both sides.  Each circulating 
contour is symmetric about both the x and y axes; therefore, the eccentricity bounds are found using Eqs. (9) and 
(10) at ω = 0° and ω = 90°, and the Tc expression is accordingly quadrupled.  An expression for the full cycle 
contour period of a librating orbit can be found using a similar procedure; where in this case, the eccentricity 
bounds in Eqs. (14) and (13) are found using the two positive roots of the resulting quartic at ω = 90°.  Further, the 
Tc expression in the librating case is doubled instead of quadrupled because its contour is symmetric only about the 



   

  

y axis, which results in a constant coefficient of 8/3 instead of 16/3 in Eq. (11).   Note that the periods provided in 
Figure 3 and Figure 4 are expressed as non-dimensioned factors of n/Ns

2, where, in general, the full cycle period is 
only a function of n, Ns, C1, and C2.  The full cycle period finds its maximum dimensionless value at C2 ~ 0, and the 
quick and non-linear reduction in period as a function of initial eccentricity (at ω0 = 0°) is clearly apparent when 
viewing the cycle period labels in Figure 3.  
 

( ) ( ) ( )2 2
0 1 2 1 2 2 1 1 2

1 6 25 2 30 9 30 18
6

e C C C C C C C C= − + + + − + − + +
 

(14) 

 
Note that each of the eccentricity limits shown in Eqs. (12)-(14) causes the denominator of the integrand 

of Eq. (11) to equal zero, which makes the integral in this equation singular.  For practical purposes, the numerical 
integration of this equation should be performed slightly within the appropriate bounds to avoid these singularities; 
this method produced very accurate full cycle period values when compared to corresponding numbers taken from 
a numerical propagation of Eqs. (5)-(7).  Also, C1 and C2 should not be exactly 3/5 and zero, respectively, in order 
to avoid numerical singularities associated with the bifurcation between circulating and librating orbits.   

 
Based on the premise that the science community prefers high inclinations for favorable mapping and 

observation purposes, we note in Figure 3 that the upper bound of inclination on a figure-eight orbit (occurring at e 
= 0) increases for smaller C1 values.  The corresponding upper bound on eccentricity (occurring at ω = ±90o) also 
increases for smaller C1.  Therefore, in order to maximize inclination for a figure-eight orbit around a specific 
planetary moon, we select a C1 value such that the upper bound on the eccentricity cycle leads to an orbit with a 
grazing periapse altitude and an apoapse altitude reaching to the furthest limits of the doubly averaged model 
validity.  The minimum periapse radius is based on the sum of the moon’s radius and an assumed 100 km minimum 
altitude, while the maximum apoapse is based on the largest possible radius orbit that remains valid in the doubly 
averaged model.  Equations (15) and (16) express the resulting maximum a and e derived from simple two-body 
geometry.   
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Noting that C1 is constant, the right hand side of Eq. (9) applied at ω = 0° (where e = 0 and i ~ imax) can be 

equated to the same expression applied at ω = 90° (where e = emax and i ~ 39°).  The result is simplified to produce 
the maximum inclination relationship given in Eq. (17).   

 
( )2

max maxarccos 1 3 5i e= −
 (17) 

 
Therefore, the figure-eight orbit will oscillate between inclinations of ~39° and imax. A figure-eight orbit’s 

C2 value is always slightly above zero, but C1 is dependent on the physical parameters of the system and orbiter. 
Because the maximum inclination occurs at zero eccentricity, Eq. (9) easily reduces to Eq. (18). 

 
2

1 maxcosC i=  (18) 
 

Thus, figure-eight orbit full cycle contour period values for each moon system can be found using Eqs. 
(11)-(13), (16), (17), and (18) accordingly.  Table 2 shows these parameters for several different moon systems in 
our solar system.  Note that the list of systems is taken from [10] where characteristic instability times are presented 
for low altitude circular orbits of potential moons of interest.  The data in the first seven columns of Table 2 comes 
from the physical parameters of each system as well as basic orbital mechanics equations, and the data in the last 
three columns comes directly from the equations of the doubly averaged third-body system.  Note that the data 
given in Table 2 is based on figure-eight orbits with very small but non-zero initial e, while a realistic trajectory 
would likely start with a greater eccentricity to avoid the bifurcation to a librating orbit.  As mentioned previously 
and appreciated in Figure 3, the circulating orbits with larger initial e (for example, 0.1) will find from Eq. (11) 
significantly shorter full cycle periods than those reported in Table 2.  



   

  

 
 

Table 2: Figure-eight science orbits with maximum inclinationsb for different moon systems 

 
Satellite μs 

(km3/s2) 
rp

 a 
(km) 

as 
(km) 

Ts  
(days) 

amax
b 

(km) emax
b C1

b imax
b  

(deg) 
Tc b 

(days) 
Earth (μp=398479.14 km3/s2) 

Moon 4902.801 1838 384400 27.46 19119 0.904 0.110 70.6 832.7 
Mars (μp=42815.397 km3/s2) 

Phobos 0.0007158 111 9380 0.32 5 -20.500 -251.57 N/A N/A 
Deimos 0.000098 106 23460 1.26 7 -14.944 -133.39 N/A N/A 

Jupiter (μp=126649960 km3/s2) 
Io 5959.916 1922 421800 1.77 3281 0.414 0.497 45.2 98.0 

Europa 3202.739 1661 671100 3.55 4244 0.609 0.378 52.1 147.4 
Ganymede 9887.834 2731 1070400 7.16 9856 0.723 0.286 57.6 259.6 

Callisto 7179.289 2510 1882700 16.69 15581 0.839 0.178 65.1 537.8 
Amalthea 0.138 183 181400 0.50 40 -3.562 -7.011 N/A N/A 

Thebe 0.1 149 221900 0.68 44 -2.379 -2.795 N/A N/A 
Adrastea 0.0005 108 129000 0.30 4 -23.633 -334.52 N/A N/A 

Metis 0.008 122 128000 0.30 11 -10.063 -60.160 N/A N/A 
Saturn (μp=37918950 km3/s2) 

Mimas 2.53 299 185540 0.94 162 -0.843 0.174 N/A N/A 
Enceladus 7.21 352 238040 1.37 295 -0.195 0.577 N/A N/A 

Tethys 41.21 636 294670 1.89 653 0.025 0.600 39.3 193.9 
Dione 73.113 663 377420 2.74 1012 0.345 0.528 43.4 172.6 
Rhea 154.07 865 527070 4.52 1812 0.523 0.436 48.7 210.6 
Titan 8978.19 2676 1221870 15.95 16286 0.836 0.181 64.8 515.4 

Hyperion 0.37 233 1500880 21.71 691 0.663 0.336 54.5 843.4 
Uranus (μp=398479.14 km3/s2) 

Ariel 90.3 679 190900 2.52 1028 0.340 0.531 43.2 160.9 
Umbriel 78.2 685 266000 4.15 1366 0.499 0.451 47.8 200.4 
Titania 235.3 889 436300 8.72 3234 0.725 0.285 57.8 315.5 
Oberon 201.1 861 583500 13.48 4104 0.790 0.225 61.7 455.8 
Miranda 4.4 336 129900 1.42 256 -0.314 0.541 N/A N/A 

Neptune (μp=398479.14 km3/s2) 
Triton 1427.9 1453 354800 5.87 4531 0.679 0.323 55.4 223.7 

Pluto (μp=398479.14 km3/s2) 
Charon 108 693 17536 5.70 1880 0.631 0.361 53.1 230.1 

a  rp = r + altmin; altmin = 100 km 
b Ts /T = 10  

 
 
 

From Table 2, five of the figure-eight science orbit parameters for each moon system directly depend on 
the ratio between moon period and spacecraft period (Tsys/T ).  Clearly, the maximum sustainable inclinations for a 
particular moon system are directly related to the relative size of the third body perturbation.   In general (and as 
expected), the maximum sustainable inclinations increase for larger moons and moons further from their associated 
planet.  The values presented in Table 2 are based on an order of magnitude period ratio, which was stated before as 
the necessary value to justify the averaging approximation.  Negative maximum eccentricities in the table above 
correspond to moon systems that have no possible figure-eight science orbits at this particular period ratio.  As the 
magnitude of period ratio is decreased, maximum eccentricity and maximum inclination change accordingly. The 
specific trends of this change for the four outer planet flagship moons* (Europa, Ganymede, Enceladus, and Titan) 
are shown in Figure 5.   
 

                                                           
* http://www.lpi.usra.edu/opag/announcements.html [cited Dec 19 2007] 



   

  

 
 

Figure 5:  Maximum inclination and eccentricity as a function of the model-justifying period ratio  

 
 

The figure-eight orbit maximum eccentricities and inclinations increase as the justifying period ratio 
decreases.  The nominal order of magnitude period ratio is an estimate for a justified averaging approximation [10].  
Note that the period ratio boundary between valid and invalid use of averaging is debatable and it varies for each 
different moon system and application.  Figure 5 shows that a figure-eight orbit is possible for Enceladus† at a 
period ratio of five, but the spacecraft would violate the minimum altitude constraint at any ratio above ~7.7. 
Alternatively, Ganymede, Europa, and Titan enjoy figure-eight orbits with large eccentricities across the entire 
period ratio range shown.  Previous work that documents families of periodic orbits around planetary moons 
[25,26] indicate that perturbed Keplerian orbits either cease to exist or find dramatic character changes much 
beyond roughly 2/5 of the Lagrange point distance, which corresponds to a period ratio of ~7.  Numerical 
simulations verify that the doubly averaged predictions match closely the full dynamics when the period ratio is at 
or above ~10.  For larger values, the doubly averaged predictions degrade in accuracy.   
 

Considering Ganymede as an example, Table 2 shows that the doubly averaged system is well suited for 
predicting motion when the semi-major axis is less than or equal to ~9,856 km. At this semi-major axis length, a 
100 km minimum altitude orbiter at Ganymede can sustain rather large eccentricities (up to ~0.723) without 
impacting. Further, the large altitudes reduce the sensitivity to non-spherical gravity. Therefore, Ganymede is an 
excellent application for the doubly averaged circulating and librating trajectories that often lead to large 
eccentricity excursions.  Accordingly, we design a highly inclined 24-hour eccentric orbit at Ganymede (a reference 
orbit for the Jupiter System Observer flagship study from FY07). The 24 hour period requires an average semi-
major axis of ~12,320 km. While this exceeds the just mentioned formal limit of ~9,856 km, we proceed in order to 
test the period ratio limit of applicability for the doubly averaged system at this particular moon. The 24-hour 
period is synchronous with typical work shifts and is therefore highly desirable in terms of staffing and operations. 
An orbit is sought with distributed low-altitude close approaches and high inclinations for favorable science 
geometry. The fourth subplot from the left in the first row of Figure 2 shows a figure-eight contour with C1 = 0.22 
yielding an oscillating orbit eccentricity that varies between near circular and ~0.78 with a maximum inclination of 
~61°.  This circulating 24 hour orbit leads to a 925 x 19,650 km altitude orbit. In the following section, we seek to 
verify the averaging assumptions by identifying and comparing periodic orbits in the un-averaged model with 
similar orbital element evolutions. 
 
 
 
 

                                                           
† Note that Ref. [19] documents stable circulating science orbits at Enceladus with inclinations as high as 65o.  However, these orbits exist well 
into the region where the doubly averaged model fails to predict the un-averaged motion. 



   

  

THE UN-AVERAGED MODEL 
 

A second general technique for analyzing motion near planetary moons involves the search and 
characterization of periodic orbits in un-averaged models.   See [4,5,6,11,12,13,14,16,17] for details.  The periodic 
orbits are crucial for characterizing the motion in instances when the doubly averaged assumptions are not valid 
[4,5,12,13].   In cases inside the region of validity, the periodic orbits provide higher order solutions. 

 
The local periodic orbit search is performed in Hill’s model superimposed on an n x n spherical harmonic 

gravity field. The Hill’s potential and non-spherical two-body potential are both time invariant; therefore, an 
abundance of periodic orbits exists and computational searches are relatively fast. A general use prototype software 
package called Groove‡ is used to find and analyze periodic orbits and families of orbits.  The algorithms and 
concepts are explained and demonstrated in [6,11,14].   

 
Starting with the initial conditions {a0 = 12,320 km, i0 = 60o, e0 = 0.1, ω0 = Ω0 = υ0 = 0o}, the un-averaged 

equations (including the non-spherical terms) are propagated until a full circulation in the e ω plane completes.  For 
this example it requires approximately 81 revolutions.  We therefore seek a periodic orbit that closes in the body 
fixed frame after 81 revolutions.  The ~80 day period is consistent with 70.3 day period calculated using the 
quadrature from Eq. (11).  The differential corrector converges to the initial conditions given in Table 3. 

 
 

Table 3.  Example periodic orbits in Hill’s model plus 4x4 Ganymede gravity field* 

Property Units 12:81 unstable orbit 9:56 stable orbit 
x0 km -1.10294724E+04 1.27215637E+04 
y0 km 6.09916977E+02 2.74572065E+03 
z0 km -9.92043402E-15 0.00000000E+00 
u0 km/s -2.56020704E-02 -5.19574390E-01 
v0 km/s -4.71573204E-01 3.16290562E-01 
w0 km/s 8.73907974E-01 6.25411458E-01 
a0 km 1.23072793E+04 1.30393130E+04 
e0 - 1.02457203E-01 5.05659039E-01 
i0 deg 6.16128288E+01 5.61929409E+01 
ω0 deg 2.94588490E-01 1.20188898E+02 
Ω0 deg 1.76834834E+02 1.21794367E+01 
υ0 deg -2.94588490E-01 -1.20188898E+02 
Tc day 7.75866851E+01 5.70386714E+01 

avg. i deg 56.18 56.22 
*Initial conditions given in non-rotating frame aligned with the IAU defined Ganymede body-fixed frame at epoch.  

 
 
 

The natural family of similar orbits is then found by targeting neighboring Jacobi constant values.  The 
effect of changing the Jacobi constant on this family in the vicinity of the orbit of interest is small changes in 
average inclination.  Figure 6 shows the family of orbits as a function of average inclination.  The 12:81 family 
indicates that the spacecraft makes 81 revolutions while Ganymede makes 12+ΔΩ revolutions prior to closing the 
periodic orbit in the body fixed frame.  The ratio of the two integers can be adjusted in order to change the average 
semi-major axis [14]. 
 

The stability indices b1 and b2 from Figure 6 must both be less than or equal to two for linear stability.  
Most of the orbits of Figure 6 are therefore mildly unstable indicating that the exact repeat ground tracks will 
eventually be destroyed when propagated for long periods.  The implications of the instability will be further 
investigated with ephemeris propagations in a later section.  The stated periodicity is a measure of how closely the 
targeted final state matches the initial state, and 10-q is roughly equivalent to matching q significant digits.  

 

                                                           
‡ The Groove software package (developed primarily at the Jet Propulsion Laboratory, written in Fortran 90, and available on linux and PC 
platforms) represents a new capability for the rapid design of science orbits and can benefit missions desiring global surface coverage, maximum 
orbital stability, predictable orbital elements, sun-synchronicity, and/or high-fidelity repeat ground tracks.  Example applications include but are 
not limited to: Europa, Ganymede, Enceladus, Vesta, the Moon, Earth, and Mars. 



   

  

 To demonstrate the properties of a particular orbit, Figure 7 - Figure 9 show characteristics of an example 
12:81 periodic orbit propagated for one period.  The three-body nature of the orbit is appreciated in the large 
variations seen in the osculating orbital elements shown in Figure 7.  The orbit has altitudes ranging from ~1000-
18500 km, eccentricities ranging from 0.02 to 0.7, and inclinations ranging from 45o to 62o.  The argument of 
periapse is clearly of the circulating nature as it cycles exactly once in the ~78 day period.  The quickly processing 
and librating orbits are appropriately coined “ball-of-yarn” orbits as the body-fixed trajectory plot in Figure 7 
illustrates.  The repeat ground tracks and the associated close approach locations are illustrated in Figure 8.  The 
figure-eight path of the eccentricity vector in Figure 9 clearly resembles the circulating contours predicted from the 
doubly averaged system.  
 

 
Figure 6:  Promising family (12:81) of science orbits at Ganymede 

 



   

  

 
Figure 7:  One period of example 12:81 science orbit: trajectory (left) and orbital elements (right) 

 
 

 
Figure 8:  One period of example 12:81 science orbit: ground-tracks 

 
 

 
Figure 9:   One period of example 12:81 science orbit: eccentricity vector repeat path 

 
 



   

  

It is emphasized that the family shown in Figure 6 is simply one of several possible similar families.  To 
illustrate, we also show a similar family of orbits with slightly lower periapses and larger periods (closer to the 
target 24 hours) in Figure 10.   Note, contrary to the 12:81 family (although both families are very similar in 
nature), all of the orbits shown in Figure 6 of the 9:56 family are linearly stable as indicated by both stability 
indices being less than or equal to two.  Therefore, in this model, the exact repeat orbits will remain intact over long 
propagations.  An example 9:56 orbit is illustrated in Figure 11 - Figure 13.  Note that the full cycle period of the 
9:56 (~57 days) orbit is substantially less than that of the 12:81 (~78 days) orbit.  This result is consistent with the 
the doubly averaged model where an increasing neck size of the figure-eight path corresponds with a smaller full 
cycle period (see Figure 9 and Figure 13).  

 
 

 
Figure 10:  Promising family (9:56) of science orbits at Ganymede 

 



   

  

 
Figure 11:  One period of example 9:56 science orbit: trajectory (left) and orbital elements (right) 

 
 

 
Figure 12:  One period of example 9:56 science orbit: ground-tracks 

 
 
 

 
Figure 13:   One period of example 9:56 science orbit:  eccentricity vector repeat path 

 
 



   

  

 
 
 
LONG-TERM N-BODY PROPAGATIONS 
 

The important consideration of non-conservative perturbations (the realistic ephemeris for example) and 
force model uncertainties also play key roles in the detailed stability analysis and design of science orbits at 
planetary moons.  While [5,6,11,14,15] represent progress in this area, more detailed analyses regarding the 
transition from simplified dynamics to ephemeris models is an important area of future research.   
 

The stable solutions discussed in this study are considered linearly stable in the conservative force model 
including the Hill third-body perturbation and the non-spherical Ganymede gravity terms.  The radius of the 
stability regions around the stable orbits in the presence of numerical and other perturbations is unclear.  Methods 
using Fast Lyapynov Indicators (FLIs) are useful for estimating stability region radii [5,15].  While no such method 
has been applied in the current study, FLIs should be considered in future work.  Further, the unstable orbits such as 
those of the 12:81 family may or may not be robust to realistic perturbations in terms of mission design.  If the 
exact repeat pattern is destroyed yet the eccentricity keeps circulating with the same ranges, the instability is of 
little consequence.  However, we have already demonstrated that the 24 hour orbit is likely pushing the boundaries 
of applicability for the doubly averaged dynamics, and further investigations are therefore necessary. 

 
Ephemeris n-body propagations are a simple, crude approach to measuring stability radii or robustness of a 

particular solution to non-trivial perturbations.  We proceed by propagating the two example orbits in ephemeris 
simulations involving two-body gravity from the Sun, Jupiter, Saturn, all the Galilean moons, and oblateness 
effects from Jupiter and Ganymede.  By specifying the initial conditions given in Table 3 in the body-fixed frame at 
epoch, propagations beginning at arbitrary epochs have the effect of sampling uncertainties in the force model.  If a 
particular orbit maintains its basic characteristics without impacting or escaping for one year starting at ten 
arbitrarily chosen epochs, it is considered long-term stable. 

 
Figure 14 - Figure 16 show characteristics of the 9:56 example orbit ephemeris propagation.  The epoch is 

arbitrarily chosen as Jan. 1, 2028 (Julian Date = 2461772.0).  This orbit is deemed long-term stable as each of the 
ten different epochs led to orbital lifetimes of at least one year.  By comparing the eccentricity vector path and the 
close approach locations of the simplified model equivalent orbit, it is clear that basic orbital characteristics are 
maintained during the long-term propagation.   It should be noted that from Figure 11, the example orbit has a 
minimum altitude of ~200 km in the simplified model and Figure 16 shows consistency in the long-term ephemeris 
propagations.  Because the orbits from family 12:81 are unstable in the simplified model, the example from Figure 
7 is chosen with a higher minimum altitude of ~1000 km in anticipation of a less robust solution to the realistic 
perturbations.  Although we do not explicitly illustrate the propagations, the 12:81 orbit also passes the long-term 
stability test for ten ephemeris propagations with arbitrary epochs.  As predicted, however, the unstable 12:81 orbits 
lead to less repeatability in the ephemeris propagations and subsequently the minimum altitudes dip down to ~250 
km as compared to the ~1000 km in the conservative model.   

 
A brief analysis was performed to spot check the sensitivity of the long-term propagation to the non-

spherical gravity of Ganymede.  The same stability test of applying ten arbitrary epochs led to similar long-term 
stable results using only a Ganymede point mass.  While this result is promising and certainly due to the large 
altitudes compared to the Ganymede radius, considerable future work is required to understand the non-spherical 
gravity-field implications.  

 



   

  

 
Figure 14:   Long-term n-body ephemeris propagation for 9:56 orbit:   

orbital elements evolution (left) and eccentricity vector repeat path (right) 

 
 

 
Figure 15:   Long-term n-body ephemeris propagation for 9:56 orbit: Ground tracks   

 

 

 
Figure 16:   Long-term n-body ephemeris propagation for 9:56 orbit:  

close approach distances (left) and body-fixed i (right)   
 

 



   

  

 
CONCLUSIONS 
 

The first order effect of the third-body perturbation on a spacecraft near a planetary moon is reviewed, and a 
detailed contour plot analysis depicts all types of feasible motion.  An emphasis is placed on eccentric orbits and 
mission design applications.  In particular, the class of orbits that oscillate between near circular and highly 
eccentric and include a circulating argument of periapse is introduced as a viable, high-science value, low-cost 
trajectory design for planetary moon missions.  These circulating figure-eight orbits are evaluated and documented 
in the context of maximizing sustainable inclinations for a variety of relevant moon systems.  While the high 
eccentricity excursions occur at the lower bound of the inclination cycle, the orbits serendipitously spend the 
majority of their time at the higher inclinations.  Quadrature expressions are derived for quick calculation of the full 
cycle periods.    
 

While the doubly averaged system provides general insight to the third-body problem, we also rely on the 
periodic orbits in the un-averaged system for higher order solutions and validation of the doubly averaged 
predictions.  As an example, two families of highly resonant periodic orbits are demonstrated in the un-averaged 
Hill plus 4x4 Ganymede gravity field model.  Despite that the orbit period of ~24 hours is found to be just beyond 
the formal region of validity for the doubly averaged assumptions, the example orbits find general agreement with 
the doubly averaged predictions.  The non-spherical gravity terms are found to have non-dominant effects on the 
high-altitude highly eccentric orbits.  Finally, long-term ephemeris propagations are used to test the robustness of 
the example orbits to realistic perturbations.  The example orbit from the 9:56 family is stable in the un-averaged 
model and finds best agreement when transitioning to the full ephemeris.   

 
Considering all possible high altitude Ganymede orbits with occasional low-altitude close approaches, the 

proposed Ganymede science orbit enjoys inclinations that are likely at or near the maximum attainable for long-
term stable motion.  The orbit is circulating with close approaches distributed amongst all longitudes and ±62o 
latitude and it cycles between near-circular (9,000 km altitude) and highly eccentric (200 x 20,000 km altitude) 
approximately once a month.  The high altitudes compared to the body-radius make both poles viewable at near-
nadir pointing angles.  The highly eccentric orbit is less expensive to achieve than a low-altitude circular orbit, and 
the orbital geometry and timing are favorable for Ganymede science as well as a variety of Jupiter system science.    

 
In this study the circulating eccentric orbit is demonstrated in most detail for the Ganymede case.  However, 

the general class of third body perturbed orbits is a cost-effective option for orbiting any modest sized planetary 
moon.   
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APPENDIX:   GANYMEDE GRAVITY FIELD 
 
 Below are representative normalized gravity field coefficients for Ganymede originating from Galileo 
flyby data.  The coefficients were used for the Jupiter Icy Moons Orbiter (JIMO) trajectory studies.  
 

J(2)   =  5.911042930573900E-05,   
J(3)   = -3.921720290616328E-07,   
J(4)   =  1.619380392450006E-06,   
C(2,1) = -1.089379888322607E-08,   
S(2,1) = -1.204834981027450E-06,   
C(2,2) =  6.152429561579210E-05,   
S(2,2) = -5.410422638487023E-06,   
C(3,1) = -6.863916460740865E-06,   
S(3,1) = -5.971806445404929E-06,   
C(3,2) = -6.481431518636326E-06,   
S(3,2) =  1.019584456216980E-05,   

C(3,3) = -7.575116779515599E-06,   
S(3,3) = -8.279091297771898E-07,   
C(4,1) =  4.018167872716952E-06,   
S(4,1) =  5.830284294524415E-06,   
C(4,2) = -9.205006749291541E-07,   
S(4,2) = -7.719921073220343E-06,   
C(4,3) =  1.807800500915109E-06,   
S(4,3) =  3.883084011103666E-06,   
C(4,4) =  3.101357600870122E-07,   
S(4,4) =  5.656462546498310E-06   
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