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PARTICLE AND MATCHED FILTERING USING ADMISSIBLE
REGIONS

Timothy S. Murphy ; Brien Flewelling] Marcus J. Holzinger }

The main result to be presented in this paper is a novel matched filter based on
orbital mechanics. The matched filter is an image processing technique which
allows low signal-to-noise ratio objects to be detected. By using previous orbital
knowledge, the matched filter utility can be increased. First, the particle filter
implementation will be discussed followed by the implementation of the matched
filter. Then a pair of simulation results will be presented, showing the results from
the particle filter and matched filter.

INTRODUCTION

The Joint Space Operations Center (JSpOC) under U.S. Strategic Command operates The Space
Surveillance Network (SSN) which tracks upwards of 17000 space objects of diameters greater than
10 cm.! The 2001 Rumsfeld Report stated a need for improved Space Situational Awareness (SSA)
technologies to support US interests in space.? The SSN takes around 400,000 observations each
day with radar, optical, and space based sensors.! Ground based optical sensors play a key role in
tracking objects outside of Low Earth Orbit (LEO) where radar is less effective. It can also be seen
as an affordable alternative to radar technologies.

The SSN includes both exquisite and minimalist sensors. Exquisite sensors have excellent noise
characteristics enabling low magnitude object detection but often have a restrictive cost. Minimalist
sensors focus on being cost-effective, allowing larger sensor networks but often lack the necessary
noise requirements for detecting low magnitude objects. Sensors are also typically active, that is,
able to track an objects through the sky. Tracking requires knowledge of the object’s orbit. When
orbit knowledge is poor or when discovering new objects, sensors must be passive, that is, fixed on a
portion of the sky and imaging objects as they pass through the field of view. Discovering tracking,
and determining orbits of low magnitude objects will continue to increase in importance. Exquisite
sensors are needed to discover new objects, but are a limited resources. Minimalist sensors would be
ideal for discovery and catalog upkeep. Passive sensing is needed for discovery and when tracking
is impossible. The threshold for detection is signal-to-noise ratio (SNR), defined as the strength
of a desired signal over the strength of noise present. This will be defined more rigorously in the
Theory section. For tracking space objects (SO), SNR is the factor that limits an observer from
seeing small or dim objects. This motivates processing techniques for enabling low SNR detection
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for passive sensors. The matched filter (MF) is an image filter which provides optimal SNR gain
allowing images with low SNR to be useful, but requires prior knowledge of signal shape.

In current optical SSA applications, tracking, image processing, and orbit determination (OD) are
often disjoint processes. In the tracking process, measurements are taken on an object without any
online orbit update. Then, after tracking and data collection are complete, orbital parameters are
estimated via a batch process or multiple hypothesis filter (MHF) type method. If the entire process
of tracking, image processing, and OD are combined, there exist ways to improve these processing
through feedback. This idea of feedback is what initially motivated an online matched filter.

The major result to be discussed in this paper is using results of online orbit determination to
develop and apply an online matched filter (MF) primed by orbit knowledge and predicated on
astrodynamics. The MF has been used in SSA applications but is limited by the requirement of
known object shape.> The three dimensional MF was originally derived by Reed.* It is derived as
a filter which provides an optimal SNR gain. The primary computation involved in a MF is image
correlation. Correlation is a common process for feature detection in image processing.” A template
is compared to all possible positions in an image and a value is assigned to each position. This value
ranges from perfect correlation (1) to perfect anti-correlation (-1).

A common MF variation used in SO tracking is known as the velocity filter. A velocity filter uses
knowledge of the velocity of an object in the image plane to approximate the streak that it should
make. Under the assumption that no acceleration occurs in angle space, previous images can be
correlated over future images to identify a SO. There are several limitations to this methodology.
The primary limitation concerns the fact that any acceleration (in « and §) of the object will change
the streak from the template. This can be troublesome for an eccentric object or long integration
times where accelerations are prevalent. A framework that provides online OD knowledge would
enable a more sophisticated MF. This new MF is theoretically more robust to accelerations in the
image plane which would be modeled by the dynamics This would also enable long propagation
periods and can be transferred between geometrically diverse observers. In particular, the transfer
between observers is interesting, as it allows exquisite sensors to pass off tracks to MF enabled
minimal sensors. Additionally, minimal sensors could be enabled to perform catalog maintenance.

Admissible region (AR) theory will be used for the particle filter discussion and the matched filter
results and is discussed here briefly. The AR as used for SO is based originally on work from Milani
in the field of astrodynamics pertaining to heliocentric asteroids.® The work has since been adapted
for SSA applications with much success.”>® As such, it is currently a hot topic and is expected
to be a platform for a large number of novel research pathways. This paper will use the notation
developed by Worthy et al.” for admissible regions. An AR is a set of ranges and range rates which
corresponds to a particular angle and angle rate measurement. The AR is then constrained to a
subset of ranges and range rates which correspond to physical orbits. Because the AR is an infinite
set, the region often is sampled to create a discrete set of samples within the AR. These samples,
also known as particles, can be used to prime numerous applications to carry out OD methods.
A currently popular methodology is the Multiple Hypothesis Filter (MHF) proposed originally by
DeMars, Jah, and Schumacher.” The principle behind MHF is that the samples from the admissible
region can be thought of as hypothesis orbits. In an iterative scheme, these hypotheses are then
filtered and pruned until a single or small set of orbits remain. This research will develop a particle
filter (PF) to propagate forward and further constrain the orbit. The primary difference between
MHF and a particle fitler is the way the orbits are modeled. Instead of considering samples to be
disjoint hypotheses, a particle filter uses point wise discrete approximation for modeling. PF enables



the approximation of SO with non-Gaussian distributions based on orbital mechanics. Because this
process includes an inherent resampling process, it is more robust to a sparse initial distribution. It
should be noted that in practice, the MHF and PF are very similar being differentiated by only a
sampling process.

Particle filters which are used for some of the results of this paper are discussed here. The particle
filter has been used in orbital estimation scenarios in the past.!? PF is typically considered to be
one of the more accurate filtering methods when non-linear systems are involved.!! True dynamics
can be used to propagate forward particles instead of a linearized model, which increases fidelity.
In the extended Kalman filter, which is typically used for non-linear systems, the filtered state is
modeled as a Gaussian distribution. A particle filter models the filtered state as a non-Gaussian
distribution as represented by a summation of Gaussian random variables called Virtual Particles
(VP). There has been a push to move away from Gaussian distributions in OD techniques due
to the highly non-Gaussian properties found in orbital element space.'> ! This methodology, when
applied correctly, can be a robust and effective method for determination of orbits with no restrictive
Gaussian assumptions in the posterior distribution.

Typically, some type of filter is run on each of the VP in a particle filter. The Unscented Particle
Filter (UPF) is a better suited method for nonlinear systems.'# Particle filtering typically has large
computational demands. One factor that mitigates this is that the unscented filtering process, which
takes up the bulk of processing time, is highly parallelizable. The primary process is a propagator
that must be run on each particle and all of their sigma points. In addition, a well designed PF
operating on a “vaguely Gaussian” distribution can avoid the “curse of dimensionality”.!> The so-
called “curse of dimensionality” in this case, refers to the fact that sampling an N dimensional space
appropriately increases exponentially with respect to N. Because the mechanics involved in orbital
mechanics a sufficiently non-linear and N = 6, particle filters have been historically avoided in
OD. A second problem with particle filtering is choosing an appropriate prior distribution. The prior
distribution is an initial choice of points to represent a distribution. Typically, proposal distribution
is based on Sequential Importance Sampling, which approximates the distribution. AR solves both
these problems by giving a new appropriate prior distribution based on the dynamics of the object,
which can be sampled in a two dimensional space.

This paper will include discussions of admissible regions and particles filters, both of which are
used to generate some of the results. The main contributions being presented here are: 1. The use
of online orbital knowledge to prime a matched filter for initial orbit determination. 2. The use
an admissible region to prime a matched filter bank for queued object detection. 3. The reduction
of a matched filter bank computation time using admissible region discretization. This research is
being incorporated as part of a larger software package, Generalized Electro-Optical DEtect Track
Identify and Characterize Application (GEODETICA).

THEORY
Definition of Underlying Dynamics

First consider a space object, with position and velocity r and v, seen by an optical observer at
position and velocity o and o along observation vector, p. This is shown in Figure 1.

An optical measurement taken by an observer is a right ascension and declination and their rates.
These have a one-to-one and onto transform to the observation unit vector and its rate of change, p
and p. These are known states that can be represented as x; = [a 6 & 0]7. Then, the unknown



Figure 1: Setup of general observer problem.

states can be written as x,, = [p p]”. The full state can then be written as

x = [x] xI]" )]

It is easy to see that a one-to-one and onto mapping, m, exists between x and xpcy(t) =
[rT vT]T.

x = m(xgcr(t); K) 2)

where k is a parameter vector containing o and 0. k is also time dependent but the explicit
dependence will not be shown for convenience. Also note that Xxgcy is assumed to be position and
velocity but could also be written as orbital elements or any other full characterization of an orbit.
The transform between these two is in essence a frame change between geocentric Cartesian frame
and the observer-centric spherical frame. This mapping requires knowledge of 0 and 0, assumed to
be extremely well known, which for ground based observers is a good assumption. This paper will
refer to x as the measurement frame and xg - as the Earth-centered inertial (ECI) frame.

This paper will also use the flow function to map xgc;(t) through time.

xgo1(t) = o(t, to, xecr(to)) 3)

Finally, define the following measurement function

y(t) = hgor(Xgcr; k. t) “)

This also allows the definition of H(t), the Jacobian of the measurement function. Next, admis-
sible regions will be explored.



Review of Admissible Regions for an Optical Observer

A typical optical measurement of a space object contains good knowledge of angle and angle
rates known as observable states, x; € R*. An orbit requires six disparate data types to be fully
constrained. Historically, the final two data types are angle accelerations or range and range rate
(from radar data). This AR formulation uses range and range rate as the final two states, known as
undetermined states x,, € R?. It is assumed that no information can be reliably used to determine
these states from measurements. The following notation was developed by Worthy et al.” Using
equations (2) and (4) and the fact that the measurement cannot be dependent on x,,, the following
measurement function can be written.

y(t) = h(xg; k, t) &)

Furthermore, this implies a one to one and onto relationship between y(¢) and x4

xa=h"'(y;k 1) 6)

An AR is then created by enforcing a series of constraints of the form

9i(Xa, Xu; K, 1)

<0 (7)
gl(h_l(ya k’ t)v Xu; k, t) <0

®)

It should be noted that these constraints can be thought of as hypotheses. The AR is then the
space where all hypotheses are true. Next, we define an admissible region, 4&; € R?, predicated on

gi

AR = {xu|g:(h7(y; K, 1), X3 b, 1) < 0} 9)

In practice, an admissible region predicated on n constraints is used.

B2 (10)
i=1

Next, the two most common constraints are defined. For optical observer AR, the primary con-
straint typically considered is that of Earth-orbiting SO, defined as g¢. There exists a derivation to
show the following equations represent energy as a function of [p, p] and known parameters. The
following results were originally derived for Earth objects by Tommei et al.'® £ is the orbital energy,
which must be negative for an Earth-orbiting SO.
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Figure 2: Sample admissible region based on energy and perigee constraints

26 = ge(h ! (y:k, 1), xu:k, 1) <0 (11)
2
26 = 2 +wip+T(p) — —H_ <0 (12)
S(p)
T(p) = wap® + w3 pwy (13)
S(p) = p* + wsp + wo (14)

where the constants wg_5 are functions of the parameter vector, k, defined as

wo = ||o]]? (15)
wy =20 p (16)
wy = &% cos® 5 + 6 (17
w3 = 2(46 - Po + 00 - Pg) (18)
wy = ||6])? (19)
ws = 20 - p (20)

where o and o are the position and velocity of the observer, p is the unit vector from the angles,
and p,, and p; are given by

p = [cosacosd sinacosd sind]? (21)
pa = [—sinacosd cosacosd 0] (22)
ps = [—cosasind —sinasind cosd]’ (23)



A second commonly used constraint is g,, a constraint on the radius of perigee. There exists a
analytic derivation for the following.!” It should be noted that D, E, F, and G are vector quantities.

. . . 27 min
9r(p, P, Xa:K) = (12, — ID|*)p — P(p)p— Ulp) + 125, T(p) — S(pl; <0 (24)

P(p) =2D-Ep? +2D -Fp+2D -G — 2, w; (25)

min

U(p) = |E|*p* + 2E - Fp’ + (2E - G + |F|*)p* + 2F - Gp + |G|* = 2rminpe  (26)

where the D, E, F, and G are defined as

D=qxp 27)
E = p x (4P, + 6p5) (28)
F=qx (ap, +6ps) +pxq (29)
G=qxq 30)

More ways exist to further constrain an admissible region. Beyond perigee and energy, any
further restriction typically requires an assumption about the object. For example, if the object
being observed is known to be near a GEO, constraints could be placed on semi major axis or
eccentricity. This can enable prior orbital knowledge to be used to enhance convergence.

Particle Filter Process

The following discussion assumes that some parallel algorithm is running to make associations
and obtain measurements. While the particle filtering methodology can be used for data associa-
tion, it fails to have any utility over a more typical method and has computational restrictions. An
initial measurement is used to create an AR. Note that this requires angles and angle rates, which
can be obtained from a single measurement with sufficient exposure. However, more measurements
can lead to more accurate initial measurements and therefore is recommended. The AR is sampled
through some methodology which could include but is not limited to random sampling, some pre-
determined grid, Delauney triangulation, or Gaussian mixture models. In general, an even spacing
of points within the AR is desirable.%>”7 An evenly spaced distribution in the AR can be mapped into
another space, such as postion and velocity, and used as a prior distribution for a particle filter. The
process is shown in Figure 3, along with what uses the output of the PF. The output can be used to
enable a matched filter or sensor tasking.

For each iteration of the particle filter, the following occurs: A new measurement at a future time
is obtained. Each particle is then run through one iteration of an unscented Kalman filter'* using
this new measurement to update. The updated VP are then compared to the measurement via a
multivariate Gaussian distribution. A weight, wy, is then updated as the product of the previous
weight and the new probability. This allows time history to be incorporated into the weights.
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Figure 3: Particle filter process with relevant outputs

; 1 1. i1,
p(Zi|Xp_1) = W exp <_§(X}c —z;)P) I(Xk — Zk)T> 31)
P, = Ry + H(tx)P (1) H(t) (32)
w, = w1 p(2k/x},_) (33)

where the measurement has [ dimensions, Xi; is the i*" VP at time step k, mapped into the mea-
surement space, Zj, is the new measurement at timestp k, Ry, is the measurement noise covariance at
time step k, P*(t;,) is the covariance of a the i*" VP, and w,i, is the weight assigned to the i*" particle
at time step k. The weights are then renormalized such that the total distribution sums to 1.

VP deleting and resampling occur next. A threshold is set to determine which particles to delete.
When w}; < Wmin 1s satisfied, a particle is deleted. The threshold is highly dependent on the
desired distribution size; larger distributions require lower thresholds. Resampling occurs when the
number of particles falls below a certain threshold at which point it is considered too few particles
to accurately represent the distribution. Each particle is resampled based on the following

. w?

Ni =2 (34)
where NV, ,@ is the number of new VP to be sampled from the i*" parent VP, wi is the current weight
for the i*" VP, and C' is some given threshold based on the size of the desired distribution. N°? is
rounded down, and N new VP are sampled from the Gaussian distribution of the i*" VP. Note that
this assures that no current VP is deleted but instead only new VP are created. Finally, the weights,
w}C new Of the newly sampled VP are renormalized based on the parent VP weight, w}%, by making

each VP weight the following

i w,
W new = Ni+1 (35)
k

This is also done for the parent particle, ensuring no total rise in probability has occurred. The
two threshold parameters, wy,;, and C warrant further discussion. Both parameters are chosen



primarily to maintain a certain distribution size. The number of VP is not fixed, but instead varies
over time as VP are deleted and resampled.

Orbital Mechanics Enabled Matched Filter
Matched Filter Background

Matched filtering originates in image processing and signal processing as an optimal method for
signal detection. The original formulation dates back to the 1960s as a way to optimally detect a
signal in a high noise environment.'® It was then adapted to general image processing and moving
target detection.*

First, define a measurement as Y(¢) € ) which could be a scalar, vector or matrix. Y(¢) can
be broken into a meaningful signal S(¢) € ) and a Gaussian white noise signal as W(t) € ).
Additionally, assume that template So(¢) € 7 is known and its signal shape matches S(¢). A
matched filter can then be defined as a mapping fayp(t) : Y x T — Y

Y(t) = S(t) + W(t) (36)
Y'(t) = fur(Y(t),So(t)) (37)
Note that 7 < Y such that So(¢) is smaller than Y(¢). So(¢) is matched over every spot in Y(t)

and a correlation result is formed. Y’(¢) is then the result of correlating So(¢) with every location in
Y(t). The SNR of Y(¢) and Y'(¢) at a certain coordinate z are defined as:

E[Y(z, )]
SN = B (@ 1) - ENY (2 0)])7] G8)
SNRys . — B[Y'(z,t)]" (39)

E[(Y'(z,t) — E[Y'(z, )])*]

It has been shown that the correlation based filter which is predicated on an accurate template
at the correct coordinate, will produce an optimal SNR gain Ksyg = SN Ry~ . /SN Ry, .19 This
problem is solved and built into MATLAB, making implementation of an MF simple. A good
discussion of this with respect to optical systems is presented by Dragovic.? The utility of the MF
is enabling low SNR measurements in Y(s) to be used if the signal shape is known.

When applied to the general tracking problem, MF typically takes the form of a velocity filter
(VF).2? The VF uses the assumption that an object, moving through an image plane, has constant
velocity between measurements. This allows previous measurements to act as templates for future
images. Over short periods of time this assumption is typically good and VF work well. Another
method relies on a bank of matched filters varying over a range of velocities, attempting to improve
robustness at the expense of computation. The assumption of constant velocity is dependent on the
type of orbit being examined and with sufficient time will become prohibitive. The limitations of
the VF is the inability to operate outside of high frequency measurements from the same observer.

Matched Filter Primed by Previous Orbital Knowledge

The first contribution of this paper is proposing a MF for orbital tracking applications which
does not require a constant velocity assumption. Assume there exists a state probability density



function (PDF) of a SO, f(xgcz(t)), in the ECI frame. This distribution can then be mapped to the
measurement frame of the i*" observer

fxi(t)) = f(mi(xper(t))) (40)

This distibution can also be mapped forward in time using the known flow function.

f(xi(t)) = f(mi(@(t, to, Xpc1(to)))) (A1)

By varying t, a single point in f(xgcz(t)) can be mapped over the integration time of an ob-
server. The mean or a VP sampled from the distribution could be used as a representative orbit. A
representative orbit can then be mapped through an integration time, to form an arc through space.
The collinearity equations or another sensor model can be used to map a point or arc in space into
an optical sensor image frame.?! This process allows the simulation of a measuremnt image, which
can be used as So(?).

This MF has no assumptions about previous measurements. Unlike a velocity filter, the proposed
MF can freely switch between observers or operate over large times between observations. There
exists some limitations. The proposed MF is predicated on good orbital knowledge of the SO, that
is, f(xgcr) is sufficiently small. If f(xgcr) is an excellent representation of a SO, many sensors
are able to rate track objects of interest. Passive sensors do not require excellent orbital knowledge,
but are seldom used. This methodology would be useful for passive sensors and could enhance the
utility of passive sensing. More important, object discovery also motivates use of a MF, in which
dim objects are discovered but cannot be yet tracked.

Matched Filter Primed by Single Observation

Next, the previous result will be applied to the case of a single measurement as the only prior
knowledge. It is useful to define a second measurement space incorporating integration time, ;.
By calculating, m;(xgc7(to)) and m;((to + tint, to, Xec1(to))), the angular rate heading, ¢, and
magnitude, v,, can be determined. This paper will define v, = ||[c, 8] ||, ¢a = atan(2). However,
¢q and v, could be defined in terms of the observer orientation. Defining x,, 4 = [Va, qba]T, the
following projection will be defined for observer ¢

XU7¢§i = pz (t()v tinta XEC’[(t(])7 k) (42)

This projection can be thought of as sensor model for an observer, allowing the projection of a
the beginning and end of a streak into the sensor frame. Projecting into angle space, and defining
rates in terms of right ascension and declination can also be used. This new space is useful because
X,,¢ fully defines the shape of a measurement, which is all that is needed to define S,,. It should be
noted that using X, ¢.; assumes no angular acceleration over the course of ¢;,;. This is justified if
tint 18 sufficiently small.

An admissible region, 42, can be created for the SO from a measurement from observer i. AR
can be used to create a uniform PDF over all possible x,,(t), which will be called f;(x(¢)). Next
consider the following mapping

10



fotij(Xup(t1)) = (D (1, tine, D(t1, to, m; " (x(t0))))) (43)

£y 4.5 (Xv.¢(t1)) is the AR PDF mapped forward in time and to a second observer. At this point,
there exist multiple methods for creating a useful MF template. An point-wise discrete approxima-
tion can be used to represent A with n VP. These VP can be mapped through (43). n templates
can be created and tested on a new measurement. Each template can be correlated with the new
measurement in the form of a bank of MF. If the point-wise discretization is sufficiently dense, then
at least one of the templates created will have optimal SNR gain in the form of an ideal MF. Many
VP should not exhibit high SNR gain with the new measurement. This is analogous to a PF weight
update, and could have utility, but will not be further analyzed here. High correlation can be used
to obtain a new measurement, which is the goal of the MF. It should be noted that this assumes
measurement noise in the initial observation is accounted for, but there has been recent work in this

area.9

A single MF requires generation of a template, and a correlation over the entire measurement. A
bank of n MF may be prohibitively costly for online measurements. 42 is a connected set which
is mapped through multiple continuous transformations. If a subset, S, < AR, which is connected
and sufficiently small is mapped to f, 4, it will remain connected and small. This implies that any
VP within an intelligently chosen Sy will produce effectively equivalent templates. By creating s
subsets with the following restriction

AR =Sk (44)
k=1

AR can be partitioned. The partitioning is designed by instead partitioning f,, 4.; (X, 4(t1)). By
grouping regions in f, 4.;(X, 4(t1)) into partitions of similar x,, 4, subsets S, 4.1 can be created
to contain all similar templates. Each subset, S, 4.z, can be mapped through the inverse of (43),
allowing Sy, to be defined. How subsets of f,, 4.; can be chosen is dependent on what makes template
similar enough. One method which will be used to simulate results in this paper is a partition grid
by choosing limits in difference of both v, and ¢,. This will reduce the number of templates from
ntos.

SIMULATION & RESULTS
Particle Filter

To demonstrate the effectiveness of the PF, a simulation was run of a GEO object in a circular
orbit. The observer is a ground-based optical observer. Observations are taken every 2 minutes by
the same observer. The true orbit has a semi major axis of 42,164 km and an effective eccentricity
of zero.

In Figure 4, the resulting PDF is shown at 0, 30, and 60 minutes of observation. The orientation of
the orbit must also be determined but is difficult to visualize. For this reason, the PDF is plotted only
in semi major axis and eccentricity which define the shape of the orbit. This allows the convergence
to be visualized easily. Att = 0, the result is equivalent to the initial AR, that is, it is the full range of
orbits for that particular initial observation. At¢ = 30, 60 min, convergence continues to improve.

11
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Figure 4: Results from particle filter

The initial samples drawn from the AR are shown in Figure 4 as well. A restriction was placed on
eccentricity during the initial sampling. The smaller distribution allows better visualization early
on, but the final results would be the same with no restriction.

Matched Filter
Matched Filter Based on Orbital Mechanics

In Figure 5, the results of a simulated object in a simulated observer’s image plane is shown. The
first frame has no noise, showing what the measured signal over a certain exposure, S(, ), looks like.
The second frame is the measurement as seen by an observer, Y (), with noise. This image has a
SNR of approximately SN Ry, = 0.5. The third frame has the correlation result, Y’(¢), ranging
from white (perfect correlation) to black (perfect anti-correlation). The template, S, (%), is also
shown. The correlation results SNR, SN Ry~ , is difficult to calculate as it is requires separating
the signal and the noise, S(¢) and W(¢) or a Monte Carlo. The gain is visible in Figure 5. There is
a clear visible peak in SN Ry , that is not present in SN Ry .. This verifies that the proposed MF
can be used as proposed, and also illustrates the type of results provided by the MF.

12



(a) Simulated streak without noise (S(t)) (b) Simulated measurement with noise (Y (t))
C

(c) Correlation result (Y’(t))

Figure 5: Results from matched filter

Matched Filter Bank

A simulation is shown in Figure 6 to validate the proposed matched filter bank. An unknown SO
has a single observation taken on it by an optical observer in Colorado at ¢ = 0. An AR is created
based on the observation, propagated forward in time by 60 seconds, and projected into the view of
a second optical observer at Hawaii. Each particle is used to create a streak, all of which are used to
create a histogram in terms of streak length and orientation. These mappings are equivalent to (43).
These streaks are partitioned into discrete subsets at intervals of one degree in heading and pixel
size in streak length. The total PDF and the partitions can be seen in Figure 6. Approximately 100
partitions were needed to generate templates, S, 1 — S, 100. Each template is correlated against the
new measurement, Y (¢ = 60). The results are plotted in terms of peak correlation, shown in Figure
6. The correlation SNR, SN Ry~ ,, and SNR gain are direct functions of the peak correlation. These
correlations allow the streak to be identified within the image.

13
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Figure 6: PDF of streaks predicted by admissible region in terms of v, ¢

CONCLUSION

Admissible regions and particle filtering have been discussed. The proposed matched filter has
been developed as an effective method for enabling passive sensors to take low SNR measurements.
This matched filter is an improvement over velocity filters by the incorporation of orbital mechan-
ics. This has also been built into the framework of detection of new SO and sensor hand off. A
discretization method has been proposed for partitioning a discrete point-wise prior distribution for
efficient computation time.
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