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CONCURRENT OPTIMIZATION OF GRAVITY-ASSIST
LOW-THRUST TRAJECTORY WITH POWER AND PROPULSION
SUBSYSTEM SIZING

Yuri Shimane; Dyllon Preston] and Koki Ho*

Low-thrust technology is a key driver in current and upcoming space exploration
missions due to their high specific impulse. A challenge when designing low-
thrust trajectories is due to the inherent coupling of the power and propulsion
subsystems with the trajectory, as the spacecraft mass greatly affect the obtainable
acceleration by a given propulsion subsystem. To this end, this work proposes an
approach for coupling the sizing process of the power and propulsion subsystems
to a direct-transcription-based trajectory optimization problem, which enables a
concurrent trade-space exploration of both the trajectory and the spacecraft design.

INTRODUCTION

With recent advances in electric propulsion (EP) technology, exploration of our solar system
neighborhood has become far more accessible. EP’s characteristically high specific impulse (Igp)
enables larger payload fraction to be delivered, directly translating to more scientific outcome. In
contrast to chemical thrusters, EP systems achieve their high Iy, by accelerating their propellant
to high exhaust velocities, which leads to large power consumption. For spacecraft applications,
such large power requirement becomes a driving constraint on the power subsystem as well as the
spacecraft as a whole. To meet such power-hungry requirements, a traditional approach has been
to use radioisotope thermoelectric generator (RTG) such as NASA’s MMRTG! for missions to the
outer-solar system. However, recent developments in solar electric systems have opened ways for
the use of solar-based power systems in such missions as well. Such solar electric propulsion (SEP)
based missions include Deep Space 1, Dawn, Hayabusa 1 and 2,>3 BepiColombo,*> Psyche,® and
DESTINY+.” Table 1 shows a summary of past, present, and future SEP missions exploring the
solar system.

On top of the aforementioned design constraint placed by the power requirements, with the radial
and time dependence of the available power from a given solar electric system, the coupling of
a trajectory for a SEP spacecraft with its power and propulsion subsystems cannot be neglected.
Adding further complexity to the trajectory design is the multiple operational settings at which an
EP system may be operated; these settings typically lead to thrust and I, being nonlinear functions
of power consumption. In such scenario, the optimal trajectory of an EP spacecraft may involve
operating the thruster at differing settings along its transfer.
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Table 1: Key figures from interplanetary missions employing solar electric propulsion

Mission Destination ls)f/lsz?ilgn Wet mass, kg l:(xvgrlj;v Thrusters
Deep Space 1 9969 Braille 2.341 486 2.5 1x NSTAR
Dawn 1 Ceres 2.768 1217 10 3x NSTAR
Hayabusa 25143 Ttokawa 1.324 510 2.6 4x ul0
Hayabusa 2 162173 Ryugu 1.190 610 2.6 4x plo
BepiColombo Mercury 0.387 4100 14 4x QinetiQ T6
Psyche 16 Psyche 2921 2608 20 4x SPT-140
DESTINY+ 3200 Phaethon 1.271 480 4.7 4x plo

As exploration of planets such as Venus and Mars as well as asteroids gain increasing attention,

a method for concurrently optimizing the trajectory along with the relevant subsystems of a SEP
spacecraft is pertinent. In the context of space mission planning and vehicle design, Isaji et al’
considered an optimization problem with concurrent subsystem sizing, however only a fixed option
for the trajectories have been considered. Recent literature on simultaneous design of spacecraft
trajectory and system includes Nicholas et al,'” which decoupled the spacecraft sizing and trajectory
design problems, and optimized these individually while ensuring that the mission as a whole (i.e.
combination of spacecraft and its trajectory) to be feasible. Petukhov and Sang Wook!! studied
the joint optimization of key parameters of the propulsion and power subsystems for optimizing
nuclear electric propulsion trajectories via optimal control theory. Arya et al'? later studied the
trajectory design as an optimal control problem via a Composite Smoothing Control framework,
with the power at beginning of life (BOL) as part of the state variables. In the context of Earth-
based satellites, Ceccherini et al'® studied the combined optimization of a GEO spacecraft and its
transfer trajectory from injection by the launcher. Trajectory design with varying thruster mode has
also been studied; Taheri'* and Arya et al'> considered discrete thruster modes simultaneously.

In this work, the low-thrust trajectory design and the subsystem sizing are considered simulta-
neously as a single optimization problem that can be solved by gradient-based optimization algo-
rithms. Leveraging on the success of direct methods in conducting efficient trade-space search for
spacecraft trajectories, this work extends this capability by incorporating key parameters of SEP
spacecraft into the direct method-based trajectory optimization problem. Specifically, the power
and propulsion subsystems are parameterized through a combination of previously adopted models
and a novel interpolation scheme for sizing thrusters. The proposed method provides an effective
tool for conducting architecture and trajectory trade-studies concurrently.

The paper is organized as follows: initially, the Sims-Flanagan Transcription, a direct method
based trajectory optimization scheme, which forms the basis of the problem in this work, is in-
troduced. Then, the model used to decompose the spacecraft is introduced. This also involves a
discussion on the way in which the propulsion unit is scaled, based on data from existing EP sys-
tems. This is followed by a description on the integration of the spacecraft model into the trajectory
design problem, resulting in the extend problem formulation. The introduced approach is employed
for a case-study of a cargo mission to Mars.



OVERVIEW OF DIRECT LOW-THRUST TRAJECTORY OPTIMIZATION

The traditional Sims-Flanagan Transcription (SFT) problem'®-!® decomposes a gravity-assist tra-
jectory into a sequence of IV legs, each beginning and ending at a node. The node typically repre-
sents a departure, fly-by, or arrival at a celestial body, while it is not limited to these and may just
be a user-defined state osculating in time. Within each leg, the spacecraft state y = [r, v, m|T is
propagated forward from the earlier node and backward from the latter node. The mismatch of the
spacecraft state at the end of the forward and backward propagation is incorporated as an equality

constraint, denoted as h,p, given by

A | % s
h’mp = Yvackward — Yforward» ¢ = 17 s ,N (1)

The propagation is typically done by discretization of the forward and backward portion of the leg
to segments, where each segment approximates the net effect of continuous, low-thrust acceleration
via a single impulse at the center of the segment. The total number of segments of the i leg is
denoted as n’. For detailed illustration of this implementation, see Shimane and Ho.'”

The objective of a trajectory optimization problem typically involves the mass, time of flight, or
some combination of the two. In this work, since the purpose is to explore a wide range of spacecraft
architecture for achieving payload delivery to a given destination, a minimization of an aggregated
sum of the initial mass at LEO, denoted as IMLEO (“Initial Mass at LEO”), and the time of flight,
is considered; thus, the objective function f is given by

f(x) = w IMLEO + wsTOF pax )

where « is the decision vector, and w; are the weights on each objective term. In addition, an
inequality constraint on the total time of flight is imposed to restrict the design space when the
optimizer attempts to prioritize the minimization of the IMLEO

N
gror = Y At; = TOF oy <0 3)
i=0
In the case of planetary gravity assists, an additional constraint must be enforced to ensure the

spacecraft does not intersect with a safety sphere around the planet, defined by a safety radius. This
constraint takes the form

Mplanet . 5tum—angle

Ggravity-assist — (rplanet + hsafe) 2 |:1/ s ( -1/ <0 4
Ve, 2
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The resulting optimization problem is given by
min eqn. (2)
x

st. App(x) =0

gror(z) <0
(x) <0

(6)
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In traditional SFT problems, the value of IMLEO is simply taken as the initial mass m° of the
spacecraft. The decision vector x for a traditional SFT problem takes the form

_ 1 N-1 _ 1 NiT
T = [Cdeparturey Coravity-assist) * * *» Cgravity-assist’ Carrival, T 5 -+ -, T ] @)

where c is a collection of optimization variables of nodes, while 7 is a collection of thrust controls
of each leg. The node variables c are given by

[tO) m07 véoa ala 61] if type 18 departure
Ciype = [Ati,mi, Vit AR LA aiﬂ, 5i+1] , 1 €[1,N —1] iftypeis gravity-assist (8)
(AN ol QN N if type is arrival

where t is the departure epoch, At is the duration of a leg, and « and ¢ are the right-ascension and
declination angles with respect to a celestial body, and m is the spacecraft mass at the encounter with
the celestial body. The subscripts () and (-)+ on « and ¢ indicate incoming and outgoing values
when the spacecraft undergoes a gravity-assist. The superscripts denote the i*? value of the specific
type of variable. Note that the final node c,iva1 does not have an associated mass variable, since the
final mass corresponds to the sum of the spacecraft bus and payload mass, which is considered to
be fixed. The thrust control variables 7 are given by

T =71, T ity -3 Oims Bins - - - Binl 9)
where 7 € [0, 1] is the duty cycle of the thruster, § € [—m, x| is the in-plane angle, and § €
[—7/2, /2] is the out-of-plane angle of the thrust vector in the local-vertical-local-horizontal frame
(LVLH). The resulting impulsive AV vector on the ;' segment is given by

T . .
Av; j = TiijAtsegTEL(’f‘, v) [cos(6; ;) cos(Bi ;), sin(6; ;) cos(Bi ;), Sln(ﬂi,j)]T (10)

where T is the thrust, At is the duration of the segment, and the 3 by 3 matrix T'gr, (7, v) trans-
forms the vector from the LVLH frame into the inertial frame. Together with the velocity, the mass
is also modified impulsively via

Amm = —TZ'J'mAtseg (11)

where Am; ; is the change in mass, and 772 is the mass-flow rate.

SPACECRAFT MODELING

In order to capture the design parameters of the spacecraft that are directly coupled with the tra-
jectory, the subsystem-decomposition by Petukhov et al'! is adopted. The model consists of decom-
posing the spacecraft mass into the useful mass m,,, the mass of the power supply and propulsion
unit (PSPU) mpgpy, and the mass of the power storage and feeding system (PSFS) mpgrs. Hence,
the IMLEO is expressed as

IMLEO = m,, + mpspu + mpsrs 12)

The useful mass consists of the payload as well as the primary subsystems of the spacecraft bus that
does not concern the electric propulsion system (EPS). The EPS, on the other hand, consists of the
PSPU and the PSFS.



The PSPU consists of the power-supply system, PPU for the EPS, and the thrusters. The PSPU
mass can be expressed as

mpspu = 71 Peor + Y25 Pgps (13)

where Pgor, is the power produced by the SA at the beginning of life (BOL), and Fgpg is the
maximum power handled by a reference propulsion system, and s is a scalar to model variable
propulsion systems, which will be further explained in the Propulsion Subsystem Modeling section.
The coefficient ~y; is the specific mass of the solar arrays (SA) in kg/kW, and 2 is the specific
mass of the power regular unit, the part of the solar array drives of the PSS used for the EPS as well
as the EPS itself in kg/kW.

The PSFS mass is given by
MPSFS = 777‘£J)ropellant(1 + at) (14)

where ay is the ratio of tank to initial propellant mass.
Substituting these expressions back into (12),

IMLEO = my, + 71 PsoL + ’YZSPIEIII’aSX + mgropellantat + mgropellant (15)

Note that the PSES term has been expanded out to isolate the last propellant mass; now, the mass of
the spacecraft at time ¢ along the mission can be expressed as

m(t) = my + 1 PsoL + 725 Pgps + mgropellamat + mpropellant(t) (16)

where mpmpeuam(t) is the remaining propellant mass at time ¢.

Power Subsystem Modeling

Due to the radial dependence of the available solar power and the inherent degradation of power
cells, the power delivered by the solar arrays is a function of both the radius r and elapsed time ¢

. (P di + dar~' +d3r=2] (100 — D"
Pgenerated(T(t)at) = min < DOL |: ! 2 > ) Psrtr)llzg;-array a7

r2 14+ dar + dsr? 100

where D is the degradation rate, in units % /year, and P;gﬁl’;_may is an upper-bound on the power
generated due to component’s limitations. While the propulsion system is the most power-hungry
component in a SEP spacecraft, a portion of the power must also be diverted to other purposes on

the spacecraft bus. The power available to the propulsion system is thus given by

3 max max 1 max
Pavailalb]e _ mln(PEps ) Pppu ) if Pgenerated = PrL + Pppu (18)
propulsion . . .
mln(P élffg‘, (P generated — P L)) if P, generated <P L+ P ;Bﬁx

where Py, is the power required to operate the spacecraft bus and payload.

Propulsion Subsystem Modeling

The propulsion subsystem is modeled by scaling a reference thruster performance profile, and a
propellant tank that is assumed to scale in mass with the required amount of propellant via a scaling
factor a;.



Thruster Modeling The thruster performance can typically be modeled as polynomials of the
power used by the thruster.? In particular, third-order polynomials are used such that

T(Ppropulsion) =cro+ CT,IPpropulsion + CT,QPpQropu]sion + CT,3PSropulsion (19)

7;rL(]Dpropulsiorl) = Cin,0 + Cm,lppropulsion + Cm,2Pp2rOpulsion + Cm,3pli-opulsion (20)
In this work, the NEXT thruster currently in development by NASA Goddard Space Flight Cen-
ter’!:22 is modeled using third-order polynomials.

Thruster Scaling Given the performance profile of a thruster as a polynomial, the capability of
the propulsion system is scaled by the optimizer through a scalar variable s. A scaled polynomial
qs(+) is given by

0 if p < sPE8
p . i ;
gs(p) = { 54 (;) if sPEpg < p < sPgpd QD
sPEpd
sq| —— ) p>sBEp
s

where ¢(-) is the polynomial representing the thrust or mass flow-rate, given by expressions (19) or
(20) respectively, such that
0 if p < 5P
- P . 4 |
T(Ppropulsion) —{sT (g) if nggg <p< SPIEZIIIJ‘ISX )
SPmax
sT <EPS> P> sPm
\ S
( . .
0 if p < sPmi2
> . (D . .
m(PprOpulsion) = Sm (g) if SPIE:%IISl <p< SPEn%)eg( 3)
SPmax
sm ((1:1’S> p > sPm&
\

Figures 1 and 2 show the variation of the thrust and mass-flow rate profile against power, for values
of s ranging between 1 and 10. In the case of s = 1, the profile corresponds to a single NEXT
thruster. The actual power used by the propulsion system, p, is allowed to vary at each segment
along a leg based on a power setting parameter 7); ;, such that

pij = ni,jpgvailable (24)

ropulsion

where p; ; is the power used on the i leg during the j*® segment.

EXTENDED PROBLEM FORMULATION

Taking into account the propulsion and power subsystem models, the decision vector to the opti-
mization problem outlined in (6) becomes

- [ -1 SN-1 S | =N p T 75
€ = | Cdepartures Cravity-assists * * *» Cgravity-assist? Carrival, T 5 -+, T, I'BOL, § (25)
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Figure 1: Variation of thrust against power for varying propulsion factor s
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where the modified node variables ¢ are given by

[to, mgropeuam, Yol s al,s 1} if type is departure
Cype = [Ati,mz;mpeuam,véjl,aifl,éifl,aifl,éiﬂ} , 1 € [1,N —1] if type is gravity-assist

[AN oI N gNH if type is arrival

(26)
The difference appears at the mass variable, where the remaining propellant mass rather than the
entire spacecraft mass is tuned by the optimizer. Note that since no propellant mass is left at arrival,
Carrival 18 identical to cypival. The modified thrust control variables 7 are given by
Tt = [’7’1'71, s Tims 91'71, - ,9,’77“ 51'7”, ceey Bi,n, Mily--- 777i,n] (27)
Now, the expressions for the impulsive Av’s and Am from expressions (10) and (11) are modified
to include implicit dependence on p; ;

T(pi,j)

A’UZ',]' = Tij AtsegTEL(’r’, ’U) [COS(GZ'J) COS(,Bi7j), Sin(9i7j) COS(,Bi7j), Sin(/Bi,j)]T (28)

Am;; = —7; j(pi ;) Alseg (29)

where T'(p; ;) is the thrust polynomial based on expression (22), and 712(p; ;) is the mass-flow rate
polynomial based on expression (23).

By considering the spacecraft mass breakdown according to equation (12), the spacecraft mass at
the encounter with the i*® body is given by

0 i—1 .
mi _ My + 71PBOL + WQSP}grll’aSX + mpropellantat + m}l)ropellam l<i<N (30)
Moy + 'YlPBOL + 723Pé?’asx + mgropellantat 1=N+1
In summary, the optimization problem is given by
min eqn. (2)
€T
st. hmp(z) =0 31

gror(Z) <0
ggravity-assist(i) S 0

OPTIMIZATION METHOD

Due to the highly constrained nature of the problem at hand, gradient-based methods are known
to be suitable for driving an initial guess that likely violates some if not all the constraints, to a
feasible, local optimal solution. As such, well-established routines such as SNOPT?? and IPOPT?*
are useful in this type of problems. One drawback to keep in mind when using gradient-based
solvers is the fact that these converge to local optimal solutions, within a design-space that contains
multiple, isolated clusters of these local optima. To overcome this challenge, Monotonic Basin
Hopping (MBH), a pseudo-algorithm initially introduced by Wales and Doye?’ that wraps local
optimal solvers and performs global search, has been found to be particularly effective by multiple
authors for interplanetary trajectory design problems, and is also employed in this work.?6-3%



Table 2: Earth-Mars Cargo Mission Parameters

Parameter Value

Earliest launch date, UTC 2030-01-01 00:00:00.00
Latest launch date, UTC 2033-03-01 00:00:00.00
Maximum Time of Flight, year 3
Useful mass, kg 5000
Base thruster NEXT
Bounds on s [1,10]
Max departure v, km /s 2.0
Max arrival v, km/s 0.0
git 10
V2 15
ag 0.1
Objective weights w1, wo 1,1

RESULTS

The proposed method for formulating the concurrent optimization problem is implemented in
Julia, leveraging a set of codes previously developed by the authors.!®-3? This is tested for an Earth-
Mars cargo mission scenario, where an aggregate objective function of the IMLEO and time of flight
is considered to explore the possible design space of the spacecraft together with the trajectories.
This problem is solved using MBH together with SNOPT.

Case Study: Earth-Mars Cargo Mission

The scenario consists of a cargo mission to deliver a 5000 kg useful mass to Mars at a rendez-
vous velocity of 0 km /s with a direct transfer from Earth. The mission parameters are summarized
in Table 2. Values for 1, 72 and a; are due to Arya et al."”

Figure 3 shows the Pareto front of the time of flight against the required IMLEO. Due to expres-
sion (15), the IMLEO scales linearly with Pgp&, which in turn scales linearly with the propulsion
factor s. This is clearly visible from the color scale, where propulsion factor increases as IMLEO
increases. Analyses with the same axes in Figure 3 appears commonly in mission analysis literature,
as a trade-off tool between IMLEO and TOF. However, the present plot also provides an additional
design dimension, where trajectories corresponding to each point on the plot do not necessarily
correspond to the same spacecraft architecture. Note also that due to the nature of the low-thrust
trajectory optimization containing many local minima, there are many non-dominant solutions that
have been detected. The trade-off of interest is at the lower-left corner of the Figure, where the
time of flight may be traded-off with IMLEO. Specifically, it is possible to observe an initial trend
of decreasing TOF with increasing IMLEO due to increasing propulsion factor. This region cor-
responds to solutions achieving faster transfers due to the increasing capability of the propulsion
system. Then, beyond an IMLEO of around 7400 kg, the TOF starts to increase again for increasing
IMLEO. Here, the design space corresponds to a region where as the propulsion factor increases,
the propulsion system becomes prohibitively heavy and the increase in achievable acceleration does
not balance out the additional inertia, thus leading to longer TOF.

With the formulation introduced, it is also possible to identify the optimal subsystem sizes neces-
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Figure 3: Pareto front of time of flight and IMLEO

Table 3: Summary of IMLEO-optimal and TOF-optimal solutions

Launch Arrival Time of Initial Final Propulsion
epoch, UTC  epoch, UTC flight,day mass, kg mass, kg Factor

Min-IMLEO  2030-11-21 2032-04-05

Solution

501.42 6707.93  5892.58 4.4806

solution 09:02:26.435 19:12:35.811
Min-TOF 2033-03-01 2033-12-27
solution 00:00:00.000 21:50:18.562 301.91 714635 6296.08  7.0466

sary to minimize classic trajectory design objectives, such as IMLEO and TOF. Figure 4 shows the
IMLEO against the propulsion factor, where the minimizing solution is found to have s ~ 4.5. Due
to the linear contribution of s on the IMLEO as given in equation (15), the relationship between
the IMLEO and s is generally linear, as it is visible from this Figure. However, the contribution
of the propellant to achieve an Earth-Mars transfer must also be taken into account, and this is not
necessarily a linear scaling; a larger propulsion system would require larger amount of propellant
to achieve its full thrust, but require less burn time to provide the spacecraft with a certain amount
of acceleration. As a result, the minimum IMLEO solution isn’t achieved with the minimum s so-
lution. It is also possible to observe generally similar TOF solutions (similar color scale) along the
diagonal direction of both increasing IMLEO and propulsion factor.

In contrast to Figure 4, from Figure 5, the solution that minimizes the time of flight is found with
s = 7.2. This is again a result of the trade-off between propulsion systems that provide more thrust
but has a heavier penalty on the IMLEO, corresponding to larger s, against propulsion systems that
provide less thrust but is lighter, corresponding to smaller s; s ~ 7.2 corresponds to the balance
that has been found to minimize TOF. Table 3 shows key variables of the minimum-IMLEO and
minimum-TOF solutions, respectively, and Figure 6 shows the corresponding trajectories.

10
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CONCLUSION

This work explored a novel optimization formulation that simultaneously considers the trajec-
tory of a low-thrust interplanetary spacecraft with SEP. The Sims-Flanagan transcription has been
extended to also include variables dictating the size and performance of the power and propulsion
subsystems, as well as the mode on the power at which the propulsion system is to be operated
at a given time along the transfer. Compared to trajectory-only problem formulations, the intro-
duced method can identify the scale of the SEP system necessary to meet mission objectives such
as payload mass and time of flight. Furthermore, it provides insight into the trade-off between the
trajectory and the spacecraft design itself along Pareto fronts having direct consequences to the
high-level mission design. This enables a concurrent trade-off of both the spacecraft trajectory and
the vehicle sizing. As the frontier of both human and robotic space exploration expands, increased
carrying capacity enabled by SEP will become an indispensable piece of logistics, and the proposed
analysis provides a quantitative approach for considering different mission designs.
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