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INTERPLANETARY LOW-THRUST TRAJECTORY DESIGN TO
LIBRATION POINT ORBITS VIA SIMS-FLANAGAN

TRANSCRIPTION

Yuri Shimane* and Koki Ho†

While low-thrust electric propulsion (EP) enables interplanetary missions to de-
liver larger payload fractions, the orbit insertion phase often necessitates a large,
instantaneous ∆V maneuver, rendering it difficult to be conducted by an EP sys-
tem alone. In contrast, missions to libration point orbits (LPO) may leverage bal-
listic capture strategies, resulting in no instantaneous ∆V maneuvers required.
This work presents a modification to the Sims-Flanagan Transcription for inter-
planetary low-thrust trajectory design arriving at LPOs by incorporating flexible
arrival into an insertion point on their stable manifolds.

INTRODUCTION

Electric propulsion (EP) technology-based low-thrust systems has brought a new dimension of
possibility for humanity’s activity in space. In the context of space exploration, the exceptionally
high specific impulse (Isp) allows for larger payload mass to be delivered. This may translate to
more scientific equipment to be brought on-board, or more cargo in the context of space logistics
and human spaceflight. Some notable interplanetary exploration missions that benefited from this
technology include Dawn, Hayabusa 1 & 2, and Psyche, which are asteroid exploration missions,
and BepiColombo, currently heading to Mercury. EP being favored towards applications in explo-
ration of smaller bodies in the solar system may be related to the EP’s incapability of providing
significant impulsive ∆v. Conventionally, a spacecraft approaches its destination with excess en-
ergy; then in order to then be captured by the body, an insertion maneuver of significant impulsive
∆v is required. An alternative approach is through a weak stability ballistic capture (WSBT), which
involves entering the body’s sphere of influence at negative specific energy with respect to the body.
BepiColombo will employ this strategy upon arrival at Mercury.1, 2 Similarly, insertion into libra-
tion point orbits (LPO), which are periodic orbits about libration points of three-body systems, may
also be done with much smaller insertion costs, as their manifold structures may be leveraged. This
is a particularly remarkable property for spacecraft with EP, as large impulsive ∆v requirement can
be alleviated.

With EP technology expected to mature further in the upcoming decade, interplanetary missions
to large bodies relying entirely on low-thrust propulsion alone will become increasingly sought
after as well. Unless the spacecraft must only perform a fly-by in a fashion similar to missions
such as Pioneer 10 & 11, Voyager 1 & 2 or New Horizons, a ballistic capture strategy much like
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BepiColombo’s would be necessary for a low-thrust-only spacecraft to remain at the vicinity of the
body.

Several proposals have also been made for exploration missions utilizing Sun-planet system
LPOs. The use of the Sun-Mars L1 and L2 halos for establishing a permanent communication
link between Earth and space systems in the Martian system has been proposed.3, 4 Tanaka et al
considered the Sun-Mars L1 halos as generating mechanisms for WSBC into the Martian system.5

Shirobokov et al proposed the use of a Sun-Venus L2 halo for placing a space-telescope, permitting
earlier detection of potentially hazardous near-earth asteroids (NEAs).6 Anticipating such applica-
tions, this work proposes an approach to design low-thrust interplanetary trajectories that culminate
in a ballistic capture upon arrival at its destination. Specifically, the Sims-Flanagan transcription
(SFT)7, 8 is modified to incorporate captures into a manifold that brings the spacecraft into the LPO.

SFT is a widely used method for designing interplanetary trajectories that may include gravity
assists. Low-thrust propulsion is typically approximated as a series of impulsive maneuvers, thus
discretizing the trajectory design problem. While it has been found to be a successful approach in
finding complex tours through the solar system, the launch, gravity-assists, and arrival at planetary
bodies are parameterized by a v∞ ≥ 0 vector relative to the body, which corresponds to parabolic
or hyperbolic motion in the vicinity of these bodies.

There has also been development in designing Earth-Mars transfers that incorporate WSBC for
high-thrust spacecraft, leveraging Lambert’s problem.9, 10 For BepiColombo’s approach to Mer-
cury, Jehn et al1 used ballistic back-propagation from the desired orbit around Mercury matching
mission requirements until the spacecraft is outside the sphere of influence of Mercury, which is
then matched to the incoming heliocentric transfer.

In the context of more generic WSBC, Toputto et al11 studied the planar problem to construct
interplanetary transfers with impulsive maneuvers for insertion into manifolds. A grid-based inter-
polation of manifold Poincaré sections has also been proposed for obtaining families of WSBC.12

The n-stable set of trajectories around a body has been used as a generating mechanism for low-
thrust WSBC.13

This work extends the SFT to directly construct low-thrust interplanetary transfers that culminate
in a ballistic capture. An approach replacing the arrival parameters from the v∞ vector to a set
of variables that model the insertion into a manifold structure is proposed. This insertion point
may be located at a pre-defined Poincaré section (PS) along the manifold, or the location of the
PS may also be given as a tuning parameter for the optimizer. The propagation of the spacecraft
trajectory is replaced by an ODE system with a third-body perturbation to ensure continuity at the
insertion point between the heliocentric portion and Sun-planet system portion of the trajectory.
The proposed method results in better preliminary estimate of propellant mass required for such an
end-to-end low-thrust missions, as both the interplanetary and ballistic capture segments may be
considered at the preliminary design level.

This paper is organized as follows. Initially, the two dynamical models used in this work, namely
the two-body problem with a third-body perturbation and the restricted three body problem, are in-
troduced. Notions of coordinate transformations, LPOs and invariant manifolds are also discussed.
This is followed by an introduction of the SFT, and a detailed description on the modifications made
to the traditional formulation to incorporate targeting LPOs. The proposed method is implemented
to a mission-design case to a Sun-Venus L2 halo orbit, and optimized solutions are discussed.
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BACKGROUND ON THE DYNAMICAL SYSTEM

In order to study interplanetary transfers with ballistic arrivals to LPOs, a heliocentric frame and
a Sun-planet circular restricted-three body problem (CR3BP) are considered simultaneously.

Coordinate Frames and Transformations

The heliocentric phase of the transfer is designed in the ecliptic reference frame centered at the
Sun, specifically the ECLIPJ2000 frame following JPL’s SPICE conventions. In contrast, the ap-
proach phase of the transfer is modeled in the CR3BP frame, which is a rotating frame with the
x-axis fixed to the Sun-planet line, and the z-axis parallel to the axis of rotation of the planet’s orbit.
In this frame, the planet’s motion around the Sun to be circular.

Given the planet’s Keplerian orbital elements argument of perihelion (AOP ), true anomaly (TA),
inclination (INC), and right-ascension of ascneding node (RAAN ), transforming a state-vector
defined in the CR3BP frame to the ECLIPJ2000 consists of a series of transformations. The first
transformation T 1 takes the CR3BP state and converts it into an inertial, intermediate state, and its
matrix is given by

T 1(t) =



cos υ1(t) − sin υ1(t) 0 0 0 0
sin υ1(t) cos υ1(t) 0 0 0 0

0 0 1 0 0 0
−ωCR3BP sin υ1(t) −ωCR3BP cos υ1(t) 0 cos υ1(t) − sin υ1(t) 0
ωCR3BP cos υ1(t) −ωCR3BP sin υ1(t) 0 sin υ1(t) − cos υ1(t) 0

0 0 0 0 0 1

 (1)

where ωCR3BP is the rotational rate of the Sun-planet system, and the rotation angle υ1(t) is given by
υ1(t) = AOP +TA(t), where the TA has a time-dependency. Then, a rotation T 2 about the x-axis
by −INC and a final rotation T 3 about the z-axis by −RAAN of the position and velocity vectors
independently are applied. The combined transformation from CR3BP to ECLIPJ2000, T EC(t), is
given by

T EC(t) = T 3T 2T 1(t) (2)

While it has not been considered in this work, it is possible to replace the CR3BP with the
elliptical restricted three body problem (ER3BP) to account for non-negligible eccentricities of the
planet. In this case, the dynamics becomes time-dependent to the position of the planet along its
orbit around the Sun, thus care is required when converting a state-vector between the ECLIPJ2000
frame and the ER3BP frame.

Equations of Motion

There are two sets of equations of motion considered in this work. Firstly, the heliocentric two-
body equations of motion with a thrust-term are given by

r̈ = −GM
r3
r +

F

m
(3)

where GM is the gravitational parameter of the Sun, r is the spacecraft position vector, F is the
thrust-vector, and m is the spacecraft mass. If a third-body perturbation due to the presence of a
planet is also to be considered, the equations of motion are modified to

r̈ = −GM
r3
r +GMp

(
rsp
r3sp
− rp
r3p

)
+
F

m
(4)
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where GMp is the gravitational parameter of the planet, rp is the third-body position vector, and
rsp is the spacecraft to third-body vector; all vectors are in the ECLIPJ2000 frame. In addition to
the position and velocity, the mass of the spacecraft is also propagated as an additional ODE, given
by

ṁ = − F

g0Isp
(5)

The CR3BP equations of motion are given by

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(6)

where U is the pseudo-potential given by

U =
x2 + y2

2
+

1− µ
r1

+
µ

r2
(7)

and µ is the mass-parameter of the Sun-planet system, given by

µ =
Mp

M +Mp
(8)

Libration Point Orbits and Manifolds

LPOs are periodic orbits in the CR3BP that revolve around libration points. Given a state along
the LPO x0, its invariant manifolds may be obtained by perturbing states on the LPO along the local
stable or unstable eigenvector direction. Starting with x0 and LPO period P , the state-transition
matrix STM , Φ is obtained from the initial value problem

Φ̇ = AΦ (9)

Φ(0) = I6,6 (10)

where the A matrix is given by

A(x, t) =

[
03,3 I3,3
Uxx 2Ω

]
, Ω =

 0 1 0
−1 0 0
0 0 0

 (11)

where Uxx is a 3-by-3 matrix consisting of second order partial derivatives of U . Then, the stable
and unstable eigenvectors of the problem, Ys and Yu, are obtained from solving the eigenvalue
problem for the monodromy matrix Φ(P ). Then, the initial condition of the stable and unstable
manifold branches are obtained by perturbing the state along the LPO in the eigenvector direction
with some magnitude ε.

xs
ptb(tLPO) = x0(tLPO)± εYs(tLPO) (12)

xu
ptb(tLPO) = x0(tLPO)± εYu(tLPO) (13)

where tLPO denotes the time along the LPO, and 0 ≤ tLPO ≤ P . The stable branches are obtained
by backward propagation of the initial state xs

ptb(tLPO), while the unstable branches are obtained
by forward propagation of the initial state xu

ptb(tLPO). Figure 1 shows an example of stable and
unstable manifolds for a Sun-Venus L2 halo orbit.
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Figure 1. Sun-Venus L2-halo orbit, stable, and unstable manifold

PROPOSED METHOD

The LPO-capture segment is incorporated into the interplanetary trajectory design problem by
modifying the transcription of the arrival parameters from a traditional SFT. The problem is solved
with a gradient-based solver wrapped by a global search pseudo-algorithm.

Sims-Flanagan Transcription

The conventional SFT considers an interplanetary trajectory in terms of N legs, connecting two
consecutive planetary bodies visited by the spacecraft. At each planetary visit, a control-node is
defined based on the ephemeris of the planet at a given epoch and an associated v∞ vector. In
case of a fly-by control-node, two v∞ vectors are defined for the in-coming and out-going legs,
respectively. Over each leg, the control-nodes at both ends are propagated forward and backward in
time for half of the flight-time of the leg, and the final states of each propagation are denoted as the
forward and backward patch-points. The optimizer must drive the residual at the patch-point to 0
by tuning the control-nodes along with the thrust controls.

For the propagation, each leg is is discretized into n equal-time segments, over which the thrust
control is kept constant. The original formulation involves further simplifying the propagation by
considering Keplerian arcs with an impulsive ∆V at the center of each segment to approximate
the low-thrust maneuver.7 While this has been implemented in multiple tools such as MALTO8

and GALLOP,14 propagation based integration of the two-body equations of motion has also been
proposed as a higher-fidelity approach.15

Problem Objective and Decision Vector The trajectory optimization problem may be formulated
to maximize the final mass

min
x
−mN+1 (14)
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for the decision vector x given by

x = [glaunch, g
1
fly-by, . . . , g

N−1
fly-by, garrival, ν

1, . . . , νN ] (15)

where g are parameters at the initial, intermediate, and final nodes along the transfer, and ν are the
discretized controls of the thruster for each leg between j = 1, . . . , N . For any mission, the launch
parameter glaunch is given by

glaunch = [t,m1, v1∞, α
1, δ1] (16)

representing, in order, the launch epoch, mass, v∞ magnitude, right-ascension, and declination at
launch. If the transfer has gravity assist(s) along its way, there will also be one or more fly-by
parameters gfly-by, given by

gifly-by = [∆ti,mi+1, vi+1
∞ , αi+1

− , δi+1
− , αi+1

+ , δi+1
+ ] , i ∈ [1, N − 1] (17)

where the superscript i represents the ith visited body by the spacecraft after launch. In this case, the
epoch from glaunch is replaced by the time-of-flight since the last visited node, given by ∆ti. There
are also pairs of right-ascension and declination, αi

± and δi±, corresponding to the in-coming and
out-going values. If powered fly-by’s are also to be considered, there should also be a pair of vi∞
values. Finally, the arrival parameters garrival are given by

garrival = [∆tN ,mN+1, vN+1
∞ , αN+1, δN+1] (18)

which consists of the same components as the launch parameters except for the epoch, which is now
replaced by the time-of-flight since the last visited node.

The thrust control vector νj represents the sequence of controls the thruster must undertake dur-
ing the jth leg. It is given by

νj = [τ j1 , θ
j
1, β

j
1 , . . . , τ

j
k , θ

j
k, β

j
k, . . . , τ

j
n, θ

j
n, β

j
n] , j ∈ [1, N ] , k ∈ [1, n] (19)

where τ is the up-to-unit thrust throttle, θ is the in-plane, and β is the out-of-plane control angle,
which are defined in the local-vertical local-horizontal (LVLH) frame.

Bounds on the Decision Vector Each component of the decision vector are bounded by lower
and upper bounds. The launch epoch t is bounded by the desirable launch window for a mission.
The masses m are bounded between 0 and 1, when non-dimensionalizing the problem using the
wet-mass. The time of flights between two consecutive bodies are bounded by considering the
orbital periods of the planets at the forward and backward control-nodes, as suggested by Englander
and Englander;16 considering the orbital periods Pfwd and Pbck and semi-major axes afwd and abck
of the forward and backward planets, lower-bound is given by

∆tlb =


Pfwd

2
, leg between same planet

0.1 min(Pfwd, Pbck) , otherwise
(20)

and the upper-bound is given by

∆tub =


5Pfwd , leg between same planet

2 max(Pfwd, Pbck) ,max(afwd, abck) < 2AU

max(Pfwd, Pbck) ,max(afwd, abck) ≥ 2AU

(21)
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The throttle τ is bounded by 0 and 1, while the angles θ and β are bounded between −π and π.
The v∞ magnitude is bounded between 0 and a multiple of the parabolic excess velocity in the
heliocentric frame at a distance max(afwd, abck) from the Sun. The two associated angles α and δ
are again bounded between −π and π.

Problem Constraints The constraints of this problem consists of the patch-point constraint(s),
cmp, time of flight constraint, ctof, and fly-by altitude constraint(s), cfly-by. The patch-point constraint
is an equality constraint which consists of the residuals from the forward and backward propagation
of the control-nodes; this is computed for each leg of the transfer, and is given by

cjmp = sbck − sfwd = 0 , j ∈ [1, N ] (22)

where sfwd and sbck are the forward and backward propagation of the position, velocity, and mass.
The time-of-flight constraint is an inequality constraint to ensure the spacecraft arrives to its in-
tended destination within a predefined duration, tofmax. It is given by the summation of the time of
flights for each segment

ctof = tof − tofmax =
N∑
j=1

∆tj − tofmax ≤ 0 (23)

The fly-by altitude constraint is also an inequality constraint which ensures a minimum safety al-
titude, hsafe , when a spacecraft conducts a gravity-assist. For each gravity-assist, this constraint is
defined as

cfly-by =
(
rplanet + hsafe

)
−
µplanet

v2∞

[
1/ sin

(
δturn-angle

2

)
− 1

]
≤ 0 (24)

where δturn-angle is the turn-angle around the planet

δturn-angle = arccos

(
v−∞ · v+∞
v−∞v

+
∞

)
= arccos

(
v−∞ · v+∞
v2∞

)
(25)

The denominator may be simplified if the fly-by is not powered, since the incoming and outgoing
v∞ vectors must have equal magnitudes. This is computed at each fly-by control-node, gifly-by.

Modifications to Arrival Parameters for Targeting Libration Point Orbits

To incorporate ballistic arrivals into LPOs, the arrival parameters (18) must be replaced by one
that approximates the spacecraft’s state in a three-body regime. To this end, the stable manifold
of the LPO is utilized; instead of starting the final backward segment of the trajectory from the
ephemeris of the planet, the control-node is set on a state-vector lying on a PS that is a cross-section
of the manifold. This ensures the spacecraft to insert into the LPO on a ballistic path along the
manifold. Since the control-node no longer represents an arrival to a planetary body, such arrival
control node does not have an associated v∞ value.

Two approaches to formulate such PS-based arrival parameters are considered; the first involves
pre-defining a specific PS in the CR3BP frame, while the second involves letting the optimizer
choose a PS based on lower and upper bounds on the time spent on the manifold between the PS
and the LPO. The former is denoted as the fixed-PS arrival, while the latter is denoted as the free-PS
arrival.
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or

Figure 2. Representation of arrival condition at the libration point orbit via stable manifold

Targeting Libration Point Orbit at Fixed Poincaré Section In the fixed-PS arrival case, the PS
may be parameterized by a single parameter φ, which may be understood as the location around
the LPO to which a manifold branch is connected. Then, the cross-section of the manifold may be
parameterized as a curve Γ, which takes in φ and returns the corresponding position and velocity on
the PS. These are shown in Figure 2. Then, the arrival parameters from expression (18) is replaced
by

gLPO-arrival, fixed-PS =
[
∆tN ,mN+1, φ

]
(26)

where the terms ∆tN and mN+1 remain the same as for the v∞ > 0 case from the nominal case.
Given these arrival parameters, the control-node is computed by the following algorithm:

Algorithm 1: Evaluation of control-node for fixed-PS arrival
Result: Control-node in ECLIPJ2000 frame
given Γ, arrival parameters gLPO-arrival, fixed-PS =

[
∆tN ,mN+1, φ

]
obtain control-node position and velocity in CR3BP frame via SCR3BP = Γ(Φ)
transform control-node from CR3BP to ECLIPJ2000 via SECLIPJ2000 = T EC(tN )SCR3BP

Targeting Libration Point Orbit at Free Poincaré Section In the free-PS arrival case, an addi-
tional parameter is required to first construct the PS that cuts through a manifold. In this case, the
arrival parameters are given by

gLPO-arrival, free-PS =
[
∆tN ,mN+1, φ, tofmanifold

]
(27)

where tofmanifold is the time spent in the capture segment of the manifold. Again, the parameters are
shown in Figure 2. It is also noted that the time of flight constraint must be modified to also include

ctof = tof + tofmanifold − tofmax =
N∑
j=1

∆tj − tofmax ≤ 0 (28)

Algorithm 2: Evaluation of control-node for free-PS arrival
Result: Control-node in ECLIPJ2000 frame
given arrival parameters gLPO-arrival, free-PS =

[
∆tN ,mN+1, φ, tofmanifold,

]
construct PS by propagating stable manifold by tofmanifold
construct curve Γ along the manifold cross-section at the PS
obtain control-node position and velocity in CR3BP frame via SCR3BP = Γ(Φ)
transform control-node from CR3BP to ECLIPJ2000 via SECLIPJ2000 = T EC(tN )SCR3BP
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Modification to Propagation of Segments

While typical SFT formulation propagates segments using Kepler’s equation, the approach taken
in this work integrates the two-body equations of motion.15 Then, instead of applying impulsive
burns at each segment, a continuous thrust force is applied in at a constant throttle and angle in the
LVLH frame. To account for ballistic arrival, the third-body perturbation due to the final encoun-
tered body of the mission is incorporated into the equations of motion for the final leg; thus, the
equation of motion is given by

r̈j =

{
equation (4) , j = N

equation (3) , otherwise
(29)

Algorithmic Summary

The modified version of the SFT is implemented in Julia. An algorithmic summary to evaluate
the constraints of the problem is as follows:

Algorithm 3: Evaluation of Trajectory in Modified Sims-Flanagan Transcription

Result: Evaluate constraints cjmp, ctof, cfly-by
evaluate ctof via equation (23)
for j = 1 to N do

compute segment-wise time-of-flight ∆tseg = ∆tj/n
Set forward control-node from ephemeris of planet Sfwd
if j 6= N then

set backward control-node from ephemeris of planet Sbck
set equations of motion to (3);

else
set backward control-node via Algorithm 1 or 2
set equations of motion to (4);

end
initialize forward state with control-node s0fwd ← Sfwd
initialize backward state with control-node s0bck ← Sbck
for k = 1 to n/2 do

set forward segment thrust controls νjfwd = [τ jk , θ
j
k, β

j
k]

set backward segment thrust controls νjbck = [τ jn/2−k+1, θ
j
n/2−k+1, β

j
n/2−k+1]

propagate forward s0fwd by ∆tseg to get s1fwd
propagate backward s0bck by −∆tseg to get s1bck
set s0fwd ← s1fwd
set s0bck ← s1bck

end
evaluate patch-point constraint cjmp = s1bck − s1fwd

end

Optimization Method

The evaluation of the objective of a SFT problem is trivial, since the final mass mN is part
of the decision vector. In contrast, the evaluation of the constraints are more involved, and as
such the difficulty of the problem arises in obtaining feasible solutions. Furthermore, the design
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Figure 3. Heliocentric portion of Earth-Venus transfer with fixed Poincaré section

space typically consists of multiple local optima. To tackle these challenges, a common approach
consists of wrapping a local gradient-based search method with a monotonic basin hopping pseudo-
algorithm (MBH) for global exploration of the trade-space. While gradient-based methods such as
SNOPT17 and IPOPT18 successfully drive the decision vector to a feasible solution. MBH has been
initially introduced by Wales and Doye19 for optimizing a problem with a funnel structure, and has
since been found to be particularly effective by multiple authors for interplanetary trajectory design
problems.16, 20–22

OPTIMIZATION RESULTS

As an example, a low-thrust transfer from Earth to Venus, inserting into a Venus-L2 halo orbit
of out-of-plane amplitude 150,000 km is considered. The launch epoch is chosen between January
1st, 2022, and December, 31st, 2024, and the upper bound on the time of flight is set to 2 years. The
thruster is set to have an Isp of 3500 seconds and constant maximum thrust of 0.4 Newtons, and a
wet mass of 4100 kg is considered. The SFT problem is constructed using n = 20 segments in each
leg. As a point of comparison, a regular SFT Earth-Venus transfer problem arriving to Venus with
v∞ = 0, corresponding to a parabolic approach, is also solved. For all cases, planetary ephemerides
are taken from JPL’s de440 bsp file.

For the fixed-PS case, the PS is defined based on backward-propagation of the branches by 100
days from the LPO. Transfers found for the fixed-PS arrival case are shown in Figures 3 and 4,
respectively for the heliocentric and ballistic capture portions of the transfer. All feasible solutions
found by local optimizer runs are shown in green, and the best solution among these is shown in
blue. For the free-PS case, bounds on the PS location is bounded such that tofmanifold is between
80 and 100 days from the LPO. Transfers for the free-PS case are shown in Figures 5 and 6, again
for the heliocentric and ballistic capture portions, respectively.
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Figure 4. Ballistic capture portion of Earth-Venus transfer with fixed Poincaré section

Figure 5. Heliocentric portion of Earth-Venus transfer with free Poincaré section
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Figure 6. Ballistic capture portion of Earth-Venus transfer with free Poincaré section

When given the flexibility, it has been observed that the optimizer favors insertion into the man-
ifold at the latest possible time, or equivalently spending the shortest allowable amount of time on
the manifold, at around 84 days. Figure 7 compares the obtained solutions for the fixed-PS and
free-PS cases against a traditional SFT formulation with a parabolic arrival. The converged deliv-
ered mass when solving the problem for a parabolic arrival is unanimously lower than the fixed-PS
and free-PS cases; for preliminary design of missions leveraging LPOs, it is therefore preferable
to utilize the proposed method, which leads to a better initial estimation of the required propellant
mass.

While not covered within the scope of this paper, the ballistic capture segment may also be defined
in the elliptic restricted three body problem (ER3BP) for cases inserting into LPOs around highly
elliptical Sun-planet systems such as Mercury. Similar arrival conditions may also be envisioned for
generic WSBC captures, such as low-thrust spirals around a body, by parameterizing the feasible
ballistic entries in a similar approach, allowing the optimizer to tune these parameters.

CONCLUSION

The proposed method in this work builds on the SFT, which has previously been found to be a
reliable approach for designing low-thrust interplanetary transfers, and extends it with the incorpo-
ration of ballistic captures to LPOs. This enables the design of transfers that may be fully executed
using EP, as impulsive maneuvers are not necessary. This is made possible via the modification
of the parameters that characterize the arrival at the destination, namely from a v∞ vector to a set
of variables that parameterize an insertion point into a manifold. To avoid having a discontinuities
in the dynamics, Kepler’s equation based propagation is replaced with an integration of two-body
ODE with a third-body perturbation. As both crewed and robotic deep-space exploration missions
are expected to increase in decades to come, end-to-end EP-compatible transfer designs will become
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Figure 7. Scatter of solutions found

a key enabling strategy in sending large payload mass. The approach presented in this work lays
out the necessary strategy for designing such interplanetary transfers that arrives to a LPO. Certain
mission objectives may be well-suited for a spacecraft located in a LPO, while it may also be used
as a staging orbit before inserting into orbits closer to the primary. Finally, the proposed approach
may be extended for designs of transfers culminating in more generic WSBC as well.
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