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Flight data from an entry, descent, and landing (ED) sequence can be used to
reconstruct the vehicle’s trajectory as well as copute the associated uncertainty. The
atmospheric profile encountered by the vehicle caalso be estimated from flight data. Past
Mars missions have contained instruments, such aceelerometers, gyroscopes, and radar
altimeters that do not provide direct measurement b the free-stream atmospheric
conditions. Thus, uncertainties in the atmosphericreconstruction and the aerodynamic
database knowledge cannot be separated. Howevergtipcoming Mars Science Laboratory
(MSL) will take measurements of the pressure on thaeroshell forebody during entry. These
measurements will provide means to determine the ée-stream conditions and to separate
the atmospheric and aerodynamic uncertainties. In His paper, analytical methods to
statistically determine trajectories and free-strean conditions from flight data and to
qguantify uncertainties in these estimates are dis@sed. A sample data set from the ballistic
range test of Orion Crew Exploration Vehicle (CEV)is then used to demonstrate results
from applying these procedures. This approach utiies the same techniques and toolset
planned for subsequent application for the reconstiction of MSL’s EDL sequence in 2012.

Nomenclature

sensed acceleration at the center of mass
Jacobian matrix of the equations of motion
partial derivative matrix of the equations of
motion with respect to the state noise
axial force coefficient

coefficient of pressure

quaternions

state error vector

gravitational acceleration

observation sensitivity matrix

identity matrix

Kalman gain

vehicle mass

Mach number

inertial angular velocity components
pressure

state covariance matrix

dynamic pressure

state noise covariance matrix
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observation error covariance matrix
vehicle reference area
planet-centric velocity magnitude
planet-centric velocity components
state noise vector

state deviation vector

state vector

observation residual vector
angle of attack

sideslip angle

flight path angle

observation error

clock angle

cone angle

longitude

pitch angle

density

standard deviation

planet-centric latitude

roll angle

state transition matrix

yaw angle
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bscripts and superscripts

= backward pass
forward pass
pressure port condition
time index
total condition
free-stream condition
nominal value
best estimate
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[. Introduction

OST-FLIGHT reconstruction of the entry, descent] éanding (EDL) sequence has been conducted faiyeve
successful Mars mission to provide insight into Wedicle’s trajectory and atmospheric conditionscamtered
during the descerit! Previous Mars missions have provided flight datanf on-board accelerometers, gyroscopes,
and radar altimeters, which have allowed estimatibthe position, velocity and attitude of the \&&s during the
EDL timeline. Moreover, based on the sensed desmtideis on the vehicle, the atmospheric profilesoentered by

the vehicles have also been estimated.

However, these previous reconstructithfiave used a deterministic process where the wictes of the
measurements have not been included directly inetftemation. If statistical estimation methods aied to
reconstruct the trajectory from flight data, thee@mainties in the observations can be incorporaiedthe estimation
process, yielding the associated uncertainty irréleenstructed dataMoreover, in the past, when the reconstructed
trajectory has been used to estimate the atmosppeofile, uncertainties in the atmospheric comdis and in the
knowledge of the aerodynamic coefficients of théliele have not been separable. As past Mars misdave
lacked direct atmospheric measurements and haeel takgely on inertial measurements, one couldestimate the
free-stream conditions without assuming perfectdedge of the vehicle aerodynamic database.

The upcoming Mars Science Laboratory (MSL) misswitl contain onboard pressure transducers that wil
measure the pressure along the vehicle foreBdigven pressure transducers located at known dmsatn the
forebody will capture the pressure distributiontba vehicle through the hypersonic phase of efithe pressure
transducers are part of the Mars Entry, Descet,Lamding Instrumentation (MEDLI) project. One bEtproject’s
goals under the Mars Entry Atmospheric Data SystdBADS) program is to determine free-stream coodgi such
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as dynamic pressure,gand Mach number (), and vehicle orientation parameters, such aseamighttack ¢) and
sideslip anglef{). The pressure transducer measurements will pecstiiface pressure measurements independent of
the inertial measurements and radar altimeter daas allowing a reconstruction of atmospheric pweters
independent of the aerodynamic uncertainties.

This paper will present a framework on how to sisdace pressure measurements in a trajectorytammsphere
reconstruction that integrates the uncertaintiethéndata within the estimation process. Past wore in trajectory
reconstructions using pressure measurements witiresented, and traditional methods of atmosptesiiznation
will be analyzed. Subsequently, a reconstructi@mtedure using an extended Kalman filter (EKF) atpar will be
presented to statistically estimate the trajectbtgdifications necessary to incorporate pressurasmements in the
process will also be discussed. Finally, data sets ballistic range test of the Orion Crew Expliva vehicle
(CEV) will be used as a test case for the methaglolo

Il. Deterministic trajectory and atmosphere reconstructon

Traditional reconstruction techniqd@shave used deterministic methods to estimate aclehitrajectory and
atmospheric profile. Data sets have contained acatidn of the center of mass and the Euler aragfiesrof the
vehicle with respect to an inertial reference fraifiee acceleration measurements are sensed aticelsréy, &,
and @,) in the planet-centric coordinate system ancattitude measurements are inertial angular rateg, () in the
vehicle-fixed coordinate system, where x, y, andxs refer to North, East, and down directions. Begin the
reconstruction, the initial state vector of the ieh has to also be known. The state vector cangibtposition,
velocity and attitude of the vehicle. Vehicle pmsitis usually in terms of radius from the centétte planet (r),
planet-centric latitude ¢), and longitude ). Planet-detic latitude can replace planet-cen#iitude in the state

vector, but proper conversion between the two egfee frames should be mad¥elocity states (u, v and w) are
expressed in the vehicle-fixed reference frameitudte is usually given in terms of the aerodynamider angles,
namely yaw ¥), pitch @) and roll angles®). However, the equations of motions involving thesgles contain
trigonometric functions that approach singularig¢sertain angle valuédn order to avoid this situation, the angles
are usually converted into quaternions or Eulerapmters (e) that represent attitude of the bodpgu$bur
normalized parameters. The conversion from Eulgtemto Euler parameters is given in Eq. (1).

e, = cosP /2) cos@/2)cosW /2) +sin@ /2)sin@/2)sin(¥ /2) (1a)
g =sin(@®/2)cos@/2)cosW /2) —cos® /2)sin@/2)sin(¥ /2) (1b)
e, =cos(P /2)sin@/2)cosW /2) +sin(@® /2)cos@/2)sin(¥ /2) (1c)
e, =cos(P/2)cos@/2)sin(¥ /2) —sin@/2)sin@/2) cosW /2) (1d)

& +el ve e =1 te)

After expressing the initial states in terms of ¢i@te elements discussed above, equations of medio be used to
propagate the trajectory from initial time to finthe. Equation (2¥lisplays a set of equations of motion expressed in
planet-centric reference fraffieThe gravitation component of acceleration (g) épehdent on the gravitational
model and is usually problem-specific. Normallysecond zonal harmonic model is sufficient for ED&jectory
reconstruction purposes, although higher-fidelitydels can be used.

r=-w (2a)

@=ulr (2b)

6=vircosp-Q (2c)

U=ay, + U/ r)(uw-v?tang) + g, (2d)

V=a,, + [@/r)(utang+w) + g, (2e)

W=ag, - (UMW +v?) + g, ()

& € ~6 & D

& _lle -6 & q (29)
&| 2/ &6 & -§
& -6 & &

Once the trajectory has been reconstructed, atmeoisp parameters can be estimated using the ihertia
acceleration measurements, knowledge of the aeamdigncoefficients of the vehicle and the velociistbry during
the descent. Equation (3), which is based on tHimitien of axial force coefficient (&), shows how free-stream
3
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density f.,) can be estimated from sensed axial acceleratighand the reconstructed velocity (V). Mass (m)haf t

vehicle and reference area (S) are also presd¢n¢ iaquation.

_ma, (3)
05V, °SC,

This procedure does not include the uncertaimi¢se axial force measurements or the aerodynaoedficients
as weighting factors in the estimate of the dendityus, atmospheric uncertainty and aerodynamienaioties are
not separable. However, if other measurements, aagbressure transducer data, can be collectedgdan EDL
sequence, the uncertainties in the atmosphericnedesis can be quantified independently of the \ehic
aerodynamics. This is the motivation behind flighthe MEADS sensors in the upcoming MSL mission.

Observations from on-board pressure transducerestomate free-stream conditions have been cotlecte
previously. The Shuttle Entry Air Data System (SE[program of the 1980’s used a flush-mounted @tia dystem
to estimate the pressure distribution across ttee&ghuttle forebody during entry. The MEDLI pragta pressure
data system is in large part based on the SEADSeminThe SEADS project was able reconstruct the-ftream
conditions during shuttle entry successfully, ardfied its results with simulation and wind tunmigita’® However,
reconstructions based on SEADS data did not blaadrtertial measurements with the pressure digtobwata.
Instead, a sequential batch-filter was used togetlith a database of pressure distributions onvitecle forebody
for different flight conditions to estimate the agdynamic parameters that would create the pressaesurements at
the transducers during an EDL sequence. As sudbntial coupling between uncertainties in the thjey estimate
and uncertainties in the atmosphere estimate warmcluded in the SEADS analysis.

Attempts to reconstruct free-stream conditions Ntars missions in a fashion similar to SEADS haeerb
unsuccessful in the past. The Viking landers, widohtained stagnation pressure measurement pogtshe only
previous Mars mission to sample atmospheric pressuring the descent. Unfortunately, the presdata returned
from these missions showed significant scatteritilig application of this datas&t.Since the Viking landers, no
other successful Mars mission has taken pressuasunements during an EDL sequence. MSL will becthadirst
mission to collect a large volume of Mars pressta¢a during the hypersonic descent phase. Dueedatige
uncertainty in our knowledge of the Martian atmagh a trajectory reconstruction of a Mars EDL seqe that can
also estimate the atmospheric profile with a higgrde of certainty would be a significant scieaténd engineering
resource.

Po

lll. Statistical trajectory and atmospheric estimation pocedure

Accurate estimation for both the trajectory and aphere hinges on a procedure to combine informdtmm
the various measurement types into a single estimfthe state. Moreover, the estimate should beeli towards
measurement types that are more certain; thusjghtireg factor dependent on the data uncertaingdedo be part
of the estimation procedure. There are severahastin algorithms available that allow the use efghting factors
to update an estimate based on the measuremem¢stedl The most common type used in navigation and
reconstruction-type applications is the extendetiriéa filter. A Kalman filter is based on the idehooeating a
nominal trajectory and then predicting values dfiedent types of measurements, such as accelerdticmughout the
trajectory. The difference between the actual messants and the predicted measurements is usepdeteuthe
nominal trajectory. This statistical estimation gedure is composed of two parts:

i. Measurement equations: A method to predict the areasents at a given state
ii. Statistical filter: An algorithm to combine inforti@n from various measurement types

A. Measurement Equations

A key requirement for statistical estimation toaslsch as the Kalman filter is a representation oftwimne
measurements should be at a given state. The acteaburements can then be compared with the peddict
measurements, and the state can be appropriatdtegy A Kalman filter is based on linear filteedhy, so it
assumes the measurements are a linear functioheobtate vector plus a measurement error. If omsiders
pressure measurements at n different transduberpréssure can be expressed as shown in Eq. 4.

P =f(X)+¢ (4a)
R f,(X) &
ol=| o [+ O (4b)
Pn fn(x) gn
4
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Here, Ris the pressure at the i-th orifice, f represestme function of the state vectof)(ande represents the
measurement error. Kalman filter, like many Bayesstatistical estimators, assumes that the measuntearror
distribution is normal, and the error is an unbiasstimator, i.e. the expectation of the errog] E{ 0. For most
measurement types, f is a non-linear function,usirg a first-order Taylor series expansion, Eqad be linearized

about a poin& (the nominal estimate of the state) as shown irbEgherex is the deviation in state froX.

R = f,(X) +[of /oX ]y _xx + & (5)
A measurement sensitivity (Jacobian) matrix (H)s@sn in Eq. 6, can now be defined.
H =[of,/ox O of, /ox  of /ox]’ (6)

The measurement sensitivity equations have toéweldped for various measurement types. Christtaal.e
discusses the development of the sensitivity médrxaccelerometer and radar altimeter measureméntaddition,
a special modification of the Kalman filter, knowaa the Kalman-Schmidt filter, can estimate systenators in the
measurement types. Measurement sensitivity equafmmaccelerometer and radar measurements incasgs can
be found in Refs. 7 and 12. In the present analgséssure data measurement equations and theitig&n matrices
are discussed.

Measurement sensitivity expressions for pressata dre developed by numerical differentiation dwuethe
complexity of the expressions relating the trajecttates with the aerodynamic states. The measmepnediction
expressions are functions of the state vector mioamally consists of the position, velocity, anditatle of the
vehicle. However, for the pressure measurement, desestream pressure fpand free-stream density.{) are
added to the state vector. Their equations of magie derived from the hydrostatic equation ancgtamospheric
equation of state, respectively (Eq. 7). For thiglg, the isothermal gas equation of state was,usedany other
state equation that takes advantage of a modbkajas dynamics can be substituted.

Po = P QW (7a)
P = P W/ P, (7b)
During the hypersonic phase, the velocity of thhisle is large with respect to the wind velocityo e planet-
relative velocity can be used to calculate the anglattack and angle of sideslip (Eqg. 8). Thetiedavelocity to the
wind should be used for more precision. In thosesathe wind speed is included as a part of Hte sector, but an
equation of motion for the wind speed must thembkided. For simplicity, winds are not modeledtiis study. The
two orientation angles can then be combined irttiia angle of attacky, (also Eq. 8).

a = tan™(w/u) (8a)
B =sin"(v/V) (8b)
a, = cos*(cosacosp) (8c)

The velocity magnitude can be used to calculateldbal Mach number. The speed of sound needed fachM
number calculation is a strong function of altituatel can be calculated from the state vector. Fyindde pressure
port locations have to be stated. Normally, thafimns of these orifices are known in terms of kl@@ and conex()
angles. The cone angle describes the orifice'stilmtavith respect to the maximum diameter of theoakell. The
clock angle describes the port’s location on thesteell from the y-axis in the y-z plane. Since pinessure ports’
orientation with respect to the forebody does r@nge during the flight, the cone and clock angles constant
throughout the trajectory. Once the total anglattdck, Mach number and the clock and cone andlésqorts are
known, the pressure coefficientd)Gat each orifice can be found from tables credtech the vehicle aerodynamic
database. An example of such a table is showndtioselV as Table 2. After the pressure coefficienfound, the
pressure at each surface location can be calculsieg) the vehicle velocity and free-stream pressud density
which are state elements. The sensitivity matrix loa calculated by perturbing each of the statmehts by a small
amount and calculating the change in the predigtetipressure. This numerical method of calculathegsensitivity
matrix is necessary since a closed form solutiamispossible due to the fact that the pressuréficeat values are
being computed from tables. Numerical ill-condifiugn issues can arise based on what tolerance valused to
perturb the pressure prediction equations.

B. Extended Kalman Filter™ **
The next step in the reconstruction process isswaistatistical filter to combine the measurenigiormation
with the nominal estimate of the state. For thiglgt this process was achieved using an extendéadatafilter. A
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Kalman filter is based on linear filter theory amsks the difference between predicted and measiatadto update
the estimate of the state. An extended Kalmanrfifea modification of the original Kalman filteo texpress the
nonlinearity in the system dynamics that is losthi& linearization needed for the original Kalmatef. Consider the
linearization of the state vector at time incremlerats a function of the state at time k-1 and aloam state noise
vector (v) as seen in Eq. 9. Recall thais the deviation in state aidis the state vector.

X, =Xk_1+{ax(t'<)}xk_l+w=xk+d>kxk_l+w 9)
oX(t,,)
The state transition matrix) is the function that propagates the state frointé-k. The linear Kalman filter needs a
nominal trajectory from the initial state to thedestate, and the filter estimates the deviatiothéstate around this
nominal trajectory. The extended Kalman filter does need a nominal trajectory from the start t® é&md of the
trajectory. Instead, the propagation from k-1 tis Klone using the nonlinear equations of statentwben the state
estimate is updated at time k using the measuremtis new estimate is used to propagate to tirie Khus, the
nonlinearity inherent in the system dynamics camditer handled using the extended Kalman filtgoddhm rather
than the linearized Kalman filter.

In addition to the equation that defines the statetor, relationships are also needed to definautioertainty in
the state and how these values propagate over kimteg. 4, was introduced as the measurement error. The state
vector also has a similar error term known as therror vectorg) which contains the error in each element of the
state vector at time k. EKF assumes that the state is also normally distributed and thus a stateariance matrix
(P) can be introduced which is defined agB[']. A measurement covariance matriX) can be defined at time k
whereR, = E[sg'].

As is the case with the state vector, the statargance vector must be propagated from time k-k. t8tate
transition matrices can be used to accomplishapération as seen in Eq. 10, wh&geis the state noise covariance
(i.e. Qc = Efww']).

P = @ 4Py ®Piy + Qi j10
A Riccatti-type differential equation can also tsd to update the covariance vector as seen ihIEddereA is the
Jacobian of the equations of motion with respec¢héostate vector and produces a matrix similavhat is found in
Eq. 6 for the measurement expressi@ss the partial derivatives of the equations ofestaith respect to the state
noise vector. All of these matrices are evaluatdtiecurrent time k-1 and are used to propagatetife k.
P=AP+PTAT +BQB" (11)

In order to begin the EKF process, a nominal eséraathe current time must be found. If the curtane is k,

then the nominal state estimate ) can be found from the final estimate at k-1 ascdbed before. The covariance

matrix can be similarly estimated at timef&) Then, the best state estimate at tim&K s foundby Eq. 12a, where
Ky is the Kalman gain (Eq. 12b) agdis the measurement residual vector. The measutemasidual vectory() is
defined as the difference between all of the aatuedsurements at the current time and the corrdamppredicted
measurements at the nominal state. Within the sspe for the Kalman gain, Hs the measurement sensitivity
matrix and evaluated at time k. Finally, the staigariance for the best estimat X is found using Eq. 12c. In Eq.
12c, | is the identity matrix.

X, =X, + Ky, (12a)
Ky :ﬁkH:(HkﬁkH: +Rk)_l (12b)
P.=( -KH)P (I —KH)T +K,RK/J (12¢)

The algorithm for this filter can be summarizeda®ws:
1) Initialize the state vector and the state covasamatrix at timet;=t, and let k =1, where k is an index of
the epoch when measurement was taken.
2) Readin measurement at time t
3) Calculate a nominal state at(fx, ) by integrating the non-linear equations of masigkgs. 2 and 7) with

X, as the initial condition.

4) Calculate the nominal state covariance matfy) (Using the state transition matrix (Eq. 10) or thecRti
equations (Eq. 11).

5) Calculate the measurement residual vec), the measurement sensitivity matrix,(Hand the Kalman
gain (K, using the nominal state and state covariance X#oj.
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6) Calculate the best estimate of the statg)(and state covarianc®) using Egs. 12a and 12c.

7)  Increment counter k and go back to step 2 untilsuesments at all times have been read.

A difference between the extended Kalman filter &mel standard Kalman filter is highlighted in s@mf the
algorithm where the nominal state is calculatedritggrating the non-linear equations and the last lestimate is
used as the initial condition. In a highly non-Bingoroblem, large deviations could be propagatesuth this linear
approximation. The extended Kalman filter effedyvee-linearizes the state estimate at the last éstimate found
whenever a new measurement is processed, thusimgddeviations that can result from linearizing @andinear
problem.

An advantage of the extended Kalman filter is thatovides an efficient way to incorporate morarttone type
of measurement. Each measurement type has a umgasurement sensitivity matrix and observation caxae.
Thus, when the filter is processing measuremerd §pthe appropriate H and R matrices are used thémominal
state error covariance. If measurement type B didsetprocessed at the next time step, only the HRamatrices
will change in the algorithm.

Moreover, one can see that the state is affectatirbg factors by looking at Eq. 12b for the Kalngam and Eq.
12a for the state update. The Kalman gain is atimmoof the current state uncertainty,)Pthe measurement
uncertainty (R) and the residual between the predicted and actealsurementsy). If the state estimate is more
certain than the measurements being processefilt¢havill be minimally affected by the data. Inldition, the filter
can “blend” the information from the various datgpds, and the state estimate will be weighted tdsvahe
measurement with the smallest observation erroiciwtan be gleaned from its observation covarianatix. When
two or more data types are being processed seqligntihe state estimate initially may oscillatetvaeen the
measurements from the differing sources, but fker fjuickly uses the weighting information fronetR matrices to
calculate the blended estimate. Finally, the redidd the measurements can scale the update oftéte. If the
predicted measurements were very close to the lagteasurements, then the state update will be raininTo
demonstrate this concept, Mars Pathfinder recoctstru data is used below. Details about this ttajgc
reconstruction can be found in Ref. 5, with addiibbackground information in Ref. 2. Figure 1 desteates the
effect of data blending by showing the estimate afiftude for Mars Pathfinder when the radar altienet
measurements are included with the accelerometasumements. One way to compare the effect of uaiogytin
the estimate is to vary the weighting factor foe theasurements being used. As one can see, thelaléstimate
initially oscillates between the accelerometer aadar altimeter observations, but finally the EKPves the
estimate towards the less uncertain measuremehishn this case comes from the radar altimeter.

Blended EKF Estimate
1500_....0..0... B RPN FPRT < Radar Data
Accelerometer-only Estimate

1000 -

500+

altitude, m

B 1 TR

i i i I
275 280 285 290 295
time from entry, sec

Figure 1: Effect of blending different data types o the estimate of altitude for Mars Pathfinder. Thealtitude
shown is above Mars mean radius.

Another advantage of the extended Kalman filteh& it can be used to sequentially reconstructrdjectory in
either a forward or backwards manner. The recocistnu can be conducted starting from the atmosptestry all
the way down to the ground (forward pass) or usingojected landing location to estimate the ttajgcup to the
entry conditions (backwards pass). The forward a@ds its estimate from an initial state and ciewvece that is
found independent of the trajectory reconstrucpoocess. Also, the reconstruction is conducted dhranological
manner. The backwards pass has the advantagertiigsi@t a smaller uncertainty value as it begnosnf the end of
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the forward estimate. The forward (f) and backwér)l pass estimates can be combined using the Heastar
smoothing solution? which is shown in Egs. 13.

B =[pr+py|” (13a)
)A(k = IE)k |_|5f_kl)A( w 'St;};( bk (13b)
An advantage of combining both the forward and back estimates is to find an optimal estimate efttlajectory.
The forward pass estimate at time k uses the memsuit data fromed, to k, while the backward pass uses the
measurement data from timg,i.¢to k. The combined smoothed estimate can use mesasuat data at all times to
create the estimate at k. Figure 2 shows the fatwbackward, and smoothed estimate of the altitnid®ars

Pathfinder, which is used to demonstrate the adgenof the smoothing algorithm. The one-sigma uaugies
associated with the three estimates are also shown.

25 . T r . T : : . : : :
: : : Smoothed Estimate = Smoothed Estimate
Forward Run

Backward Run

Faorward Run
Baclkward Run

a0 Ly WER e ...... e O R 4

altitude above landing site, km
uncertainty in altitude above landing site, m

B i i i i ; ; i i I 0 L i i i n
100 120 140 160 180 200 220 240 260 280 300 1} a0 100 150 200 250
tirme from entry, sec time from entry, sec

(a) Altitude estimate (b) & uncertainty in altitude
Figure 2: Forward and backward runs and smoothing o the estimate of altitude for Mars Pathfinder.

IV. Test Case

Results from a sample case are presented in tbii®isd¢o test the methodology. As MSL will not prde a data
set until 2012, measurements from a ballistic ralegeof a Crew Exploration Vehicle (CEV) modeliged to apply
the trajectory and atmospheric reconstruction ptores'® The ballistic range test was conducted on July2088 at
the Aberdeen Army Proving Ground (APG) in Aberdel@). As shown in Figure 3, the test utilized twtatiium
models of the CEV. The models were referred thagptessure-telemetry modules (PTM). The PTMs \eeneched
from a ballistics range gun and data was colledtedapproximately 20 seconds after they exited nigzzle.
Although data sets for both models were availatniy the results for the second model (labeled Prat2 analyzed
below. Some key parameters for PTM2 are summaiized

Table 1. The center of gravity (CG) locations are withpest to U.S. Army Research Laboratory coordinate
system convention.
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(@) PTM1 ' (b) PTM2
Figure 3. CEV models used in the pressure-telemettgsts®

Table 1. Physical parameters for PTM2

Mass 18.422 Ib
CG, 2.488 in
CG, 0.002 in
CG, 0.187 in
i 69.144 Ib-iR
Ly 50.978 Ib-i
l, 51.322 Ib-iR
Length 4.268 in
Diameter 6.500 in
Data sampling rate 7.940 KHz

As can be surmised from the name of the experinmibatmodels collected pressure data along withrtetey data
during their flight. The telemetry information casted of sensed accelerations, angular rates argphet@meter
measurements. Additionally, a tracking radar calad the range and range rate of the models wsiher to a fixed
station. Also, the on-site meteorological statioomded temperature, pressure and wind speed iraftiom

There are fundamental differences between MSLthiscballistic range test. The ballistic range maaieves a
maximum Mach number of 3.5 during its flight, whN&SL is going to achieve speeds several times gred@he
PTM only climbs up to 800 meters thus the datanéiéhot contain measurements from the upper atrhesp which
can compare well with the thin atmosphere of M&isally, since the PTM is shot out of a gun, iaided upon by
very high accelerations and angular rates at tgabing of the flight. These accelerations arestifated in Figure 4.

10000 T T T T 200 —
150
000 e ]
_ _ : _ 1o}
c\sé % a0k {4l -
% 4000 b U d E D.J\ RO A W B i
3 : ; f = bl SO AR NN SOOI S
To2000p et bt T TR _ s : : : : : : : :
< 00k
0 VN : i L
: “"””‘f'“" 150 b
2000 i 1 i | | 200 1 | i | i 1 i i I
-0.04 0.03 -0.02 -0.m 0 0o 0.02 005 0 oo0s 01 015 02 025 03 035 04 04
Time since exit fram muzzle (sec) Time since exit fram muzzle (sec)
(a) Axial acceleration for PTM2 (b) Roll ratefor PTM2
Figure 4. Example of inertial measurement unit obseations for PTM2.
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As one can see from the figure, the vehicle undesgdmost 7000 g's of acceleration and several teeshdegrees
per second of angular velocity. MSL will not fatesttype of flight regime. However, despite thefftetences, the
EKF algorithm should be insensitive to the magretad data that it handles. Regardless of the aslaks of the
data, if the measurement equations and the algoréhe simulated correctly and proper values arel tise the
observation errors, the filter should be able twonstruct the trajectory and atmosphere that thiél Rficounters.
Furthermore, since the types of observations thatRTMs obtained are comparable to the types &f RESL is
planning to obtain, a successful reconstructiothef PTM’s trajectory bodes well for similar succegth MSL'’s
data set.

As mentioned in section lll, the pressure measargmrediction equations are dependent on tabulatkebs of
the pressure coefficient as function of total araflattack, Mach number, and the orifice cone dodkcangle. An
example of such a table for PTM2 is given in Tahle

Table 2. Pressure coefficient values for PTM2 at M 0.6 andn = 14 degrees

Angle of Clock Angle,; (degrees)
attack,a (deg) 0 5 10 15 20 25
0 1.096745 1.096747 1.096749 1.09675 1.096752 T®06
5 1.096761 1.096763 1.096764 1.096766 1.096768 6TI09
10 1.096772 1.096774 1.096776 1.096778 1.096779 96181
15 1.09678 1.096781 1.096783 1.096785 1.096786 6I8®
20 1.096783 1.096784 1.096786 1.096788 1.096789 96191
25 1.096781 1.096783 1.096784 1.096786 1.096788 9618D
30 1.096775 1.096777 1.096778 1.09678 1.096782 6I8®
35 1.096765 1.096767 1.096768 1.09677 1.096771 6I1®
40 1.09675 1.096752 1.096753 1.096755 1.096756 6T73®
45 1.096731 1.096733 1.096734 1.096736 1.096737 96139

To match data types with MSL, this analysis onlpsidered the acceleration, angular rates, radasuneents
and pressure observations from the PTM2 data setvas shown in Eq. 2, accelerations and angulaimédrmation
are used in the equations of motion to propag&estiite one time increment to another. So thessureaent types
are not explicitly used in the EKF tool using EQ. However, the state noise vectwo) (s defined based on the
measurement error of the accelerometer and gyrescdpus the uncertainty in these data appearscithpin the
EKF through the state noise covariance maftfix,The pressure measurements were taken at fivelquations on
the forebody of the vehicle. Figure 5 shows thedimns of the ports on the forebody of the vehésid pressure data
from those ports during the trajectory. Figure $pthys the range data from the tracking radar.

Pressure at port (Pa)

Tirme frorm muzzle exit (s)
(&) Pressure port observations (b) Pressure port lations on vehicle forebody’
Figure 5. Pressure port locations and observationfer PTM2
10
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Figure 6. Tracking radar observations for PTM2

The instruments and their measurement errors anenswized in Table 3. The measurements errors regant the
table are thed values and the errors are assumed to be normiathbdted with an expectation of zero.

Table 3. Measurement uncertainties of sensors on RI2

Observation Sensor Model 1o uncertainty
Accelerometers ADXL-78 0.0686 m/s
Angular rates ADXRS300 0.025 deg/s
Pressure transducers XCEL-100-500A 5 psi
Radar position APG tracking radar
Distance 1m

Angles 0.1146 deg

Radar rate APG tracking radar
Rate 1mis
Angular rate 0.1 deg/s

As can be surmised from Fig. 4, the initial stat¢he vehicle at the muzzle exit was hard to asdessto the high
acceleration and angular rates encountered by niodleé gun. The initial state inside the gun waewn, but since
the pressure and radar measurements are only ¢akerthe vehicle exits the gun, the initial statethie EKF had to
be that point. Thus, using only the accelerometer angular rate measurements, the state vectaf@t @econds
past the muzzle exit is determined. This data seagethe initial state for the EKF and is summalripe

Table4. However, since the accelerations and angulas rate so high and the sensors reach saturaticevetas
points, very high values are assigned for theahgttate uncertainties. As a result, the forwardatithe EKF will be
initially more sensitive towards the measurementsgdating the states. Note that this aspect diyaing the PTM
data is quite different from what would occur w@tMars data set. The initial state for Mars EDLteys are found
from the end state of the navigation orbital deteation (OD) solutions, which provide the state teeavith high
accuracy. Thus, for a Mars reconstruction, the EKlFstart from a relatively certain initial state.

11
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Table 4. Initial state vector
used for PTM2
0.001 sec
-912.628 m/s
25.475 m/s
-193.985 m/s
titude 243 m

39.466 deg
283.830 deg
195.743 deg

11.485 deg

-2.387 deg
101.783 kPa

1.1807 kg/m

O DIR B2 <cSs

> 0

The smoothed best estimate for PTM2's trajectowy the atmosphere it encountered is given below. dltitude
history of the model is seen in Figure 7. A onaysmguncertainty bound is also shown in the figure.
800

ﬁEDD o : Estimated altitude
£ / : : Uncertainty
% 400+ \‘ . SR ER LTI T LT TN EELETETRENIEE
z S § i : 5
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QDD—--(F‘- .......... ............... ............... ............... SRR i
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Figure 7. Reconstructed altitude of PTM2 and & uncertainty in the estimate.
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Figure 8. Reconstructed Mach number of PTM2 and & uncertainty in the estimate.
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The altitude and Mach number history compare wéh wimulated results for the test. The figuresaalso show
that the uncertainty in the estimate is small. althh the initial state uncertainties were set téabge numbers, after
the forward and backward run and the smoothing gdoe, the uncertainty in the state estimates deere
dramatically. Additionally, as was discussed befdhe goal of an atmospheric reconstruction is étednine the
free-stream pressure and density profile seen éyéhicle during its trajectory. However, sincestkiehicle only
reached about 800 meters, the change in pressdrdearsity was not large. Nevertheless, the recoctst values
for pressure are compared with the data colleciethé ballistic range’s meteorological station iable 5. Density
data was not given by the meteorological statiowl, taus it is not shown here. However, the changgensity was
also just as small as the change in pressure.

Table 5: Reconstructed pressure estimate for PTM2

Estimated Meteorological

Altitude (m) Pressure (kPa) sl(kPa) Data (kPa)

15 100.122 1.593 101.483
57 99.661 1.691 101.010

112 99.179 1.793 100.377
175 98.607 1.909 99.669
244 98.006 2.044 98.883
322 97.306 2.208 98.011
409 96.484 2.412 97.044
506 95.514 2.671 95.972
615 94.268 5.270 94.785
736 93.058 4.798 93.472

Recall that the meteorological data was not indluidethe EKF process. The free-stream conditiowshabove is a
result of only inertial measurements, radar measents and the on-board pressure observations. adieHat it

agrees very well with an independent source ofquresobservations demonstrates the strength attimnstruction
methodology. Besides free-stream conditions, amotigective of MSL's MEDLI program is to determirtbe

orientation angles of the vehicle during entry,cée$ and landing. As has been shown before, arfighttack and
sideslip angle affect the pressure distributiorttom vehicle forebody, and thus if these valueshmmeconstructed,
then there will be additional insight towards thehicle’s interaction with the atmosphere. The estéad angle of
attack and sideslip angle history for PTM2 are sihawFigure 9.

T free [T TR R : - R, e B Hee e .

DObeee ...............

Angle of attack g (deg)
Sideslip angle § (deg)

0 ]
Time (sec) Time (sec)
(a) Angle of attack (b) Sideslip angle
Figure 9. Reconstructed angle of attack and sidepliangle of PTM2.

Unlike the free-stream pressure estimate there vmerte any independent observations to compare widh t
reconstruction of the orientation angles. Howevhg reconstructed values compared favorably witlatwiias
predicted pre-flight. The high accelerations anduar rates experienced by the model (Figure 4)mnlaenched
from the gun still have an effect on the recongiomcestimate. The angle of attack and sideslipesngxperience
significant oscillation in the first one secondflight and this is apparent from looking at the ebdigures. However,
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when the high accelerations dissipate with time, ahentation angles are reconstructed withoutifstgimt noise.
This last observation bodes well for MSL recondinrcas that vehicle will not face the high accatiems and rates
seen by PTM2.

V. Conclusion

This paper provides a framework on how to usehfligata from an entry, descent, and landing sequémc
reconstruct the vehicle’s trajectory and atmosphsrevell as compute the associated uncertaintidese estimates.
Past Mars missions have flown limited instrumeptatisuch as accelerometers, gyroscopes, and rtidagtars that
do not provide measurements directly related toftée-stream conditions. Thus, uncertainties indtraospheric
conditions and aerodynamic database knowledge amildbe separated. These previous reconstructiams also
relied on a deterministic process where the uniceiéa of the measurements were not included dyrentthe
estimation and potential coupling between uncetitsnin the trajectory and uncertainties in theagphere were not
estimated. As the upcoming MSL mission will provideebody pressure measurements during entry tegettih
accelerometer, gyroscope, and radar altimeter dhta,Mars EDL reconstruction process can be sicanifily
improved. In this investigation, a statistical restsuction procedure based on extended Kalmarr fitteory was
developed to take advantage of this new data #mample data set from ballistic range tests of@nwCExploration
Vehicle model was used to show results from applytime methodology. The reconstruction method wds @b
estimate the states of the CEV model well durisgutenty second flight. Moreover, the atmospheoieditions that
were reconstructed matched well with the meteoiocidgnformation and pre-flight predictions. Thecsass of the
using the reconstruction methodology on this CEWugd-based test data set demonstrates that tleettgj and
atmospheric estimation procedure can be succeaaghe reconstruction effort for MSL.
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