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Capitalizing on the advances in symbolic manipulation technology, analytic hypersonic
aerodynamic relations are developed based on Newtonian ow theory. Analytic relations for
force coe cient, moment coe cient, and stability derivatives have been developed for basic
shapes, including sharp cones, spherical segments, cylindrical segments, and at plates at
varying angles of attack and sideslip. Each basic shape has been generically parametrized,
requiring the development of only a single set of analytic relations for each basic shape.
These basic shapes can be superimposed to form common entry vehicles, such as sphere-
cones and blunted biconics. Using Bezier curves of revolution, more general bodies of
revolution are studied in which the location of the control nodes that de ne the shape of
the curve is also generically parametrized. Analytic relations at unshadowed total angles of
attack have been developed for these con gurations. Analytic aerodynamic equations are
orders of magnitude faster than commonly used panel methods and were validated using
the NASA-developed Con guration Based Aerodynamics tool. Consequently, rapid aero-
dynamic trades and shape optimization can be performed. Additionally, the relations may
impact guidance design using onboard trajectory propagation, real-time ablation modeling
in simulations, and simultaneous vehicle-trajectory optimization.

Nomenclature

APAS Aerodynamic Preliminary Analysis System
CBAERO Con guration Based Aerodynamics

CFD Computational Fluid Dynamics

HABP Hypersonic Arbitrary Body Program

Aref Reference area

B Control node location of Bezier curve

Ca Axial force coe cient

cl Axial force coe cient in total angle of attack frame
C Moment coe cient about x-axis

Cm Moment coe cient about y-axis

Cm: Pitch moment sti ness

Cn Moment coe cient about z-axis

Cp Pressure coe cient

Cn Normal force coe cient

(o18 Normal force coe cient in total angle of attack frame
Cn: Yaw moment sti ness

Cs Side force coe cient

Cx Force coe cient in x-direction

Cy Force coe cient in y-direction

C» Force coe cient in z-direction
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d Base diameter of conic section

dA Di erential area element

dApianar Di erential area projected on y-z plane
df Di erential force from Newtonian ow
h Height of conic section

lref Reference length

L Length of cone

L=D Lift to drag ratio

n Order of Bezier curve

n Inward unit normal

Pressure

Freestream pressure

Bezier curve function

Position vector of di erential element
Nose radius

Normalized arclength of Bezier curve
Surface parametrization variable

v Surface parametrization variable

Vi Freestream velocity vector

=~ Uuo ©
i

cC ==
=}

Angle of attack
Sideslip
Blended wedge half-angle
c Cone half-angle
1 Forward conic half-angle
2 Aft conic half-angle
A Area of panel
Total e ective angle of attack
Local body inclination relative to freestream direction
Freestream density
Angle between the body frame and total angle of attack frame

=g

I. Introduction

raditionally, during the design of entry vehicles, it is di cult to simultaneously account for all major

disciplines due to the computational requirements of high delity code. Consequently, a time consuming
iterative process is typically employed using a large team in which members separately analyze each discipline.
For example, computational uid dynamics (CFD) is used to obtain the hypersonic aerodynamics of various
entry vehicles. Due to the substantial computational requirements of CFD, vehicles are generally chosen
that provide the necessary aerodynamic performance, such as L/D and ballistic coe cient, to accomplish a
given mission. Subsequently, the vehicle is designed to meet these performance constraints.

During conceptual design, methods are typically employed to improve computational speed at the expense
of a small reduction in delity. For example, panel methods can be used in conjunction with Newtonian ow
theory to obtain the hypersonic aerodynamic characteristics of a vehicle with orders of magnitude reduction
in computational requirements compared to CFD. Panel methods are widely used during conceptual design
due to the ability of these methods to rapidly evaluate arbitrary shapes. Although panel methods are much
faster than CFD, the designer is still required to limit the number of vehicle shapes analyzed due to the
relatively high remaining computational requirements, for example when compared to trajectory propagation,
during the generation of aerodynamic coe cient tables. Consequently, a xed vehicle is usually chosen prior
to trajectory design. Once the trajectory has been designed for the given vehicle, an iterative process is
performed to alter the vehicle dimensions and, consequently, the aerodynamic characteristics, to accomplish
the desired mission.

If a further reduction in aerodynamic computational requirements near that of trajectory propagation
could be achieved, then the designer would have the ability to rapidly trade trajectory and vehicle design
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parameters simultaneously. This would allow multidisciplinary design methods to be used for more compre-
hensive design space exploration. For hypersonic ight, this reduction in computational requirements could
be achieved by obtaining analytic aerodynamic coe cients using Newtonian ow theory.

Il. Newtonian Aerodynamic Theory

I1.A. Motivation

In 1687, Issac Newton postulated that uid ow can be viewed as a system of particles traveling in rectilinear
motion as described in Propositions 34 and 35 of the Principia.” Newton assumed that when a particle strikes
a surface, all of the momentum normal to the surface would be lost and all momentum tangential to the
surface would be conserved as shown in Figure 1. Consequently, the pressure exerted by the uid on the
surface of a body is assumed to be solely originating from this loss of momentum normal to the surface.
Under these assumptions, the nondimensional pressure coe cient, Cp, at any point on the surface of a body
can be obtained from the Newtonian sine-squared relation shown in Eqg. (1). Thus, the solution to the
hypersonic aerodynamics problem is mapped to a geometry problem. Furthermore, the pressure exerted by
the uid on any portion of the surface not directly exposed to the ow, denoted as the shadowed region of
a body, is assumed to be equivalent to the freestream pressure in which the motion of the uid does not
in uence the pressure in this region. Thus, C; = 0 throughout the shadowed region as shown in Figure 2.

Figure 1. Momentum Transfer of Particle on Inclined Cp= 2sin?0

Surface.

Figure 2. Example of Shadowed Body.

_ b Px _,_. 0
Cp, = +—— =2sin 1
P71 4v3 @)

Newton originally applied his theory to model the pressure on the walls of a water channel. Experimental
tests performed by d’Alembert later concluded that this model is inaccurate for subsonic ow conditions.
However, as the Mach number increases to hypersonic speeds, the shock wave approaches the surface of the
body. Thus, as the ow velocity changes direction after crossing the shock, the ow appears to be de ected
by the body similar to Newtonian ow theory as shown in Figure 1. Furthermore, as the Mach number
continues to increase, the shock continues to approach the body surface. Thus, as Mach number increases,
Newtonian ow theory improves in accuracy and the aerodynamic coe cients are computed independent
of Mach number. In conceptual design applications, the Mach independence principle allows for the fast
computation of aerodynamic coe cients using the pressure coe cient in Eq. (1) at hypersonic speeds.

11.B. Application of Newtonian Flow Theory

In order to calculate the aerodynamic coe cients of a hypersonic vehicle, a surface integral of C, must be
calculated. As previously mentioned, the pressure exerted on the vehicle is due to the total loss of momentum
in the direction normal to the surface. Thus, the pressure coe cient, Cp, exerted over a di erential element
on the surface of a vehicle, dA, results in a di erential force, df, imparted on the vehicle in the inward unit
normal direction of the surface, fi, as shown in Eg. (2). Using conventional aircraft body axes shown in
Figure 3 and corresponding freestream velocity vector, V1, shown in Eq. (3) as function of angle of attack,

, and sideslip, , the aerodynamic force coe cients along the body axes, Cx, Cy, and Cz, can be calculated
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through surface integration of the di erential force in the X, y, and z directions as shown in Eq. (4). The
axial force coe cient, Cp, side force coe cient, Cs, and normal force coe cient, Cn, commonly used in
entry vehicle applications is related to the aerodynamic force coe cients along the body axes as shown in Eq.
(4). The corresponding moment coe cients about the body axes, Cy, C,, and Cp, are computed relative
to the origin of the body axes as shown in Eq. (5), where r is the position vector of the di erential area
element. Furthermore, pitch and yaw stability derivatives can be calculated using Eq. (6) and Eq. (7).

X<
Figure 3. Body Axes De nition.
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Newtonian ow theory provides a rst-order, computationally e cient means in which the hypersonic
aerodynamics of various vehicle geometries can be obtained. Newtonian aerodynamic theory is an excellent
approximation for the conceptual design of slender bodies in which the shock wave is in the vicinity of the
surface of the body. However, this traditional Newtonian ow theory is typically modi ed for blunt bodies
in which a normal shock resides upstream of the vehicle.” Such a modi cation has led to the development
of the Modi ed Newtonian theory in which the leading 2 in Eq. (1) is reduced to account for the pressure
loss across the normal shock. The results detailed in this report assume traditional Newtonian ow in which
the leading 2 is maintained. However, should the use of Modi ed Newtonian ow theory be required, the
analytic results in this report can be scaled by the appropriate multiplier.

I11. Calculation of Hypersonic Aerodynamics Using Newtonian Flow Theory

As previously mentioned, the calculation of aerodynamic coe cients at hypersonic speeds requires the
integration of C, over the surface of the vehicle. Portions of the vehicle surface shadowed from the ow are
assumed to have a C, = 0. Thus, the integration of C, need only be computed over the unshadowed surface
of the vehicle.
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I11.A. Panel Methods and CBAERO

Currently, the surface integration required by Newtonian ow theory is performed numerically using panel
methods that approximate the shape of a vehicle using small at plates. Thus, the integration is approxi-
mated as a nite summation of the integrand over the at plates approximating the shape of the vehicle. For
example, the approximation of Cx is shown in Eq. (8), where A is the area of each panel. This numerical
approximation is a source of error in the Newtonian estimate.

1
Aref

Cx Con'x A 8)
i=0

Many paneling codes have been developed, including the Hypersonic Arbitrary Body Program (HABP)
in conjunction with the Aerodynamic Preliminary Analysis System (APAS) developed in the late 1970s and
early 1980s and the Con guration Based Aerodynamics (CBAERO) tool developed in the past decade.”{
CBAERO serves as a means to verify the analytic relations developed in this work. The results of the
CBAERO Modi ed Newtonian calculations are properly scaled to account for the di erence in theory.

CBAERO provides a straightforward methodology to compute the aerodynamic coe cients of relatively
complicated geometries. The process required for CBAERO is the following:

1.) Construct a mesh of the vehicle describing the nodes and corresponding at plates. The construction
of a mesh for complicated shapes would require modeling in a CAD package. Bodies of revolution can be
meshed fairly easily using automated routines.

2.) Calculate the unit inward normal and C, for each panel. Any panel with a unit inward normal in the
opposite direction from the ow is ignored since it is shadowed, resulting in C, = 0.

3.) Calculate the aerodynamic forces through numerical integration of C,, over the surface of the vehicle
and generate tables of aerodynamic coe cients for various and

This process must be repeated for any change in the shape of the vehicle. Although CBAERO allows
for rapid aerodynamic calculations when compared to CFD, the construction of aerodynamic tables remains
slow compared to other disciplines of the design process, such as trajectory propagation. Additionally,
the resolution of the mesh must be addressed when using panel methods. The number of required panels
to achieve a desired accuracy in the approximate surface integral solution is generally unknown in the
beginning of the meshing process. Consequently, multiple meshes of various resolution must be evaluated
until convergence of aerodynamic coe cients is observed. Furthermore, the construction of meshes in CAD
packages limit the ability to automate entry vehicle shape change necessary for parametric analysis and
optimization. These time-consuming issues associated with panel methods limit the number of shapes
analyzed during entry vehicle design.

111.B. Motivation for Analytic Hypersonic Aerodynamics

While panel methods, such as CBAERO, would likely be required for the conceptual design of complicated
geometries such as the Space Shuttle Orbiter, X-38, HL-20, and others, many entry vehicle shapes used
in previous and current mission studies are not complex. For example, all previous and currently planned
Mars missions have used a blunt sphere-cone. Various human Mars mission studies have used blunt sphere-
cones and blunted biconics.”{*® The Stardust and Genesis Earth entries also used a blunt sphere-cone.
Additionally, the Apollo command module and planned Orion command module both utilize a spherical
forebody. Many high performance military entry vehicles are slender sphere-cones and slender biconics
with minor nose blunting to account for extreme heating environments. Alternative high performance entry
vehicles include blended wedge designs, such as the SHARP L1, that consist of at plates, conical frustums,
and nose blunting through a cylindrical segment.

The surface geometry of these basic shapes, along with additional complex shapes, can be expressed
analytically. Consequently, the solution to the geometric problem of Newtonian ow theory, i.e., the surface
integration in Eq. (4) and Eq. (5), can also be performed analytically. The resulting analytic relations provide
exact Newtonian aerodynamic coe cients instead of the approximate Newtonian aerodynamic coe cients
obtained from panel methods. Additionally, the evaluation of the resulting analytic relations would be
nearly instantaneous, allowing for rapid conceptual design and/or simultaneous entry vehicle and trajectory
optimization that is not currently practical when using panel methods.
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IVV. Analytic Hypersonic Aerodynamics Overview

IV.A. Historical Overview
IV.A.1l. Basic Shapes

Due to the absence of digital computers, analytic hypersonic aerodynamic coe cients based on Newtonian

ow theory were developed in the late 1950s and early 1960s. This early work™* focused on developing
analytic aerodynamic relations that could be processed through a computer to develop large aerodynamic
tables of various vehicle con gurations that consisted of basic shapes. These large tables could then be
used by hand to quickly estimate aerodynamic characteristics of various sharp and blunted circular conics
or elliptical conics at various angles of attack and sideslip. Comparisons were also made to hypersonic
experimental data which showed good agreement with the theory while maintaining trends as desired for
conceptual design.

IV.A.2. Historical Bodies of Revolution

Newtonian ow theory had also been applied in the past to generic bodies of revolution. Variational meth-
ods™ have been used at zero angle of attack to determine optimal pro les to minimize the pressure drag
of Newtonian ow theory for various geometric constraints.”> "’ The resulting minimum drag bodies of
revolution from this work are shown in Figure 4. In order to accommodate nonzero angles of attack, generic
bodies of revolution were approximated as a series of open rings at various stations along the axis of revolu-
tion."*{?* In this work, focus was given to the development of charts or tables that could be used to develop
aerodynamic coe cients by numerically evaluating the local inclination of each ring relative to the axis of
revolution.
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Figure 4. Minimum Drag Bodies of Revolution for Various Geometric Constraints.

IV.A.3. Absence of Analytic Hypersonic Aerodynamics in Present-Day Analyses

The analytic relations developed in the 1950s and 1960s have largely been unnoticed by the aerospace
community in the recent decades. The manual development of analytic relations is time-intensive and requires
complex integrations to be performed. Hence, the integration process is largely dependent on integral tables
and appropriate substitutions, a prohibitive process during conceptual design. Consequently, the advent of
the digital computer resulted in the widespread adoption of panel and CFD methods over analytic relations.
This can be observed by the many recent shape design studies that employ panel methods.“= <> While the
ability of these methods to model general and complicated shapes, such as the Space Shuttle Orbiter, are
desirable, these methods are orders of magnitude slower than evaluating analytic aerodynamic equations.
Consequently, the computational requirements of present-day panel methods have limited the number of
shapes evaluated during conceptual design.

Analytic hypersonic relations would allow many shapes to be evaluated rapidly. Additionally, if each basic
shape is parametrized to construct a family of similar shapes, then each analytic relation would only have to
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be developed once. This is a major advantage over panel methods that must be executed each time the shape
of the vehicle changes. Furthermore, advances in symbolic manipulation tools, such as Mathematica“* and
Maple,=> allow for the development of an automated process to develop analytic relations for many shapes.
This process has been generalized to allow for the integration of many shapes regardless of how the surface
is parametrized.

IV.B. Process for Development of Analytic Relations

An integrated Matlab and Mathematica environment has been constructed to automate the development of
analytic relations for user-supplied shapes. Matlab is used to drive the process and employs Mathematica’s
symbolic engine to perform the integrations. Mathematica was chosen due to its ability to add constraints
on symbolic variables (for example, the radius of a sphere is always greater than zero). Supplying this
information to Mathematica as an assumption in uences how the integration is performed. After the designer
describes the surface of the shape, routines containing the analytic aerodynamic relations are generated in
a Matlab-based aerodynamics module. This module can be easily integrated into trajectory simulations, be
used for parametric analyses, or be used in shape optimization. The six steps performed in this automated
process are further detailed.

Step 1. Surface Parametrization

The analytic aerodynamic expressions are obtained by integrating C, over the unshadowed surface of the
vehicle as described in Eg. (4) and Eqg. (5). In order to evaluate these integrals, the surface of each shape
must be parametrized by two independent variables via a position vector, r, as shown in Eq. (9), where
f(u;v), g(u;v), and h(u;v) describe the X, y, and z location of a point on the surface of the vehicle as a
function of the surface parametrization (u;v). The choice in parametrization variables, u and v, is largely at
the discretion of the designer. However, the choice in parametrization can dramatically in uence the ability
of Mathematica to obtain closed-form solutions when performing the integrations. Additionally, due to the
convention used when computing the surface normal, u and v must be chosen such that r, r, is pointed
inward, where ry, = % and ry, = %. The choice in parametrization also in uences the expression for the
di erential area, dA, of the integrations. The di erential area element is computed using the magnitude of
the inward normal vector as shown in Eq. (10).

r=[fu;v) g(u;v) h(u;v) ©)
dA=knk=kr, ryk (10)

Step 2: Compute Pressure Coe cient

With the surface parametrized by u and v, the pressure coe cient can be computed. Recall from Figure 1
that sin( ) is de ned as shown in Eqg. (11), where f is calculated from Eqg. (12) and V3 is de ned in Eq.
(3) of Section I1.B. With sin( ) known, C, can be computed using Eq. (1).

sin( ) =91 n (11)
_ fu 1y
n= kry ryk (12)

Step 3: Compute Shadow Boundary

The major challenge in deriving analytic aerodynamic expressions is ensuring that the integration is not
performed over shadowed regions of the vehicle where C, = 0. With an analytic expression for sin( ), the
shadow boundary can be computed by solving sin( ) = 0 for v as a function of u since the surface integration
is rst performed with respect to v. Note that the solution to this equation may have multiple results,
especially if the surface is parametrized with trigonometric functions. A numerical test is performed to
determine which solutions should be incorporated as the lower and upper bounds. Note that the limits of
integration are a function of vehicle shape and ow direction. Only convex shapes are currently supported.
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This allows the limits of integration in v to be de ned by the solution of sin( ) = 0. If the shape was not
convex, then shadowed regions may have boundaries where sin( ) & 0.

Step 4: Compute Reference Values

The reference area and reference length for each shape is computed based on the parametrization used. The
reference area is computed as the projected area of the shape on the y-z plane using Eq. (13) assuming

= =0, where dApianar is the incremental area projected on the y-z plane. Since r, ry represents the
inward normal of a convex shape and dApjanar Must be positive to obtain a positive reference area, dApjanar
is computed using Eq. (14). Due to the convexity requirement of the shape, the entire surface is unshadowed

at = =0, and, consequently, the limits of integration must be chosen to span the entire surface of the
shape. The reference length is computed as the maximum span of the vehicle in the x-direction.
z Umax Vmax
Arer = dAplanar (13)
Umin Vmin
dApIanar = (ru rV)T( k) (14)

Step 5: Evaluate Surface Integral

The aerodynamic coe cients are computed by evaluating the surface integral in Eq. (4) and Eq. (5). The
rst integration is performed with respect to v since the shadow boundary was solved as v = v(u). After the
integration is performed with respect to v, the shadow boundaries are substituted as the limits of integration
for v. The remaining integrand is only a function of u, and the second integration is performed with respect
to u. The limits of integration substituted for u are constants, u; and u,. During evaluation of the analytic
expressions, the designer speci es the portion of the shape used by supplying the values for u; and u,.

Step 6: Output Aerodynamics Code

After the analytic relations have been developed, they are output to a Matlab-based aerodynamics module.
This module contains the analytic relations, reference area, and reference length. Hence, as the analytic
relations of various shapes are developed, the aerodynamics module becomes a library containing analytic
relations for a wide variety of shapes.

V. Derivation and Validation of Analytic Expressions for Basic Shapes

The shape of common entry vehicles can be constructed via the superposition of basic shapes. The
construction and parametrization of the various basic shapes will be shown. It is important to note that all
basic shapes are parametrized by variables describing the family of the basic shape, such as the half-angle of
a sharp cone, and by variables describing the surface, u and v, as previously described. This generalization
of each basic shape allows the development of only one set of analytic relations for each basic shape family.
Each basic shape is chosen to have symmetry along the body axes where applicable and be centered at the
origin. A range of angles of attack and sideslip was chosen to validate both shadowed and unshadowed angles
of attack.

V.A. Sharp Cone Family

Although sharp cones are not used alone as entry vehicles due to the signi cant heating that would occur
on the sharp nose, conical frustums are commonly used as portions of entry vehicles such as sphere-cones
and biconics. The sharp cone family is parametrized by the cone half-angle, ., and length along the axis
of revolution, L. The surface of the sharp cone is parametrized using the local radius from the axis of
revolution, u = r, and revolution angle, v = 1, as shown in Figure 5. The resulting parametrized position
vector, r, is shown in Eq. (15).

r=[L u cos(v) usin(v)]" (15)

u
tan( )
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Z z
Figure 5. Side and Front View of Sharp Cone Parametrization.

Comparisons between the analytic relations and CBAERO in both force and moment coe cients for a
20° sideslip and various cone half angles and angles of attack are shown in Figure 6 and Figure 7, respectively.
Initially, comparisons were also planned between the analytic stability derivatives and CBAERO. However,
the CBAERO mesh resolution required to obtain accurate stability derivatives was prohibitive due to the
presence of numerical noise. However, as shown in Figure 7, excellent agreement was observed between the
analytic moment equations and CBAERO. Therefore, a comparison was made between the analytic stability
derivatives and the nite di erence of analytic moment coe cients (shown in Figure 8). As expected,
excellent agreement is observed in all cases. Note that the roll moment, C,, is identically zero as expected
for axisymmetric bodies.

0.8 T T -0.2 T T

— 35 =5°
[
—3 =15°
c
— 5 =30°
< z c
8} 8} o
o & =5°(CBA)
Cc
o 3, =15 (CBA)
o 3,=30"(CBA)
20 40 60
a, deg a, deg
Figure 6. Sharp Cone Force Coe cient Validation, = 20°.
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Figure 7. Sharp Cone Moment Coe cient Validation,
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Figure 8. Sharp Cone Stability Derivative Validation,

V.B. Spherical Segment Family

The blunting of entry vehicles to reduce aeroheating is often achieved through the addition of a spherical
segment as the nose of the vehicle. For common entry vehicles such as sphere-cones and blunted biconics,
the spherical segment family is parametrized by the nose radius, r,, and cone half-angle, . (Figure 9). The
nose radius and cone half-angle determine the portion of the spherical segment used to blunt the vehicle
due to tangency conditions enforced between the spherical segment and conical frustum. The surface of the
spherical segment is parametrized by the distance from the origin along the x-axis, u = X, and revolution

40 60
a, deg

—— 5 =5°
(9
— 35 =15°
[+4
——— 5 =30°
c
o BC:SO(CBA)

o 3§, =15 (CBA)

o 3,=30"(CBA)

— 35 =5
[
— 35 =15°
[
—— 35 =30°
[
u] GC:SO(FD)

o §,=15°(FD)

o §= 30° (FD)

angle, v =1, as shown in Figure 9. The resulting position vector, r, is shown in Eq. (16).

r=[u pr% u2 cos(v)

r2

P 2 uZsin(v)]"
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Figure 9. Side and Front View of Spherical Segment Parametrization.

In order to reduce the integration complexity associated with a spherical segment, analytic relations were
derived using a total angle of attack, , that is a function of both angle of attack and sideslip as shown in
Eqg. (17). The resulting normal and axial force coe cients in the total angle of attack frame, C}, and C§,
are converted back to the body frame using Eq. (18), where ¢ is the angle between the body frame and
total angle of attack frame.”* Comparisons between the analytic force coe cients and CBAERO for a 20°
sideslip and various half angles and angles of attack are shown in Figure 10. As shown, excellent agreement
exists when using the total angle of attack formulation. Note that the distribution of Newtonian pressure
forces always point to the center of the spherical segment. Thus, a spherical segment centered at the origin
will exhibit no moments. This is con rmed by the solution of zero for all moments from the integration
process. Consequently, no comparison is made between the moment coe cients and stability derivatives
with CBAERO.

= arccos(cos( )cos( )) 17
2 3 2
CJ, cos( 0)
QCSE 9 C0 sin( O)g (18)
0
Ca Ca
1.3 : : -0.1 : : 0.7
0.6f 1
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— 5 =15°
_02 O 4 [}
’ — 35 =30°
4 [
O 0
03l o 8,=5°(CBA)
—0.25¢ o 5, =15°(CBA)
0.2} o 6C=30° (CBA)
—-0.30 4
0.1}
-0.35
a, deg a, deg
Figure 10. Spherical Segment Force Coe cient Validation, = 20°.
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V.C. Flat Plate Family

Various portions of entry vehicles, such as stationary ns and moving control surfaces, can be approximated
as at plates. Additionally, the at bodies of advanced entry vehicle concepts such as the blended wedge
can be modeled using at plates. The at plate family is parametrized by the half-angle of the blended
wedge, , as shown in Figure 11.

X< l
Z

Figure 11. Side View of Flat Plate Parametrization.

According to Newtonian ow theory, the C, distribution of a at plate is constant. Thus, the force
coe cients are obtained using Eg. (1), resulting in Eq. (19)-(21). Additionally, the moment coe cients
about the centroid of the at plate are identically zero. This is the simplest example of the form the analytic
aerodynamics will appear. In general, a panel method approximates a shape as a collection of at plates
and does not provide a useful validation.

Ca = 2[sin( ) cos( )cos( )+ cos( )sin( )cos( )?sin( ) (19)
Cs =0 (20)
Cn = 2[sin( ) cos( )cos( )+ cos( )sin( )cos( )]?cos( ) (21)

V.D. Cylindrical Segment Family

Although the cylindrical segment is not a common shape observed in entry vehicles, it is used to blunt
advanced vehicle concepts such as the blended wedge.* The cylindrical segment family is parametrized by
the nose radius, rn, and blended wedge half-angle, . The nose radius and half-angle determine the portion of
the cylindrical segment used to blunt the vehicle due to tangency conditions enforced between the spherical
segment and at plates of a blended wedge design. The surface of the cylindrical segment is parametrized
by the distance from the origin along the y-axis, u =y, and revolution angle about the y-axis, v = , as
shown in Figure 12. The resulting position vector, r, is shown in Eq. (22).

r={[rpcos(v) u n sin(v)]T (22)

Figure 12. Side and Front View of Cylindrical Segment Parametrization.
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In order to validate the cylindrical segment, a panel method based on the equations of a at plate in
Section V.C was developed. This allowed for easy veri cation of the aerodynamic coe cients since the
construction of a vehicle in CBAERO is time consuming when the axis of revolution is not parallel to the

ow at zero angle of attack and zero sideslip. Comparisons were made between the analytic force coe cients
and the developed panel method for a 20° sideslip and various half angles and angles of attack. As shown
in Figure 13, excellent agreement exists between the cylindrical segment and the panel method. Note that
the sideforce and moment coe cients of a cylinder centered at the origin are identically zero.

—3 =0°
Cc
— 3 =15°
[
—— 5 =30°
[
o 5czo° (panel)

o 3§, =15°(panel)

o 3= 30° (panel)

20 40 ’ 40
a, deg a, deg a, deg

Figure 13. Cylindrical Segment Force Coe cient Validation, = 20°.

V1. Vehicle Construction Through Superposition

VI.A. Methodology

The aerodynamics of common entry vehicles can be determined through superposition of basic shapes.
Sphere-cones can be constructed using a spherical segment and a single conical frustum, and biconics can be
constructed using a spherical segment and two conical frustums. The geometry of a sphere-cone is speci ed
by the nose radius, rn, cone half angle, 1, and base diameter, d, as shown in Figure 14. The geometry of a
blunted biconic is speci ed by the nose radius, r,,, forward cone half angle, 1, aft cone half angle, », base
diameter, d, and height, h, as shown in Figure 15. Each basic shape used will likely have di erent reference
areas and lengths. Therefore, the superpositioning of basic shapes cannot be performed by simply adding
the aerodynamic coe cients from each shape. Rather, the aerodynamic coe cients of each basic shape must
be scaled to a common reference area and length. For example, the axial force coe cient of a sphere-cone,
Ca:sc, would be calculated using Eq. (23), where the overall vehicle reference area, Asc, iS chosen to be the
base area of the sphere-cone.

Aref'cone Aref's here
CA;sc = CA;cone — + CA;sphere —relispnere (23)
Asc Asc
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Figure 14. Sphere-Cone Parametrization. Figure 15. Biconic Parametrization.

VI.B. Sphere-Cone and Blunted Slender Biconic Validation

The force and moment coe cients for both a blunt sphere-cone and blunted slender biconic at a 20° sideslip
were validated with CBAERO using parameters listed in Table 1. As shown in Figure 16 and Figure 17,
excellent agreement in force and moment coe cients is observed for both vehicles.

Table 1. Sphere-Cone and Blunted Biconic Parameters.

Parameter  Sphere-Cone Biconic

n 0.3 ft. 1.0 in.
1 70.0° 17°

2 - 8°

d 2.5 ft. 19.6 in.
h - 48.0 in.

0 T T 2.5

Biconic
Sphere-Cone

O  Biconic (CBA)

O  Sphere-Cone (CBA)

a, deg

Figure 16. Sphere-Cone and Blunted Biconic Force Coe cient Validation, = 20°.
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0.4r

0.3}

0.2}

0.1r

Biconic
Sphere-Cone

O  Biconic (CBA)

O  Sphere-Cone (CBA)

-0.1
-0.2
-0.3
-0.4
-0.5 ; .
0 20 40
a, deg a, deg a, deg
Figure 17. Sphere-Cone and Blunted Biconic Moment Coe cient Validation, = 20°.

VI.C. Example Application Using the Superposition of Basic Shapes

As shown, basic shapes can be superpositioned to construct full entry bodies commonly used for various
entry missions. The analytic relations allow for rapid parametric sweeps and shape optimization. As an
example, vehicle designers may be interested in a biconic entry vehicle with a peak L=D of 2 subject to
certain geometric constraints.

For this problem, a maximum vehicle height of 48 in. and a maximum base diameter of 21 in. was
assumed. For a given diameter, an increase in the height would result in a more slender vehicle with higher
peak L=D. Therefore, in order to maximize the base diameter, the height of the vehicle must also be
maximized. Parametric sweeps over a wide range of angle of attack and zero sideslip were performed for
various cone half angles, ; and », in 1° increments as well as various base diameters. Contours in peak
L=D for the maximum allowable base diameter of 21 in. are shown in Figure 18. As shown, no sharp biconic
is capable of achieving an L=D of 2. A theoretical best L=D of only 1.86 could be achieved with ; = 18°
and , = 11°. Consequently, the base diameter was reduced until a sharp biconic with an L=D of 2 was
identi ed. As shown in Figure 19, an L=D of 2 is achieved with d = 19:6, ; = 17°, and , = 10°. Note
that each point in the contour plots corresponds to a full sweep of angles of attack, a process that is reduced
from hours using CBAERO to minutes using the analytic relations.

25 : : : : . 25 : : : : ;
(&> Peak L/D Contours (&> Peak L/D Contours
* Optimal Peak L/D = 1.86 * Optimal Peak L/D = 2.01

20f ] 201 1

o 15 — o 15 1
o} )
© o
S /18*——1 W

10t 4 ﬁ&””’iﬁf 10t == ie——— L%

/ 1A 12 // 16 A

1 1.4 1.
C A2 : N2 1
> ¥ g > NS e Ca
~ (<1 » //
; ; ; : : D ; //0 ; ; LY ; : ; ; /946’
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
o, deg 5, deg
1 1
Figure 18. Contour of Peak L/D for d = 21 in. Figure 19. Contour of Peak L/D for d = 19.6 in.
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VIIl. General Shapes

The superposition of basic shapes provides the capability to determine analytic aerodynamics of common
entry vehicle shapes. However, shapes with improved aerodynamic performance outside of the range of basic
shapes may be required to accomplish future missions. Therefore, it is desirable to be able to obtain the
analytic aerodynamics of more general shapes. Many methods from computer-aided design exist to describe
general shapes. As an initial step in this direction, analytic relations of low-order Bezier curves of revolution
have been developed for unshadowed total angles of attack in which the full body is exposed to the ow.

VII.A. Bezier Curves of Revolution

The development of analytic relations for Bezier curves of revolution allow for rapid analysis of general bodies
of revolution. The geometry of a Bezier curve is parametrized by a nondimensional arclength, t, as shown in
Eq. (24), where Jn.i(t) is shown in Eqg. (25), T is shown in Eg. (26), and 0 t 1.°° The location of the
ith control node is speci ed in the vector B; and the order of the Bezier curve is speci ed by n. The control
nodes specify a control polygon inside which the Bezier curve must reside. The development of analytic
relations was only performed for a second-order Bezier curve in which n = 2. Example Bezier curves, along
with their corresponding control node locations and control polygons, are shown in Figure 20. As expected,

each Bezier curve resides inside the control polygon and is connected to the initial and nal control nodes.

X
P()=  BiJni(t) (24)
i=0
n . n i
Inii() = Pt @ v (25)
n n!
i i )l 26
i i'(n i) (26)
2 °
1.8f ]
1.6f |
1.4 ]
1.2f |
= 1r [ 2 |
1
0.8} !
. ! Bezier Curve 1
0.6 ® Control Nodes 1 |
- — — Control Polygon 1
04r Bezier Curve 2
0.2 ® Control Nodes 2 ||
- — — Control Polygon 2
O Ad L L

0 0.5 1 15 2
X

Figure 20. Bezier Curves of Revolution with Control Nodes and Control Polygons.

Analytic relations have been developed for a second-order Bezier curve of revolution in which the control
node locations were generalized. This allows the development of one set of analytic relations to fully describe
all second-order Bezier curves of revolution. These relations currently assume that the entire vehicle is
exposed to the ow. Only analytic relations for the force coe cients have been developed to date. The
force coe cients of the Bezier curves of revolution shown in Figure 20 have been validated with CBAERO
as shown in Figure 21. As expected from Figure 20, Bezier curve 2 remains unshadowed for a wider range of
angles of attack as shown in Figure 21. Excellent agreement is observed between the analytic relations and
CBAERO.
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Figure 21. Validation of Unshadowed Bezier Curves of Revolution.

VIIl. Potential Applications of Analytic Aerodynamics

The analytic aerodynamic relations were originally developed to reduce computational requirements,
compared to panel methods and CFD, for the conceptual design of entry vehicles. This allows for rapid
aerodynamic analysis when performing trade studies or shape optimization. Additionally, the evaluation of
the aerodynamics module is nearly instantaneous and can be the fastest module among all disciplines in
conceptual design.

Typically during conceptual design, optimal trajectories are identi ed to determine the nominal aerody-
namic performance requirements of the entry vehicle, such as peak L=D and ballistic coe cient. A vehicle
can then be constructed to meet these aerodynamic constraints as well as other geometric constraints. How-
ever, in some cases, high performance entry trajectories are not own at a constant angle of attack, resulting
in L=D and ballistic coe cient varying throughout the trajectory. Consequently, an iterative process must
be performed until convergence between vehicle shape and time-varying aerodynamic performance required
by the trajectory is observed. Furthermore, within the trajectory optimization process, the mapping of
vehicle shape to aerodynamic performance is largely performed using tables of aerodynamic coe cients as a
function of angle of attack and sideslip.

If direct methods are used for entry trajectory optimization, then the addition of shape design parameters
would simply augment the overall optimization problem.=”-=° In this case, the analytic aerodynamic rela-
tions would be directly integrated into the trajectory simulation, dramatically reducing the computational
requirements of evaluating the aerodynamic coe cients along each candidate trajectory. Additionally, any
constraints on the shape parameters would constrain the search domain of the direct optimization method.

If indirect methods are used to perform trajectory optimization, then analytic mapping of vehicle shape
to aerodynamic performance would allow the indirect method to perform simultaneous trajectory and vehi-
cle shape optimization. The analytic aerodynamic relations could be directly integrated into the equations
of motion, modeling the varying L=D and ballistic coe cient throughout the trajectory. Additionally, con-
straints on vehicle shape such as diameter and volume can be directly integrated into the augmented objective
function. This can be performed in a way identical to the incorporation of interior point constraints.

To date, the concept of predictor-corrector guidance algorithms have largely been con ned to academic
studies. This is partially due to the large tables of aerodynamic coe cients that must be interpolated onboard
for various angles of attack and sideslip. PredGuid, planned for incorporation into the Orion command
module for lunar return, will implement a predictor-corrector in the onboard guidance of a ight vehicle.
The predictor-corrector of PredGuid solves for a constant bank angle solution to perform a skip during the

rst entry in order to land o the coast of California.”” The analytic hypersonic relations developed in
this investigation could substitute the large aerodynamic tables, allowing real-time onboard propagation of
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trajectories using angle of attack, bank, and sideslip for onboard predictor-corrector guidance algorithms.

The propagation of trajectories, either onboard in predictor-corrector studies or during trajectory op-
timization, generally ignores the shape change experienced by the vehicle throughout the entry trajectory.
Instead, ablation studies are usually performed after the design of the trajectory and vehicle in order to
estimate the thermal protection system thickness and mass. However, analytic aerodynamic relations would
enable the modeling of shape change due to ablation during trajectory propagation.

IX. Conclusions

Hypersonic force and moment coe cients can be obtained through the use of Newtonian ow theory
in which a surface integration of the pressure coe cient is performed. The advent of the digital computer
has resulted in widespread adoption of panel methods in which the surface integration is numerically ap-
proximated through surface paneling. Paneling techniques allow for the evaluation of complex geometries.
However, many entry vehicle geometries used today are not complex and are derived from the superposition
of basic shapes.

In this investigation, an automated process has been developed to evaluate the surface integration of
pressure coe cient analytically. Analytic relations for force coe cients, moment coe cients, and stabil-
ity derivatives were developed for basic shapes including sharp cones, spherical segments, at plates, and
cylindrical segments. Each basic shape was parametrized according to the characteristics of the shape. Con-
sequently, only one set of analytic relations were developed for each basic shape. These analytic relations
account for shadowed and unshadowed angles of attack and sideslip. The basic shapes can be superposi-
tioned to construct commonly used entry vehicles, such as sphere-cones and biconics. The analytic relations
for force coe cients, moment coe cients, and stability derivatives for all of these shapes were veri ed using
CBAERO or another paneling code. Evaluation of the resulting analytic relations is nearly instantaneous
and is orders of magnitude faster than paneling codes. An example biconic shape design was performed
to maximize payload packaging capability while maintaining required aerodynamic performance. The en-
tire design process that originally would require hours using panel methods was executed in minutes using
analytic relations.

In order to obtain the analytic aerodynamics for more general bodies of revolution, relations were de-
veloped for second-order Bezier curves of revolution at unshadowed total angles of attack. These relations
were parametrized by the location of control nodes associated with the Bezier curve. Aerodynamic force
coe cients were validated using CBAERO. This served as an initial step in addressing the limits in gen-
erality that can be achieved with analytic relations. The resulting analytic equations of basic shapes and
Bezier curves of revolution could dramatically impact integrated vehicle and trajectory design, trajectory
propagation for onboard guidance, and aerodynamic modeling of shape change due to ablation.
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