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As engineers examine larger coupled systems, computational complexity, available re-
sources and the lack of expert intuition create a need to understand the importance of
each link of data passed through an analysis. A better understanding and an automated
calculation of this data importance would enable an advance of the art for automated de-
composition and optimization methods. Larger coupled problems may, for instance, expand
beyond an expert’s experience in manual decomposition. By automatically discovering the
importance and interrelated structure of a problem, low ranked data links might be tem-
porarily separated to decompose a problem into sub-problems. A better understanding
of the larger problem may also allow for organizational optimization around the coupled
sub-problems discovered by this method, that is theoretically grounded in Information
Theory.

Nomenclature

BC Ballistic Coefficient
DSM Design Structure Matrix
FPA Flight Path Angle
GA Genetic Algorithm
GSE Global Sensitivity Equations
MSI Module Strength Indicator
PESST Planetary Entry Systems Synthesis Tool

Subscript
i Column index
j Row index

I. Introduction

The scale of multidisciplinary problems in engineering has greatly increased over the past twenty years;
fifty design variables once was typical of a large scale conceptual problem while now this number can exceed
a thousand.1 The processing power of computers has roughly followed the prediction of Moore for over thirty
years, doubling by 1.5 year intervals for a computer of the same cost. Computational fluid dynamics problems
that once were examined in doctoral dissertations are now routinely assigned as homework problems. Yet
the fidelity and complexity of engineering design problems has kept track with the rapid rise in processing
capability. Higher fidelity tools are being used in earlier stages of the design process and larger problem
domains are being examined. This is to say that the problems tackled by engineers continue to evolve
towards higher fidelity and wider domain exploration, always on the edge of current processing capability.
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Researchers today are presented with the choice of either waiting for the processing power to deal with their
harder problems or developing methods to handle these problems with today’s hardware.

Decomposition methods expand the types of problems currently solvable by today’s processing capabil-
ities. A larger problem is decomposed into smaller, more tractable, sub-problems of appropriate structure.
The solutions to these smaller problems are then used to either solve or provide insight into the behavior
of the original problem. Historically this process has been performed by human field experts and many
heuristics have been developed to guide these decomposition efforts.2–6 The problem has always existed of
what to do when either a professional is not available or when a problem does not agree with an individual’s
experiences or expectations. It is proposed that this creates a need for automated decomposition methods
to aid the engineer in discovering useful structure that can be leveraged to understand and better solve their
problems.

II. Background

II.A. Problem Representation

The most common problem representation used in multidisciplinary analysis and optimization (MDAO) for
engineering design is the design structure matrix (DSM) or N2 diagram.7 The design structure matrix was
introduced by Steward8 as a tool for marking the interactions between analyses. This representation is
commonly present in engineering classrooms and is used by most engineering decomposition methods for its
ease of implementation and use.

A decomposed (well ordered) DSM better shows the structure of the problem. Strongly connected
analyses can be easily seen and links between analysis clusters can be evaluated to see if clusters can be
treated as separable sub-problems. A randomly ordered DSM is shown in Figure 1(a). The analysis programs
have been randomly ordered along the diagonal of the graph and engineers examining the graph would have
difficulty finding problem structure to leverage towards decomposing the problem. The exact same problem
is shown in Figure 1(b) with an ordering that helps show possible decompositions for the problem. Four
separate closely connected groups might be separable enough to be considered as sub-problems, this would
depend on the presence or strength of links connecting these sub-groups.

(a) Randomly Ordered DSM (b) Decomposed DSM

Figure 1. Two Orderings for the same DSM Problem Structure

II.B. Link Importance Discovery

When evaluating how to decompose a coupled problem into sub-problems, a great challenge has been the
correct evaluation of the importance due to each of the interconnections. The four closely connected groups
are considered as sub-problems in Figure 2(a). This assumes that the links between the groups are weak
enough to temporarily disconnect while four sub-solutions are found. The four groups could then be recon-
nected to converge onto a system solution with good initial guesses for the components of the problem. If
links connecting the first two sub-groups in Figure 2(b) are in fact very important towards determining their
sub-solutions it might be better to treat the problem as having three sub-problems. Here, the structure for
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the sub-problems is based off of the importance of the links. A useful metric from information theory, mutual
information, will be described along with its advantages over several current link heuristics in Section III.

(a) Every Group formed into Sub-problems (b) Composite Sub-problem formed

Figure 2. Two Potential Sub-problem Organizations for the same DSM

Most methods have dealt with decomposing the problem before the running of an analysis (static de-
composition) by: treating all links as equally important6,9 (binary connections), using heuristics such as the
number of variables comprising the link,1 and by using survey results from experts to rank linkage importance
with a discrete value (ie. low/med/high).4 A weighted DSM, with discrete values, ranks its links from a
discrete set greater than two; integers 1-10, low/med/high,4 etc. The information used to obtain this linkage
ranking can come in the form of surveys or other means of expert supplied or computed data. Another
metric used to assign a discrete value to a given linkage is the number of unique values being passed;1 also
known as the ‘thickness of the pipe’. This would bias the importance measure toward links that transmit
larger numbers of variables. Weighted DSMs can also have real values assigned to the links. These values
have come from sensitivity calculations3 or another metrics used to calculate a real valued importance for
the link.2,10

Global Sensitivity Equations have been used at runtime to define the total derivatives of the output
responses in terms of the subsystem local sensitivities.3 This is one good instance where the dynamic
importance of the links, given by the output response’s sensitivity to changes, is computed at runtime.
The method requires that derivatives can be taken, at both the subsystem and global level, but is one of
the few methods that allows the problem behavior to dictate the importance that should be assigned to
interdependencies.11 This has seen use in the multidisciplinary synthesis of aircraft.12

Future problems will tend to be larger and more complicated following increases to analysis and sys-
tem fidelity. The ability to explicitly rank the interconnections between analyses will aid in the real time
decomposition of problems as they are evaluated. Without advancing the methods currently used for decom-
position, greater reliance on high performance hardware will be required to handle future problem growth.
Though the advancement of computational power is impressive, the opportunity of pairing this power with
real-time decomposition methods should allow the efficient solution of large-scale problems.

II.C. Methods that Decompose Problems Pre/During Component Execution

The following decomposition methods have been separated by when they act to decompose the problem being
examined. A class of methods seeks to use general metrics to reorganize the problem, before component
execution, into closely coupled groups of components. The overhead in decomposing the problem is front
loaded so the user does not have to pay that cost during execution. Expert knowledge can be used to rank
the importance of links in a DSM and these rankings can be leveraged to form clusters of related analyses.
The drawback with pre-execution arrangement is that the expert opinion and/or heuristics are assumed to
be applicable to the particular problem being analyzed.

Heuristics continue to be widely used to reorder the analyses in a DSM before the running of any of the
processes.2–6 Table 1 is a representative list of the heuristics that have been used to automatically decompose
problems in engineering.
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III. Proposed Link Rank Metric

A metric to evaluate the importance of information links between disciplines is valuable as one can gain
insight into the relationships driving the problem. This data would be useful when planning which groups
should work closely together on a project. As the structure of a problem is better understood, the problem
can often be made more efficient or a provided solution made more robust. For example, no link information
is known in Figure 3. An engineer seeking separable sub-problems may wonder what arrangement would lead
to the best set of interior connections with the weakest external connections to other groups. The engineer
can either assume that the links are equally important or seek to estimate the importance that should be
assigned to each link. The more information available during a decomposition process the more informed a
sub-problem separation can become.

Figure 3. DSM Example with No Link Importance Information.

Adding link knowledge is much like adding color to the DSM in Figure 3. Two closely coupled problems
are plainly seen with strong interior links in Figure 4(b). These clusters would have been considered when
the links were considered as being equally weighted but an equal weighting would not have provided guidance
on where analysis 3 should be placed. Link information and structure guides sub-groupings. Updated link
information can be used to update the groupings utilized for the problem, Figure 4(c). Ideally most of
the information required to solve a useful piece of the problem should be found within a grouping with
a minimum of required data passed between groupings. This leads to separable sub-problems with the
potential for concurrent evaluation. The decomposition provides insight into the mechanics of the problem
and provides the potential to lower the time involved in finding a system solution.

(a) Links Weighted (b) Two Sub-problems Marked (c) Updated Link Implies new Sub-
problem Structure

Figure 4. Importance of Link Ranking to Forming Sub-problem Clusters.

Applying this to the problem of decomposition, a workable metric could be used to select better quality
sub-problems. A high quality sub-problem representation would display groups of strongly connected com-
ponents, with highly ranked connections, as opposed to connections that are not as valuable for the requested
analyses. A metric could be used to select links for temporarily removal, to better enable a decomposition;
allowing the option to temporarily remove less important links from an analysis.

The current link metrics examined from Section II have several drawbacks; for instance, treating all links
as having the same importance fails to capture useful information about the problem that could be used to
decompose or learn more from it. Experts may not always be available or their intuition may be misleading
on a novel problem. The number of variables in the link does not necessarily relate to the importances for
those variables. All of the passed variables in a link could be unimportant. A metric is needed that can
adapt to the problem at hand.
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The use of partial derivative information is dynamic to the problem at hand but is only a good estimate for
the local area around the point where the partial derivative is taken. It provides local importance information
and can only be calculated where a derivative exists; continuous or discretized continuous variables. Naturally
discrete variables that are not discretized from a continuous source (EngineA, EngineB, etc) can not have
their partials taken. Ideally a workable metric would be able to also handle these naturally discrete variables.
Inexpensive analytical derivatives are also not often available on realistic engineering problems.

III.A. Mutual Information

Mutual information is suggested as a useful metric for judging the importance of data links in a design
structure matrix. Mutual information comes as a concept from information theory based on the foundational
work of Claude Shannon.18 It estimates the amount of shared uncertainty or dependence present between two
random variables. This metric can be easily computed during the course of running a design structure matrix
for each of the links in the matrix. Though several of the techniques used to estimate mutual information
could be adapted to estimate partial derivatives; mutual information measures the global general dependence
between two random variables and can be used on continuous, discretized continuous and naturally discrete
data.

Correlation is commonly used in engineering to measure dependence between random variables. Correla-
tion though only measures the linear dependence between two variables while mutual information measures
general dependence.19 For example, two variables x and y = sin(x) are uncorrelated but are correctly shown
as having a high dependence when using mutual information. Correlated variables are always shown as
dependent by mutual information, the dependence is then from a linear source.

A partial derivative, as another tool to show dependence at a single point, is not able to describe the
behavior of variables that do not possess meaningful derivatives while mutual information does not have that
limitation. Partials also provide local information while mutual information works with the known global
behavior of the variables. To better understand the concept of mutual information, the concept of entropy
will be examined briefly.

Entropy is a concept borrowed from chemistry and is considered here as a measure of the uncertainty
associated with knowing the value of a random variable. When there is a 100 percent chance of the random
variable having a value of 1 there is no entropy, or uncertainty, associated with the variable. This is also
true when the variable has a 100 percent chance of being equal to 0. It makes intuitive sense that the state
containing the most uncertainty is one where there is an equal chance of any number of values occurring.
The formula to calculate entropy is shown in Equation 1 for continuous variables and in Equation 2 for
discrete variables.

H(X) = −

�

X

p(x) log2(p(x)) (1)

H(X) = −
�

x∈X

p(x) log2(p(x)) (2)

The reader should note that only the marginal probability distribution p(x) is required to compute the
entropy of a random variable. Log base two is used in information theory as one normally speaks in terms
of a binary encoding for information transmitted over a communication channel. By presenting entropy this
way, it expresses the number of bits required to remove the uncertainty present in the random variable. By
using Equation 2, one can see that two bits are required to remove the uncertainty present in a random
variable that possesses four equally likely options, see Equation 3.

H(X) = −
�

x∈X

p(x) log2(p(x))

= −[0.25 log2 0.25 + 0.25 log2 0.25 + 0.25 log2 0.25 + 0.25 log2 0.25]

= −[log2 0.25]

= −[−2] = 2 bits minimum to describe option selected (3)

More intuitively, having four options in binary requires at least two bits to name them, {00, 01, 10, 11},
if all the options are equally likely. Mutual information is the amount of entropy, aka information, that two
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random variables share. If two random variables are independent then learning the value of one variable,
gaining its information, will not reduce the entropy still possessed by the other random variable.

H(X, Y ) = −

�

X

�

Y

p(x, y) log2(p(x, y)) (4)

H(X, Y ) = −
�

x∈X

�

y∈Y

p(x, y) log2(p(x, y)) (5)

Calculating the amount of mutual information also requires the calculation of the joint entropy which
is the total sum of unique information provided by two random variables. In a Venn diagram, it would be
the total area represented by both circles without double counting any overlap. This can be computed by
Equation 4 for continuous variables or equation 5 for discrete variables.

I(A,B) = H(A) + H(B) − H(A,B) (6)

Equation 6 shows that, when calculating the mutual information, one can pictorially consider it as the
area of overlapped entropy between two random variables. The calculation of the mutual information requires
knowledge of the marginal probability distributions for the random variables, to calculate H(A) and H(B),
and the joint probability distribution between the variables, to calculate H(A,B).

These probability distributions can be estimated from a finite set of sampled data allowing for the use
of mutual information for continuous and discrete data. As either continuous or discrete distributions can
be used, the discrete data does not have to come from a discretized continuous range. A set of values for
EngineA, EngineB, etc. works just as well as the set of real numbers.

Mutual information as a metric also does not deal with the local behavior of the variable at one point.
The value for mutual information is measured over the range of the probability distribution estimated by
sampling from the space of solutions. This is a better general metric when evaluating decisions for the
potential decomposition of larger problems. This type of global information should provide a more robust
decomposition than if one were to have only used locally accurate information.

III.B. Planetary Entry Systems Synthesis Tool

The Planetary Entry Systems Synthesis Tool (PESST) was developed by the authors to be a usable concep-
tual design tool for spacecraft entry studies of Earth, Mars and Venus.20 The tool incorporates discipline
models for geometry, hypersonic aerodynamics, guidance algorithms, trajectory simulation, thermal environ-
ment and sizing to converge conceptual entry vehicles.

PESST itself is a valuable contribution that allows conceptual designers to explore the space of potential
entry scenarios. It serves to fill the nitch where a designer wishes to apply first-order physics to a conceptual
design space to better understand the problem behavior. It will serve as a realistic example for using mutual
information as a ranking metric in an engineering problem. A detailed discussion of the models utilized for
the PESST tool is available from the cited reference.

IV. Results for Link Rank Metric

IV.A. Sample Problem

A design space was examined using the mutual information heuristic as a proof of concept for its use as
a link metric. The PESST framework was used to simulate an entry body at Venus over several ballistic
coefficients (BC), entry flight path angles (FPA) and entry velocities. The output of concern was whether
the vehicle would skip out of the atmosphere and how the variables would rank as drivers for this process.

The Pioneer-Venus probes were sent in 1978 to gain information regarding the Venus entry environment.
The entry domain used for this study includes the entry values for the shallower two Pioneer-Venus probes.
The cases for Venus entry covered the entry conditions utilized by the Pioneer-Venus Sounder and Day probe;
both had an entry velocity of approximately 11.54 km/s and an entry flight path angle of -32.37◦(Sounder)

and -25.44◦(Day).21 The cases examined entries with ballistic coefficients at 150, 200 and 250 kg/m
2
both

probes had a ballistic coefficient of approximately 200 kg/m
2
.

The two strongest variables affecting skip out were shown to be entry FPA and entry velocity, their
relationship to skip out over the domain is shown graphically in Figure 5. No cases were shown to skip out,
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Figure 5. Design Space for a Venus Skip (BC = 200 kg/m2).

for the domain examined, below negative nine degrees. Numerically Table 2 shows that entry FPA shared
the greatest amount of information with the output variable for skip out.

Table 2. Information Metric Applied to Venus Entry Skipping

Entropy Cross Entropy Mutual Information

with Skip with Skip

Ballistic Coefficient 1.585 2.236 0.000

Entry Velocity 3.700 4.317 0.035

Entry Flight Path Angle 5.129 5.289 0.492

Skip 0.651

The input variables with more assigned choices had a higher entropy as ballistic coefficient, entry velocity
and entry FPA were all equally distributed in a full factorial experiment over the domain. The output boolean
variable for skipping has a lower entropy than a 50/50 choice as the domain had a higher percentage of non-
skipping cases. The important measurement here is the amount of shared entropy between the input and
output variable, shown by the calculated mutual information. The mutual information is highest for those
variables that provide the greatest amount of information regarding the value of the output; entry FPA is the
most important variable regarding skip out, then entry velocity and finally ballistic coefficient. The results
returned did not show any difference in skip out status due to the ballistic coefficient making these results
independent over the domain.

IV.B. Advantages for Ranking Link Importance

The computational cost for calculating link importance requires the estimation of a marginal probability
distribution and a joint probability distribution. These are formed by tracking and storing values as they are
generated by the DSM. As long as the time required by the analyses is significantly larger than the time to
estimate the probability distributions this is a workable method for determining dependence. For the PESST
framework example, a single case takes 15-30 seconds to run meaning several hours for the full domain of
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data points. The evaluation of the mutual information was on the order of seconds making it workable for
this conceptual design tool.

This heuristic has a great deal of flexibility toward working with different types of data and can be
computed on-the-fly or post-processed after a design of experiments. An engineer may wish to use this
metric as another way to understand the dependence existing between variables in a study, as an alternative
to covariance for linear dependence.

V. Static Decomposition with Mutual Information based Optimizer

Pre-execution (static) decomposition encompasses a very common set of methods used to automatically
separate engineering problems into sub-problems. Methods are grouped into this category by their aim to
rearrange and separate the problem components before executing any of these components. The methods
either assume that all links are equally valuable or that they have values based from metrics that can be
computed without evaluating the connected analysis tools. Expert surveys, the number of variables handled
by the link, and the location of the link in a DSM are all metrics that have been used to rank links. The
optimum arrangement for the problem is normally then searched using a global optimizer with a utility
function that incorporates these link ranking metrics. In engineering, a genetic algorithm has most often
been utilized for this global search.

A strong improvement to this current state of the art in aerospace engineering would be to improve the
global optimization method utilized to explore the space of potential problem arrangements when decom-
posing a problem statically. This optimization method is extracted from recent work in Computer Science
and displays several advantages to the use of genetic algorithms when exploring spaces with a structural
relationship between the input variables. The problem of arranging disciplines in a design structure ma-
trix has a great deal of structure that can be leveraged to converge towards better performing solutions
with fewer function calls than typically taken by a GA. Mutual Information Maximizing Input Clustering
(MIMIC) is described below and is potentially useful for this and many multi-modal domains in aerospace.
Originally demonstrated for problems with discrete input variables, an addition to the treatment of the
variables detailed in this work will enable the use of MIMIC with continuous input variables. By utilizing
mutual information, the method is able to discover and leverage problem dependence structure.

V.A. MIMIC an Optimizer for Static Decomposition

Mutual Information Maximizing Input Clustering was designed by taking a powerful concept from GAs,
crossover, and refining it to compute where larger problems may best be separated into sub-problems. It is
not another type of genetic algorithm. MIMIC is able to more efficiently converge over a design space by
explicitly modeling the structural interactions between the input variables. It uses prior solutions to build
a model of the solution space that focuses on areas of the space that are likely to contain high performing
candidate solutions. It builds this model distribution for the solution space by using statistics from prior
samples from the solution space.

Equation 7 describes the exact joint distribution between a set of N random variables. By approximating
this function through pair-wise relationships, information about the relationships between the variables can
be exploited to search the domain space. The dependency tree version of MIMIC22 uses pair-wise conditional
probabilities to create an approximation to the true distribution. The probabilities are used to compute
the mutual information between each pair of variables and a graph is formed with edges weighted by the
mutual information between variables (represented by nodes). An example approximation for five random
variables is shown in Equation 8. The selection of which conditional and marginal probabilities to use for
the approximation is answered below.

p(X)true = p(X1|X2...XN)p(X2|X3...XN)...p(XN−1|XN)P(XN) (7)

p̂(X)approx = p(X4)p(X5|X4)p(X1|X4)p(X3|X4)p(X2|X3) (8)

This approximation could be made to use ternary conditional probabilities [ie p(x | Y = y, Z = z)] for a
more accurate match to the exact joint distribution but would require far more data to accurately determine
the ternary interactions.23 Pair-wise conditional probabilities [ie p(x | Y = y)] are used to approximate the
true joint distribution in Figure 7 as they are easier to determine from a smaller set of data. This is often a
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sufficient approximation to the joint distribution and was shown to lead to an order of magnitude reduction
in function calls vs genetic algorithms, when tested on an example problem in Section VI.

Figure 6. Flow of execution for the MIMIC algorithm.

To show how the statistical data is used to create a distribution model, each variable is first assigned
a vertex in the graph that will serve as the approximated model, the example five node graph in Figure 6.
The mutual information between each pair of variables i and j is computed; this only requires knowledge of
p(xi) and p(xi, xj). The mutual information can be calculated from this information and used to weight the
links between the variables. The fully-connected graph with computed weights is shown in figure 6 for a five
variable example problem. Each edge value is the mutual information between the two variables; this can
take any positive value inclusive of zero. Variables with four bits worth of shared information would have
an edge value of four.

The Kullback-Leibler (KL) distance between the approximated distribution and the exact or true dis-
tribution is a measure of how similar the two distributions are.24 The model with pair-wise statistics that
minimizes the KL distance between it and the true distribution will be the best possible approximation for
the true distribution available.25 The graph that minimizes the KL distance will be a maximum spanning
tree with the edges weighted by mutual information. A discussion on how this occurs can be found in Chow25

and Baluja.22

To form this maximum spanning tree, one simply keeps the highest weighted links between the nodes to
form an acyclic tree containing every node. One can use Prim’s algorithm to automatically discover the tree
structure, changing it to find the maximum spanning tree instead of the traditional minimum spanning tree.
This is often as simple as changing the less-than symbol used in an implementation of Prim’s algorithm to
a greater-than symbol. Or, equivalently, the weights can be negated and the minimum spanning tree found.
The maximum spanning tree for the example is shown as the acyclic five node graph in Figure 6.

This tree model for the distribution is equivalent to the best possible approximation to the true distri-
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bution, using only single and pair-wise conditional probabilities. The tree shown in Figure 6 is equivalent to
the distribution described by Equation 8.

Sampling from the tree, a model of the solution space, is straightforward. The user selects any node and
uses the probabilities for each option available to that node to select its value. Based on that value, a depth
first transit (follow the path taken by a depth first search) is performed through the tree. At each node a
value for that variable is determined based on the conditional probability of its value and the value taken
by its parent on the tree. The estimated Equation 8 comes from the tree shown in Figure 6; The value for
X4 is discovered first, then the value for the child X5 based off of p(X5|X4). If X5 had children their value,
for the candidate input vector, would be computed next.

Now that the solution can be approximated by a joint distribution, how can the model be used to sample
from higher performing areas? This model is biased towards the higher performing areas of the solution
space by using the lowest member of the top M percent of the data to specify the low-bar for data used to
form the next generation’s model. In MIMIC, M is typically 50 percent which marks the position for the
group mean, in a ranked list. Further sampling from the old model is continued, to replace the lower than
average candidates, until a new group of the same size is formed with samples that are all better than the
past mean. This new group is used to create the model for the next iteration. This biased model for the
domain is focused on the better performing areas of the solution space. See Figure 6 for the full pictorial
flow of the MIMIC algorithm.

V.B. Extension to MIMIC for Continuous Variables

The MIMIC algorithm requires a calculation of mutual information between pairs of variables to approximate
the joint distribution between all inputs. The estimated joint distribution provides likely locations for higher
performing combinations of inputs. The calculation of mutual information between two variables A and B
requires knowledge of three probabilities; P(A), P(B) and P(A,B). MIMIC has been presented as addressing
discrete inputs. This allows for these input probabilities to be treated as histograms where entries are counted
and normalized by the total number of entries.

The calculation of mutual information in Section III.A was shown to be possible with either continuous or
discrete random variables. A dependence tree (as in MIMIC) can still be used to approximate the full joint
distribution between all the input variables once the mutual information is known.25 An approximation for
the continuous probability distributions: P(A), P(B), and P(A,B) is required to apply MIMIC to continuous
variables. In this work, a non-parametric method is utilized to estimate continuous probability distributions.

A method is non-parametric if no knowledge of the true distribution is required before estimation. One
non-parametric method that will utilized in this work is Parzen-window density estimation. Parzen’s work26

allowed for an estimated distribution that would converge toward the true distribution as the number of
samples increased. The method has been successfully used in pattern recognition,27 image restoration28 and
regression.29

p(x̄) ≈ k/NV =
1

Nhd

N�

i=1

K

�
x̄ − x̄i
h

�

� �� �
h is edge for cube of dimension d

(9)

The value k which represents the number of samples appearing within the region R is often calculated by
applying a function at each sample point, Equation 9. The function K is referred to in machine learning as
a kernel function. Depending on the kernel selected, each sample point has an opportunity of contributing
to the probability estimate within the region. The region R for simplicity is considered as a hypercube with
an edge length of h. In Parzen-window density estimation, the parameter h is referred to as the bandwidth
or window-width parameter.30

K

�
x̄ − x̄i
h

�

= 1

2πσxσy

√
1−ρ2

(10)

exp
�
− 1

2(1−ρ2)

�
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2

h2σ2
x

+
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2

h2σ2
y

−
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h2σxσy

��
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�
x

y

�
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Many kernel functions are available but the one selected for this work will be the Gaussian kernel. The
selection of this kernel makes a weak assumption that the true distribution is smooth. Data distributions
meetings this assumption will be more easily modeled by the Gaussian kernel. Uniform and other non-smooth
distributions will still be modeled by the kernel given a sufficient, potentially large, number of data points.
Convergence is available to any arbitrary pdf function.31 The assumption is made in this work that the pdf
function for continuous data passed between analyses can be well approximated by a smooth function.

K

�
x̄ − x̄i
h

�

=
1

2π
exp

�

−
(x − xi)

2 + (y − yi)
2

2h2

�

� �� �
where µx=µy=0, σx=σy=1, ρ=0

(11)

The full kernel for a 2-D Gaussian is presented in Equation 10. The model is simplified by using standard
Gaussian’s with each µ = 0 and a σ = 1 as in Equation 11. Each Gaussian is centered on its sample point
and the window-width h appears in the final equation such that modifications to it behave as if changes were
being made to σ, see Equation 12.

The selection of the kernel is not as important as the selection of the window-width parameter h. Setting
it too small will overfit the data while making it too large will underfit the data. A method from the work
of Botev32 can be utilized to dynamically select for the parameter h.

p(x̄) = p

��
x

y

��

= p(x, y) ≈
1

Nh2

N�

i=1

K

�
x̄ − x̄i
h

�

p(x, y) ≈
1

N

N�

i=1

1

2π h2
exp

�

−
(x − xi)

2 + (y − yi)
2

2h2

�

(12)

Parzen-window estimation for p(x, y), using a Gaussian kernel, requires the use of Equation 12 over all
available samples. The required estimation of p(x) and p(y) needed to calculate the mutual information
between continuous variables can be calculated by using a 1-D Gaussian kernel and results in Equation 13.

p(x) ≈
1

N

N�

i=1

1
√
2π h

exp

�

−
(x − xi)

2

2h2

�

(13)

Figure 7. Approximation from Five Samples using Gaussian Kernel. (h=0.5)

This can be intuitively considered as a summation of Gaussians, placed at each sample point, that is
then normalized to create a pdf estimate, Figure 7.

By using Parzen-window density estimation, the components needed by MIMIC for structural modeling
can be found. This allows MIMIC to be applied to both continuous and discrete variables. The continuous
and discrete versions of the mutual information equation would then be used to form a tree model for
the algorithm. The use of kernel density estimation, specifically Parzen Window Estimation, to calculate
probability densities allows for the estimation of mutual information between continuous variables.29
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VI. Results for Static Decomposition Method

VI.A. Analytic Demonstration for Leveraging Problem Structure

An analytical example was used to show how MIMIC can discover the structure of a problem, leveraging
it to converge onto a solution faster than genetic algorithms. The four peaks problem is composed of two
sub-problems whose solutions can conflict with each other. When the searching method is able to balance
the needs of both solutions, a bonus is provided to the solution utility. This problem serves as a proof of
concept to the contention that MIMIC can provide an improvement to the current practice which utilizes
genetic algorithms; when the problem displays structure that can be leveraged.

Figure 8. Four Peaks (Side View) for an input X̄ of size 100, T=10.

The four peaks problem was used by Baluja to describe the behavior of PBIL33 and later by DeBonet
for MIMIC.23 The problem has two local minima, a string of all 1s or all 0s, and two global minima; either
N-(T+1) leading 1s, or trailing 0s, with the remaining T+1 of the opposite value, see Figure 8. N is the
number of values in the candidate string. T is a specified input that affects the size of the discontinuous
raised region shown in Figure 8. The utility of a solution is primarily judged by the longest list of ‘1’ values
from the start of the array or the list of ‘0’ values from the end of the array, depending on whichever is
longer. When the lists are balanced so that they are both above a given cut off, there is a rewarded boost
to the utility of the solution. Leading and trailing values are explained by example in Equation 14.

Example Candidate :



11111� �� �
head=5

010110111 000000� �� �
tail=6



 (14)

A mathematical description for the four peaks problem is shown in Equations 15. The value T is the min
number of values in a row from both the head and tail that must be obtained before the utility reward is
provided. For the example in Equation 14 which has N = 20 values, if T = 6 then the utility of the example
is 6. If the problem specified that T = 3, then the solutions for the head and tail are both sufficiently long
for the reward providing a utility of 6 + N = 6 + 20 = 26.

f̄ (X̄, T ) = max[tail(0, X̄), head(1, X̄)] + reward(X̄, T ) (15a)

tail(0, X̄) equals the number of trailing 0s in X̄ (15b)
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head(1, X̄) equals the number of leading 1s in X̄ (15c)

reward(X̄, T ) =

�
N if tail(0, X̄) > T and head(1, X̄) > T

0 otherwise
(15d)

This example problem allows the toggling of the problem size, by changing the size of N, and the toggling
of the size of the raised platform in the solution space, by changing T . For this comparison, T is kept at
10 percent of the size of the input vector N. The solution space formed by this is shown in Figure 9 for
a 100 input vector N. As the value of each input depends on the values of several other inputs, methods
that explicitly model the inter-dependencies between inputs should be able to leverage this information to
converge with fewer function calls.

Figure 9. Four Peaks (Top View) for an input X̄ of size 100, T=10.

A mature third-party implementation of genetic algorithms34 is compared against an author created
implementation of MIMIC with dependency trees. For the genetic algorithm, with a population of 100,
tournament selection is utilized with the probability of crossover at 100 percent. Elitism is used to retain
the best performing candidate from the last generation; mutation is kept at 5 percent.

Genetic algorithms are often used in engineering for multimodal domains and to apply decomposition
heuristics for coupled problems. Pair-wise interactions between variables are not explicitly modeled by the
crossover operation which randomly separates and passes on candidate solutions. The crossover operation was
created for the carrying forward of sub-problem solutions but Figure 10(a) shows the challenge two crossover
operators (single and two-point crossover) have on the Four Peaks Problem. Explicitly modeling the pair-
wise inter-dependencies between variables allows MIMIC to obtain an order of magnitude improvement when
working with 80 inputs, Figure 10(b).

The points in the chart are bounded averages computed with 95% confidence, Table 3, for all three
methods. For a single run, function calls were tracked until the method reached one of the two global
optima.

As the problem size increased, the MIMIC algorithm required a larger sample from the domain to model
the pair-wise dependencies. The sample used to build each model was comprised of 300 members for the 20
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(a) Absolute Number (b) Percentage of Two-Point Function Calls

Figure 10. Function Calls Required to Find the Global Optimum.

and 40 input cases. A group of 500 was used for each 60 input case and a group of 1000 was used to model
the domain at 80 inputs. The total function call count still strongly favored MIMIC as only an average
of 181 iterations were required for 80 inputs as opposed to the 20667 iterations required to converge using
two-point crossover, Table 3.

Table 3. Bounds for Average (Thousands of Function Calls) Computed with 95% Confidence.

MIMIC GA One-Point GA Two-Point

Inputs Avg +/- Avg +/- Avg +/-

20 8.04 0.55 2.61 0.15 2.74 0.15

40 24.55 0.70 41.77 1.60 54.72 2.50

60 64.77 1.20 260.33 9.00 415.58 15.00

80 181.56 3.20 1298.00 38.00 2066.73 70.50

The one-point crossover operator had the good fortune of having one ‘cut-point’ always correctly placed
at the first variable, aiding it to a potentially correct separation of the two components for this problem with
its the second cut. This is likely the reason for its advantage here over the two-point crossover operation. The
number of calls required by MIMIC to create a probabilistic model of the space allows GAs to outperform
MIMIC on the small version of this problem. The pair-wise models become more useful as the number of
variables increase and allows for solutions at a tenth the cost of the two-point crossover at 80 inputs. Even
without the application of mutual information clustering to the ranking of links in a DSM, so many heuristics
use GAs that MIMIC could cause a great impact to the field as a drop in replacement for GAs on large
coupled problems.

The four peaks problem described a coupled multimodal domain that allowed for the toggling of the prob-
lem size to measure the scalability for three methods (MIMIC, GA with One-Point, and GA with Two-Point
Crossover). This problem shows the potential advantages for using a probabilistic model to approximate
the distribution of the solution domain; automatically grouping inputs to leverage this information between
iterations. In the practice of decomposing a set of analyses, in a DSM, the correct arrangement of analyses
using a user specified metric could be found in a similar manner.

One strong source of flexibility for MIMIC is that solely a distribution is passed between iterations.
Though the distribution here was initialized as uniform, nothing in the method prevents a user from pre-
conditioning the distribution. This quality of MIMIC has application to a wide variety of aerospace problems.
Generally speaking, knowledge of the physics to an aerospace problem could be used to develop a reasonable
approximate model until the dependencies are better known. A designer could then apply MIMIC to this
approximated model. When the method has developed a dependency model for the approximated domain,
the evaluation function could be switched to the actual domain. The distribution would then adapt to the
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true domain; having been assisted by its prior analysis of the approximated problem.

VII. Conclusions

Mutual information is able to be used on continuous, discretized continuous or naturally discrete variables
which are all commonly found in engineering problems making it very flexible as a metric. The metric also
provides a measurement of dependence between variables beyond what is commonly found with covariance.
This could be used as a ranking metric to compute the importance of links in a design structure matrix.
The inputs to each contributing analysis could be clustered based on their mutual information leading to
high quality sub-problem groupings for a system analysis that does not depend on manual decomposition.

A global search method, new to aerospace engineering, was shown that uses mutual information to
leverage problem structure. This method gained up to an order of magnitude improvement in solution cost
measured from the example problem used. This demonstrates a potential for MIMIC as a drop in replacement
for genetic algorithms when applying heuristics to static decomposition problems. An extension was shown
that would allow for the use of continuous variables with the MIMIC algorithm.
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