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A general multidisciplinary design problem features coupling and feedback between
contributing analyses. This feedback may lead to convergence issues requiring significant
iteration in order to obtain a feasible design. This work provides a description for casting
the multidisciplinary design problem as a dynamical system in order to overcome some of
the challenges associated with traditional multidisciplinary design and leverage the ben-
efits of dynamical systems theory in a new domain. Three areas from dynamical system
theory are chosen for investigation: stability analysis, optimal control, and estimation
theory. Stability analysis is used to investigate the existence of a solution to the design
problem. Optimal control techniques allow the requirements associated with the design
to be incorporated into the system and allow for constraints that are functions of both
the contributing analysis outputs and input values to be handled simultaneously. Finally,
estimation methods are employed to obtain an evaluation of the robustness of the mul-
tidisciplinary design. These three dynamical system techniques are then combined in a
complete methodology for the rapid robust design of a linear multidisciplinary design. The
developed robust design methodology allows for uncertainties both within the models as
well as the parameters of the multidisciplinary problem. The performance of the developed
technique is demonstrated through a linear and nonlinear example problem.

Nomenclature

(·)e Equilibrium of (·)
(·)∗ Conjugate transpose of (·), the solution to an equation, or the optimum
(·)k Iterate k of (·)
(·)j|k Estimate at j given observations up to and including k
(·)nom Nominal value of (·)
β Deterministic input contribution in the fixed-point iteration equation, β ∈ Rm×d

δ Bias in the fixed-point iteration equation, δ ∈ Rm

γ Probabilistic input contribution in the fixed-point iteration equation, γ ∈ Rm×p

Λ State contribution in the fixed-point iteration equation, Λ ∈ Rm×m

λ Lagrange multiplier
Φ(k, j) Discrete state transition matrix from iterate k to iterate j
ε Convergence tolerance

(̂·) Estimate of the mean of (·)
λmax(·) Function which returns the maximum eigenvalue of (·)
R Set of real numbers
Z Set of all integers
Z+ Set of all positive integers (i.e., Z+ = {0, 1, 2, 3, . . .})
1q q × 1 vector of ones
Aj Matrix describing the state contribution of the jth contributing analysis, Aj ∈ Rlj×m

Bj Matrix describing the deterministic input contribution of the jth contributing analysis,
Bj ∈ Rlj×d
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Cj Matrix describing the probabilistic input contribution of the jth contributing analysis,
Cj ∈ Rlj×p

dj Bias associated with the jth contributing analysis, dj ∈ Rlj

f(·) Concatenation of the contributing analyses input-output relationships
In×n The n× n identity matrix
M Matrix describing the linear combination of the pertinent contributing analyses outputs

to the design’s response, M ∈ R1×q

N Matrix multiplying the pertinent contributing analyses outputs to the design’s response
in the Taylor series expansion of the response function, N ∈ R1×q

Q Covariance of the random noise associated with the model
R Covariance of the random noise associated with the observation of the system
ud Deterministic system-level inputs into the design, ud ∈ Rd

up Probabilistic system-level inputs into the design, ud ∈ Rd

v Random noise associated with the observation of the system, v ∼ N (0,R)
w Random noise associated with the model, w ∼ N (0,Q)
yj Contributing analysis output, yj ∈ Rlj

L(·) Optimal control path cost
N (µ,Σ) Normal random variable with mean µ and covariance Σ
N (µ, σ2) Normal random variable with mean µ and variance σ2

U Set of admissible inputs (controls)
U(xmin, xmax) Uniform random variable which varies between xmin and xmax

φ(·) Terminal state cost
ρ Density
ρXi,Xj Product-moment (correlation) coefficient between random variables Xi and Xj , ρXi,Xj ∈

[−1, 1]
Σ Set of admissible states
σy Yield strength
σ2
Xi

Variance of the random variable Xi

(̃·) Nominal value of (·)
{λi} Set of eigenvalues
E Young’s modulus
f Force magnitude
g Magnitude of the acceleration due to gravity
I Mass moment of inertia
l Length
L(·) Lagrangian
r Radius
T Tension
V (·) Lyapunov function candidate
W Weight
X Random variable
CA Contributing analysis
DSM Design structure matrix

I. Introduction

The design of complex systems is comprised of analyses from numerous disciplines. When each of the
disciplines use the same information, have a common set of assumptions, and satisfy the constraints imposed
on the design, the design is said to be converged. The convergence process for complex, multidisciplinary
designs is typically lengthy and finding an optimal design can be computationally burdensome, particularly
for design space exploration when uncertainties are considered. The study of dynamical systems and their
associated theory is a well researched field with many established and emerging techniques for their analysis.
Exploiting an analogue between the multidisciplinary design problem and dynamical systems enables the
leveraging of these resources in a new domain. Casting the multidisciplinary design problem as dynamical
system enables leveraging of techniques associated with the dynamical system field in order to overcome some
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of the traditional shortcomings of multidisciplinary design techniques, such as the computational burden
required by the iteration and the potentially conflicting objectives between contributing analysis-level and
system-level optimizations.

Finding a converged multidisciplinary design can be thought of as a multidimensional root-finding prob-
lem. Due to this, an iteration scheme can be developed for the state vector, where the subsequent iteration
relies on information from prior iterates. Furthermore, finding an optimal design is also a root-finding prob-
lem. In this work, the process of finding the root iteratively will be shown to be identical to the that of a
dynamical system. Therefore, the multidisciplinary design problem can be cast as dynamical system where
the state is the iteration-dependent data required by each of the disciplines comprising the design.

The use of concepts from dynamical systems in multidisciplinary analysis and design is not entirely new.
Several investigators have applied concepts from dynamical systems in analyzing and designing complex
multidisciplinary systems. The use of dynamical systems theory in most of these works has not been explicit
and in cases where concepts have been explicitly identified, it has been for a specialized system. For instance,
a system where multiple contributing analyses (CAs) collapse to a single CA or there are inherent equations
of motion with the application. Some of these previous uses are shown in Table 1.

Table 1. Some previous uses of dynamical system concepts in design.
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Appa & Argyris1
Simulatenously optimized structure and trajectory

X X X - X -of an aircraft; model given by f(g(x),p) and limits

coupling between CAs

Smith & Eppinger2
Decomposes an organizational DSM based on the

X - - X - -
eigenstructure and “modes” of the organization

Lewis & Mistree3
Uses game theory to decompose an organizational

X - - X - -
DSM

Delaurentis4
Uses metamodels to design an aircraft considering

X - -∗ X X -
stability and trajectory constraints

Grant5,6
Simultaneously performs trajectory and shape

X† X X - X -optimization; collapses multidisciplinary design into

a single analysis

∗Work by Delaurentis deals with algebraic results from equations of motion
†Work by Grant is a specific instance of multidisciplinary design with no feedback

As opposed to the previous applications in Table 1, this investigation provides the theoretical foundations
for casting the general multidisciplinary design problem as a dynamical system, including handling of equality
and inequality constraints within the design. Three particular techniques from different domains of dynamical
system theory are examined in depth as they directly relate to the development of a rapid robust design
methodology. These techniques are:

1. Stability analysis: The existence of a converged design (for a given iteration scheme) can be deter-
mined in the same way as analyzing a dynamical system’s stability, where the conditions for asymptotic
stability are identically equal to those required for convergence.
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2. Optimal control: Equality and inequality constraints on the design variables and outputs of the
contributing analyses not explicitly handled by feedback within the design can be handled similarly to
state equality and inequality constraints in optimal control theory by adjoining “tangency conditions”
to the objective function.

3. Estimation theory: A design’s robustness characteristics (i.e., the mean and variance) can be an-
alyzed using a Kalman filter (for linear designs), where the mean state and covariance matrix are
products from propagating the filter until the design converges. This technique allows for accounting
for uncertainties within the model itself as well as within the parameters of the design.

Utilizing all of these techniques as an ensemble allows for a rapid methodology for robust multidisciplinary
design to emerge. This technique finds a conservative upper bound of the variance of the design to a scalar
objective function.

II. Theoretical Foundations

II.A. The Concept of a State

The concept of a state is fundamental in transforming the multidisciplinary design problem to a dynamical
system. It is a summary of the status of the system at a particular instance.7

Definition: State

The state consists of the minimum set of parameters that completely summarize the internal
status of the dynamical system in the following sense: at any time t0 ∈ T the state x(t0)
is known, then the output at a future instance in time, t1 ∈ T , y(t1) where t1 > t0 can be
uniquely determined provided the input u[t0,t1] ∈ U is known.

In the work that follows, the state will be defined as the output of each of the CAs in the multidisciplinary
design.

II.B. Dynamical Systems

A dynamical system uses a fixed rule to describe the evolution of a state. There are two components of a
dynamical system, a state vector which provides the state of the system and a function which is the fixed
rule describing how the state will evolve.

Definition: Dynamical System

Dynamical systems are functional relationships where a fixed rule describes how a state evolves.
It requires:

1. A state variable (or vector) which characterizes the system

2. A fixed rule describing how the state changes

The framework developed for this work relies on discrete dynamical systems. That is, a dynamical system
of the form

xk+1 = f(xk,uk, k)

yk = g(xk,uk, k)

}
(1)

where x is the state of the system, f is a function which describes the time evolution of the system, u is the
input into the system, and k is the iterate number. A specific instance of Eq. (1) that is used throughout
this work is a linear, discrete dynamical system, which is given by

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk

}
(2)
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II.C. Multidisciplinary Design as a Dynamical System

II.C.1. Identification of Converged Designs

Identifying converged designs in multidisciplinary systems can be thought of as the process of finding the
root of a function. Consider a multidisciplinary problem where the analysis variables are described by
a multivariable function f(x,p) where x are the design variables and p are parameters of the problem.
Assume that the requirements of the design are given by only equality constraints that are a function of
the performance of the system. The performance of the design is described by a multi-variable mapping
g(f(x,p)) and the requirements are given by z. In order to meet the requirements it is necessary to adjust
the design variables x so that

z = g(f(x,p)) (3)

Equation (3) can be rewritten as
z− g(f(x,p)) = 0 (4)

The solution x∗ of Eq. (4) is the root of the system and the process is referred to as root-finding. Since
identifying feasible designs within the multidisciplinary design problem requires finding the value of x that
satisfies Eq. (4), this process can be thought of as a root-finding problem when an iterative solution method
is chosen.

Many numerical methods for finding the root of a function, g(x), are dynamical systems since they rely on
iterative schemes to identify the root.8 For instance, the bisection method, secant method, function iteration
method, and Newton’s method are all iterative techniques that satisfy the requirements of a dynamical
system.

To demonstrate, consider Newton’s method of finding a root to the unidimensional equation g(x) = 0 as
shown shown in Fig. 1.
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Figure 1. Newton’s method for numerically finding the root of a nonlinear equation.

An initial guess is first taken, x0. Then y0 = g(x0) is computed. If y0 = 0, then x0 is a root. This, however,
is usually not the case. Newton’s method approximates the slope of the function at a given point in order
to find the root. It is desired to find y1 such that y1 = 0. At x0, an approximation for the slope is given by

g′(x0) =
∆y

∆x
=
y1 − y0
x1 − x0

=
0− g(x0)

x1 − x0
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When this relationship is rearranged for x1 the following results

x1 = x0 −
g(x0)

g′(x0)

This can be generalized for any iterate k

xk+1 = xk −
g(xk)

g′(xk)

This relationship has the necessary components to by a dynamical system: (1) a state, in this case x, and
(2) a fixed rule describing how x evolves with iteration.

II.C.2. Design Optimization

In order for a converged design to be an optimum with respect to some objective function, its performance
needs to be evaluated with respect to other potential designs.

The first-order, necessary condition associated with optimization problem given by

Minimize: J (x,p)

Subject to: gi(x,p) ≤ 0, i = 1, . . . , ng

hj(x,p) = 0, j = 1, . . . , nh

By varying: x

 (5)

require the a stationary point of the Lagrangian to be defined. For the optimization problem given in Eq.
(5), the Lagrangian is

L(x,p,λ) = J (x,p) +

ng∑
i=1

λigi(x,p) +

nh∑
j=1

λng+jhj(x,p) (6)

The first-order, necessary conditions for x∗ to be an optimum are9

1. x∗ is feasible

2. λigi(x
∗,p) = 0 i = 1, . . . , ng and λi ≥ 0

3. ∇xL(x,p, λ) = ∇xJ (x,p) +

ng∑
i=1

λi∇xgi(x,p) +

nh∑
j=1

λng+j∇xhj(x,p) = 0 with all λi ≥ 0 and λng+j

unrestricted in sign

It should be clear that each of the necessary conditions is a root-finding problem by itself. As previously
discussed, the process of finding x∗ is a process of root-finding. Additionally, as apparent from the form of the
relationships, the other two necessary conditions for optimality may also be obtained through a root-finding
technique.

II.C.3. Identifying an Optimal Multidisciplinary Design

Multidisciplinary design optimization can be broken down into two steps: (1) identifying feasible designs and
(2) identifying the optimal design from the set of feasible candidates. As discussed, both of these steps are
root-finding problems. With the choice of an appropriate iterative numerical root-finding scheme, each of
these individual steps can be posed as dynamical systems. When combined together, a nested root-finding
problem results, whereby the function being optimized is actually a root-finding problem itself. This is shown
in Fig. 2
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Figure 2. Multidisciplinary design through root-finding.

II.D. Dynamical System Stability Analysis

The concept of stability allows for the identification of feasible designs. For a given initial state, a system
is stable if the state does not grow beyond the initial state’s magnitude. More rigorously, this is defined in
terms of equilibrium points of a system. Consider the discrete dynamical system defined by Eq. (1), the
equilibrium point is defined as

Definition: Equilibrium of a Dynamical System

A particular point xe is an equilibrium point of the dynamical system given by Eq. (1) if the
system’s state at iterate k = 0 is xe and ∀k ∈ Z+ \ {0}, f(xe,0, k) = xe.

For a linear dynamical system, given by Eq. (2), the equilibrium point is only the origin of the system (i.e.,
xe = 0).

The equilibrium point’s stability is defined with regard to the zero-input discrete dynamical system given
by7,10–12

xk+1 = f(xk,0, k)

xk=0 = x0

}
(7)

Figures 3 and 4 demonstrate the concept of equilibrium point stability. Figure 3 demonstrates different state
trajectories for a continuous dynamical system while Fig. 4 shows a more intuitive concept of stability.
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Definition: Stability

For the system given by Eq. (7), if ∀ε > 0, ∃δ(ε, 0) ∈ (0, ε] an equilibrium point of the system
is

• stable if ∀k > 0 and ‖ x0 ‖< δ, ‖ xk ‖< ε

• asymptotically stable if

1. the equilibrium point is stable and

2. ∃ δ′ ∈ (0, ε] such that whenever ‖ x0 ‖< δ′ the state’s evolution satisfies
lim
k→∞

‖ xk ‖= 0

• unstable if it is not stable or asymptotically stable

x0 

x0 

x0 

x(t) x(t) 

x(t) t 

x1 

x2 

Stable 

Unstable 

Asymptotically 
Stable 

Cylinder of radius ε 
Disk of radius  

x2 

x1 

Asymptotically 
Stable 

Stable 

Unstable Disk of  
radius ε 

Disk of  
radius  

                                      (a)                                                                                       (b) 

Figure 3. Visualization of state trajectories in (a) R2 × T and (b) R2 showing stability for a continuous dynamical
system.

Asymptotically 

Stable 

Stable Unstable 

Figure 4. Visualization of the concept of stability.
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For discrete, linear systems, that is dynamical systems given by Eq. (2), the solution for the evolution
of the state and the output is given by

xk = Φ(k, 0)x0 +

k∑
j=1

Φ(k, j)Bj−1uj−1 (8)

where Φ(k, j) is the discrete state transition matrix. This transition matrix is given by

Φ(k, j) = Ak−j (9)

in the case where Ak = A ∀k ∈ Z+, that is when A is constant. Substituting Eq. (8) and Eq. (9) into Eq.
(2) yields7

xk+1 = Ak+1x0 +

k∑
j=1

Ak−j+1Bj−1uj−1 + Bkuk

yk = Ck

Akx0 +

k∑
j=1

Ak−jBj−1uj−1

+ Dkuk


(10)

which is a relationship that depends on the initial condition and the control history. In the unforced case
(i.e., uk = 0 ∀k ∈ Z+) and by the Cayley-Hamilton theorem, the stability criterion is given in Table 2,
where {λi} are the eigenvalues of A.7,13,14

Table 2. Linear, constant discrete dynamical system stability criterion.

Classification Criterion

Unstable
If |λi| > 1 for any simple root

or |λi| ≥ 1 for any repeated root

Stable
If |λi| ≤ 1 for any simple root

and |λi| < 1 for all repeated roots

Globally Asymptotically Stable |λi| < 1 for all roots

For a more general discrete dynamical system (e.g., a dynamical system that does not have constant
coefficient or a nonlinear dynamical system), the direct method of Lyapunov can be used to investigate the
stability of the system. In this case, a scalar function V (x) , also known as a Lyapunov function candidate,
which is continuous and has continuous partial derivatives in a region about the origin (equilibrium) gives
insight into the system’s stability. Table 3 shows the stability criterion using Lyapunov’s direct method for
discrete dynamical systems where ∆V = V (xk+1)− V (xk).7,10–14

Table 3. Discrete dynamical system stability using Lyapunov’s direct method.

Classification Criterion

Stable
1. V (x) > 0

2. ∆V ≤ 0

Asymptotically Stable
1. V (x) > 0

2. ∆V < 0

Globally Asymptotically Stable

1. V (x) > 0 ∀x 6= 0 and V (0) = 0

2. ∆V < 0 ∀x 6= 0

(or ∆V ≤ 0 ∀x and ∆V 6= 0 for any

solution sequence {xk})
3. V (x)→∞ as ‖ x ‖→ ∞

Note that not finding a function that satisfies the conditions in Table 3 for a Lyapunov function does not
imply anything regarding the stability of the system.
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From the multidisciplinary design perspective, stability of the dynamical system gives information into
the convergence characteristics of the design. Asymptotic stability implies that there is a limited region
for which the design will converge whereas global asymptotic stability implies that the design will converge
with enough iteration regardless of the design assumptions used to start the convergence procedure. If the
dynamical system representing the multidisciplinary design is found to be unstable or stable it implies that
the design will not converge for that choice of root-finding schemes.

II.E. Including State Constraints through Optimal Control Theory

Consider another dynamical system concept, that of optimal control. Optimal control techniques can be used
to adjoin a “tangency” condition for constraints that are a function of the input or state. To demonstrate this
technique, instead of the discrete dynamical system problem, consider the general continuous-time optimal
control problem given by

Minimize: J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt

Subject to:
dx

dt
= f(x(t),u(t), t)

u(t) ∈ U
x(t) ∈ Σ

By varying: u(t)


(11)

In Eq. (11), φ is the terminal state cost, L is the transient or path cost, U is the set of admissible controls,
and Σ is the set of admissible states. Suppose that there is a constraint on the state given by

S(x, t) = 0 (12)

Differentiating Eq. (12) with respect to time, one obtains

Ṡ =
∂S

∂t
+
∂S

∂x

dx

dt
= 0 (13)

Substituting the state equation into this result yields

Ṡ =
∂S

∂t
+
∂S

∂x
f(x(t),u(t), t) = 0 (14)

and allows for a technique to yield the optimal control, u(t), that minimizes J and meets the equality
constraint on the state.15,16 If the control is not explicit in Eq. (13), then the process of differentiating S
and substituting the state equation is continued until the control is explicit in the equation to form a set
of q point relationships {S(n)}, n = 0, . . . , q − 1, where n is the order of the derivative. These tangency
conditions can be adjoined using Lagrange multipliers to the path cost, L, to solve for the optimal control
history.

Inequality constraints of the form
S̄(x, t) ≤ 0 (15)

can be handled similarly.15,16 In this case, the solution process depends on whether or not the state is
on the boundary. If it is on the boundary, the same solution process to equality constraints is followed,
while for off-boundary solutions, the terms are ignored. This results in a multiple sub-arc solution, although
fundamentally the process is identical to the equality constraint case.

II.F. Propagating Uncertainty

There are many methods for propagating the uncertainty through a system. These are classified in Table
4. In this work, the Kalman filter, similar to that used in linear covariance analysis, is implemented. The
details are found subsequent to this survey.
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Table 4. Various uncertainty propagation techniques.

Method Description Example(s) References

Analytical

Exact propagation in functional form;

17–20
only applicable for a small subset of Liouville and Fokker-

problems for which the PDE governing Plank-Komogorov Equations

the propagation yields an analytic solution

Sampling

Estimate the uncertainty by running

21–26

successive deterministic simulations with

values chosen from random distributions Monte Carlo, Response

for the stochastic variables associated Surface Methodology, and

with the problem; can be computationally Unscented Transform

burdensome; metamodeling techniques can

be used to reduce burden

Estimate the CDF for probabilistic

27–38

system design; values chosen from

random distributions and evaluate

Most input distribution against a constraint Fast Propability

Probable function that is a requirement of; Integration

Point the design generally transform the

input distribution into the standard

normal space and vary constraint value

Covariance

Uses ideas from Kalman filter theory

39–41
to propagate a normal distribution Linear

through a dynamic system described Covariance

by a differential equation

Other

Approximate the uncertainty distribution Differential Analysis, Fourier

42–55

using a variety of techniques including Analysis, Polynomial

bounding analyses and approximations Chaos, Fast Probability

that attempt to solve the PDE Gaussian Closure,

describing the propagation of the Gaussian Mixture,

uncertaintainty Stochastic Averaging
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II.F.1. The Kalman Filter

Feedback within the multidisciplinary design problem leads to significantly longer analysis times. Several
methods have been developed for use in the design process to eliminate the feedback within the design. The
traditional approach to eliminate the feedback within the design-analysis cycle is to enforce a constraint in
the converged design that the estimated value of the feedback variable is within a given tolerance of the
value resulting from the subsequent CA. This is an effective technique for deterministic analysis and design;
however, it can be computationally time consuming for robustness assessment and robust design. A novel
technique which applies concepts from estimation theory to this challenge is the use of the Kalman filter.
This approach is particularly applicable to the robustness analysis problem as the final quantities being
sought are the mean and the variance of an objective function. This approach has not been implemented
previously because the Kalman filter is typically implemented with respect to a dynamical system and the
multidisciplinary analysis and design problem is traditionally concerned with algebraic quantities. However,
as discussed previously, by viewing the root-finding problem as a dynamical system, the Kalman filter
becomes tractable.

For instance, fixed-point iteration is defined by the relation

yk = f(yk−1), ∀k ∈ Z+ \ {0} (16)

where f(yk−1) is the output value of the CAs on the kth − 1 iteration. For random variables in a linear
system, this can be written in the form

yk = Fk−1yk−1 + wk−1, ∀k ∈ Z+ \ {0} (17)

where wk−1 is the noise associated with the model. For a linear multidisciplinary design, Eq. (17) can also
be written as

yk = Fk−1yk−1 + Bk−1uk−1 + wk−1 (18)

which allows for inputs into the CA that are not outputs of other CAs, uk−1. When coupled with an equation
of the form

zk = Hk−1yk−1 + vk−1 (19)

and when it is assumed that wk−1 ∼ N (0,Qk−1) and vk−1 ∼ N (0,Rk−1), Eqs. (18) and (19) define
the dynamical system needed for a Kalman filter.56–59 The noise parameter, wk−1, gives the opportunity
to account for random variables within the linearization of the input-output relationship, that is random
variables associated with the matrix F. In this work, the Kalman filter is used as a data fusion technique to
give an optimal unbiased statistical estimate of the output of the CAs as the design is converging.

The Kalman filter can be thought of as a two step process, one which predicts the state (e.g., the output
of the CAs) and then an update step which corrects these estimates based on the dynamics of the system.
The prediction step is given by the following equations39,56–61

ŷk|k−1 = Fkŷk−1|k−1 + Bkuk (20)

Σk|k−1 = FkΣk−1|k−1F
T
k + Qk (21)

where the notation j|k represents the estimate at j given observations up to and including k. Furthermore,
the value of ŷ0|0 is the initial mean state and Σ0|0 is the initial covariance matrix of the state values. The
correction step is governed by the following equations39,56–61

x̃k = zk −Hkŷk|k−1 (22)

Sk = HkΣk|k−1H
T
k + Rk (23)

Kk = Σk|k−1H
T
k S−1k (24)

ŷk|k = ŷk|k−1 + Kkx̃k (25)

Σk|k = (I−KkHk) Σk|k−1 (26)

where the final (a posteriori) estimate of the state is given by ŷk|k with covariance matrix given by Σk|k.
The power in implementing the Kalman filter in multidisciplinary design analysis lies in the ability to

obtain a continuous estimate in iterate of both the mean and covariance of each CA in the multidisciplinary
design by propagating a system of seven equations until the design converges.
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II.G. Matrix Norms

The output of the Kalman filter is the estimated mean and covariance matrix given by

Σ =


σ2
X1

ρX1,X2
σX1

σX2
· · · ρX1,X2

σX1
σXn

ρX1,X2σX2σX1 σ2
X2

· · · ρX2,XnσX2σXn

...
...

. . .
...

ρX1,Xn
σXn

σX1
ρX1,Xn

σXn
σX2

· · · σ2
Xn

 (27)

where σ2
Xi

is the variance of variable Xi and ρXi,Xj
is the product-moment coefficient (i.e., the correlation

coefficient) given by

ρXi,Xj =
E
[
(Xi − µXi

)(Xj − µXj
)
]

σXi
σXj

(28)

In order to obtain a singular value that bounds the variance, consider the matrix 2-norm which is defined as

‖ A ‖2=
√
λmax(A∗A) (29)

where A∗ represents the conjugate transpose of a matrix A and λmax(·) is a function which returns the
maximum eigenvalue. The 2-norm can be more readily understood in the context of spectral decomposition
such that D = V−1AV where D is at worst a block-diagonal matrix. In the case of real, distinct eigenvalues,
the diagonal of matrix D consists of the eigenvalues. By virtue of the properties of the covariance matrix,
λmax(Σ) ≥ σ2

max, which means that the 2-norm provides a bound on the variance.

1X

2X

'
1X

'
2X



2
Σ

Figure 5. Visual representation of the matrix 2-norm.

In two-dimensions, this can be seen in Fig. 5 where the covariance matrix is plotted as an ellipse. In Fig.
5, the axes σX1

σX2
are the standard deviations associated with the covariance matrix, Σ. The eigenvectors

of the covariance matrix form the alternate set of axes (in blue), σX′1σX′2 . The 2-norm is the variance of
the “pseudo-variable” that is oriented along the principal eigenvector of the resulting ellipse, which is the
magnitude of the semi-major axis of the ellipse. In other words, the 2-norm is the radius of the circle which
completely encompasses the covariance matrix. An advantageous feature of this norm is that it is always
a conservative estimate of the variance of the system. Furthermore, as the dimensionality of the problem
increase, this overestimate diminishes due to the 2-norm acting similarly to a root-sum-square (or Euclidean
norm).
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III. A Rapid Robust Multidisciplinary Design Methodology Using Dynamical
System Theory

The following section describes a matrix-norm bound technique to obtain an estimate of the mean and a
bound on the variance of a multidisciplinary system which can be decomposed into CAs.

Step 1: Decompose the Design
A general multidisciplinary design can be decomposed into multiple CAs. Each of these CAs represents
an analysis that contributes to the entire design. For example, consider the design or analysis of an entry
system. It may be desired for the entry system to be evaluated with respect to its payload capability and
landing accuracy. Many different analyses must be conducted in order to obtain this information. This
information flow is shown in Fig. 6, where one such representation of each of the analyses that must be
conducted to design an entry system is shown.62

System Definition

Planetary Model

Guidance, 
Navigation, and 

Control

Trajectory
Analysis

Thermal Response

Weights and Sizing

System 
Aerodynamics

Figure 6. The decomposition of an entry system into a Design Structure Matrix.

In this case, the entry system is decomposed into the seven CAs. The cumulative sum of these CAs allow
the payload capability as well as the landed accuracy to be assessed. Each CA in Fig. 6 (i.e., the blocks)
represents an input-output relationship. For instance, inputs into the aerodynamics analysis include the
configuration of the entry system and planetary body where it is to operate; outputs include the force
coefficients of the vehicle as a function of Mach number and attitude. This relationship may be known
analytically; however, it is more likely that this CA would represent a computational analysis that is linked
into the design process.

In the theoretical development underlying this work, it is assumed that each of the n CAs are linear and
algebraic. This limitation will be addressed subsequently. That is, the output of the CA is of the form

yj = Ajy + Bjud + Cjup + dj (30)

where yj ∈ Rlj , y ∈ Rm is the concatenated output from all of the CAs (e.g., if y1, y2 through yn are the

outputs of the n CAs in a multidisciplinary design, y =
(
y1

T y2
T · · · yn

T
)T

), ud ∈ Rd are the deterministic
system-level inputs into the design, up ∈ Rp are the probabilistic system-level inputs into the design, and
dj ∈ Rlj is the bias associated with the model. This implies Aj ∈ Rlj×m, Bj ∈ Rlj×d, Cj ∈ Rlj×p, and that
n∑

j=1

lj = m.
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For general designs where the CAs may not be linear, the required functional form can be achieved

through linearization where Aj =
∂g

∂y

∣∣∣
ỹ
, Bj =

∂g

∂ud

∣∣∣
ũd

, Cj =
∂g

∂up

∣∣∣
ũp

, and dj = − (Ajỹ + Bjũd + Cjũp)

when the input-output relationship for the CA is given by yj = g (y,ud,up) and (̃·) is the value of (·) about
which the function is linearized.

Step 2: Identify the Random Variables and their Distributions
In the design and analysis of a complex multidisciplinary system, it is unlikely that each of the models
and inputs are deterministic; instead, many are likely to be probabilistic and account for unknowns in the
modeling and in the operating conditions . In order to propagate these uncertainties through the design to
estimate the robustness, the probabilistic variables must be identified.

The random variables associated with the uncertainty within the design are handled in two different ways
in this work depending on where the random variable is functionally located. Functionally, the uncertainty
resulting from inputs into the CA refers to uncertainties associated with up, whereas uncertainty associated
with the physical modeling pertain to Aj, Bj, Cj, or dj. In the first instance, the mean is propagated in the
ŷk|k term of the filter equations and the covariance is propagated in the Σk|k term of the filter equations. In
the second case, the mean is again accounted for in the ŷk|k term of the equations; however, the covariance
is accounted for in the Qk term of the filter. In the components of the Kalman filter mentioned, the notation
k|k refers to the kth iteration of the filter given all previous information regarding the convergence of the
system.

Due to the the propagation within the Kalman filter there is an assumption that the uncertainties associ-
ated with the model are Gaussian. For symmetrical probability distributions (i.e., probability distributions
centered about the mean), this is not an overly strong assumption since the first two moments are the only
terms being approximated. However, for asymmetric probability distributions, this becomes a restrictive
assumption that is a limitation of the proposed technique.

Step 3: Form the Iterative Equations
The process of converging the multidisciplinary design through root solving leads to an inherent dynamical
system. This root can be sought out using an iterative technique. For example, fixed-point iteration, defined
in Eq. (16) uses the previous iteration’s solution as an input to the current iteration. For this work, f(·)
is the concatenation of the input-output relationships for the CAs (e.g., if f1(·), f2(·) through fn(·) describe

the input-output relationship for each of the n CAs, f(·) =
(
f1

T (·) f2
T (·) · · · fn

T (·)
)T

). In the framework

described here, where the multidisciplinary design consists solely of linear CAs, the fixed-point iteration
relationship becomes extremely tractable

yk = Λyk−1 + βud + γup + δ (31)

where it is assumed that Λ =


A1

...

An

 ∈ Rm×m, β =


B1

...

Bn

 ∈ Rm×d, γ =


C1

...

Cn

 ∈ Rm×p, and

δ =


d1

...

dn

 ∈ Rm.

Step 4: Ensure a Solution Exists
Since the iterative system defined by Eq. (31) is a discrete, linear, dynamical system, the existence of a
solution to the multidisciplinary design problem is given solely by the stability of the system. In particular,
if the system is asymptotically stable, a converged design exists for some initial guess of the CA outputs and
if it is globally asymptotically stable, a design exists for all initial guesses of the CA outputs.

For cases where Λ is a constant matrix, finding the eigenvalues of the matrix Λ determines the existence of
a design solution. Should all of these eigenvalues have modulus less than unity (i.e., |λi| < 1) the dynamical
system is globally asymptotically stable and the multidisciplinary system will converge regardless of the
initial guess for the output of the CAs. However, should this not be the case, and at least one eigenvalue has
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modulus greater than or equal to unity (i.e., |λi| ≥ 1), a contraction mapping does not exist for the choice
of root-finding schemes and the design will not converge.

When Λ is a varying matrix or even a nonlinear mapping, a Lyapunov function technique can be used
to investigate the stability (and convergence) of the design. In this case, for asymptotic stability, a positive-
definite function is sought whose difference between iterates in some region around the origin is negative
definite. The search for a Lyapunov function can be accomplished using several methods, including some
numerical based techniques (see Refs. 10 and 63).

Step 5: Estimate the Mean Output and the Covariance
The mean output of the multidisciplinary system and the associated covariance matrix are found by prop-
agating the Kalman filter equations, Eqs. (20)-(26) until convergence. In order to accomplish this, the
iterative system formed in Eq. (31) needs to be transformed to the form needed in Kalman filter, Eq. (18).
This is a relatively straightforward process when the following substitutions are made

Fk−1 = Λ, ∀k ∈ {1, 2, ..., n} (32)

Bk−1 =
(
β γ Im×m

)
, ∀k ∈ {1, 2, ..., n} (33)

uk−1 =

ud

up

δ

 , ∀k ∈ {1, 2, ..., n} (34)

The mean state, that is the output of the analyses, (ŷ0|0) and the covariance matrix associated with the
state (Σ0|0) are initialized by the relations

ŷ0|0 = y0 (35)

Σ0|0 = Σ0 (36)

In this work, y0 and Σ0 are found by assuming a starting value for the coupled CA and an input covariance
matrix associated with the parameters of the problem. These values are then propagated through each CA of
a serial (i.e., uncoupled) design structure matrix using the unscented transform technique. The concatenated
output of each of the CAs is then used to form y0 and the covariance matrix Σ0, which will initially be a
block diagonal matrix. The last parameter which need to be identified in order to estimate the mean output
and the covariance of the system is the covariance matrix associated with the model, Q. This is a block
diagonal matrix composed of the variances and covariances associated with Aj, Bj, Cj, and dj.

The iterates are then found by by propagating the filter equations, Eqs. (20)-(26), with Hk−1 =
Im×m ∀k ∈ {1, 2, ..., n} and Rk−1 = 0 ∀k ∈ {1, 2, ..., n} until the design convergence criterion is met.
The exact convergence criterion can be of several forms, the two criterion used within this work are an
absolute tolerance of the state and a relative tolerance of the state. These are demonstrated in the following
relations

‖ ŷk|k − ŷk−1|k−1 ‖2≤ ε1 (37)

‖ ŷk|k − ŷk−1|k−1 ‖2
‖ ŷk−1|k−1 ‖2

≤ ε2 (38)

Step 6: Identify the Mean and Variance Bound of the Objective Function
Assume the design objective is a linear combination of the outputs of linear CAs, that is

r = My∗ (39)

where r ∈ R is the design objective value, M ∈ R1×q is a matrix describing the linear combination of the
pertinent CA outputs, and y∗ ∈ Rq is the vector of pertinent CA responses that contribute to the design
objective. An estimate of the mean and variance bound for the design objective can be found as follows

r̄ = Mŷ∗n|n (40)

σ2
r ≤‖ Σy∗n|n ‖2 M1q (41)
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where it is assumed the n iterations have occurred and Σy∗n|n is the reduced covariance matrix associated

with only the variables associated with y∗ (i.e., the rows and columns of the variables not pertinent in the
design objective are eliminated from Σyn|n). Additionally, the notation 1q ∈ Rq×1 is the unity vector of

length q (i.e., 1q = (1 1 1 · · · 1)
T ∈ Rq×1).

More generally, a first-order expansion of an objective function that is of the form

r = g(y∗) (42)

can be made. The linearized objective function, Eq. (42), about y∗nom is then given by

r̃ =
∂g

∂y∗
y∗ − ∂g

∂y∗
y∗nom = Ny∗ + b (43)

which leads to the results
r̄ ≈ Nŷ∗n|n + b (44)

σ2
r ≈‖ Σy∗n|n ‖2 N1T

q (45)

where it is assumed that N ∈ R1×q.

Step 7: Optimize for Uncertainty and Ensure Constraints are Met
Formulating the output of Step 6 in terms of the mean and variance allows for an optimal control problem
to be setup where the objective function is defined by

J = M
(
αŷ∗n|n + β ‖ Σy∗

n|n
‖2 1T

q

)
(46)

and α and β are weights on the relative components that can be varied to find different compromised optimal
designs. The problem is then to seek out the control, u, that minimizes J . In this case the control is constant
(since they are parameters of the problem) and given by ud. The requirements outside of the compatibility
constraints are then handled by adjoining the set of convex constraints to the objective function and identi-
fying an optimum that satisfies the necessary conditions outlined previously.

Step 8: Evaluate the Quality of the Robustness Estimate
The quality of the robustness estimate can be evaluated by using the unscented transform to get a higher-
order estimate of the mean and the covariance of the output. This step, however, may be time consuming
and may not be desirable to perform in all instances, particularly if the design is known to be linear, as the
propagation by the Kalman filter through a linear system is exact. The procedure to obtain this estimate is
as follows:

1. Identify the uncertain parameters for the problem and form the initial covariance matrix for these
parameters

2. Identify the m (or m + 1 if an alternate form of the unscented transform is used) sigma points based
on the eigenstructure of the initial covariance matrix

3. Propagate each of these sigma points through the design until convergence

4. Record the objective function for each sigma point propagation

5. Compute the scalar mean and variance from the composite results for each of the objective function
values

III.A. Validity of a Linear Technique

The theoretical development of the rapid robust design methodology as a complete ensemble is restricted
to linear systems; however, the individual methods as well as the complete the methods employed in the
complete ensemble are inherently extensible to nonlinear systems. Specifically, the Kalman Filter can be
replaced with a filter designed for nonlinear estimation (e.g., the Extended Kalman Filter, the Unscented
Kalman Filter, or a Particle Filter) and the unscented transform is designed for nonlinear propagation of
random variables.
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IV. Accuracy and Performance of the Rapid Robustness Assessment
Methodology

To show the accuracy of the mean and variance estimate provided by the proposed methodology, consider
the coupled, linear two CA system shown in Fig. 7.
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Figure 7. Two-contributing analysis multidisciplinary design.

For this analysis, assume that there are two components to the probabilistic parameter vector and the two
output vectors, that is up ∈ R2, y1 ∈ R2, and y2 ∈ R2, which, in turn, implies A′1 ∈ R2×2, B′1 ∈ R2,
C′1 ∈ R2×2, A′2 ∈ R2×2, and B′2 ∈ R2. Also, let the distribution of the probabilistic parameter input be
given by a multivariate normal, up ∼ N (µup

,Σup).
The effectiveness of the robustness assessment methodology will be demonstrated by letting the mean

of the probabilistic input, µup
, and the components of the covariance matrix σ2

y1
, σ2

y2
, and ρy1y2

vary
between given ranges. The maximum error between the response obtained from the robustness assessment
methodology and an analytical propagation is then reported for a multitude of points within the design
space.

IV.A. Analytical Solution

As this is a multidisciplinary analysis consisting of two linear CAs, there is a single simultaneous solution
for y1 and y2 which is found to be

y1 = (I2×2 −C′1A′2)
−1

(A′1up + B′1 + C′1B′2)

y2 = A′2 (I2×2 −C′1A′2)
−1

(A′1up + B′1 + C′1B′2) + B′2

}
which implies that whenever I2×2 − C′1A′2 is non-singular, a unique solution exists for y1 and y2. Since
the only uncertainty in this analysis is given by the probabilistic input vector, up, which is defined as a
multivariate normal, the distribution of the output for each CA can be found exactly. These are given by

y1 ∼ N
(
µy1

,Σy1

)
y2 ∼ N

(
µy2

,Σy2

) }
where

µy1
= (I2×2 −C′1A′2)

−1
A′1µup

+ (I2×2 −C′1A′2)
−1

(B′1 + C′1B′2)

Σy1 = (I2×2 −C′1A′2)
−1

A′1ΣupA′1
T

(I2×2 −C′1A′2)
−T

and
µy2

= A′2 (I2×2 −C′1A′2)
−1

A′1µup
+ A′2 (I2×2 −C′1A′2)

−1
(B′1 + C′1B′2) + B′2

Σy2 = A′2 (I2×2 −C′1A′2)
−1

A′1ΣupA′1
T

(I2×2 −C′1A′2)
−T

A′2
T

Since both of the output distributions from the CAs are also multivariate normal, the components of the
response

r =

2∑
i=1

y1,i +

2∑
i=1

y2,i
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can be found exactly by summing the components of mean components of µy1
and µy2

to find the mean of
the response and adding the appropriate variances from the covariance matrices Σy1 and Σy2 . That is

r ∼ N

(
2∑

i=1

µy1,i +

2∑
i=1

µy2,i,

2∑
i=1

λ(Σy1)|i +

2∑
i=1

λ(Σy2)|i

)

where µy1,i is the ith component of y1, µy2,i is the ith component of y2, and λ(·)|i is the ith eigenvalue of
the matrix argument.

IV.B. Rapid Robustness Assessment Methodology

In assessing the robustness methodology, the first five steps of the developed methodology will be followed.
These steps obtain an estimate of the output mean and a bound on the variance provided by the 2-norm of
the covariance matrix obtained by propagating the dynamical system through a Kalman filter.

Step 1: Decompose the Design
The problem as given has already been decomposed into the representative contributing analyses; however,
it is still necessary to identify each of the terms in Eq. (30). For the first CA, y1, the functional form of the
CA is as follows

y1 =
(
0 C′1

)
y +

(
0
)

ud +
(
A′1

)
up + B′1

Similarly, for the second CA, the functional form is given by

y2 =
(
A′2 0

)
y +

(
0
)

ud +
(
0
)

up + B′2

Hence,

A1 =
(
0 C′1

)
B1 =

(
0
)

C1 =
(
A′1

)
d1 = B′1

A2 =
(
A′2 0

)
B2 =

(
0
)

C2 =
(
0
)

d2 = B′2

Step 2: Identify the Random Variables and their Distributions
There is only one set of random variables in this example, that of the probabilistic input variable, up. This
is given in the problem description as a multivariate normal distribution, up ∼ N (µup

,Σup). In this case
the covariance matrix is given by

Σup =

(
σ2
up,1

ρup,1,up,2σup,1σup,2

ρup,1,up,2
σup,1

σup,2
σ2
up,2

)

Later, the defining parameters of the multivariate normal will be given numerical values.

Step 3: Form the Iterative Equations
In order to use the Kalman filter to simultaneously estimate the robustness and converge the design, the
iterative equations described in Eq. (31) for fixed-point iteration need to be formed. Through analogy of
variables, the matrices are given by

Λ =

(
A1

A2

)
=

(
0 C′1

A′2 0

)
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β =

(
B1

B2

)
=

(
0

0

)

γ =

(
C1

C2

)
=

(
A′1
0

)

δ =

(
d1

d2

)
=

(
B′1
B′2

)
Step 4: Ensure a Solution Exists
In this problem, the variables are yet to be defined. However, they are constant coefficients. This implies
that the likelihood of finding a solution is dependent entirely on the matrix Λ, providing a constraint to the
values which will be examined in this design space analysis. Expanding Λ allows the characteristic equation
to be found

Λ =


0 0 C1 C2

0 0 C3 C4

A1 A2 0 0

A3 A4 0 0


Therefore, the characteristic equation is given by

det(Λ− λI4×4) =

∣∣∣∣∣∣∣∣∣
−λ 0 C1 C2

0 −λ C3 C4

A1 A2 −λ 0

A3 A4 0 −λ

∣∣∣∣∣∣∣∣∣ = 0

which can be solved in order to ensure that the modulus of each of the eigenvalues is less than one for
repeated roots or less than or equal to one for simple roots.

Step 5: Estimate the Mean Output and the Covariance
The equations formed in the prior step can then be propagated through the Kalman filter defined by Eqs.
(20)-(26) with

Fk−1 = Λ, ∀k ∈ {1, 2, ..., n}

Bk−1 =
(
β γ I4×4

)
, ∀k ∈ {1, 2, ..., n}

uk−1 =

ud

up

δ

 , ∀k ∈ {1, 2, ..., n}

where in this example ud = 0 and up = E(up) = µup
. In this example, the matrix Q is the null matrix since

the only uncertain parameters of the problem are associated with the input parameters, not the model. The
unscented transform is used on an uncoupled system with the distribution described in Step 2 in order to
identify y0 and Σ0, the initial output mean and covariance for each design. A design is considered converged
when the absolute difference between iteration estimates is less than 1 × 10−4 or the relative difference is
less than 1× 10−6.

IV.C. Analysis Results

In order to assess a large variety of problems, a parametric sweep of the design variables was performed to
identify the maximum errors in the design space. To perform this parameter sweep, the problem’s parameters
were varied independently as shown in Table 5 where the distribution of each variable was assumed to be
uniform and a 100,000 case Monte Carlo analysis was conducted. In order to guarantee convergence of the
design, constraints were imposed on the parameters to ensure that all of the eigenvalues of the matrix Λ had
modulus less than unity. To ensure realizable covariance matrices, that is a matrix that is symmetric and
positive definite, the components of the covariance (e.g., variance and correlation coefficient) were determined
independently and then combined to form the covariance matrix.
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Table 5. Parameter ranges to assess the validity of the proposed methodology.

Parameter Distribution

σ2
up,1

U(0, 100)

σ2
up,1

U(0, 100)

ρup,1up,2
U(−1, 1)

A′1

(
U(−1, 1) U(−1, 1)

U(−1, 1) U(−1, 1)

)

A′2

(
U(−1, 1) U(−1, 1)

U(−1, 1) U(−1, 1)

)

C′1

(
U(−1, 1) U(−1, 1)

U(−1, 1) U(−1, 1)

)

B′1

(
U(−1, 1)

U(−1, 1)

)

B′2

(
U(−1, 1)

U(−1, 1)

)

In addition to the parameters shown in Table 5, the effect of the mean of the probabilistic parameters
was conducted by analyzing three different cases–one where the mean was µup

= (0 0)T , one where the

mean was µup
= (100 0)T , and one where the mean was µup

= (100 100)T . The results were then compared
with results propagated analytically resulting in Fig. 8.

It is observed from these results that the mean error is less than 0.08% for all of the cases examined. This
is a result of the system being linear and the Kalman filter propagating results exactly for a linear system.
Therefore the error in the mean is solely a result of the convergence criterion being utilized. For each case,
there is seen to be a rise in the standard deviation error near the origin. This is because the nominal mean
goes to zero causing a rise in the in the percent error near this point.

The assessment methodology is observed to provide a consistent conservative bound on the variance as
seen in Fig. 8 since all of the percent error values are positive. It is also interesting to note that the error in
mean and standard deviation, regardless of the mean of the input, appears to be close to the same order of
magnitude. As the mean input value increases, the magnitude of the mean response and standard deviation
of that response increases, which causes a decrease in the percent error. Furthermore, it is observed that the
maximum error approaches a limit of less than 40%. This limit is believed to be a function of the 2-norm
being used. In future work, this limit will be explored and related to the dimensionality of the problem. In
analyzing the data, the largest errors are caused for weakly coupled systems, that is systems where C′1 is
small. This can be explained since C′1 being small leads to a larger domain of values that lead to a converged
design. Additionally, since the interplay between y1 and y2 is reduced, the iterations to achieve convergence
is reduced in these cases.
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Figure 8. Maximum error for a two contributing analysis multidisciplinary design with (a) µup
= (0 0)T , (b) µup

=

(100 0)T , and (c) µup
= (100 100)T .

IV.D. Comparison with Other Methods

The errors associated with the rapid linear robustness technique are compared to more commonly used
methods to propagate uncertainty, namely a 10,000 case Monte Carlo analysis, the unscented transform, and
fast probability integration. For the data presented, specific numerical values were utilized for the various
problem matrices and vectors, these are given by

A′1 =

(
0.25 0

0 0.5

)
B′1 =

(
1

1

)
C′1 =

(
1 0

0 1

)
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A′2 =

(
0.25 0

0 0.25

)
B′2 =

(
1

1

)

The advantages of the rapid robust analysis technique are elucidated in the Table 6 where it can be seen
that the proposed method provides similar levels of accuracy to the other contemporary methods. However,
this level of accuracy is obtained for less than half the number of function evaluations compared to the
unscented transform and orders of magnitude fewer function evaluations compared to Monte Carlo and fast
probability integration. For known functions, this may not be a large advantage, but if the model for each
CA needs to be built real-time, this provides a large execution time benefit. It should also be noted that
in comparing the data to the exact propagation in the previous section, the proposed method captures the
mean more accurately than any of the other techniques presented here (maximum error of 0.08% compared
compared to relative errors that are an order of magnitude greater).

Table 6. Comparison of the performance of the rapid robustness assessment method with other multidisciplinary
uncertainty assessment techniques.

Unscented Fast Probability

Monte Carlo Transform Integration

Maximum Mean
0.48234 0.50458 0.50357

Discrepancy (%)

Maximum Standard
2.3458 1.6789 2.3447

Deviation Discrepancy (%)

Increase in Number 109,954 435 2,349

of CA Evaluations (-) (78,539%) (124%) (1,678%)

V. Robust Design of a Two Bar Truss

Consider the planar truss which consists of two elements with a vertical load at the mutual joint, as
shown in Fig. 9 (adapted from Ref. 64).

x 

y 

Node 1 

 (0,0) 

Node 2 

 (x2,y2) 

Node 3 

 (0,y3) 

Bar 2 

Bar 1 

r 

Bar  

Cross-Section 

f 

g 

l 

Figure 9. Two bar truss with a load at the mutual joint.
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For this problem, it is desired to find the vertical position of nodes 2 and 3, y2 and y3, that minimize the
mean weight of the truss while ensuring that the structure will not fail do to buckling or yielding with some
factor of safety given fixed values for the material properties, E, σy, and ρ, the load, f , and the bar geometry,
r1 and r2. The horizontal position of node 2 is constrained to be l. In standard form, the deterministic
problem is written as

Minimize: J = ρπ (L1 + L2) = ρπ
(√

l2 + y22 +
√
l2 + (y3 − y2)2

)
Subject to: g1(y2, y3) = |T1(y2, y3)| − πr21σy ≤ 0

g2(y2, y3) = |T2(y2, y3)| − πr22σy ≤ 0

g3(y2, y3) = −T1(y2, y3)− π2EI1
L2
1

≤ 0

g4(y2, y3) = −T2(y2, y3)− π2EI2
L2
2

≤ 0

By varying: y2, y3


where L1 and L2 are the lengths of the two bars, respectively, I1 and I2 are the moments of inertia of the

two bars (Ii =
1

4
mr2i ), and T1(y2, y3) and T2(y2, y3) are the tensions in the two bars. Numerical values for

this problem are shown in Table 7

Table 7. Parameters for the two-bar truss problem.

Parameter Description Nominal Value Distribution

E Young’s Modulus 200× 106 kN/m2 –

σy Yield Strength 250× 103 kN/m2 N (250× 103, 625× 106)

ρ Density 7850 kg/m3 N (7850, 100)

l Length 5 m –

r1 Radius of Bar 1 30 mm –

r2 Radius of Bar 2 5 mm –

f Applied Force 3.5 kN N (3.5, 0.49)

g Gravitational Acceleration 9.81 m/s2 –

Step 1: Decompose the Design
Two analyses must occur in order to design the two bar truss: a structural analysis and a sizing of the bars
constituting the truss. Although not explicit in the problem statement, the mass of the bars also provide a
load through their weight. Hence, this is a coupled analysis problem since the structural analysis depends
on the sizing of each of the bars. The coupled DSM is shown in Fig. 10.

Structural 

Analysis 

Weights and 

Sizing 

21 WWr pd uu ,

2,TT1

21,WW

Figure 10. Two bar truss design structure matrix.

The inputs into the design problem are the deterministic and probabilistic parameters of the problem
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whose values are shown in Table 7. In particular,

ud =
(
E l r1 r2 g y2 y3

)T
and

up =
(
σy ρ f

)T
The structural analysis CA feeds the forces seen in each of the members of the truss to the weights and

sizing module. These can be found through the static equilibrium equations and are found by solving the
linear equations 

l

L1
0 1 0 0 0

− y2
L1

0 0 1 0 0

− l

L1

l

L2
0 0 0 0

− y2
L1

y3 − y2
L2

0 0 0 0

0
l

L2
0 0 1 0

0
y3 − y2
L2

0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





T1

T2

R1x

R1y

R3x

R3y


=



0

0

0

− l

2y3
(W1 +W2 + 2f)

f

(
1 +

y2
y3

)
0

0

f
l

2y3
(W1 +W2 + 2f)

f

(
1 +

y2
y3

)
+W1 +W2


for the tensions. The weights and sizing CA computes the weights of each of the bars based on the relationship

y2 =

(
W1

W2

)
=

(
πρgr21L1

πρgr22L2

)
Both relationships defined by the CAs rely on the lengths of the bars, which are given by

L1 =
√
l2 + y22

L2 =
√
l2 + (y3 − y2)2

This is a realistic example in which the CAs are nonlinear. Therefore, in order to apply the developed
methodology, a Taylor series expansion about a nominal value (chosen to be the previous iterate or mean
value) must be conducted. Functionally, this means that the expression for the tensions, y1, can be expanded
as follows

y1 =

(
T1

T2

)
≈


∂T1
∂ud


ûd

(ud − ûd) +
∂T1
∂up


µup

(up − µup
) +

∂T1
∂y


ŷ

(y − ŷ)

∂T2
∂ud


ûd

(ud − ûd) +
∂T2
∂up


µup

(up − µup
) +

∂T2
∂y


ŷ

(y − ŷ)


Similarly, the expression for y2 can be expanded as

y2 =

(
W1

W2

)
≈


πρgr21

ŷ2√
l2 + ŷ22

(y2 − ŷ2)

πρgr22

(
ŷ2 − ŷ3√

l2 + (ŷ2 − ŷ3)2
(y2 − ŷ2) +

ŷ3 − ŷ2√
l2 + (ŷ2 − ŷ3)2

(y3 − ŷ3)

)


Therefore, in the form of Eq. (30)

A1 =

(
∂T1
∂y


ŷ

)
B1 =

(
∂T1
∂ud


ûd

)
C1 =

(
∂T1
∂up


µup

)
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d1 = −

(
∂T1
∂ud


ûd

ûd +
∂T1
∂up


µup

µup
+
∂T1
∂y


ŷ

ŷ

)

A2 =

(
∂T2
∂y


ŷ

)
B2 =

(
∂T2
∂ud


ûd

)
C2 =

(
∂T2
∂up


µup

)

d2 = −

(
∂T2
∂ud


ûd

ûd +
∂T2
∂up


µup

µup
+
∂T2
∂y


ŷ

ŷ

)

Step 2: Identify the Random Variables and their Distributions
All of the random variables in this example are associated with the parameters and not with the model
itself. As shown in Table 7, the values are given by σy ∼ N (250 × 103, 625 × 106), ρ ∼ N (7850, 100), and
f ∼ N (3.5, 0.49).

Step 3: Form the Iterative Equations
In order to use the Kalman filter to simultaneously estimate robustness and converge the design, the iterative
equations described in Eq. (31) for fixed-point iteration need to be formed. Through analogy of variables,
the matrices are given by

Λ =

(
A1

A2

)
=

 0
∂T1
∂y2


ŷ

∂T2
∂y1


ŷ

0



β =

(
B1

B2

)
=


∂T1
∂ud


ûd

∂T2
∂ud


ûd



γ =

(
C1

C2

)
=


∂T1
∂up


µup

∂T2
∂up


µup



δ =

(
d1

d2

)
=


−

(
∂T1
∂ud


ûd

ûd +
∂T1
∂up


µup

µup
+
∂T1
∂y


ŷ

ŷ

)

−

(
∂T2
∂ud


ûd

ûd +
∂T2
∂up


µup

µup
+
∂T2
∂y


ŷ

ŷ

)


where the numerical values for each of these matrices is evaluated at each subsequent iteration at the appro-
priate nominal values.

Step 4: Ensure a Solution Exists
While this problem is posed as a linear system, the matrix Λ varies with iteration. This requires a Lyapunov
analysis to be conducted in order to identify the stability of the system. For this example, this analysis was
completed simultaneously with the convergence by numerically solving a matrix Riccati equation. A positive
definite matrix, P, for the quadratic problem was able to be found that satisfies the relationship

ΛT
k PkΛk −Pk = Qk

for Qk > 0. Since a solution for Pk was able to be found when Qk = I4×4 for each iterate, this enables a
Lyapunov function of the form

Vk = yT
k Pkyk
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Figure 11. History of the modulus of the maximum eigenvalue of the two bar truss system with iteration.

to be formed which shows asymptotic stability for a linear, time varying, discrete system. In addition to
using Lyapunov stability, the modulus of the eigenvalues show similar conclusions regarding the asymptotic
stability as shown in Fig. 11.
Step 5: Estimate the Mean Output and the Covariance
The equations formed in the prior step can then be propagated through the Kalman filter defined by Eqs.
(20)-(26) with

Fk−1 = Λ, ∀k ∈ {1, 2, ..., n}

Bk−1 =
(
β γ I4×4

)
, ∀k ∈ {1, 2, ..., n}

uk−1 =

ud

up

δ

 , ∀k ∈ {1, 2, ..., n}

where in this example ud =
(
E l r1 r2 g y2 y3

)T
and up = E(up) = µup

. In this example, the

matrix Q is the null matrix since the only uncertain parameters of the problem are associated with the input
parameters, not the model. The unscented transform is used on an uncoupled system with the distribution
described in Step 2 in order to identify y0 and Σ0, the initial output mean and covariance for each design. A
design is considered converged when the absolute difference between iteration estimates is less than 1×10−4

or the relative difference is less than 1× 10−6.

Step 6: Identify the Mean and Variance Bound of the Objective Function
Upon convergence, the value of y, the state variable in the problem, is the mean response for each of the
components of the output CAs. In this example, the matrix M is given by

M =
(

0 0 1 1
)

since the objective is the weight of truss W1 +W2, the two elements of the second CA output. Therefore,

r̄ ≈
(

0 0 1 1
)

ŷn|n

The estimate for the variance (i.e., the variance bound) in this case is two times the 2-norm of the entire
estimated covariance matrix

σ2
r ≈

2∑
i=1

‖ Σy∗n|n ‖2= 2 ‖ Σy∗n|n ‖2
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.
Step 7: Optimize for Uncertainty and Ensure Constraints are Met
Formulating the output of Step 6 in terms of the mean and variance allows for an optimal control problem
to be setup for the system’s design, where the objective function is defined by

J = α
(

0 0 1 1
)

ŷn|n + 2β ‖ Σy∗n|n ‖2

and α and β allow different weighting on the mean and variance. The constraints for this problem as given
are

g(y,u) =


g1(y,u)

g2(y,u)

g3(y,u)

g4(y,u)

 =


|T1(u)| − πr21σy
|T2(u)| − πr22σy
−T1(u)− π2EI1

L2
1

−T2(u)− π2EI2
L2
2


Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ {1, . . . , n}

Therefore, the Hamiltonian in the optimal control problem is given by

H(y,u) = ψ0

(
α
(

0 0 1 1
)

ŷn|n + 2β ‖ Σy∗n|n ‖2
)

+ γT (uk − uk−1) + λT


|T1(u)| − πr21σy
|T2(u)| − πr22σy
−T1(u)− π2EI1

L2
1

−T2(u)− π2EI2
L2
2


where the terms in this relation can be computed numerically. The optimal control conditions can then be
used to compute the values of y2 and y3 for a chosen value of α and β such as described in Ref. 13.

V.A. Design Results

As mentioned at the beginning of this section, the formulation of this problem is based on work by 64. This
work showed the deterministic optimal design to be as shown in Fig. 12(a) which also shows the minimum
variance robust design found in this work.64 This positions the vertical positions of the nodes, (y∗2 , y

∗
3), at

(0.751, 9.970) m with an objective function value of J = 29.673 kg. The deterministic case of this analysis
(i.e., when α = 1 and β = 0) yields a very similar result with (y∗2 , y

∗
3) at (0.746, 9.991) m with an objective

function value of J = 29.679 kg which implies that the method developed achieves an accurate numerical
result even in the case of nonlinear problems.

The variation in terms of mean and variance for this problem is shown in Fig. 12(b). From this figure,
the deterministic optimum is the minimum mean solution; however, it is not the minimum variance solution.
This minimum variance design is approximately 4 kg heavier.
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Figure 12. Design solutions for the two-bar truss showing the (a) design space with the optimal designs and (b) variation
of 2||Σy∗ ||2 with the mean objective function.

VI. Conclusions

In this work, the foundations has been described for how to cast the general multidisciplinary design
problem as a dynamical system. This is a process of identifying the iteration scheme and then formulating the
CAs to fit this iteration scheme for both steps of the design process: identifying candidate designs and finding
the optimum of these candidate designs. Three techniques from dynamical system theory were described
with particular emphasis being placed on their role in the formation of a rapid robust design methodology
for multidisciplinary design. These were (1) stability analysis to examine the existence of a converged design
(for a given iteration scheme), (2) optimal control to handle equality and inequality constraints by obtaining
an additional set of constraints and adjoining these to the desired objective function, and (3) estimation
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theory to obtain design robustness characteristics. These techniques were demonstrated together to provide
a conservative upper bound of the variance of the design to a scalar objective function.

A probabilistic performance assessment of the bounding robustness methodology as well as an example
robust design problem were provided, which showed aspects of dynamical system theory being applied to
multidisciplinary design. The probabilistic assessment showed that robustness assessment methodology had
maximum errors relative to exact values less than 1% on the mean objective value and less than 40% for the
standard deviation for a large design space. In adddition, for specific values of the CAs a comparison between
traditional uncertainty quantification techniques and the robustness assessment methodology was provided.
This example demonstrated significant computational performance gains of the proposed technique with a
reduction in the number of function calls by a factor of two when compared to the unscented tranform and
more than an order of magnitude when compared to fast probability integration and Monte Carlo techniques
with minimal sacrifices to the accuracy (< 3%). In the design example, the methodology was applied to
a nonlinear problem, that of design a two-bar truss system. The successive linearization procedure showed
a minimal mass design that performs better than that in the literature and characterized the difference
between optimal and robust design.
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