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This work views the multidisciplinary design problem as a discrete dynamical system.
The dynamical system is a result of the convergence of the design, which requires that each
of the disciplines use the same information, have a common set of assumptions, and satisfy
the constraints imposed on the design. An additional dynamical system is formed during
the optimization of the design. Using optimal control theory for dynamical systems, allows
design constraints to be easily imposed on the design variables and the outputs of each
of the contributing analyses at the same level in the design hierarchy. By coordinating
these constraints at the same level in the design hierarchy, parts of the design space that
have conflicting constraints between design variables and contributing analyses can be
avoided. Finally, by viewing the constraints using control theory, established, efficient
solution procedures can be invoked in the design process.

Nomenclature

(·)T Matrix transpose of (·)
(·)−1 Matrix inverse of (·)
λ Lagrange multiplier
µ Lagrange multiplier
ν Lagrange multiplier
R Set of real numbers
0q q × 1 vector of zeros
u Control variable in the optimal control problem
L(·) Optimal control path cost
P(i) Convex cone for the discrete optimal control problem
Q(i) Convex cone for the discrete optimal control problem
U Set of admissible inputs (controls)
φ(·) Terminal state cost
Σ Set of admissible states
H(·) Hamiltonian
L(·) Lagrangian

I. Overview

In Refs. 1 and 2, a methodology that rapidly obtains the mean and a bound on the variance of a
multidisciplinary design was developed. This new methodology is possible by viewing the multidisciplinary
design problem as a dynamical system. In fact, two discrete dynamical systems are formed, both of which are
the resultant of a root-finding problem. The first dynamical system addresses the identification of feasible
designs by ensuring each of the contributing analyses (CAs) use the same output. For this system, the
state is the contributing analyses (CAs) output. The second dynamical system formed is that of finding an
optimum of the design, where the state is the objective function of the optimization.
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The concepts described subsequently address the handling of constraints that are a function of both the
CA output and the design variables when viewing the design problem as a dynamical system. This is done
by approaching the problem as an optimal control problem which allows equality and inequality constraints
to be placed on the state (the CA output) and control (the design variables) of the system. This approach
enables the handling of both the design variable and CA constraints is done at the same level of the design
hierarchy, which provides coordination in the search of feasible and optimal solutions.

II. Discrete Dynamical Systems

The techniques developed in Ref. 1 rely on discrete dynamical systems. That is, a dynamical system of
the form

xk+1 = f(xk,uk, k)

yk = g(xk,uk, k)

}
(1)

where x is the state of the system, f is a function which describes the time evolution of the system, u is the
input into the system, and k is the iterate number. A specific instance of Eq. (1) that is used in Ref. 1 is a
linear, discrete dynamical system, which is given by

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk

}
(2)

Graphically, this linear discrete dynamical system is shown in the block diagram shown in Fig. 1.
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Figure 1. Block diagram of a linear, discrete dynamical system.

III. The Multidisciplinary Design Problem as a Dynamical System

III..1. Identification of Feasible Designs

Identifying feasible designs in multidisciplinary systems can be thought of as the process of finding the
root of a function. Consider a multidisciplinary problem where the analysis variables are described by a
multivariable function f(u,p) where u are the design variables and p are the parameters of the problem.
Assume that the requirements of the design are given by only equality constraints that are a function of
the performance of the system. The performance of the design is described by a multi-variable mapping
g(f(u,p)) and the requirements are given by z. In order to meet the requirements it is necessary to adjust
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the design variables u so that
z = g(f(u,p)) (3)

The solution u∗ of Eq. (3) is the root of the system. Since identifying feasible designs within the multidisci-
plinary design problem requires finding the value of u that satisfies Eq. (3), this process can be thought of
as a root-finding problem when an iterative solution method is chosen.

Many numerical methods for finding the root of a function, g(u), are dynamical systems since they rely on
iterative schemes to identify the root.3 For instance, the bisection method, secant method, function iteration
method, and Newton’s method are all iterative techniques that satisfy the requirements of a dynamical
system.

III..2. Design Optimization

In order for a converged design to be an optimum with respect to some objective function, its performance
needs to be evaluated with respect to other potential designs. The general optimization problem is formulated
as

Minimize: J (u,p)

Subject to: gi(u,p) ≤ 0, i = 1, . . . , ng

hj(u,p) = 0, j = 1, . . . , nh

By varying: u

 (4)

The solution requires an auxiliary function, the Lagrangian, to be defined as

L(u,p,λ) = J (u,p) +

ng∑
i=1

λigi(u,p) +

nh∑
j=1

λng+jhj(u,p) (5)

to be found. The first-order, necessary conditions for u∗ to be an optimum are4

1. u∗ is feasible

2. λigi(u
∗) = 0 i = 1, . . . , ng and λi ≥ 0

3. ∇L(u,p, λ) = ∇J (u,p) +

ng∑
i=1

λi∇gi(u,p) +

nh∑
j=1

λng+j∇hj(u,p) = 0 with all λi ≥ 0 and λng+j

unrestricted in sign

Each of the necessary conditions is a root-finding problem by itself. As previously discussed, the process
of finding u∗ is a process of root-finding. Additionally, as apparent from the form of the relationships, the
other two necessary conditions for optimality may also be obtained through a root-finding technique. The

values of the Lagrange multipliers for the inequality constraints, λ̂ =
(
λ1 . . . λng

)T
can be found from the

relation
λ̂(x∗) = −[ATA]−1AT∇J (x∗) (6)

where
A(x∗) =

(
∇g1(x∗) ∇g2(x∗) . . . ∇gng

(x∗)
)

(7)

III..3. Identifying an Optimal Multidisciplinary Design

Multidisciplinary design optimization can be broken down into two steps: (1) identifying feasible designs and
(2) identifying the optimal design from the set of feasible candidates. As discussed, both of these steps are
root-finding problems. With the choice of an appropriate iterative numerical root-finding scheme, each of
these individual steps can be posed as dynamical systems. When combined together, a nested root-finding
problem results.
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III.A. Identifying an Optimal Multidisciplinary Design

Multidisciplinary design optimization can be broken down into two steps: (1) identifying feasible designs and
(2) identifying the optimal design from the set of feasible candidates. As discussed, both of these steps are
root-finding problems. With the choice of an appropriate iterative numerical root-finding scheme, each of
these individual steps can be posed as dynamical systems. When combined together, a nested root-finding
problem results, whereby the function being optimized is actually a root-finding problem itself.

IV. Constraints Using Optimal Control Theory

As an alternative to the general design solution procedure, consider an alternative, optimal control. Again,
the solution procedure is a root-finding problem, however, optimal control techniques adjoin a “tangency”
condition for constraints that are a function of the input or state. This allows a more general framework to
handle various constraints that may vary depending on the current input values as well as a direct way to
handle constraints that are a function of the design variables and the CA values.

IV.A. Continuous Dynamical Systems

To first illustrate the handling of constraints using optimal control theory, consider the general continuous-
time optimal control problem given by

Minimize: J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt

Subject to:
dx

dt
= f(x(t),u(t), t)

u(t) ∈ U
x(t) ∈ Σ

By varying: u(t)


(8)

In Eq. (8), φ is the terminal state cost, L is the transient or path cost, U is the set of admissible controls,
and Σ is the set of admissible states. Suppose that there is a constraint on the state given by

S(x, t) = 0 (9)

Differentiating Eq. (9) with respect to time, one obtains

Ṡ =
∂S

∂t
+
∂S

∂x

dx

dt
= 0 (10)

Substituting the state equation into this result yields

Ṡ =
∂S

∂t
+
∂S

∂x
f(x(t),u(t), t) = 0 (11)

and allows for a technique to yield the optimal control, u(t), that minimizes J and meets the equality
constraint on the state.5,6 If the control is not explicit in Eq. (10), then the process of differentiating S
and substituting the state equation is continued until the control is explicit in the equation to form a set
of q point relationships {S(n)}, n = 0, . . . , q − 1, where n is the order of the derivative. These tangency
conditions can be adjoined using Lagrange multipliers to the path cost, L, to solve for the optimal control
history.

Inequality constraints of the form
S̄(x, t) ≤ 0 (12)

can be handled similarly.5,6 In this case, the solution process depends on whether or not the state is on
the boundary. If it is on the boundary, the same solution process to equality constraints is followed, while
for off-boundary solutions, the terms are ignored. This results in a multiple sub-arc solution, although
fundamentally the process is identical to the equality constraint case.
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IV.B. Discrete Dynamical Systems

For the discrete optimal control problem posed as7

Minimize: J (x,u) =

n−1∑
k=0

L(xk,uk+1, k)

Subject to: xk+1 = f(xk,uk+1, k), ∀k ∈ {0, . . . , n− 1}
uk ∈ U(xk−1), ∀k ∈ {1, . . . , n}
xk ∈ Σ, ∀k ∈ {0, . . . , n− 1}

By varying: uk, ∀k ∈ {1, . . . , n}


(13)

the optimal control satisfies the following necessary conditions which allows it to be satisfied. First, assume
the following regarding the analysis domain:

1. U is defined for each x ∈ Σ by equality and inequality constraints of the form

g(x,u) ≤ 0; g ∈ Rqt×1 (14)

h(x,u) = 0; h ∈ Rkt×1 (15)

2. Σ is defined by the equality and inequality constraints of the form

w(x) = 0; w ∈ Rrt×1 (16)

ω(x) ≤ 0; ω ∈ Rpt×1 (17)

3. There exists convex cones, P(i) and Q(i) with vertices at x(τ) that cover Σ for all τ = 0, 1, . . . , n

4. There exists a scalar ψ0 ≤ 0 and vectors

ψt = [ψ1,t, . . . , ψn,t]
T , ∀t ∈ {1, . . . , n} (18)

γt = [γ1,t, . . . , γkt,t]
T , ∀t ∈ {1, . . . , n} (19)

λt = [λ1,t, . . . , λqt,t]
T , ∀t ∈ {1, . . . , n} (20)

µt = [µ1,t, . . . , µrt,t]
T , ∀t ∈ {0, . . . , n} (21)

νt = [ν1,t, . . . , νpt,t]
T , ∀t ∈ {0, . . . , n} (22)

b(i), i = 1, . . . , n ∀t ∈ {0, . . . , n} (23)

such that the direction of b(i) lies in the dual cone D(P(i))

5. Let a scalar function Ht(x,u) be defined as

Ht(x,u) = ψ0L(x,u, t) +ψTt f(x,u, t) + γTt h(x,u) + λTt g(x,u) (24)

The necessary conditions for an optimal control to exist are then given by:

1. If ψ0 = 0 then for at least one t at least one of the vectors ψt, γt, λt, µt, νt, or b(i) is non-zero

2. For all t = 0, . . . , n and any vector δx whose direction lies in the intersection of the cones Q(i), the
following inequality holds(

−ψt +
∂Ht+1(x,u)

∂x
+ µTt

∂w(x)

∂x
+ νTt

∂ω(x)

∂x
−

nt∑
i=1

b(i)

)T
δx ≤ 0

where it is assumed that ψ0 = 0 and Hn+1 = 0

3.
∂H(xt−1,ut)

∂u
= 0, ∀t ∈ {1, . . . , n}

4. λα,t ≤ 0, λα,tg
α
t (xt−1,ut) = 0 ∀α ∈ {1 . . . , qt} and t ∈ {1, . . . , n}

5. να,t ≤ 0, να,tω
α
t (x(t)) = 0 ∀α ∈ {1, . . . , pt} and t ∈ {0, . . . , n}

The proof of these conditions minimizing J (x,u) is found in Ref. 7. Note that the process of adjoining
the tangents of the state and control constraints to the objective functional in the second criteria is nearly
identical to that of the continuous case with the additional requirement that the space is convex (as defined
by the intersection of the cones).
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IV.C. Solution Methods

The discrete problem as posed is a nonlinear programming (NLP) problem, which has many known solution
technique which include gradient methods, quadratic programming, sequential quadratic programming, and
interior-point methods.4,7, 8

Direct methods to the continuous problem also approach the solution procedure to the optimal control
problem as a discretized problem. This again gives rise to an NLP. However, unlike the discrete formulation
described previously, the direct solution to the continuous problem may require the use of penalty functions
for constraints. Alternatively, indirect methods would approximate the discrete problem as a continuous
problem (i.e., taking the step size caused by the iteration to zero) and then solves a boundary value problem.
This allows the constraints to be handled directly using Lagrange multipliers. The validity of viewing the
discrete problem as a continuous problem has been shown to work well for multidisciplinary design problems,
as the solution set is in general more restrictive (including continuity requirements on the constraints) than
the discrete problem; however, solutions may not always exist.

A comparison of the different solution methods is shown in Table 1.

Table 1. Comparison of Solution Techniques.

Advantages Disadvantages

Direct Methods

Large Region of Attraction Computationally Intensive

Large Number of NLP Solvers Convexity Requirement

Use of Penalty Functions

Indirect Methods

Fast Convergence Small Region of Attraction

Solution Optimality Solutions May Not Exist

Exact Solution of Constraints

IV.D. Solution Search Coordination

It has already been mentioned that approaching the constraint problem in the multidisciplinary design
problem from the optimal control perspective enables the explicit handling of constraints that are a function
of both the CA output (i.e., the state, x) and the design variables (i.e., the control, u). This is opposed to the
standard design optimization problem given in Eq. (4) where the inequality and equality constraints, gi(u,p)
and hi(u,p), are explicit functions of the design variables only. To accommodate CA constraints, one would
have to apply penalty function (or similar) technique to the problem which means that the enforcement of
the constraints may not be exact.

By accommodating both design variables and CA constraints at the same level in the optimization hier-
archy, a reduced design space can be searched which eliminates the design region with conflicting constraints.
This is shown schematically in Fig. 2.

In Fig. 2(a), the design region resulting from traditional optimization where constraints are only a
function of design variables is shown which implies that there is a relatively large feasible region. While in
Fig. 2(b) the feasible region that actually exists is shown as it accounts for all possible constraints in the
problem. The results seen in Fig. 2(b) is the region that is searched by approaching this problem from the
optimal control perspective.

IV.E. Use of Continuation Methods

It should also be mentioned that using the optimal control approach to approach an optimal design allows
a continuation-type approach to be applied to the design variables to enable convergence for potentially
difficult to converge designs. This would constrain the design variables to have initially small variations
around a solution that is known to be valid and then grow as a function of the iteration until the entire
design variable range can be explored.
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u1

u2

u1  C1

u2  C2

Feasible Design Region 
with Design Variable 

Constraints

(a)

u1

u2

Feasible Design Region 
with Design Variable 

and CA Constraints

u1  C1

u2  C2

x   C3

Contributing 
Analysis 
Output

Design
Variables

(b)

Figure 2. Feasible design space accounting for (a) design variable constraints only and (b) design variable and con-
tributing analysis constraints.

V. Design Examples

The following examples employ a rapid robust design methodology as described in Ref. 1 to demonstrate
using optimal control theory to impose design variable and CA output constraints. The nomenclature in the
section that follows is consistent with that work.

V.A. Linear, Three Contributing Analysis System

Consider the linear, three CA system shown in Fig. 3 where each CA is scalar. In this case, it is desired to

 

'''

p

' DyCyBuAy 1312111 

 

'

232122 CyByAy '' 
321 yyyr du

1y

2y

 

'

323133 CyByAy '' 
3y

2y

Figure 3. Three contributing analysis multidisciplinary design.

find ud ∈ R that minimizes the summation of the CAs output while being within the unit cube centered at
the origin. In other words

Minimize: J = y1 + y2 + y3

Subject to: y1, y2, y3 ∈ [−1, 1]

By varying: ud


The problem as given has already been decomposed into the representative contributing analyses. For

the first CA, y1, the functional form of the CA is as follows

y1 =
(

0 B′1 C ′1

)
y +

(
A′1

)
ud +

(
0
)

up +D′1
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Similarly, for the second CA, the functional form is given by

y2 =
(
A′2 0 B′2

)
y +

(
0
)
ud +

(
0
)

up + C ′2

and the third CA
y3 =

(
A′3 B′3 0

)
y +

(
0
)
ud +

(
0
)

up + C ′3

Hence,

A1 =
(

0 B′1 C ′1

)
B1 =

(
A′1

)
C1 =

(
0
)

d1 = D′1

A2 =
(
A′2 0 B′2

)
B2 =

(
0
)

C2 =
(
0
)

d2 = C ′2

A3 =
(
A′3 B′3 0

)
B3 =

(
0
)

C3 =
(
0
)

d3 = C ′3

For this example, the fixed-point iteration equations are

Λ =

A1

A2

A3

 =

 0 B′1 C ′1
A′2 0 B′2
A′3 B′3 0



β =

B1

B2

B3

 =

A′10
0


γ =

C1

C2

C3

 =

0

0

0


δ =

d1

d2

d2

 =

D′1C ′2
C ′3


In the optimal control problem, the objective function is given by

J = 1T3 y

The design space and constraints in this problem are inherently convex therefore the constraints can be
directly formulated as

g(y,u) =



y1 − 1

y2 − 1

y3 − 1

−y1 − 1

−y2 − 1

−y3 − 1


=

(
I3×3

−I3×3

)
y − 16 ≤ 06

Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ 1, . . . , n

Therefore, the Hamiltonian in the discrete optimal control problem is given by

Ht(y,u) = ψ0y + γT

((
I3×3

−I3×3

)
y − 16

)
+ λT (uk − uk−1)

where the terms in this relation can be computed numerically. Alternatively, treating this as a continuous
optimal control problem, the Hamiltonian would be given by

H(y,u) = λT (Λy + βud − ẏ) + µT

((
I3×3

−I3×3

)
y − 16

)
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with the terminal constraint function given as

G(y,u) = y1(tf ) + y2(tf ) + y3(tf )

In both of these equations, the unknown terms can be computed numerically.

V.A.1. Design Results

The parameters used within the models are shown in Table 2.

Table 2. Parameters for the robust design of a three contributing analysis system.

Parameter Value

Λ

 0 1/3 1/3

1/3 0 1/3

1/3 1/3 0


β

1

0

0


γ

0

0

0


δ

0

0

0



Approaching this as discrete optimal control problem, the optimal design is found using the Sparse
Nonlinear Optimization (SNOPT), an NLP solver which uses a sequential quadratic programming algorithm.9

This software package was also used for the discrete optimal control problem. Finally, a boundary value
problem solver using collocation was used to solve the indirect problem. The solutions obtained for each of
these techniques along with the number of function evaluations is shown in Table. 3.

Table 3. Design results for the Linear, Three Contributing Analysis System.

Method u∗d J ∗ Function Evaluations

Discrete -0.6665 2.499 21

Continuous, Direct -0.6645 2.478 26

Continuous, Indirect -0.6666 2.500 16

V.B. Robust Design of a Two Bar Truss

Consider the planar truss which consists of two elements with a vertical load at the mutual joint, as shown
in Fig. 4 (adapted from Ref. 10).
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x 

h 

Node 1 

 (0,0) 

Node 2 

 (x2,h2) 

Node 3 

 (0,h3) 

Bar 2 

Bar 1 

r 

Bar  

Cross-Section 

f 

g 

l 

Figure 4. Two bar truss with a load at the mutual joint.

For this problem, it is desired to find the vertical position of nodes 2 and 3, h2 and h3, that minimize the
weight of the truss while ensuring that the structure will not fail due to Euler buckling or yielding with some
factor of safety given fixed values for the material properties, E, σy, and ρ, the load, f , and the bar geometry,
r1 and r2. The horizontal position of node 2 is constrained to be l. In standard form, the deterministic
problem is written as

Minimize: J = ρπg
(
r21L1 + r22L2

)
= ρπg

(
r21
√
l2 + h22 + r22

√
l2 + (h3 − h2)2

)
Subject to: g1(h2, h3) = |T1(h2, h3)| − πr21σy ≤ 0

g2(h2, h3) = |T2(h2, h3)| − πr22σy ≤ 0

g3(h2, h3) = −T1(h2, h3)− π2EI1
L2
1

≤ 0

g4(h2, h3) = −T2(h2, h3)− π2EI2
L2
2

≤ 0

By varying: h2, h3


where L1 and L2 are the lengths of the two bars, respectively, I1 and I2 are the moments of inertia of the

two bars (Ii =
1

4
mr2i ), and T1(h2, h3) and T2(h2, h3) are the tensions in the two bars. In this formulation

both the objective function and constraints are nonlinear with respect to the design variables. Numerical
values for this problem are shown in Table 4

Two analyses must occur in order to design the two bar truss: a structural analysis and a sizing of the
bars constituting the truss. The mass of the bars also provide a load through their weight. Hence, this is a
coupled analysis problem since the structural analysis depends on the sizing of each of the bars. The coupled
design structure matrix (DSM) is shown in Fig. 5.

The inputs into the design problem are the deterministic and probabilistic parameters of the problem
whose values are shown in Table 4. In particular,

ud =
(
E l r1 r2 g h2 h3

)T
and

up =
(
σy ρ f

)T
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Table 4. Parameters for the two-bar truss problem.

Parameter Description Nominal Value Distribution

E Young’s Modulus 200× 106 kN/m2 –

σy Yield Strength 250× 103 kN/m2 N (250× 103, 625× 106)

ρ Density 7850 kg/m3 N (7850, 100)

l Length 5 m –

r1 Radius of Bar 1 30 mm –

r2 Radius of Bar 2 5 mm –

f Applied Force 3.5 kN N (3.5, 0.49)

g Gravitational Acceleration 9.81 m/s2 –

Structural 

Analysis 

Weights and 

Sizing 

21 WWr pd uu ,

2,TT1

21,WW

Figure 5. Two bar truss design structure matrix.

The structural analysis CA feeds the forces seen in each of the members of the truss to the weights and
sizing module. These can be found through the static equilibrium equations and are found by solving the
linear equations 

l

L1
0 1 0 0 0

−h2
L1

0 0 1 0 0

− l

L1

l

L2
0 0 0 0

−h2
L1

h3 − h2
L2

0 0 0 0

0
l

L2
0 0 1 0

0
h3 − h2
L2

0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





T1

T2

R1x

R1y

R3x

R3y


=



0

0

0

− l

2h3
(W1 +W2 + 2f)

f

(
1 +

h2
h3

)
0

0

f
l

2h3
(W1 +W2 + 2f)

f

(
1 +

h2
h3

)
+W1 +W2


for the tensions. The weights and sizing CA computes the weights of each of the bars based on the nonlinear
relationship

y2 =

(
W1

W2

)
=

(
πρgr21L1

πρgr22L2

)
Both relationships defined by the CAs rely on the lengths of the bars, which are given by the nonlinear
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relations

L1 =
√
l2 + h22

L2 =
√
l2 + (h3 − h2)2

In order to apply the developed methodology, linearization using a Taylor series expansion about a
nominal value (chosen to be the previous iterate’s mean value) is conducted. Functionally, this means that
the expression for the tensions, y1, can be expanded as follows

y1 =

(
T1

T2

)
≈


∂T1
∂ud


ûd

(ud − ûd) +
∂T1
∂up


µup

(up − µup
) +

∂T1
∂y


ŷ

(y − ŷ)

∂T2
∂ud


ûd

(ud − ûd) +
∂T2
∂up


µup

(up − µup
) +

∂T2
∂y


ŷ

(y − ŷ)


Similarly, the expression for y2 can be expanded as

y2 =

(
W1

W2

)
≈


πρgr21

ŷ2√
l2 + ŷ22

(h2 − ŷ2)

πρgr22

(
ŷ2 − ŷ3√

l2 + (ŷ2 − ŷ3)2
(h2 − ŷ2) +

ŷ3 − ŷ2√
l2 + (ŷ2 − ŷ3)2

(h3 − ŷ3)

)


While this problem is posed as a linear system, the matrix Λ varies with iteration. This requires a
Lyapunov analysis to be conducted in order to identify the stability of the system. For this example,
this analysis was completed simultaneously with the convergence by numerically solving a matrix Riccati
equation. A positive definite matrix, R, for the quadratic problem was able to be found that satisfies the
relationship

ΛT
kRkΛk −Rk = Qk

for Qk > 0. Since a solution for Rk was able to be found when Qk = I4×4 for each iterate, this enables a
Lyapunov function of the form

Vk(y) = yTk Rkyk

to be formed which shows asymptotic stability for a linear, time varying, discrete system. This could also
be formulated by using a sum-of-squares Lyapunov function technique as outlined in Ref. 2.

The modulus of the eigenvalues show similar conclusions regarding the asymptotic stability as Lyapunov
stability as shown in Fig. 6.

Upon convergence, the value of y, the state variable in the problem, is the mean response for each of the
components of the output CAs. In this example, the matrix M is given by

M =
(

0 0 1 1
)

since the objective is the weight of truss W1 +W2, the two elements of the second CA output. Therefore,

r̄ ≈
(

0 0 1 1
)

ŷn|n

The estimate for the variance (i.e., the variance bound) in this case is two times the 2-norm of the entire
estimated covariance matrix

σ2
r ≈

2∑
i=1

‖ Σy∗n|n ‖2= 2 ‖ Σy∗n|n ‖2

.
Formulating the output of Step 6 in terms of the mean and variance allows for an optimal control problem

to be setup for the system’s design, where the objective function is defined by

J = α
(

0 0 1 1
)

ŷn|n + 2β ‖ Σy∗
n|n ‖2
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Figure 6. History of the modulus of the maximum eigenvalue of the two bar truss system with iteration.

and α and β allow different weighting on the mean and variance. The nonlinear constraints for this problem
as given are

g(y,u) =


g1(y,u)

g2(y,u)

g3(y,u)

g4(y,u)

 =


|T1(u)| − πr21σy
|T2(u)| − πr22σy
−T1(u)− π2EI1

L2
1

−T2(u)− π2EI2
L2
2


Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ {1, . . . , n}

Approaching this problem as a discrete optimal control problem, the Hamiltonian is given by

H(y,u) = ψ0

(
α
(

0 0 1 1
)

ŷn|n + 2β ‖ Σy∗
n|n ‖2

)

+ γT (uk − uk−1) + λT


|T1(u)| − πr21σy
|T2(u)| − πr22σy
−T1(u)− π2EI1

L2
1

−T2(u)− π2EI2
L2
2


where ψ0, γ, and λ are Lagrange multipliers. When the terms in this relation are computed numerically,
the optimal control conditions can then be used in SNOPT (or another NLP solver) to compute the values
of h2 and h3 for a chosen value of α and β.

Note, that in this problem, continuation was used to obtain the solution. Each of the constraints were
applied in order with the prior solution seeding the solution to the next solution. The optimization order
was as follows:

1. Unconstrained optimization

2. Bar 1 yield constraint

3. Bar 1 yield and buckling constraints
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4. Bar 1 yield and buckling constraint and bar 2 yield constraint

5. Bar 1 yield and buckling constraints and bar 2 yield and buckling constraints.

V.B.1. Design Results

The formulation of this problem is based on work by Ref. 10 that obtained the deterministic optimal design as
shown in Fig. V.B.1. This figure also shows the minimum mass and minimum variance robust designs found
in the present investigation. The Ref. 10 solution has (h∗2, h

∗
3) at (0.751, 9.970) m with an objective function

value of J = 291.0921 N. The deterministic case obtained in the present investigation yields a very similar
result with (h∗2, h

∗
3) at (0.746, 9.991) m with an objective function value of J = 291.151 N demonstrating

that the method developed achieves an accurate numerical result even in the case of nonlinear problems.

Bar 1 Yields 

h2, m 

h
3
, m

 

Literature 
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Solution 
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Robust Design 
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Minimum Mass 
Solution 

Robust Design 
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Minimum Variance 
Solution 

Figure 7. Design solutions for the two-bar truss showing the design space with the optimal designs.
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Figure 8. Design solutions for the two-bar truss showing the variation of 2||Σy∗ ||2 with the mean objective function.
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A Pareto-front in terms of the mean weight and variance in the weight for this problem is shown in Fig.
V.B.1. From this figure, the deterministic optimum provides the minimum mean response; however, it is not
the minimum variance solution. This minimum variance design is approximately 39 N heavier.

VI. Conclusions

The use of control theory with the multidisciplinary design problem was demonstrated through the
enforcement of inequality and equality constraints on the design. This technique was shown to be able to
accommodate constraints that are functions of the design variables and CA output. These are considered at
the same level of the optimization/convergence hierarchy, which allows for an efficient coordinated search of
the design space. Established solution techniques for the discrete-time optimal control problem through NLP
methods enable design solutions to be found efficiently. In addition, in some instances continuous optimal
control techniques such as indirect methods are applicable to the design problem. Finally, approaching the
design constraint problem as an optimal control problem enables continuation techniques to be applied to
design variables which may enable design solutions to be found in difficult design spaces.
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