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This work proposes a methodology for tasking of sensors to search an area of state space for a par-
ticular object, group of objects, or class of objects. This work creates a general unified mathematical
framework for analyzing reacquisition, search, scheduling, and custody operations. In particular,
this work looks at searching for unknown space object(s) with prior knowledge in the form of a set,
which can be defined via an uncorrelated track, region of state space, or a variety of other methods.
The follow-up tasking can occur from a variable location and time, which often requires searching
a large region of the sky. This work analyzes the area of a search region over time to inform a time
optimal search method. Simulation work looks at analyzing search regions relative to a particular
sensor, and testing a tasking algorithm to search through the region. The tasking algorithm is also
validated on a reacquisition problem with a telescope system at Georgia Tech.

I. Introduction
A. Background
The space domain awareness (SDA) mission continues to require increased efficiency for catalog upkeep and catalog
expansion [1]. As the Space Surveillance Network expands, increased numbers of sensors will become available,
allowing for more complex operations. Additional pushes have been made to look for alternative data collection via
either dedicated space based sensors or unconventional optical sensors in space such as star trackers [2]. This work in
particular is derived in a general framework for any sensor type, then specialized to the electro-optical sensor (EOS),
that is, cameras. In many cases, these sensors will make large numbers of detections on space objects (SO), some of
which may appear with a unique trajectory and photometric signature that warrants follow-up. As of now, there is
limited work on how to act on this information without collocated sensors and short follow up times.

A variety of sensor tasking strategies have been proposed, which typically look at the tasking problem in terms of
catalog upkeep [3, 4, 5, 6]. These techniques tend to look at the strategic tasking problem, that is, how to use a network
of sensor to look at a catelog of objects. These methods often don’t account for region shape, and are limited to objects
with well posed prior information. This work looks to analyze the tactical tasking problem, that is, given a prior and a
sensor, how should the sensor look through the prior? In particular, this work extends a particle based search strategy
proposed by Hobson [7]. Long term, this work will be combined with modern models for prior information in space
objects, namely sequential Bayesian filters [8, 9].

This paper looks at how to search through a set of orbits. For example, an uncorrelated track (UCT), obtained
from an EOS, can be used to define an admissible region [10, 11]. This set of orbits can be propagated and projected
into the field of regard of new sensors at a new time. In general, this region can be much larger than the field of view
of a sensor, and requires multiple observations [12]. Existing methods are based on a greedy maximum probability
observation technique, which looks at observing the densest region of probability [13]. The sets used in this framework
can be defined through reachability [17], hypothesized regions of state space, or any other way. The idea behind this
work is that, if a prior can be formulated as a set, this work can be used to analyze that set.

The biggest problems facing this technique are how to choose an optimal trajectory when performing a search,
and what type of optimality is desirable. This paper argues that time optimality is the highest priority. Many SDA
sensor systems have a problem of too many objects and not enough sensors, making time on high sensitivity sensors
a priority. Furthermore, when searching a set of orbits, there is guaranteed definition of probability. If probability
density information is available, a greedy maximum probability observation may take significantly more time if an
object appears on the fringes of the PDF. Finally, an EOS can be prone to false detections; it is typically more wise to
search the entire search set than to trust the first detection that is made. Therefore time-optimal tasking is pursued in
this paper.

This optimization problem, then, is the covering salesman problem (CSP), a variation of the traveling salesman
problem [14]. The CSP looks for the optimal path to take between a series of points such that every point, or a point
within a limiting distance, is visited. The tasking problem outlined above has a further complication over the classic
CSP, in that the points to be visited have dynamics, and typically spread out as time passes. This problem will in
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general be NP-hard, and obtaining complete optimal solutions is difficult. This paper will therefore both attempt the
time optimal optimization, but also develop tools that can efficiently analyze the search. Once an observation is made,
there exist a variety of techniques for making correlation [15]. This problem is also relevant to allowing non-collocated
EOS to observe a single object simultaneously for fast orbit determination [16]. This work looks at the feasibility of
different hand-off techniques.

B. Broad Categories of Search
This paper provides a broad definition of search. Search is the process of looking for an object, or group of objects,
which is thought to exist within a set of orbits, known as the search set. The set of orbits could be defined through a
variety of methods. In a lost object scenario, the a priori PDF which takes into account conservative dynamics uncer-
tainties, can have a search set defined directly by bounding the PDF. Compared to assuming a Gaussian distribution,
this method is preferred on inherently unknown or difficult to quantify dynamics. Inherently set based methods, such
as an admissible region, easily define a search set [11]. Objects which have performed an unknown maneuver can be
used to define a set of orbits by providing a limiting bound on total fuel expenditure [17]. Object maneuver limits can
also be applied to other anomalous events such as a satellite break up. Finally, a search set can be defined more broadly
as a region of orbits where objects may exist for an object discovery type methods. Furthermore, this definition is not
restricted to space objects; search for particular classes of asteroids, search in air or sea domains, and a variety of other
problems all fit within this framework.

This paper acknowledges two categories in which the search described in this paper would be useful. The first is
the problem of how to search an area of state space to maintain custody of objects in it. To protect a certain asset, it
is useful to be able to assure that the set of intercept orbits does not contain a hostile threat. There are a variety of
other ways to pose this problem, but the common theme is constantly searching a large set of orbits to find previously
unknown objects.

The second type of search is to perform follow up on an object where its location is not entirely known. A prime
example of this is the follow up on an object with a prior characterized by an admissible region. This can be broadened
to searching for debris after a break up event, to search for an object that has maneuvered, and reacquisition of an
catalog object with sufficiently large uncertainties. If the search region for this object is large, the search strategies
may be similar to that of the custody problem, while for a small search region it becomes more feasible.

C. Methodology
The first requirement is an analytic formulation of the problem. An EOS tasking scheme will be thought of as a
series of observations taken at a series of fixed angular coordinates, at a series of fixed time steps. These discrete task
locations can consist of any number of observations taken at any locations in any order. Quantities like exposure time
and number of observations taken at each location could be varied, as well as characteristics of the sensor, though
this particular work fixes these quantities for simplicity. This paper will assume for simplicity that if a sensor looks
in the direction of an object, the object is detected, or in other words, missed detections are not considered. As this
work matures, a belief and plausibility filter will be incorporated into the search algorithm to better quantify missed
detections and false detections [22].

An analysis on the area of a search set, through analysis of divergence, is presented. The rate of change of the area
of a region can be calculated via a line integral over the boundary of the region, in the measurement space. This is
then extended to higher order derivatives to enable the area of a region to be accurately predicted over a long period
of time. A region of high divergence will grow quickly, increasing the total number of observations needed to observe
it. The implication is, a time optimal algorithm will prioritize high divergence. This analysis first provides a method
to analyze search sets relative to a particular sensor, giving estimates of search campaign length and search feasibility.
Second, this method is used directly as a cost function in creating time optimal trajectories.

An optimization cost function is then proposed as a way to choose a trajectory. This work will look to minimize
the amount of time spent searching for the object, while attempting to scan the entire search area defined by prior
information. In previous work, a variation on simulated annealing [18] was tried with some success. Due to the high
dimensional and non-convex search space, this optimization can be difficult to successfully implement. A second cost
function which looks at maximizing how much the observed area grows at some time horizon is also shown. This cost
function is suited for a finite time horizon control approach.

In order to test the tasking algorithm, and illustrate its performance behavior to the reader, two simulated test
cases are presented. The first one looks at a same location handoff. An admissible region, formed from a short arc
observation is propagated an hour into the future, and reacquisition is attempted. This test case shows off many of the
strengths of the work in this paper. Second, a search set is defined to contain objects in geostationary transfer orbits
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which will intersect a particular GEO slot over a given time interval. This search set and subsequent tasking simulation
showcase the variety of scenarios these techniques can be applied to.

II. Theory: Search Regions
This section will introduce the concept of a search set, a set of orbits that a sensor or group of sensors must search

through. Then a series of analytic tools with be presented for analyzing a search set and the projection of the search
set into a measurement subspace. The intention is to provide insight into the nature of these sets and the implications
on their searchability.

A. General Problem Framework
First this paper requires defining the general dynamics framework. Define X as the set of all states, which in practice
could be position and velocity, or some alternative representation like orbit elements. Given a dynamic system,

ẋ = f(x) (1)

an object can be propagated forward in time via a flow function

x(t1) = φ(t1;x(t0), t0) (2)

which simply propagates a state via the dynamics in Equation (1). This paper will consider the propagation of not just
a single state, but a set, referred to as the search set. Consider a set of dynamic states, S(t0) ⊂ X , which may be
defined as a series of constraints {ga(x)}ba=1

S = {x ∈ X : ga(x) ≤ 0 ∀ a} (3)

Because each element in this set is dynamic, the set can be propagated as

S(t) = φ(t;S(t0), t0) (4)

Note that this region is time varying, according to orbital mechanics; the time notation will be dropped unless explicitly
necessary.

The space in which this set exists, X , is in effect a phase space representation. In accordance with Liouville’s
theorem, the measure, | · |, a generalization of volume, of this set must stay constant under the given dynamics [19].
However, note that many of the sets used in this work are sub-dimensional manifolds in X , and therefore have zero
measure.

This paper requires analyzing orbits within the measurement space defined by a particular sensor, Hi, where this
space has dimension h. A state, x, can be mapped to a measurement taken by a particular observer, xd, representing
the subspace of the state determined by the measurement. This requires a measurement function, hi, which maps the
full state space into the measurement subspace,

xd ∈ Hi (5)
hi : X → Hi (6)

The i subscript, which refers to which observer is being considered, will be dropped unless multiple observers are
being explicitly used. In the case of inherent unobservability, there is also an unobservable subspace, so the state can
be partitioned into two sub-components,

x = [xd
T ,xu

T ]T (7)
(8)

where xu is part of a state unobserved by a particular observer, based on notation used in [11]. Similarly, a search set
can be projected into the measurement space,

Sd = h(S),Sd ⊆ H (9)

Note that this mapping is a projection onto a subspace, so multiple elements of S may map to a single component of
Sd. The nominal evolution of both S and Sd are illustrated in Figure 1. Note that while |S(t0)| = |S(t)| in accordance
with Louisville’s Theorem, in general |Sd(t0)| 6= |Sd(t)| as they exist in a subspace of the phase space.
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An observation can be modeled as a subset of the search set. A sensor is tasked to observe a particular region of
the measurement space, at a particular time step, represented by O(tk) ⊂ H.

A requirement for successful search is that every part of S is observed. At each time step, a section of the
measurement space is observed throughO. Given a projected search space at time step k, Sd(tk), the observed part of
the space is Sd(tk)∩O(tk), while the unobserved part is Sd(tk) \O(tk). This paper defines S(tk) as the search space
at time step k, or in other words, the set of orbits that need to be observed. Once a part of the set has been observed it
no longer needs to be observed and should therefore no longer be part of the search space. Therefore, at each timestep,
the search space is redefined as

S(t+k ) = {x ∈ S(t−k ) : h(x) /∈ O(tk)} (10)

where t−k and t+k are timestep k before and after the update. Note that the removal of O(tk) from S(k−) does not
necessarily imply that an object does not exist in Sd(tk)∩O, but that that part of the space has been searched. Missed
detections may lead to such a situation. The optimal tasking problem then is constrained to, in some optimal manner,
drive the size of the search space, |S(tk)|, to zero.

S(t0) S(t)

h(·) h(·)

�(·)

H

X

Sd(t0) Sd(t)

t	

Figure 1. The search space evolves over time, in both X and H

B. Search Region Area
The area of a search region at a given time is a useful quantity in the analysis of search regions. However, there are
several different measures of area, when dealing with projections of high dimensional sets. This paper will analyze the
spatial area of a projected search region, |S|H, as the spatial area of the set S when projected into the measurement
space. Note that the spatial area is not the full measure of the set, as it measures the projected set and even then
does not include the velocity states which often exist in the measurement space. The spatial area, | · |H, is useful for
quantifying the area a sensor can measure. In particular, the amount of a search space an optical sensor can measure
is defined by the field of view of the sensor. For ease of notation, this area will from now on be represented as

Ah(S) = |S|H (11)

This area, then, is a function of the search set which is itself a function of time, Ah(S(t)). However, a set of orbits
doesn’t necessarily have a clean analytic definition, and the propagation the the set over time has no analytic solution,
so this area is not always well defined. In the worst case scenario, a set of orbits can be brute force represented with
particles which can be used to approximate the area.

The area of this search region has implications on the search ability of a set. In most realistic scenarios, different
velocities within a search set cause the set to expand spatially. Conversely, an observer will, with each observation,
reduce the remaining area that must be searched. A successful search requires the observations to reduce the search
area faster than the expansion is causing the area to rise.
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C. Search Area and Divergence
What this section looks to determine is both the growth rate of a search region as seen by a particular sensor, and the
local regions of expansion and contraction. The main motivation for this section is the fact that the search region over
time is not analytically known. Assume that an observer, located at o(to), wants to take an observation in this search
space at time to. First, the search set must be propagated to the appropriate time, via Equation (4). Next, the search
set must be projected into the field of regard of a sensor, through some measurement function h,

xd = h(x) (12)
Sd = {xd : xd = h(x),x ∈ S}. (13)

The function h maps to xd, the component an observer can measure.
A few problems involved in calculations can be side stepped using the divergence theorem. To review, the diver-

gence theorem states that for a vector field, F, defined over a region S, with boundary ∂S,∫
S
∇ · FdV =

∮
∂S

(F · n̂)dS (14)

where ∇ is the vector of derivatives with respect to xd. By setting F equal to xd, this integral implies that the area of
a particular region of state space can be calculated as the total integral

Ah(S) =

∫
Sd

dV =
1

dim

∫
Sd
∇ · xddV =

1

dim

∮
∂Sd

(xd · n̂)dS (15)

where dim is the dimensionality of the space, used to normalize∇·xd. The lower dimensional version of this equation
is known as Green’s theorem and will be discussed in the follow section.

Note that the bounds and differentials on this integral are functions of time, so to analyze the immediate expansion
or contraction of a search region, the Leibniz integral rule can be used to take the first derivative as

d
dt
Ah(S) =

1

dim
d
dt

∫
Sd
∇ · xddV

=
1

dim

∫
Sd

∂

∂t
(∇ · xd)dV +

1

dim

∮
∂Sd

(∇ · xd)(ẋd · n̂)dS

=

∮
∂Sd

(ẋd · n̂)dS. (16)

This is an easy to calculate value which only involves the velocity at the boundary of the region. For further intuition,
the expansion is mathematically captured by the divergence of velocity vector field,

div(ẋd) = ∇xd
· ẋd (17)

which when combined with Equation (14), yields∮
∂Sd

(ẋd · n̂)dS =

∫
Sd
∇ · ẋddV. (18)

The implication of this equation is that the contribution to the expansion (or contraction) of the region at any particular
point is due solely to the divergence of the velocity vector field. Taking the derivative of Equation (16)

d
dt

∮
∂Sd

(ẋd · n̂)dS =

∮
∂Sd

∂

∂t
(ẋd · n̂dS)

=

∮
∂Sd

(
ẍd · n̂ + ẋd ·

∂ẋd

∂xd
· n̂
)

dS (19)

which requires calculation of the partials of the velocity vector field with respect to position. Further derivatives are
possible as well which are included in an appendix at the end of this paper.

Because a search region of arbitrary dimension and shape is being projected through a non-injective function,
multiple orbits with multiple velocities could all project to a single xd. Even if dim(S) = dim(Sd), the manifold of S
might be folded in such a way that two or more parts of the original manifold map to the same part of dim(Sd). The
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h(·) h(·)

H
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Figure 2. Cases manifold projection for one-to-one, discrete-to-one, and continuum-to-one

vector field is then ill-defined. Therefore, this work will consider the 3 possible cases; the first is when the projection
is one to one, the second is when the projection is a discrete number of points to one (folding), and the third is when
a continuum of points in the original manifold map to a single point in the projected manifold. These three cases are
illustrated in Figure 2. For the one-to-one case, Equation (16) can be calculated directly, as can future derivatives.
For the discrete-to-one case, ẋd will have multiple values at a single xd. Equation (16) will have several disparate
values on each level of the original manifold. For any analytic purposes, these sub manifolds have completely unique
properties and need no special treatment.

If the projection is such that a continuum of points are mapped to a single point in the measurement space, a
continuum of velocity vector fields are defined over the search set. Calculating area and divergence becomes difficult
as there are multiple values for divergence at any given point. This paper proposes defining an upper bound to the area
rate based on maximum possible line integral from the vector fields. Given a series of vector fields, define the set of
ẋd defined at a particular xd,

Sẋd
(xd) =

{
ẋd =

d
dt

(h(x)) : xd = h(x)

}
(20)

This set definition now enables the following inequality,∮
∂So

ẋd · n̂dS ≤
∮
∂So

sup
y∈Sẋd

(y · n̂) dS (21)

where the supremum chooses the velocity with the largest outward orthogonal component at any given point along
the boundary. This integral will be larger than any other piece-wise combination of vector fields. To understand the
implication of this inequality, consider

x1,x2 ∈ S : h(x1) = h(x2) = xd ∈ ∂Sd. (22)

Now, it is easy to show
ẋd,1(t) · n̂ > ẋd,2(t) · n̂→ xd,2(t+ δt) /∈ ∂Sd (23)

because the boundary ∂Sd must be moving outward at at least a rate of ẋd,1 · n̂. In other words, if Sd has a continuum
of velocity vector fields, the internal motion still does not effect the growth of the region, and the expansion at the
boundary is fully described by supy∈Sẋd

(y · n̂).
Finally, it is worth considering the behavior of partitions of a search set. The search space Sd can be partitioned

into m sub regions,

Sd =

m⋃
Sid (24)

∅ = Sad ∩ Sbd ∀ a 6= b (25)

where Sid are the non-overlapping partitions. The area over time, and area growth, can be calculated for each partition
to give insight into local areas of growth within the search space. Note that unless the manifold mapping into the
search space is one-to-one, non-overlapping partitions inH may overlap in the future.
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D. Admissible Region based Search Area
This section focuses on how to applying the previous analysis to the primary test case of this paper, follow up on
an admissible region by an optical observer. Consider an admissible region, A, defined at some previous time t0.
Assume that an optical observer, located at o(t), wants to searchA at time tf .

xd = [α, δ]T = h(x;o) (26)

Sd = {[α, δ]T : [α, δ]T = h (φ(tf ;x, t0);o(tf )) ,x ∈A}. (27)

The divergence for this optical sensor is

div(xd) =
dα̇
dα

+
dδ̇
dδ
. (28)

The area can then be calculated as

Ah(S) =
1

2

∮
∂Sd

(xd · n̂)dS =
1

2

∮
∂Sd
−δ cos(δ)dα+ αdδ (29)

where the signs and arrangement of α and δ account for the normal vector. The area rate of change is

d
dt

(Ah(S)) =

∮
∂Sd
−δ̇ cos(δ)dα+ α̇dδdS (30)

Note that any occurrence of dα has an additional factor of cos(δ). This is because a differential in angular space
such as dS or dA must account for the curved nature of the angular space. This also implies that all angles must be
represented in radians, and the area being calculated is in steradians. These may also be difficult or impossible to
calculate near the singularities at δ = ±π/2.

The higher order derivatives ofAh exist and can be calculated. An infinite Taylor series can be used to approximate
the area over time to very high accuracy. The calculations are analytic and are often relatively easy to calculate,
compared to particle propagation. It can be assumed that sufficient accuracy is achievable by increasing the number
of terms in the Taylor series approximation.

The admissible region from an optical observer is a 2 dimensional manifold of orbits. Any search set will there-
fore be either entirely one-to-one or have some folding that causes multiple orbits to map to a single α and δ pair.
Qualitatively, there is no guarantee that folding will not occur, but over short periods of time after the inception ofA,
folding tends to not occur. The structure ofA makes the analysis on partitioning particularly powerful; becauseA is
a continuously defined region, partitioned regions will not overlap outside of folding. Figure 3 shows the divergence
changing over a region.

High	Divergence	 Low	Divergence	

Sa
d Sb

d

Sd

@Sd

Figure 3. Divergence of α̇ and δ̇ as they vary with α and δ

If no folding occurs for a 2 dimensional manifold, the original boundary of the manifold will be associated with
the projected boundary. When considering an admissible region, the projected boundary of the region then often
corresponds to the boundary ofA in the original space.

Equation (19) requires calculating ∂ẋd

∂xd
(t). This quantity must be calculated along a the manifold created by the

propagated admissible region, Sd(t). This manifold, at a particular time t, does not have a closed form definition.
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Instead the derivative must be tied back to the original definition of the manifold, that is, the original admissible
region. The variations of a location inH with respect to admissible region coordinates is

∂xd(t)

∂xu(t0)
=
∂xd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

=
∂xd(t)

∂x(t)
Φ(t, t0;x(t0))

∂x(t0)

∂xu(t0)
(31)

where ∂xd(t)
∂x(t) is the Jacobian of the measurement function, h, and Φ is the state transition matrix. Similarly,

∂ẋd(t)

∂xu(t0)
=
∂ẋd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

=
∂ẋd(t)

∂x(t)
Φ(t, t0;x(t0))

∂x(t0)

∂xu(t0)
(32)

where, similarly, ∂ẋd(t)
∂x(t) is the Jacobian of the derivative of the measurement function. Then the quantity we are after

is

∂ẋd(t)

∂xd(t)
=

∂ẋd(t)

∂xu(t0)

(
∂xd(t)

∂xu(t0)

)−1
. (33)

Note that although this definition requires a matrix inverse, and the final matrix being inverted is a two by two which
is easy to calculate. The above calculation does not require a fine understanding of the manifold to calculate; instead
for a particular point in the sky, the exact point in the admissible region is needed. The given ρ, ρ̇ pair defines an orbit,
which defines all the inputs to EQ (33). The same process as above can be used to calculated higher order derivatives,
by replacing ẋd(t) with ẍd(t).

The matrix in the above inverse is not guaranteed to be full rank. Qualitatively, the inverse not existing refers
to the case where a small change in ρ, ρ̇ provides no change in α, δ. The only case where moving along this two
dimensional manifold provide no change in the measurement space is when the manifold (in X ) is directly orthogonal
to the measurement subspace, H. This case can happen in certain special cases, for example when t = t0. More
importantly, when folding is occurring in the measurement space, this undefined inverse will occur exactly along the
fold. This fact is both good and bad; this calculation provides a useful way of predicting when a manifold is folding,
but makes the area acceleration undefined along that boundary.

E. Analysis of Search Set
This section focuses on the type of analysis which is easily accessible for a region. As the search set is searched by
an observer, the search set itself is reduced in size according to Equation (10). It is critical to understand that, even
though a search set is reduced each time an observation is taken, there is no guarentee that a full search is possible
with a given sensor. Given a particular sensor, o, over every integration, tI , at time tk an known area of the sky can be
observed, Oo(u(tk)). Then the total change in search region area can be calculated at each time step as,

Ah(tk) =

∞∑
i=0

di

dit
Ah(t0)

(tk − t0)i

i!
−
∣∣∣∣∣

k⋃
i=0

φ(tk;Sd(ti) ∩ Od,i(ti), ti)

∣∣∣∣∣
h

(34)

which can easily be show through a Taylor series expansion. Note that this equation is explicitly dependent on the
proposed search strategy, which will be modeled as a control input U. Assuming the higher order terms are small, the
requirement for a successful search is then

Ah(tk) +
d

dtk
Ah(tk)(∆t) ≤ |S(tk) ∩ Od(tk)|h (35)

A simpler way to see this is, if in general |So(t(tk))| ≥ |So(tk−1)|, the search problem does not close, while if
|So(t(tk))| < |So(tk−1)| the problem closes. This provides a simple and efficient calculation for evaluating whether
a search region is searchable. Furthermore, the amount the area changes each time step provides insight into ap-
proximately how long a search should take. This analysis is predicated on what is effectively a linearization on the
expansion rate of the search region; if d

dt |So(t)| is not approximately constant over the interval t(0) to t(tk), then
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Equation (34) does not hold. Orbit dynamics are non-linear are therefore the true solution can diverge from this ap-
proximation. As shown in Equation (19), the acceleration and other higher order terms of Ah are calculable, but
require more complicated derivatives which may be difficult to calculate, depending on the way S is defined.

The partition divergence calculation gives a tool for defining short term high priority search areas. Over a lower
divergence region, a region of higher divergence, given equal time, will expand into a larger, harder to search area. For
example, in Figure 3, the region of high divergence on the left should be prioritized over the region of low divergence
on the right.

Equation (34) has an infinite Taylor series expansion in it, implying a quantity that is practically impossible to
calculate. Instead this expansion will need to be taken out to “enough” terms to guarantee sufficiently small errors.
This can be done by defining both a time horizon, tf , and a relative tolerance, εrel. Then the required N terms for an
approximation out to a certain time horizon satisfies

εrel >

N∑
i=0

di

dit
Ah(t0)

(tf − t0)i

i!
−

N−1∑
i=0

di

dit
Ah(t0)

(tf − t0)i

i!
=

dN

dN t
Ah(t0)

(tf − t0)N

N !
. (36)

It should be noted that the divergence method is probability distribution function (PDF) agnostic. When operating
a pure set or a PDF whose effective boundaries are used to define a set, the method gives the same result. This is
particularly relevant to admissible region theory, where a set is used to define a PDF. Divergence methods will operate
identically on either representation of the admissible region, avoiding analytic confusion.

Search regions can become sufficiently large that a region extends out of the field of regard on an EOS. This may
even extend to a ring of orbits around earth, or all of the unit sphere, S(2). In these cases, the total region divergence
may no longer be a useful measure, but divergence of partitions is very much still a useful measure.

F. Reachability Considerations
Consider a search set, S(t0) ⊂ X , as a set of initial conditions for an orbit. These orbits have well defined dynamics,
and can therefore define a control problem. In this framework, the set at a future time step, S(t), can be written in
terms of a reachability problem

S(t) = R(t, t0,umax;S(t0)) (37)

where R is the reachable set of orbits at time t, based on the initial condition set, S(t0), and the maximum control
effort umax. The problem discussed in above sections can then be cast as a reachability problem, where the search
set at a given time step is the reachable set based on the initial condition set, S(t0), and a maximum control effort of
umax = 0.

This generalization allows the theoretical framework in this paper to incorporate unknown control effort. Using
any in a variety of control distance analysis frameworks [17], a reachability set can be calculated and used as the
search set. In general, R is not a manifold but rather full dimension subset of X . Like S in sections above, R can
be amended with constraints to make the search set more manageable. Calculation of the derivatives of Ah are based
on an uncontrolled trajectory. Therefore the search set Sd grows faster than what is predicted by the search area
divergence calculations. The analytic implications of this are not explored further in this paper.

III. Theory: Optimal Search
A. Search on an Admissible Region with an Optical Sensor
For this paper, the search region elements are assumed to be orbits consisting of position and velocity at a given time,
x(t) = [rT (t),vT (t)]T ∈ R6. This search region could be defined in a variety of ways, including from an admissible
region, by defining a region of state space to protect, etc.

For an optical observer, the determined states are the inertial angle pair, α and δ, with the undetermined states as
follows

xd = [α, δ]T (38)

xu = [α̇, δ̇, ρ, ρ̇]T . (39)

Note that while angular rates are not instantaneously observed, they are often inferred from a series of measurements.
From a tasking perspective, this paper assumes that regardless of the angular rate of the space object, it can be detected
if it is in the field of view. This assumption is good in situations where the angular rates of the hypotheses being
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considered to not very dramatically over the field of view. If they do vary dramatically, the expansion of the search set
is often prohibitively high for a complete search anyway. Therefore the search set should only exist in angular position
space, and xd should be defined as such.

The observed part of the measurement space for an optical sensor is just the field of view of the sensor. The
observed state space is then fully defined by the state of the observer, o, ȯ, and three angles, [αu, δu, θu], where αu

and δu define pointing and θu defines rotation about the line of sight vector. For analytic and computational simplicity,
this paper will ignore the bore sight rotation, θu. The full observation campaign is represented as a pair of vectors of
pointing angles,

U = [αu, δu] (40)

where the entire campaign consists of N observations. This is illustrated in Figure 4. An EOS makes a detection
(or does not) by taking a series of images in a certain location in the sky. The time spent attempting a detection at
time step k, will be represented by tI(tk). Once these series of images have been taken, the EOS slews to a new
location. Because every sensor mount is different, an arbitrary function, ft(α1, δ1, α2, δ2), represents the time it takes
a particular sensor to slew from location 1 to location 2.

Figure 4. Example of a tasking trajectory over a portion of the sky

If the search set is assumed to be an admissible region, S =A, the removal of pieces of search parts of state space
can be analytically incorporated into admissible region theory. An admissible region is an intersection of a series of
sets, each defined in terms of a constraint,

A =
⋂
Aj (41)

Aj = {xu ∈ Ru : gi(xu;xd, ẋd,k) ≤ 0} (42)

where gi is a constraint and k is a parameter vector. The removal of observed parts of state space defines a new
admissible region,

Aj = {xu ∈ Ru : φ(tk;xu,xd, to) /∈ O(tk),∀k} (43)

which in essence removes whatever section(s) of an admissible region that intersect a particular observation.

B. Time Optimal Cost Function
Typically, a search region has positive over all divergence, though there can exist cases where this may not be the case.
Regardless, it can be easily checked for a given search region. Time optimal search is built on the assumption that
sensor time is a valuable commodity, and the best way to optimally use a sensor is to spend as little time accomplishing
a task as possible. The cost function is then the total time spent over the observation campaign,

ftime(α, δ) =

N−1∑
k=1

[tI,k + ft(α(tk), δ(tk), α(k + 1), δ(k + 1))] + tI,N (44)

The constraint is difficult to enforce directly as it depends upon the intersection of time varying sets. Instead it can be
enforced as a penalty function

fcost(α, δ) = ftime(α, δ) + fpenalty(α, δ;S) (45)

Specifically, this is an exterior penalty function [20]; as the tasking scheme becomes inadmissible, a large cost is added
to the function forcing the constraint to be enforced. Penalty functions have a known problem in that they can lead
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to inadmissible solutions to the optimization. The penalty function in practice is enforced with a discrete point wise
approximation of the search space, S(t), to approximate the percentage of the set contained in the observation,

fpenalty(α, δ;S) = c |S(tf )|h (46)

keeping in mind that the search set is reduced in size at every time step, according to Equation (10). The exterior
penalty function includes a scaling parameter, c, which is typically increased as iterations of the optimization progress,
to better assure the constraint is enforced.

C. Divergence Greedy Cost Function
Because of the computational difficulty of doing a full optimization a second optimization method is being proposed.
This method is again based on the idea that search should be done quickly to make best use of a sensor. Furthermore, it
is assumed that there is no PDF to define the location of an object, only a set. This is particularly relevant to follow up
on an admissible region. Consider Equation (34). At a given time step, k, the best control is the one which minimizes
So(t) for all time. This implies that the observed space should be as big as possible, but it also implies the divergence
is as big as possible. By maximizing the divergence in the observed space, the rate of change of area at future time
steps is minimized. This optimization can be solved at each time step, but is better posed in a finite time horizon
manner. Again, assume a series of observations defined in Equation (40), but assume further that the total number of
observations, N defines a finite horizon over which the optimizer will search. A cost function which looks to search
the largest area possible with the largest divergence possible would then be

fDiv = −
N∑

k=1

d
dt
|Oo(u(tk)) ∩ So(t(tk))| (47)

keeping in mind that So(tk) changes each time step based on both dynamics and sections being removed by previous
observations. Note that the total divergence is proportional to the area which is integrated over, so this cost function
will prefer large, highly divergent regions.

D. Optimization Methods Tried
This section will discuss a few of the optimization methods attempted on the above problems and report on the success
of them.

On the full time optimal cost function, first a basic decent method was tried. The performance of the decent
method was well below acceptable, primarily due to two considerations. First, the region itself is highly multi-modal,
and fairly poor local optimum are often convergent. Second, the nature of the problem formulation requires a discrete
point approximation of the set. The constraint on the optimization, in the form of a penalty function, therefore acts as
a step function when calculating the derivatives, making an accurate approximation difficult.

Because a stochastic optimization method is clearly needed, a genetic algorithm was briefly tested. The genetic
algorithm proved insufficient, primarily due to the high dimensional nature of the search space and the computational
requirements to run a robust enough genetic algorithm on this problem.

Finally a simulated annealing-like algorithm was implemented. Over all, this algorithm had the best success; it
was able to search the complicated region, avoid the many local minima, avoid derivatives, and generally behave as a
decent method would. Even the success of the simulated annealing was only a partial success. A global minimum is
very difficult to find, and stochastic search methods are inherently unrepeatable. The algorithm, after fine tuning, can
find an acceptable solution reliably, but often creates obviously suboptimal solutions. More details on this algorithm
can be found in [21]. The difficulties of this search method motivated this paper’s work on analysis that could inform
the search before an optimization take place, and enable a smaller scope optimization like the receding horizon method.

E. Joint Tasking and Estimation of Search Region
This section will discuss related and future work regarding how the above control methods should fit into a broader
tasking and estimation framework.

This paragraph will talk about broader tasking schemes in which this algorithm exists. There exist a variety of
methods to handle the scheduling problem [3, 4, 5], as discussed in the introduction. These methods can all be used in
conjunction with the method described in this paper. A scheduling algorithm can be used to decide between multiple
prior distributions and multiple sensors, while the tasking algorithm in this paper prescribes how a sensor searches
through a particular prior. Area growth rate estimation can be used as a foundation for a scheduling algorithm, which
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is future work from this paper. Finally, it is worth mentioning that scheduling problem is a special case for the work
in this paper, and the combined scheduling tasking problem can be considered one problem within the framework of
this paper. The computational tractability of this problem, which is in essence a second TSP wrapped around the TSP
considered in this paper, is not practical.

This paragraph will talk about estimation schemes which make sense to be used in conjunction with this algorithm.
In the case that prior information on a single object is represented with a PDF, a fairly standard Baysian filter is
sufficient. This can take the form of a Kalman-like filter, or a non-linear particle or Gaussian mixture filter [9]. Special
considerations must be taken in order to account for false and missed detections, if necessary. For operating on an
admissible region, there are two primary options. The first method makes a uniform prior distribution assumption
and uses Baysian estimation, similar to above [8]. A second newer method exist which makes no uniform prior
distribution assumption, instead modeling the set with an uninformative prior and using Dempster-Shafer theory to
perform estimation [22]. This method of uninformative priors has not been explicitly extended to a general set for
orbit estimation, but such a method should work and would apply to all cases in this paper. Neither of these methods
consider how estimation should be handled when a measurement only interrogates a subset of the statespace, rather
than the whole space. However, Dempster-Shafer theory’s use of belief and plausibility may provide an interesting
framework to directly account for partial state space interrogation. This will be a primary area of future work for this
paper.

IV. Simulation Test Results
A. Test on Colocated Reacquisition
This test case demonstrates the results of the analytic work and control implementation on a test case with a small
size, 2 dimensional manifold This allows the full power of this work to be demonstrated on a best-case, but still useful,
scenario. In this test case one observer, located at Georgia Institute of Technology, observes a single unknown space
object (Geosynchronous) receiving a short arc observation generating an admissible region. The UTC time is such
that the Earth centered earth fixed, and earth centered inertial frames are aligned at t = 0, for simplicity.

GS Latitude GA Longitude SO r SO ṙ
33.78◦ −84.40◦ [−27.1,−32.3,−0.1]T × 103 km [2.36,−1.98, 0.0]T km/s

One hour is allowed to pass, and reacquisition is attempted on the space object given the information available in
the admissible region.

First, an analysis of the region area as a function of time is presented. The region is propagated over the course
of a one hour interval, starting one hour after the first observation is taken. The region after one hour has a size of
0.54 millisteradians, and after two hours has a size of 14 millisteradians. The area is then also predicted out over the
same time period using the area time derivatives. Figure 5 presents the true and estimated areas over this hour time
period for first through fifth order Taylor series approximation. Percent error can be reduced further with higher order
approximations.

Next, an actual observation control trajectory is calculated. As a reminder, a variety of control and optimization
algorithms are discussed above. This paper does not spend the time presenting a detailed analysis of the best control
algorithm for this problem, and so the results presented here will be of a limited scope. For this test case, a 50
observation time horizon is used to create a 50 observation tasking, using an exhaustive search.

Filed of View width Staying time at location Slew time between locations
0.25◦ 15 seconds 0 seconds

The trajectory is calculated for 50 observations over which a majority of the region is observed. Figure 6 shows
snapshots of the trajectory after 5, 20, 35, and 50 observations. The black x’s are the locations of the various obser-
vations. The black square is the current location of the sensor field of view. The region moves in the positive Right
Ascension direction, while simultaneously expanding over the course of the simulation. The optimal trajectory tends
to move in the negative right ascension direction, against the movement of the region. Because of these movements in
opposite directions, the trajectory appears to dwell in the same area for an extended period of time, but the observations
are all looking at a completely new area in the set. Figure 7 shows the area of the original region, and the area of the
unobserved region over time. The figure illustrates the difficulty of this test case; the original region is growing at a
substantial rate, which is constantly fighting against the observation schemes ability to scan the region.
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Figure 5. Absolute error for various Talyor series area approximations.

B. Validation of Telescope System
In order to test the validity of the methods in this paper, a scenario similar to the above is demonstrated on a the
Georgia Tech Space Object Research Telescope.

The object cluster around the EchoStar 16 satellite is fictitiously observed at UTC = [2017, 09, 07, 02, 15, 00], or
10:15pm local time on September 6th, in Atlanta. Reacquisition was attempted at UTC = [2017, 09, 07, 03, 00, 00], or
11:00pm local time on September 6th, in Atlanta. The calculated trajectory is show in Figure 8. At the second tasking
location, 5 images were taken, one of which is shown in Figure 9. The tasking tracked a given right ascension and
declination, so stars appear stationary while space objects appear to streak. Three objects in the cluster are highlighted
on the image.

C. Test on Geostationary Slot Protection
The final test case demonstrates the method operating on a more complicated set. This set is defined as the objects in
a geostationary transfer orbit (GTO), which reach apoapse in a particular geostationary slot. Specifically, the radius of
periapse is set as constant, the position at apoapse is any where in a cube of 73 km sides centered around a geostationary
object, approximating a ”GEO slot”, the inclination is between -5 and +5 degrees, and the time until intercepting GEO
is between 10 and 40 minutes. Note that the above definition uses negative inclination to represent objects coming up
from below the GEO plane (e.g. i = −5 is really an i = +5 but with true anomaly, argument of perigee, and argument
of ascending node rotated by 180◦).

The resulting region is a trapazoidal set of orbits which get closer together as they approach the target GEO slot.
The exact same method is used to calculate a trajectory to scan through the region with, which is shown in Figure 10.
Because of the nature of this set, it is actually getting smaller as time goes on meaning the area rate is negative. The
total area and unobserved area are shown in Figure 11.

V. Conclusion
A. Intuitive Concepts and Conclusions
This paper provides a framework for SSA tasking strategies. Reacquisition, scheduling, custody, and search operations
can all be represented with a search set. As such, all can be analyze with the divergence methods presented in this
paper.

A search set is best analyzed when projected into the measurement space of a particular observer. The evolution of
these regions over time is dominated by the vector field of velocity and higher order derivatives and the divergence of
those vector fields, along the boundary of the search set. This allows quick analytic solutions for the evolution of the
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a) Trajectory after 5 Observations.

b) Trajectory after 20 Observations.

c) Trajectory after 35 Observations.

d) Trajectory after 50 Observations.

Figure 6. Same location hand-off results.
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Figure 7. Total area and observed area over time.

search set over time. The area over time makes for a suitable metric for both analyzing and predicting tasking schemes
on a search set. This metric also is suitable for use as a control scheme cost function.

B. Limitations of Method
Many search sets are still infeasible to search, and this method does little to solve that problem. Rather, it provides
tools to analyze search sets, and show how to make search feasible. This will not always be easy or possible.

Search sets can be tricky to define in a clean analytic way, making the clean analytic equations involved in this
paper difficult to calculate. Non-injective measurement functions are possible to work with, but make analysis more
difficult and less meaningful.

C. Opportunities for Future Work
Area over time is a simplistic bulk measure for search sets. One area of future work should be to provide more complex
predictions which better take into account search space shape and how it will intersect with sensor field of view. If such
an analysis can be worked into a cost function, it will create a powerful optimization tool. Sensor design is an obvious
extension of this work. The analysis provided take both sensor location and sensor parameters into consideration, and
the analysis can be easily turned around to look at what those factors should be to provide certain search capabilities.
The actual estimation of objects which exist in a set may prove to be more complicated than one might think. Methods
based on finite set statistics and Dempster Shaffer belief ignorance theory may provide the best avenue. Such a method
should allow for a solution of no objects, one object, or many objects existing in the set.
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a) Trajectory after 1 Observations.

b) Trajectory after 5 Observations.

c) Trajectory after 10 Observations.

d) Trajectory after 15 Observations.

Figure 8. Calculated Trajectory
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Figure 9. Image of ECHOSTAR 16 Object Cluster
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a) Trajectory after 5 Observations.

b) Trajectory after 20 Observations.

c) Trajectory after 35 Observations.

d) Trajectory after 50 Observations.

Figure 10. Same location hand-off results.
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Figure 11. Total area and observed area over time.
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VII. Appendix I: Higher Order Derivatives
In order to accurately project area of a region forward in time, higher order derivatives should be used in the Taylor

series expansion. Below are the derivatives of area from the first to the fifth time derivative. The general form is
identical to higher order time derivatives of f(t) = x(t) · y(t), where x(t) is ẋd and y(t) is ∂xd

∂xd

d
dt
Ah(S) =

∮
∂Sd

(ẋd · n̂)dS (48)

d2

d2t
Ah(S) =

∮
∂Sd

(
ẍd + ẋd ·

∂ẋd

∂xd

)
· n̂dS (49)

d3

d3t
Ah(S) =

∮
∂Sd

(
...
xd + 2ẍd ·

∂ẋd

∂xd
+ ẋd ·

∂ẍd

∂xd

)
· n̂dS (50)

d4

d4t
Ah(S) =

∮
∂Sd

(
....
x d + 3

...
xd ·

∂ẋd

∂xd
+ 3ẍd ·

∂ẍd

∂xd
+ ẋd ·

∂
...
xd

∂xd

)
· n̂dS (51)

d5

d5t
Ah(S) =

∮
∂Sd

(
.̈..
xd + 4

....
x d ·

∂ẋd

∂xd
+ 6

...
xd ·

∂ẍd

∂xd
+ 4ẍd ·

∂
...
xd

∂xd
+ ẋd ·

∂
....
x d

∂xd

)
· n̂dS (52)

This gives a general formula for the nth derivative.

dn

dnt
Ah(S) =

∮
∂Sd

n∑
i=1

x
(i)
d ·

∂x
(n−i)
d

∂xd
(53)
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