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Space situational awareness requires the ability to initialize state estimation from
short measurements and the reliable association of observations to support the
characterization of the space environment. The electro-optical systems used to ob-
serve space objects cannot fully characterize the state of an object given a short,
unobservable sequence of measurements. Further, it is difficult to associate these
short-arc measurements if many such measurements are generated through the
observation of a cluster of satellites, debris from a satellite break-up, or from spu-
rious detections of an object. An optimization based, probabilistic short-arc ob-
servation association approach coupled with a Dempster-Shafer based evidential
particle filter in a multiple target tracking framework is developed and proposed
to address these problems. The optimization based approach is shown in literature
to be computationally efficient and can produce probabilities of association, state
estimates, and covariances while accounting for systemic errors. Rigorous appli-
cation of Dempster-Shafer theory is shown to be effective at enabling ignorance to
be properly accounted for in estimation by augmenting probability with belief and
plausibility. The proposed multiple hypothesis framework will use a non-exclusive
hypothesis formulation of Dempster-Shafer theory to assign belief mass to candi-
date association pairs and generate tracks based on the belief to plausibility ratio.
The proposed algorithm is demonstrated using simulated observations of a GEO
satellite breakup scenario.

I. Introduction
The goal of space situational awareness (SSA) is to characterize as fully as possible the space
environment and better understand how this environment can and will change in the near future
[1, 2]. The ability to track multiple space objects across a number of possibly spurious, noisy, or
otherwise degraded observations is a primary area of concern for SSA. This problem is made more
challenging when the objects of interest are closely grouped, for example when in formation or as
the result of a debris generating incident. In either case, the observation of these objects can lead
to ambiguities in how to instantiate a state estimate and how to associate future observations. The
challenge is then to determine a robust way to autonomously initialize state estimates and perform
association for any number objects observed over a given time period.

There are many existing approaches which attempt to address some aspect of this issue. Associ-
ation can be done via multi-target tracking methods that operate directly in the image plane, largely
derived from the field of computer vision and tracking. The global nearest neighbor and k-nearest
neighbor approaches are two of the simplest implementations of multi-target tracking which do
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not require models of the dynamics of the object in the image frame [4–6]. These methods can be
improved upon given a model of the dynamics of the target in the frame and the implementation
of a sequential filter, such as the EKF or UKF [7]. Recent advances in finite state statistics have
lead to the development of robust multi-target tracking schemes in the field of computer vision [8].
These techniques are finding an increasing presence in SSA by demonstrating the capability to
track low SNR objects through detectionless frame to frame tracking and the implementation of
finite set statistics filtering [9–11]. An advantage of multiple target tracking methods implemented
in the image plane is that they can be more computationally efficient due to the reduced dimension-
ality. However, because the dynamics of the problem are restricted to the image plane, in-plane
implementations do not permit the direct computation of state estimates.

Association methods have also been proposed based on the admissible region approach. At-
tribution penalties can be computed for sampled points in the admissible region to identify po-
tentially associated objects by setting a maximum allowed penalty [12, 13]. Fujimoto et. al. and
Maruskin et. al. map a discritized admissible region to either Delunay or Poincaré element space
and show that the intersection, if it exists, of two disparate admissible regions is the full state
solution [14–16]. Fujimoto and Alfriend implement a boundary value problem approach to gate
potential state hypotheses using the angle-rate information [17]. Optimization methods based on
the admissible region have been proven to be computationally efficient ways to attempt the as-
sociation problem for UCTs as well. Siminski et. al. define a loss function optimized over the
admissible region to identify potential state solutions given two uncorrelated observations [18].
Worthy and Holzinger present an optimization based approach based on the admissible region
which probabilistically determines if two observations are associated [19]. However this class of
optimization methodologies alone do not enable one to discriminate fully between the observations
between closely grouped objects. In these cases, optimization based method can give overly confi-
dent probabilities of association to more than one set of observations, proving problematic without
a human-in-the-loop to help interpret the results.

The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) approach is of-
ten cited as one of the best methods by which to handle the association of a sequece of UCTs of
multiple objects [20–22]. It is also founded in the admissible region method which uses hypothe-
sized constraints to bound the continuum of potential solutions [23]. CAR-MHF takes advantage
of the ability to sample this bounded set and instantiate a bank of filters on the resulting set of
possible solutions. Each proposed solution is propagated and updated as new measurements are
ingested. However, this method can be limited computationally by the discretization level of the
admissible region. Furthermore, this method is still limited by the unobservability posed over short
measurement periods.

Recently, Worthy and Holzinger proposed Dempster-Shafer Theory (DST) as a method by
which unobservability is accounted for through the concept of ignorance [24]. DST augments
probability theory by enabling one to account for imprecision in the assignment of probability to
a given hypothesis. In DST, belief mass functions are defined which gather evidence supporting
propositions under a given hypothesis. These mass functions then enable one to define both the
plausibility and belief of a proposition under a given hypothesis rather than just the probability. The
idea of imprecision is only necessary when there is ignorance in the system. As more observations
are made, as ignorance is driven out of the system, the plausibility and belief values collapse
to standard Bayesian probability. This makes DST a powerful tool in estimation. Worthy and
Holzinger develop a sequential estimation tool which uses DST to define plausibility and belief
surfaces over the admissible region. As expected, these surfaces collapse to a PDF once ignorance
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is eliminated. The major drawback of this methodology is that it is very sensitive to the data
ingested by the filter. Unlike with association based methods, the method described in Worthy and
Holzinger is naive to probabilities of association. In fact, this method is demonstrated to be prone
to failure when ingesting measurements from clustered spacecraft without a human-in-the-loop.

This paper proposes the marriage of DST and optimization based methods to determine prob-
ability of association to develop a robust multi-target tracking filter for SSA. The motivating idea
is to enable the multi-target tracking algorithm to autonomously handle clustered or ambiguous
detections of objects as well as unobservable observations. Section II recaps admissible region
theory. Section III reviews the optimization based methodology and defines the notation used in
this paper. Section IV reviews DST and the evidential particle filter. Section V introduces the
evidential particle filter multi-target tracking scheme. Section VI demonstrates the strengths of the
method for simulated data. Section VII discusses future directions to further improve the proposed
methodology.

II. Admissible Region
The admissible region method bounds the continuum of possible states consistent with a given
measurement through hypothesized constraints [23, 25]. Consider the general nonlinear measure-
ment model

y = h(x; k, t) (1)

where x ∈ Rn is the state, k ∈ Rz is a set of parameters, and t ∈ R is the time. Under the
admissible region approach, the state vector can be partitioned into determined states xd ∈ Rd

which directly affect the measurements and undetermined states xu ∈ Ru which do not affect the
measurement [26]. Eqn. (1) then becomes

y = h(xd; k, t) (2)

implying there is a one-to-one mapping only between xd and y. By Eqn. (2), all values of xu gen-
erate the same measurement, yielding a continuum of potential solutions. Let the ith hypothesized
constraint be defined as

κi(xu, y,k, t) ≤ 0 (3)

The admissible region corresponding to this constraint can then be defined as

Ai = {xu ∈ Ru | κi(xu, y,k, t) ≤ 0} (4)

Eqn. (4) defines a set in Ru where each member ofAi satiesfies the ith constraint. When uncer-
tainties are considered, it is useful to determine the probability of set membership for a given state
inAi. The probability of set membership is given by

Pi[(xu ∈Ai)] ≈
1
2

1 + erf

‖xu − xu,B⊥‖√
2trPxu,B⊥

 (5)

as defined in [26]. LetA = Ai ∩ · · ·Ac denote the joint admissible region for c hypothesized
constraints. Then the joint probability of set membership is bounded by

P(xu ∈A) = P(xu ∈ ∩
c
i=1Ai) ≥

 c∑
i

Pi(xu ∈Ai)

 − (c − 1) (6)

which is a lower bound that is derived from set theory [24].
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III. Optimization Based Association
The admissible region approach presents a tool through which unobservable measurements can be
used to attempt to extract information about the state of the object. One such use is the association
of observations by attempting to find at least one point of intersection between a collection of
admissible regions.

A. Admissible Region Intersections

For any admissible region,A, it is possible to construct a full n dimensional state through

x = g(xu, xd,k) (7)

The set of all such states formed from A lie on a u-dimensional manifold in Rn. Let this time
varying manifold be defined as

Xi(t) = {x(t) : xu(ti) ∈A}

where i denotes this manifold belongs to the ith admissible region. Given q such admissible regions,
and thus q such manifolds X1(t) · · · Xq(t), it is required for association that there exist at least one
state satisfying

x(t) ∈ Xi(t), i = 1, · · · , q (8)

For q = 2, it is necessary then that

X1(t) ∩ X2(t) 6= ∅,∀t

which is the foundation of intersection based association methods [14, 16, 18, 27]. Given some
distance metric d(a,b) : Rn×Rn → R+, the general optimization problem solving this intersection
finding method is given by

minimize
xu,i,xu, j

d(xi(t), x j(t))

subject to xi ∈ Xi(t)

x j ∈ X j(t)

Through the simplifications outlined in [28], this optimization problem can be reduced in order to

minimize
xi

u∈A
i

N∑
i=1

N∑
j=1, j 6=i

d̃(xi
d(t), x j

d(t))

subject to xi
u ∈ X

i
u(t j)

where d̃(a,b) : Rd ×Rd → R+ is a reduced order distance metric. This reduced order optimization
problem attempts to find points of intersection between the determined subsets of Xi

d and X j
d at

both times ti and t j. Define Mi and M j as the sets containing the local minima resulting from
this reduced order optimization problem. If a point of intersection exists between all pairs (i, j) ∈
[1, q], i 6= j, or equivalentlyMi ∩M j 6= ∅, then all q observations are associated.
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B. Hypothesis Testing for Association

When uncertainties are considered, Xi
d and X j

d are the random variables representing the resulting
distributions in xi

d and x j
d. Assuming Gaussian uncertainties, these random variables cause Xi

d(t)
and X j

d(t) to also become probabilistic

Xi
d(ti) = {Xi

d(ti) : Xi
d(ti) ∼ N(xi

d(ti),Σi),Xu,i(ti) ∼Ai} (9)

X
j
d(t j) = {Xd, j(ti) : Xd, j(t j) ∼ N(xd, j(t j),Σ j),Xu, j(t j) ∼A j} (10)

where xu is sampled from the ith joint uncertain admissible region and Σi ∈ Rd×d is the covariance
for the ith observation.

The distribution about the single point xd, j ∈ X
j
d(t j) becomes an ellipsoid in Rd centered at x j

d.
The reduced orer distance metric also becomes a random variable defined as

D = d̃(Xi
d(t),X j

d(t)) (11)

If an intersection exists, then there should exist a state xi
d(t) such that the deterministic version of

Eqn. (11) equals zero. Let li = card(Mi) and l j = card(Mj) and define

Di→ j(xu(ti)) = d̃(Xi
d(t j),X j

d(t j)) (12)

as the random variable of the distance metric mapping a state xu ∈ Mi from time ti to time t j

where xd(ti) ∼ N(xi
d(ti),Σi). Likewise, D j→i(xu(t j)) is the random variable of the distance metric

mapping a state xu ∈ M j from time t j to time ti. Let f0(s) be the distribution defined by imposing
the intersection is at at a local minima

f0(s) = {D0 : d0 = d̃(xi
d(t),X j

d(t) + c), X j
d(t) ∼ X j

d(t)} (13)

where xi
d is a fixed point in Xi

d corresponding to a local minima and c shifts X j
d to be centered at xi

d
and xu ∈ Mi. The true distribution of D is represented by

f1(s) = {D0 : d0 = d̃(xi
d(t),X j

d(t) + c), X j
d(t) ∼ X j

d(t)} + di j,xu(ti) (14)
= f0(s) + di j,xu(ti) (15)

where since c is a constant value, di j,xu(ti) shifts the location of f0(s). Thus, di j,xu(ti) is only zero
if the local minima is indeed a point of intersection. These distributions help to define a binary
hypothesis test to determine from which distribution D is drawn.

Since  q∑
i=1

q∑
j=1, j 6=i

di j,xu(ti)

 = 0 (16)

must be true for association, the following hypothesis test is used to determine if Eqn. (16) is
satisfied.

H0 : Di→ j(xu(t j)) ∼ f0(s) + di j,xu(ti) i, j = 1, · · · ,N; i 6= j (17)
H1 : Di→ j(xu(t j)) ∼ f0(s) + 0 i, j = 1, · · · ,N; i 6= j (18)
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The alternative hypothesisH1 assumes that all q observations are associated, and the null hypoth-
esisH0 assumes that there is no association between at least one pair of the q observations. These
hypotheses can be tested of all li × l j pairwise combinations of solutions inMi andM j indepen-
dently.

The binary hypothesis test is constructed by determining the PDFs of the null and alternative
hypotheses and computing the probabilities of false and true association [29]. The probability of
false association PFA is given by

PFA =

∫ ∞

r
f0(s)ds (19)

where r is selected specifically to obtain a desired PFA. The probability of association is then given
by

PA =

∫ ∞

r
f1(s)ds (20)

Because the hypothesis test is performed for each pairwise combination of solutions, the result
from this set of hypothesis tests is a li× l j set of values of PA. The overall probability of uncertainty
is found by taking the weighted norm as follows

P
[
(xu,i(ti), xu, j(t j))

]
=

PA,(i j)

li∑
i=1

l j∑
j=1

PA,(i, j)

(21)

PA =

li∑
i=1

l j∑
j=1

P
[
(xu,i(ti), xu, j(t j))

]
PA,(i, j) (22)

providing a single quantity indicating the likelihood that the measurements are associated.
A key feature of this approach is that through the properties of the maximum likelihood esti-

mator, the covariance on the state estimate can be approximated. Let x̂u be a local minima found
from after solving the optimization problem. By treating the distance metric as a log-likelihood,

E

 N∑
i=1

N∑
j=1, j 6=i

∂

∂x̂u

(
−d̃(xd, j(t), xd,i(t))

) = 0u×1 (23)

E

 N∑
i=1

N∑
j=1, j 6=i

∂2

∂x̂2
u

(
d̃(xd, j(t), xd,i(t))

) = I(x̂u)u×u (24)

where Eqn. (23) and Eqn. (24) indicate that x̂u is a MLE and I(x̂u)u×u is the Fisher information
matrix [30]. Let Pu be the covariance matrix associated with x̂u, by the Cramer-Rao bound

Pu ≥ I(x̂u)−1 (25)

[31]. This bound is attained for MLEs, and thus a state estimate and covariance can be approxi-
mated directly for each local minima. However, this approximation only holds if the time scale is
sufficiently large.

cond(Ik(·)) < (tj − ti)−1

√
‖r‖3

3µ
, (26)
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Eqn. 26 is a condition derived by relating the condition number of the Fisher information matrix
to the time scale of the dynamics. If this condition is satisfied then the MLE approximation holds,
otherwise an alternative method must be used to update the PDF [28].

In summary, association methods generally first prove association and then filters are used to
ingest the associated measurements and generate state estimates and covariances. This optimiza-
tion based approach merges the two steps into one when the problem is observable by assuming
approximately Gaussian behavior in this region of the local optimum. However, these assump-
tions break down over short time periods and the underlying PDF of the admissible region cannot
be readily determined. The next section describes how DST can be used to permit the natural
evolution from an admissible region uninformative prior to a fully defined PDF.

IV. Dempster Shafer Evidential Filter
Traditional Bayesian probability is limited in that evidence, i.e. a measurement or observation,
can only support or refute a hypothesis. In many real world applications there often exists states
for which evidence neither supports nor refutes a given hypothesis. DST adds the concepts of
plausibility and ignorance to address this particular situation.

A. Dempster Shafer Preliminaries

A full treatment of DST can be found in [32–35], however the primary constructs of DST are
briefly introduced as follows. Define the frame of discernment, Ω, as the set which contains all the
elements to which belief mass can be assigned. A mass function m : 2Ω → [0, 1] is then defined to
allocate belief mass to members of the power set of Ω, that is the set of all possible combinations
of the members of Ω. For A ⊂ Ω, a belief mass function must satisfy∑

A⊆Ω

m(A) = 1 (27)

From the mass function follows the computation of two useful quantities,

∀A ⊆ Ω,Bel(A) =
∑
∅6=B⊆A

m(B) (28)

∀A ⊆ Ω,Pl(A) =
∑

A∩B6=∅

m(B) (29)

The belief function, Beli(A), gathers evidence to support a given state A. The plausibility function,
Pli(A), gathers evidence which simply permits the occurrence of A. Belief and plausibility are
related through duality

∀A,Pl(A) + Bel(Ā) = 1 − m(∅) (30)

where Ā is the complement of A. If mi(∅) = 0 then the solution must exist in Ω. The definition of
either the mass function, belief function, or plausibility function directly enables the other two to
be determined. The Ignorance function can quantified through the relationship

Ig(A) = Pl(A) − Bel(A) (31)

since it is shown that plausibility and belief are upper and lower bounds on probability [36].
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B. Dempster Shafer Admissible Region

The DST approach can be applied to the admissible region method by defining an appropriate
frame of discernment and mass function. Let,

X = {(xu, xd) : xu ∈A} (32)
X̄ = {(xu, xd) : xu /∈A} (33)

the set of full n dimensional states satisfying the hypothesized constraints and the set of all inad-
missible states respectively. The frame of discernment is then defined as

Ω = {x ∈ X, X̄} (34)

Due to the properties of the power set applied to real numbers, it is computationally useful to also
define

Θ = {x ∈ X,X, X̄} (35)

Θ ⊂ 2Ω is a special subset of the full power set of Ω that, by construction, must still contain the
solution but makes the problem more computationally tractable [34, 37, 38].

The mass function for the admissible region problem is by definition vacuous since given an
unobservable sequence of measurements, there is no evidence that either refutes nor supports a
particular state [24]. Instead, it is useful to construct a plausibility function and derive a relationship
between plausibility and the mass function directly. A pseudo-plausibility function for a singleton
hypothesis x ∈ Θ is defined as

P̃l(x|y) = P(xu ∈ ∩
c
i=1Ai)p(xd|y) (36)

Eqn. (36) is not a plausibility function since the plausibility of any state in X must be lower
bounded by the belief of X itself. The true plausibility function is then given by

Pl(x|y) = P̃l(x|y) + m(X|y) (37)

The mass and plausibility functions for X and X̃ are defined as follows

m(X|y) =

∫
X

P̃l(x|y)dx∫
X

dx
(38)

Pl(X̄|y) = m(X̄|y) = 1 −max
x∈X

Pl(x|y) (39)

The relationship between the plausibility and mass functions is then defined as
Pl(x1|y0:k−1)
Pl(x2|y0:k−1)

...
m(X|y0:k−1)
m(X̄|y0:k−1)


=

1
ζ


1 0 · · · 1 0
0 1 · · · 1 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1


m


x1|y0:k−1
x2|y0:k−1

...
X|y0:k−1
X̄|y0:k−1


(40)

where ζ is a normalizing factor necessary due to considering only Θ instead of the full power set
of Ω.
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C. Sequential Belief Filter

Given this treatment of DST for the admissible region problem, the particle filter implementation is
described as follows. The plausibility function is initialized with the admissible region probability
of set membership and us updated as the product of sequential plausibility values.

Pl0(x|y0) = P(xu ∈ ∩
c
i=1Ai|y0)p(xd|y0) (41)

Plk(x|y0:k) = Plk(x|yk)Plk−1(x|y0:k−1) (42)

The mass function is vacuous at initialization

m0(x|y0) = 0 (43)
m0(X|y0) = 1 (44)
m0(X̄|y0) = 0 (45)

and the mass function is updated for the singleton states through Eqn. (40)

mk(x|y0:k) = ζA−1Plk(x|y0:k) (46)

whereas Eqns. (38) and (39) are used to update the mass functions for the non-singleton sets X
and X̄. By construction of the problem, the belief function for the singleton states is identically
equal to the mass function for those states. Furthermore, as more evidence is gained and the system
becomes observable, the belief function and the plausibility functions become equal for at most one
of these singleton states and the belief of the non-singleton sets go to zero under the appropriate
constraint hypotheses. At this point, a well defined PDF exists for a singleton state in Θ and this
state and PDF can be used in traditional estimation schemes. Another novelty of this introduced
sequential estimation scheme lies in the ability to test the constraint hypotheses. If measurements
are ingested under an invalid set of constraint hypotheses, belief mass is attributed to X̄, the set of
all inadmissible states, indicating that there is evidence the truth solution does not lie in the original
admissible region as posed [24].

However, the drawback of this methodology is that if an incorrect measurement is ingested,
or a sufficiently noisy measurement is ingested, all belief mass can be incorrectly attributed to
X̄. The goal of the next section is to introduce a more robust way by which evidential particle
filters tracking the state of space objects can avoid this problem by implementing the association
methodology from Section III.

V. Multi-target Tracking
DST is well suited to address the limitations posed by both methods discussed in the previous two
sections. The ambiguities produced by the uncorrelated tracks of closely grouped space objects fall
directly into the concept of ignorance. Until sufficient evidence has been gathered, it is possible
that several combinations of measurements from the objects observed are true. Essentially, the
multi-target tracking approach proposed uses DST to handle ambiguities in tracking over short
time periods and the optimization based approach to continue tracks and produce state estimates.

A. Frame of Discernment for MTT

As stated in the previous section, the primary constructs of DST are the frame of discernment and
the belief assignment function. Consider again the measurement model from Eqn. (1) and let yi

k
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denote the ith measurement obtained at time k. Let the frame of discernment at each time then be
defined as

Ω(k) ⊆

 k⋃
j=1

qk⋃
i=1

yi
j

 (47)

where qk is the number of measurements gathered at time k. Ω(k) is by construction equal to, or
a subset of, the set of all measurements gathered at all times. The power set of Ω(k) is then the
set of all possible combinations of these measurements, giving a fully exhaustive set over which to
search for potential associations and from which to form tracks.

B. Mass function for MTT

The belief assignment function that readily seems appropriate for Ω(k) is the probability of asso-
ciation defined in Eqn. (20). Let T ⊆ Ω(k) and yi

j ∈ T and define

m̃(T ) =



PA(yi
j, ∅) = 0 card(T) = 1

PA(y1
v , y2

w) card(T) = 2, v 6= w
card(T)∏

i=1

card(T)∏
j 6=i
PA(yi

v, y
j
w) card(T) > 2, v 6= w

0 otherwise

as the association function. Then

m (T ) = ξm̃(T ), T ⊆ Ω(k) (48)

is a candidate mass function for the defined frame of discernment, where ξ is a normalization factor
to ensure Eqn. (27) is satisfied. Unlike the mass function for the admissible region evidential
particle filter, this mass function can be directly defined and is not vacuous. There is no need to
attempt to first find a plausibility function from which to map into belief mass. Another difference
is the fact that for any non-singleton T ⊆ Ω(k), the belief mass does not necessarily go to zero.
Thus, the belief and plausibility functions can be explicitly defined from Eqn. (48) by Eqns. (28)
and (29). Finally, for any set of measurements T ⊂ Ω(k),

Ig(T) = Pl(T) − Bel(T) (49)

When Ig(T ) = 0, sufficient evidence has been gathered to confirm the all measurements in the set
T are associated. In a broader sense, Ig(T ) = 0 implies through Eqns. (28) and (29) that the mass
function is only non-zero for T and subsets of T . This signifies that the measurements comprising
T cannot be associated with any other measurements from Ω(k). A more useful quantity to track
is given by

I(T ) = Bel(T)/Pl(T) (50)

, where Ig(T ) = 0→ I(T ) = 1, which essentially gives the confidence in track T .
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C. Updating the Frame of Discernment

The motivation of this framework is to provide a robust way to perform association and state
estimation. As measurement associations are performed, it follows that Ω(k) should be modified
appropriately to reflect positive associations. That is, once association has been confirmed for a
specific T ⊆ Ω(k), there is no need to continue to retest the measurements constituting T . Let
T̄ = {B : B ⊂ T }, if Bel(T ) = Pl(T ) then

Ω(k + 1) =
{
Ω(k) \ T̄

}
∪

qk+1⋃
j=1

y j
k+1

 (51)

Equation (51) ensures measurements that have been positively associated are combined into a
single track in Ω(k) while the individual measurements are removed from Ω(k). This reduces the
cardinality of Ω(k) thus improving computational performance by eliminating the need to retest
already associated tracks.

It is then also possible to estimate the number of tracked objects, N, by computing

N̂ =
∑
A⊆Ω

I(A) =
∑
A⊆Ω

Bel(A)
Pl(A)

which is the sum of the ratio of belief to plausibility, or the ignorance ratio, of A. By construction
Bel(A)/Pl(A) = 1 only for tracks for which there is sufficient evidence for association. This
implies that in general N̂ ≤ N, but if there is any ambiguity about any tracks in Ω(k) then N̂ < N.

D. Hybrid Filter for MTT

The previous two sections outline the construction of DST applied to the association problem by
defining a frame of discernment containing all possible sets of measurements. Since it is ultimately
desired to obtain a state estimate from each track T , the state estimates and probability distributions
are updated through a hybrid application of the evidential particle filter introduced in Section IV
and the MLE approximation introduced in III. The computation of m̃(T ) requires the solution to
the reduced order optimization problem, and for each local minima Eqn. (26) is also computed.
If the observability condition is met, then the state estimate and corresponding PDF are produced
directly from the solution to the optimization problem. Otherwise, the evidential filter is used to
update the bounds on the PDF by computing the updated belief and plausibility surfaces as outlined
in Section IV.C.

E. Computational Performance

The full exploration of Ω(k) requires checking all 2Ω(k) possible combinations of observations for
general application of DST. This problem is similar to that posed by MHT methods when ambiguity
causes the number of hypotheses to grow exponentially. In terms of computational tractability,
it is desired to remove as many members from the full power set as possible without violating
the principles of DST. The primary method by which this is achieved is by not considering any
observations from the same time for association. Further, the frame of discernment update outlined
by Eqn. (51) deals with removing subsets for which the knowledge of superset to which they
belong is certain. However, the size of the power set will grow exponentially with the number of
ambiguous track associations with the current implementation.
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The general computational complexity of this algorithm with the stated modifications is O(n2)
since the pairwise probability of association must be computed for each valid pair of observations.
Thus, the computational limiting factor is the optimization based association problem. The run
time of the currently implemented DSMTT algorithm, tcpu, can be predicted as follows

tcpu = ω × qk−1 × qk × topt (52)

where topt is the run time of the optimization method, ω is the number of existing measurements in
2Ω, qk−1 is number of measurements in the longest associated track, and qk is the number of new
measurements being ingested.

While it may be enticing to eliminate or sub-sample certain ambiguous tracks from Ω(k), re-
moving propositions which have non-zero belief mass violates DST. Note that none of the modi-
fications to Ω(k) described remove propositions which have belief mass. Ultimately, the strength
of DST is that with enough observations the algorithm can resolve these ambiguities. Improperly
deleting items from Ω(k) can prevent this resolution or even lead indirectly to incorrect resolution
of ambiguity.

F. The DSMTT Algorithm

The preceding subsections lay the foundation for the DSMTT framework. This subsection dis-
cusses the actual implementation of the algorithm. At a high level, the algorithm ingests mea-
surements from observers at time k and constructs Ω(k). Note that the observers need not be
collocated, these methodologies make no assumptions on the observer parameters. Then belief
mass is assigned to every possible combination of measurements in Ω(k) using Eqn. (48), which
is based upon computing the probability of association described in Eqn. (20). The observability
of each combination of measurements is tested as a result of computing the probability of associ-
ation. Lastly, the state estimates of fully observable combinations are updated through the MLE
approximation while the unobservable combinations are updated with the evidential particle filter.
Algorithm 1 provides more detail into the MTT framework. Note that in implementation, it is more
convenient maintain and update the power set, 2Ω, as opposed to Ω.

VI. Simulation and Results
To demonstrate the performance of the proposed methodology, three simulated scenarios are pre-
sented. The observations follow the breakup of a GEO satellite generating 50 pieces of debris
(N = 51) normally distributed with initial changes in velocity, ∆V , of 3 m/s. The dynamics model
chosen is simple two body Keplerian motion, however note that the algorithms described are agnos-
tic to the dynamics model used. The observer is assumed to be located in Atlanta, GA (33.755◦N,
84.39◦W, 300m) with a field of view of 10.6754 × 8.5528 arcminutes. The instantaneous field
of view of the sensor is .2341 arcseconds, any measurement with angular separations below this
distance are merged into a single measurement. Angular measurement uncertainty is chosen to be
10 arcseconds.

In the first simulated scenario, the observation system is tasked on the GEO satellite starting 60
minutes post breakup and continues observing for 10 minutes at 60 second intervals generating 500
total measurements of debris. All of the debris objects are contained within the FOV of the sensor
and the purpose of this scenario is to demonstrate the in frame multi-target tracking capabilities of
this approach.
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Algorithm 1 Dempter Shafer Multi Target Tracker

1: procedure DEMPSTERSHAFERTRACKING(
{

qk⋃
i

yqk
k

}
,2Ωk−1)

2: 2Ωk = ∅ . Initialize the new power set
3: ω = card(2Ωk−1) . Current size of power set
4: for i← 1, qk do . Loop over new observations
5: for j← 1, ω do . Loop over power set
6: T j ∈ 2Ωk−1 . Select a member from 2Ωk−1

7: Ti j = T j ∪ yi
k . Form new track

8: mi j = m(Ti j) . Compute belief mass
9: Pl(X|Tij),Bel(X|Tij) = evidentialParticleFilter(Tij,Pl(X|Tj),Bel(X|Tj) . Update

state estimate distributions
10: 2Ωk = 2Ωk ∪ Ti j . Append new track to 2Ωk

11: ω+ = card(2Ωk) . Updated size of power set
12: for i← 1, ω+ do
13: for j← 1, ω+ do
14: Ti,T j ∈ 2Ωk . Select pairs from 2Ωk

15: Pl(Ti) = Bel(Ti) = 0
16: if Ti ∩ T j 6= ∅ then
17: Pl(Ti) += m j . Eqn. (29)
18: if T j ⊆ Ti 6= ∅ then
19: Bel(Ti) += m j . Eqn. (28)
20: 2Ωk = removeZeroPlausibilityTracks(2Ωk)
21: 2Ωk = pruneZeroIgnoranceTracks(2Ωk) . Eqn. (51)
22: return 2Ωk

Figure 1 shows the results from processing the observations sequentially using Algorithm 1.
The black dots are the center points of the observations, the black lines represent tracks formed
with Ig(T ) = 0, and the black stars represent the start and end computed for track T . The red
lines indicate tracks for which Ig(T ) 6= 0, or equivalently ambiguous tracks. As can be seen, there
are three pairs of objects whose observations are very closely spaced, producing these ambiguous
cases. As a result, Figure 2 shows how the estimated number of objects being tracked gets smaller
over time. This is a direct result of these observations spawning spurious tracks in 2Ω since they
cannot be fully resolved. After processing, card(2Ω) = 983 and since N̂ = 48.2, the remaining
941 members of 2Ω result from ambiguity in closely spaced, non-resolvable associations. This
exponential increase in the size of the power set causes compute time to rise significantly and
a topic for future work is how to better handle management of the powerset members without
violating DST.

In the second scenario, the observation system is tasked by sweeping through the range of
right ascensions predicted for the debris cloud location 9 hours post breakup over a 60 minute
period. It is assumed for illustration purposes that the observations from the first scenario are
unavailable. The debris cloud is much larger than the field of view and observations are taken
every 60 seconds giving 1653 total measurements of the debris. Of these 1653 measurements, only
44 out of the 50 total objects have been observed and each observed debris object has between 1
and 34 measurements. The purpose of this scenario is to demonstrate the multi-target tracking
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Figure 1. Results of DSTMTT Algorithm

Figure 2. Difference between true and estimated number of tracked objects
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capabilities of this algorithm when the targets do not all reside in the frame of the image and when
targets drift in and out of the field of view over time. This is more closely related to the problem
CAR-MHF attempts to solve. Figure 3 shows the tracks formed as a result of the algorithm. Note
the x axis spans nearly 15◦ since the field of view of the observer is spanning through the debris
cloud. Figure 4 shows the difference between how many objects the algorithm is tracking compared
with how many objects have truly passed through the field of view. Table 1 shows the association
performance for this scenario. The interesting columns to examine are the ignorance ratio and the
number of unique labels. The unique labels indicates how many of the true objects are included in
this track. Only tracks with unique labels = 1 can be correctly identified tracks, and it is interesting
to look at the tracks with unique labels = 1 but ignorance ratio < 1. This indicates tracks for which
there is association of at least one measurement which associates with another measurement not in
the track. In these cases, the ignorance ratio is maximized when the measurements actually only
come from a single object. As a point of future work, it would be interesting to use the ignorance
ratio as a means to sample from the ambiguous tracks, keeping only those with high confidence,
rather than keeping all ambiguous tracks in the power set.

Figure 3. Results of DSTMTT Algorithm

To briefly discuss computational performance, the run times for Scenario 1 and Scenario 2 were
89202.9 seconds and 12652.4 seconds respectively. Computationally scenario 2 is preferable since,
while there are more total observations, on average the number of observations being ingested at a
given time is substantially smaller. The simulations were performed on a Intel Core i7-6700k CPU
with 32GB memory in matlab. The average run time of the observation to observation association
method was 1.21 seconds which reinforces the order of magnitude estimation of the run time given
in Eqn (52). While the CPU time performance is not ideal, there are many improvements that can
be made to this algorithm, for instance, by implementation in a compiled language as opposed to
a scripting language.
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ID # Associated Ignorance Ratio Unique Labels ID # Associated Ignorance Ratio Unique Labels
10001 26 1.000000 1 10032 10 0.066206 3
10002 9 1.000000 1 10033 8 0.072031 3
10003 8 1.000000 1 10034 8 0.070169 3
10004 5 1.000000 1 10035 8 0.064325 3
10005 5 1.000000 1 10036 8 0.355032 1
10006 12 1.000000 1 10037 16 0.019664 2
10007 10 1.000000 1 10038 6 1.000000 1
10008 8 1.000000 1 10039 2 1.000000 1
10009 7 1.000000 1 10040 10 0.030980 2
10010 5 1.000000 1 10041 10 0.028430 3
10011 4 0.992179 1 10042 10 0.026622 3
10012 9 1.000000 1 10043 10 0.026113 3
10013 4 1.000000 1 10044 7 0.022761 3
10014 34 0.999999 1 10045 13 0.133369 3
10015 11 0.251810 2 10046 13 0.091231 3
10016 23 1.000000 1 10047 12 0.084184 3
10017 21 0.861727 1 10048 24 0.033964 2
10018 4 1.000000 1 10049 12 0.178488 2
10019 10 1.000000 2 10050 9 0.048686 2
10020 13 0.373452 3 10051 13 0.019786 2
10021 11 0.058676 1 10052 2 0.020190 2
10022 11 0.065351 2 10053 13 0.043982 2
10023 11 0.060098 2 10054 32 1.000000 1
10024 11 0.067875 2 10055 22 1.000000 1
10025 9 0.064370 2 10056 14 1.000000 1
10026 9 0.059507 2 10057 3 1.000000 1
10027 9 0.064184 2 10058 27 1.000000 1
10028 9 0.064735 2 10059 18 1.000000 1
10029 10 0.069590 2 10060 4 0.319874 2
10030 10 0.068980 3 10061 8 1.000000 1
10031 10 0.072673 3 10062 6 1.000000 1
10063 1 0 3

Table 1. Scenario 2 Association Performance
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Figure 4. Difference between true and estimated number of tracked objects

VII. Conclusions and Future Work
To conclude, a Dempster-Shafer framework is presented combining an optimization based as-
sociation metric with an evidential particle filter for updating state estimate distributions. This
framework is based on collecting evidence for track formation and following DST only forming
tracks when ignorance is driven from the system. A simulated scenario following the breakup of a
GEO satellite demonstrates the utility of the algorithm to reconcile object tracks and update state
estimates given limited observation availability and short time between observations.

A primary topic of future work is how to improve the computational performance of the algo-
rithm. In particular, how to prevent ambiguities from growing the size of the power set unnecessar-
ily. Another area of future work is to test the algorithm with more complicated dynamics models
and with empirical observation data.
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