
69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 1 of 15

IAC-18-C1.5.11x45016

On-Board Model-Based Fault Diagnosis for Autonomous Proximity Operations

Dr. Peter Z. Schultea*, Dr. David A. Spencerb

a School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, Georgia, United
States of America, 30332, pzschulte@gatech.edu
b School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana,
United States of America, 47907, dspencer@purdue.edu
* Corresponding Author

Abstract

Because of their complexity and the unforgiving environment in which they operate, aerospace vehicles often
require autonomous systems to respond to mission-critical failures. Fault Detection, Isolation, and Recovery (FDIR)
systems are used to detect, identify the source of, and recover from faults. Typically, FDIR systems use a rule-based
paradigm for fault detection, where telemetry values are monitored against specific logical statements such as static
upper and lower limits. The model-based paradigm allows more complex decision logic to be used for FDIR.

This study focuses on a state machine approach toward model-based FDIR. The state machine approach is
increasingly utilized for FDIR of complex systems because it is intuitive, logic-based, and simple to interpret
visually. In current practice, the detection of specific symptoms is directly mapped to the appropriate response for a
pre-diagnosed fault, as determined by FDIR engineers at design time. This study advances the state-of-the-art in state
machine fault protection by developing an on-board diagnostic system that will assess symptoms, isolate fault
sources, and select corrective actions based on models of system behavior.

This state machine architecture for FDIR is applicable for a broad range of aerospace vehicles and mission
scenarios. To demonstrate the broad applicability of the FDIR approach, two case studies are evaluated for scenarios
in very different domains. The first is a terrestrial application involving the use of multi-rotor unmanned aerial
vehicles (UAVs). The second is a space-based scenario involving autonomous proximity operations for orbital
capture of a Mars Sample Return capsule. The efficacy of the state machine FDIR system is demonstrated via flight
testing for the UAV case study and through software-in-the-loop testing in a flight-like simulation environment for
the Mars Sample Return case. In each case, the FDIR system is focused on the Guidance, Navigation and Control
subsystem.

This approach has been successfully shown to detect, diagnose, and respond to faults during testing. State
machines allow the autonomous system to handle distinct faults with identical symptoms for initial detection. Each
fault has a separate diagnosis and response procedure, and the proper procedure is selected by the state machine. This
study demonstrates how a fault protection system may diagnose these faults on-board rather than relying upon a
priori ground diagnosis.

Keywords: fault protection; state machines; guidance, navigation, and control; proximity operations; on-board
diagnosis; fault detection, isolation, and recovery;

Acronyms/Abbreviations
APL Applied Physics Laboratory
ESC Electronic Speed Control
FOV Field-of-view
FDIR Fault Detection, Isolation, & Recovery
FSW Flight Software
GN&C Guidance, Navigation, & Control
JPL Jet Propulsion Laboratory
KAUST King Abdullah University of Science

and Technology
KNN K-nearest neighbors
LVLH Local vertical local horizontal
MATLAB Matrix Laboratory
MAV Mars Ascent Vehicle
MSR Mars Sample Return

NASA National Aeronautics
& Space Administration

OS Orbiting Sample container
ROCS Rendezvous OS Capture System
SRO Sample Return Orbiter
UAV Unmanned Aerial Vehicle
UML Unified Modeling Language

1. Introduction

Aerospace vehicles are vulnerable to hardware and
software faults that lead to mission-critical failures.
Advances in on-board fault protection capability are
necessary as both terrestrial and space vehicles increase
in autonomy. In order to prevent failures, aerospace
vehicles often employ Fault Detection, Isolation, and

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 2 of 15

Recovery (FDIR) or fault protection systems to sense,
diagnose, and recover from faults. As more space
missions travel to deep space destinations, autonomous
operations will become more prevalent. There will be
increased need for real-time prevention of failures
through FDIR. These capabilities are especially vital for
hazardous and time-critical activities such as
rendezvous and proximity operations, which make
extensive use of autonomous guidance, navigation, &
control (GN&C). Deep space proximity operations
applications require advanced autonomy and fault
protection due to the significant round-trip light time
from Earth.

The NASA Fault Management Handbook defines a
failure as “the unacceptable performance of an intended
function,” while a fault is defined as “a physical or
logical cause, which explains a failure” [1]. Fault
protection systems aim to perform the three-step process
of fault detection, isolation, and recovery in order to
prevent failures. Fault detection determines that
something unexpected has occurred. Fault isolation
(also connected to diagnosis) determines the possible
source of a fault. Fault recovery is an action taken to
attempt to retain or regain control of the system state
and mitigate the impact of the fault. Typically,
aerospace systems use a rule-based paradigm for FDIR
where telemetry values are monitored against specific
logical statements such as static upper and lower limits.

2. Background

This section presents background information on
state machines and the current state-of-the-art in
aerospace vehicle fault diagnosis.

2.1 State Machine Logic and Applications

Although the model-based paradigm for fault
protection has been explored by industry, it has not yet
been widely adopted. This study focuses on the state
machine approach to model-based FDIR, which has
been used in several flight projects and research studies
because it is intuitive, logic-based, and simple to
interpret visually. The “state” of a system includes any
“aspects of the system that we care about for the
purposes of control” [2]. Traditionally, state variables
have included continuous physical parameters such as
position, velocity, attitude, temperature, and pressure.
However, state variables can also include discrete
quantities such as operating modes, device health, and
software filter convergence conditions. These discrete
states can then be represented as state machines.

A state machine, or state chart, is a model-based tool
that can be used to describe system behavior, including
fault protection behavior [2]. Each block represents a
specific state or sub-state of the system, and arrows
between blocks represent transitions between states. A
logical condition is associated with each transition, and

if the condition associated with the transition becomes
true, then the active state of the diagram will move from
one state to another. State machines can be very simple,
representing only a few possibilities, or they can involve
complicated nested sets of states. State machine
representations may be significantly simpler than the
actual physical or software processes they represent,
which is why they are considered models. However, a
state machine for FDIR purposes can be developed in a
way that represents all possible states relevant to
mission success. FDIR systems expressed in terms of
system state will be better able to protect the system in
question [3]. Within MATLAB/Simulink, the Stateflow
toolbox provides a simple graphical interface for
developing state machines.

State machines offer several advantages over the
rule-based FDIR paradigm. One significant advantage is
the generation of a graphical product that is easier for
designers, peer reviewers, and managers to understand
and review. Other advantages include ease of
accounting for subsystem interdependencies and
implementing sequences with several decision points
and/or path-dependent responses. The Johns Hopkins
Applied Physics Laboratory (APL) conducted a formal
trade study to determine whether their “ExecSpec”
state-based fault protection system [4,5] or a more
traditional rule-based system was more advantageous
using the Solar Probe Plus mission as a case study [6].
They found that both methods were able to equivalently
express all desired fault protection rules but that the
state machine system is favored based on some of the
advantages mentioned above. However, APL ultimately
chose to continue using the rule-based system due to its
extensive flight heritage. In addition to Stateflow and
ExecSpec, another model-based software tool used for
state machine design is MagicDraw, which uses the
Unified Modeling Language (UML).

2.2 On-Board Model-Based Fault Diagnosis

In state-of-the-art fault protection practice, diagnosis
is usually performed by FDIR engineers at design time,
and the detection of a specific symptom is directly
mapped to the appropriate response for the pre-
diagnosed fault. This study develops an on-board
diagnostic system that assesses symptoms, isolates fault
sources, and selects corrective actions based on models
of system behavior.

Though not typical for space missions, on-board
fault diagnosis has been an area of research since the
1990s. Model-based fault diagnosis is considered a
structured and mature field of research and many
methods have been proposed and discussed in the
control community using mathematical estimation
methods for aeronautical vehicles [7,8]. Remote Agent
was deployed as a technology demonstration (not as the
primary control software) on the Deep Space 1 mission

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 3 of 15

and featured model-based “mode identification” and
“mode reconfiguration” for fault diagnosis, which
identified components whose failures explained
detected anomalies [9]. Cassini’s Attitude Control Fault
Protection is one of the few examples of a system where
on-board fault diagnosis was performed in-flight [10,11].
One method for on-board diagnosis that has been used
in research studies is called constraint suspension. It has
been used to diagnose which component of a system is
faulty [12,13].

3. Theory: State-Based Fault Protection Architecture

The FDIR architecture developed in this study
collects data from the vehicle which is used to
determine the likely fault state of the vehicle. This state
can be classified as either “fault” or “no fault” based on
how the decision logic is structured. The architecture
isolates faults by performing diagnosis to determine
their precise source and performs preventative actions to
recover from faults before they become mission-critical
failures. Outputs from the architecture can either send
commands to the vehicle autonomously or notify
ground operators to take corrective action.

3.1 Fault Protection Architecture Characteristics

This section focuses on three desired characteristics
for the design of the architecture: generic, modular, and
portable. The architecture itself is described in the
following sections.

A generic architecture is applicable to any type of
aerospace vehicle or mission. The FDIR architecture is
comprised primarily of several generic diagrams that are
described in the following sections. The
MATLAB/Simulink simulation environment in which
the architecture is developed allows setting vehicle
parameters including physical dimensions and
trajectory. It is applicable to a multitude of possible
mission scenarios and permits alternate configurations,
such as individual vehicles or multiple cooperative or
non-cooperative vehicles. The simulation environment
also contains generic modules for commonly used
components such as sensors and actuators. The
simulation environment has previously been adapted for
use with many scenarios, missions, and vehicles,
including the Prox-1 small satellite mission [14,15],
various proximity operations scenarios with hardware
such as a modular attitude determination system
CubeSat avionics board and a Mars communication
relay CubeSat constellation [16]. Each of the diagrams
described in the following sections are implemented
without focusing on any particular application or
vehicle. Section 4 demonstrates how the architecture
can be adapted for two distinct and very different

applications. While the generic architecture presented
here is focused particularly on FDIR for faults related to
the GN&C subsystem, the same principles and design
can be applied to any other faults and subsystems on an
aerospace vehicle.

A modular architecture allows components to be
easily added, removed, or rearranged. The visual block
diagram environment offered by MATLAB/Simulink
can be altered and reconfigured easily and allows for
testing of many combinations of software modules and
hardware components. For example, the investigator
could replace the sensor/actuator suite and GN&C
software modules. Also, various initial conditions,
environmental scenarios, and physical vehicle properties
can be easily redefined in a MATLAB initialization
script and edited or rearranged in Simulink. These
include spacecraft orbit and attitude dynamics,
spacecraft properties such as mass and moment of
inertia, relative dynamics for multiple spacecraft, sensor
and actuator properties such as field of view and
resolution, GN&C software components, and central
body or environment properties. Parameters for FDIR
algorithms can also be adjusted, such as fault injection
times, wait times, and trigger thresholds. The diagrams
described in the following sections can also be easily
adjusted and rearranged to adapt them for various
vehicles and missions.

A portable architecture allows straightforward
conversion of its design implementation for a particular
mission to code that is used onboard the vehicle. The
FDIR architecture allows rapid transition from
development to flight. The computational requirements
of the FDIR architecture match the capability generally
available on flight processors. The architecture has the
ability to make the kinds of complex decisions normally
required for autonomous flight software (FSW) and is
evaluated by testing its response to realistic conditions
rather than “canned” scenarios. It is well-integrated with
other hardware and software components, allowing new
components to be quickly evaluated. Finally, the
architecture features the capability to easily convert its
logic into FSW code via autocoding, a process which
has been used with the Prox-1 mission as described in
[14]. In this process, algorithms developed in
MATLAB/Simulink are converted to C code and
integrated with other FSW code in C. Autocode
performance is validated via a “day-in-the-life” test on
flight hardware. Although the autocoding process is not
demonstrated directly in this study, technical memos
written by the Prox-1 team are included in Appendix A
of [17] to provide guidance for future researchers or
engineers desiring to reproduce it.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 4 of 15

3.2 Generic Functional State Machine
A functional state machine is a model that describes

the behavior of a system by tracking the “mode state” of
the system [18]. Mode states are high-level descriptions
of the overall system behavior and are distinct from
dynamic states (such as position & velocity) or vehicle
component states (such as battery level or processor
temperature). Each vehicle and mission will have a
distinct state machine describing how these modes
change and the logical conditions to switch between
them. The generic functional state machine shown in
Fig. 1 provides a template for constructing this diagram.
It features generic modes that may be present in many
different contexts. The initial state in the bottom left is
“Standby,” which is a passively safe mode where the
vehicle waits for further commands to proceed.

If no faults have been detected (FaultDetected
Mode=0) then a command (BeginComplex
Process=1) allows a “complex process” to begin.
Complex processes could include either autonomous or
piloted operations. An optional transition phase occurs
before the complex process state begins. The complex
process has several sub-states. First is “Standoff”
(ArriveAt Standoff=1), which is a phase where
the complex process is “armed” but not initiated and the
vehicle is awaiting permission to proceed. Standoff is
distinct from Standby because the vehicle may not
necessarily be in a passively safe dynamic state during
Standoff. If no faults are detected (FaultDetected
Mode=0) the complex process begins when a command
is provided (ReadyToGo=1). At this point the
NominalZone state begins. This is a nominal region

where faults are acceptable and can generally be
detected and responded to safely while still continuing
nominal operations.
 At some point, based on the dynamic state of the
system, safe operation under fault conditions may no
longer be possible (EnterAbortZone=1). When this
occurs, the AbortZone state begins, and at any time if a
fault detection is triggered or a human operator decides
conditions are unsafe, an Abort can be commanded
(Abort=1). The abort stops the complex process and
moves the vehicle to a safe dynamic state, eventually
returning to the Standby state (ArriveAtStandby
=1). Additionally, an “Interact” state allows the vehicle
to interact with other vehicles, target objects, or the
environment. A pre-interaction region called the
InteractZone is entered from the AbortZone when
(EnterInteractZone=1). The Interact state can be
entered from either AbortZone or InteractZone when a
command is received (BeginInteraction=1). The
vehicle cannot enter the Interact state directly from
NominalZone because interaction almost always
involves hazardous conditions. If a fault or other hazard
occurs during Interact, an abort can be triggered
(Abort=1). If no anomalies occur, the vehicle will
return to passively safe standby after the interaction is
complete (ArriveAtStandby=1).

3.3 Generic Diagnostic State Machine
 To implement on-board model-based fault diagnosis,
the generic diagnostic state machine shown in Fig. 2 has
been developed. The diagnostic state machine consists

Fig. 1. Generic functional state machine

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 5 of 15

of two primary states: NoFaultDetected and Fault
Detected. During all nominal mission phases,
NoFaultDetected is activated, but when a fault detection
trigger is observed (FaultDetected=1), the Fault
Detected state is activated. If the functional state
machine is in any state other than AbortZone, then the
diagnostic state machine enters “Diagnose” immediately
when a fault is detected. If the functional state machine
is in the Abort Region (AbortZone=1) when a fault is
detected, the diagnostic state machine does not attempt
to determine which fault has occurred. An abort
maneuver is commanded immediately, returning the
vehicle to a passively safe dynamic condition before
entering the Diagnose state.

The Diagnose state consists of sub-states for each
possible fault. Each sub-state begins by running a
diagnostic routine to determine if that particular fault
has occurred. If the diagnostic routine returns Fault
Confirmed=1, then the appropriate fault response
routine is called and the diagnostic sub-state for the next
fault is activated while the response runs in the
background. If the diagnosis does not result in fault
confirmation within a user-defined wait time, then the
active sub-state moves to the next possible fault and the
process repeats. Once all possible faults have been
evaluated, the active sub-state returns to the first fault
until the fault has been resolved by one of the corrective
actions.
 Note that fault diagnostic checks are distinct from
fault detection checks. None of the diagnostic checks
are performed unless they are called by the diagnostic
state machine, which is only activated once the fault
detection triggers are activated. Thus, a fault will not be

detected if one of the fault diagnosis conditions is met
but the fault detection conditions have not been met.
Once a fault has been diagnosed, the diagnostic state
machine calls the appropriate fault response routine.
When the fault is resolved and a user-specified recovery
time has passed, the active state returns to
NoFaultDetected.

3.4 Integration in MATLAB/Simulink

The functional state machine and diagnostic state
machine described in the previous two sections are
designed to work together in the fault protection
architecture along with several additional components in
the MATLAB/Simulink environment. The fault & mode
portions of the architecture are the main focus of this
study, and these components are shown in the example
Simulink diagram in Fig. 3, which illustrates how each
of the components interacts with the others.

The two primary components are the functional state
machine and the diagnostic state machine. These are
Stateflow blocks which have been described in the
previous two sections. Most of the inputs to the
functional state machine are produced by the generic
mode management block, a MATLAB function which
takes in vehicle state information and ground commands
and calculates the logical variables that are evaluated in
functional state machine transitions. AbortZone is
output from the functional state machine to the
diagnostic state machine and describes whether the
AbortZone state is active. FaultDetectedMode and
Abort are generated by the diagnostic state machine.

The inputs to the diagnostic state machine come
from several sources. ArriveAtStandby is

Fig. 2. Generic diagnostic state machine (only a portion of this diagram is shown for readability)

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 6 of 15

generated by the mode management MATLAB function
block. AbortZone is generated by the functional state
machine. Fault detection checks are performed by a
MATLAB function block and result in Fault
Detected and FaultResolved. Two variables are
input as constants (WaitTime and RecoverTime),
and a set of variables indicating fault confirmation
(FaultConfirmed1,2,3, etc.) are input from the
fault diagnosis/resolution MATLAB function block for
each fault. Two output commands for each fault
(Diagnose1,2,3, etc. and Corrective
Action1,2,3, etc.) are fed into the respective fault
diagnosis/resolution function blocks. Note that only one
diagnosis/resolution function is shown for clarity but
most systems will consider more than one fault and will
have a diagnosis/resolution function for each fault

4. Results: Evaluation in Simulation

Each of the generic architecture diagrams described
in the preceding section can be adapted for particular
applications. This section provides examples for two
very different scenarios. It is important to note that the
generic diagrams usually provide more or less detail
than necessary, depending on the application. Detail can
be added or removed in each diagram as needed.

4.1 UAV Nervous System Example
One application of the state machine FDIR

architecture has been developed for a multirotor UAV
system. This “UAV Nervous System,” serves as a
proof-of-concept of the state machine FDIR architecture
and has been developed in collaboration with
FalconViz, a startup company based at the King
Abdullah University of Science and Technology
(KAUST). FalconViz uses multi-rotor and fixed-wing
UAVs for scanning and 3D mapping, among other
applications. The FalconViz team recognized a need for
fault protection because small problems with their UAV
hardware or software would often cause mission critical
failures.
 The primary goal of the UAV nervous system is to
detect, diagnose, and respond to excess vibration in
flight. An accelerometer is placed on the arm of the
copter below the propeller and electrical tape is added to
the propeller to simulate unbalance. The K-nearest
neighbors (KNN) supervised machine learning
algorithm is trained and used for fault detection [19].
The output of the KNN algorithm is sent into the
diagnostic state machine for fault diagnosis and
confirmation. When the fault has been diagnosed as
“confirmed,” an audio signal is sent to the pilot via the
radio controller. The pilot can then land the copter to
investigate the fault. The complete system involves a
suite of sensors on two arms of the copter. In addition to

Fig. 3. Generic diagnostic state machine (only a portion of this diagram is shown for readability)

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 7 of 15

an accelerometer on the second arm, temperature
sensors are installed at the base of the motors and
current/voltage sensors are installed between the lithium
polymer battery and the Electronic Speed Controls
(ESCs). The nervous system is able to detect and
respond to faults from all eight sensors simultaneously.
For all faults, the response is to send a signal to the pilot
to land. Several flight tests demonstrating successful
detection of faults have been completed. The results of
one set of flight tests were published at the 67th
International Astronautical Congress [19].

After the generic FDIR architecture described in
Section 3 was created, the UAV Nervous System case
study was revisited and adjusted to match the generic
architecture. First, the generic functional state machine
was adapted for the FalconViz UAV test flight, as
shown in Fig. 4. Many of the states from the generic
diagram were unnecessary because of the relative
simplicity of the UAV test flight. The Standby state at
the bottom is the starting state and represents the copter
sitting stationary on the lab bench at the beginning of
the test flight when the system is activated and data
recording begins. When the copter is being carried
outside (CarryingCopter=1), the Transfer state
begins. The Transfer state ends when the copter is set
down on the ground outside (ArriveAt
Standoff=1), which begins the Piloted phase. During
Standoff, the first sub-state of the Piloted phase, the
copter is sitting on the ground, waiting for the pilot’s
command to proceed. When the pilot begins throttling

up the motors to launch the copter (Liftoff=1), the
NominalZone sub-state begins, indicating that the
copter is flying. When the copter lands and the motors
are powered down (Landed=1), the active state returns
to Standoff. Note that no additional abort states are
included in this functional state machine because the
standard abort procedure when a fault is detected is for
the pilot to land the copter.

Next, the generic diagnostic state machine was
adapted for the UAV Nervous System as shown in Fig.
5. In this case, the trigger for fault detection
(FaultDetected=1) is set to the output of the
machine learning algorithm for vibration detection. This
is done without regard to persistence, so whenever the
machine learning algorithm indicates a fault detection,
the FaultDetected state and Diagnose sub-state become
active. Because only one fault could cause this
particular detection, only one fault diagnosis sub-state is
present in the diagnostic state machine. The “Propeller
Unbalanced” fault is diagnosed if the fault detection
trigger remains active for the “Time to Detect” of 0.025
sec, and if the current state of the functional state
machine is NominalZone (indicating the copter is
flying). If the fault detection is only intermittent, fault
diagnosis will be inconclusive. In either case, when the
fault detection flag from the machine learning algorithm
is set to zero for the “Time to Resolve” length of 0.03
sec, the state machine returns its active state to
NoFaultDetected.

Fig. 4 Functional state machine for FalconViz UAV

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 8 of 15

To demonstrate the FDIR architecture, recorded
flight test data was loaded from a data file and replayed
in Simulink. The functional and diagnostic state
machines described above were added to a Simulink
model, and MATLAB functions were written to
calculate mode management inputs to the functional
state machine and fault diagnostic inputs to the
diagnostic state machine. The recorded flight test data
and FDIR output are shown in Fig. 6. Note that this
flight test data is similar but not exactly the same as the
data shown in [29]; the flights were performed on
different dates and at different stages of development of
the UAV Nervous System. The top three plots show
accelerometer data in three axes and the bottom plot
shows the FaultConfirmed1 signal output by the
diagnostic function.

The data begins with the copter on the lab bench in
segment A, and tape is placed on the propeller to
unbalance it. The copter is carried outside from the lab
during segment B. The copter takes off and flies with an
unbalanced propeller in segment C. The FDIR
architecture quickly detects the imbalance and outputs a
FaultConfirmed status of 1 at around 3 sec, shortly
after segment C begins. At the end of segment C the
copter lands, and the FDIR architecture immediately
resets the FaultConfirmed status to 0. During

segment D the copter is on the ground, and the tape is
removed to restore the propeller balance. Segment E
shows balanced flight, and the copter lands again at the
end of segment E. During segment F, tape is added
again while the copter is on the ground. Unbalanced
flight resumes during segment G, and between 11 and
12 sec the FDIR architecture quickly detects the
imbalance and outputs a FaultConfirmed status of
1. The copter lands at the end of segment G, and the
FDIR architecture immediately resets the Fault
Confirmed status to 0.

The UAV Nervous System has been developed and
tested for a terrestrial rotary wing UAV. The system
proof-of-concept has been shown through flight testing.
The generic FDIR architecture has been successfully
adapted for use with the UAV Nervous System and has
been demonstrated in MATLAB/Simulink using
recorded flight test data. Since the new system is
operating on similar flight data to the previous system,
improved performance is attributable to the addition of a
state machine monitoring the state of the UAV from
telemetry. For example, by monitoring ESC current
measurements, the updated architecture is able to
determine whether the UAV is flying and takes this into
account when diagnosing whether a fault is present.

Fig. 5 Diagnostic state machine for UAV

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 9 of 15

0 2 4 6 8 10 12 14 16

Simulink Model Time (sec)

-1

-0.5

0

0.5

1
104 X Acceleration A

0 2 4 6 8 10 12 14 16

Simulink Model Time (sec)

-1

-0.5

0

0.5

1
104 Y Acceleration A

0 2 4 6 8 10 12 14 16

Simulink Model Time (sec)

-1

-0.5

0

0.5

1
104 Z Acceleration A

0 2 4 6 8 10 12 14 16

Simulink Model Time (sec)

0

1

Fault Confirmed (0=Balanced, 1=Unbalanced)

Fig. 6 Results of test flight replay with UAV Nervous System FDIR Architecture

A B C D E F G H I

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 10 of 15

4.2 Mars Sample Return Rendezvous Example
 A second use of the state machine FDIR

architecture has been developed for an automated
relative proximity operations application. This work
supports development of a Mars Sample Return (MSR)
mission. The process for development of fault
protection requirements was published at the 68th
International Astronautical Congress [20] and a detailed
concept of operations, trajectory control strategy, and
complete simulation results have been submitted in an
article to the Journal of Spacecraft and Rockets [21].

 One key feature of the Mars Sample Return
concepts currently under consideration is that they
require autonomous rendezvous and capture. Samples
collected by the Mars 2020 rover will be placed into an
Orbiting Sample container (OS), launched into orbit
around Mars, and intercepted by a Sample Return
Orbiter (SRO). The SRO performs ground-directed
rendezvous until it is about 100 meters away from the
OS. Finally, terminal rendezvous and capture of the OS
are performed autonomously.

A nominal approach trajectory is shown in Fig. 7 in
the Local Vertical Local Horizontal (LVLH) frame and
involves the following phases. First, out-of-plane
natural motion occurs in the passively safe standby

trajectory before any control is activated; this is the blue
portion of the trajectory. Once trajectory control is
activated (at the start of the black portion of the
trajectory), the controller allows the SRO to continue in
natural motion. When the xy-plane is reached, a planar
hop maneuver is commanded to remove all out-of-plane
motion and the red portion of the trajectory begins. The
controller allows the SRO to continue coasting until the
along-track axis is reached and a hold position
maneuver is commanded to hold the SRO at a fixed
relative position. A small maneuver is commanded to
begin the v-bar approach (light blue portion of the
trajectory), and subsequent hops are performed until the
SRO is near to the OS. In the final v-bar hop, the green
portion of the trajectory begins and the controller allows
the SRO to coast until it reaches the point of closest
approach (the red x) at a range of 1.08 m, where another
hold position maneuver is performed to represent OS
capture.

During the v-bar approach, three “zones of
criticality” are defined to alter fault protection behavior
based on distance to the target, as shown in Fig. 7. Note
that durations and distances shown here are dependent
on the rendezvous approach strategy, so the transition
conditions between these zones may change, but the

z
(C

ro
ss

 T
ra

ck
)

[m
]

Fig. 7 Relative orbit three dimensional view (LVLH) for nominal trajectory

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 11 of 15

criticality (and thus impact on FDIR behavior) of the
zones will endure regardless of the implementation
selected. In order to capture how this behavior fits into
the overall terminal approach, a functional state
machine was created, shown in Fig. 9. This model
represents both nominal and off-nominal processes for
rendezvous and capture and is referenced by the
diagnostic state machine.

At the end of ground-in-the-loop rendezvous, the
system begins in a passively safe trajectory that will not
impact the OS even if it drifts. A ground command
initiates the autonomous sequence, and a Final Hop
moves the spacecraft from the passively safe trajectory
to the v-bar approach plane. The Final Hop ends at a
“standoff” position (no longer passively safe) at the start
of the v-bar approach. When proper conditions are
achieved, the “closed-loop” v-bar approach begins.

The system then enters the “Passive Miss Region,”
which requires the SRO to perform regular maneuvers
in order to remain on an intercept course. If a fault is
detected at any point in this region, the SRO stops
maneuvers and enters Passive Abort, passing by the OS
harmlessly and returning to Passive Standby. If no faults
occur, the system enters the “Active Abort Region”
when the dynamic boundary is crossed. This zone ends
in an intercept unless an Abort maneuver is commanded
to return to Passive Standby via the Active Abort mode.
The final zone, called the “Unavoidable Intercept
Region” occurs at the very end of the rendezvous
sequence, when the SRO can no longer avoid an
intercept; it must either capture the OS or collide with it.

If capture is unsuccessful and the OS does not enter
the capture volume, the system enters the LocateOS
state. It attempts to determine where the OS is located

Fig. 8 Notional “zones of criticality”

Fig. 9 State machine for terminal rendezvous and capture process

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 12 of 15

before performing any slew or thrust maneuvers. Once
the OS is found, an abort maneuver is commanded. If
the OS enters the capture volume successfully, the
capture process begins. The OS passes by a sensor such
as a laser curtain and the door is closed. If the OS
cannot be confirmed inside the capture volume after the
door has closed, the system also enters the FindOS state
and commands an Abort unless the OS is found inside.

Four faults were selected for simulation based on the
scenario where the OS is no longer visible in the imager
field of view (FOV), but further information is
necessary to determine which fault occurred. This
scenario provides a suitable case study to demonstrate
the diagnostic capability of the FDIR architecture. The
diagnostic state machine shown in Fig. 11 is used to
perform on-board model-based fault diagnosis. It
behaves exactly the same as the generic diagnostic state
machine, except that an abort is commanded upon fault
detection if the SRO is in either the Passive Miss
Region or the Active Abort Region. In all other regions,
the Diagnose state calls diagnostic and response
functions for each candidate fault. Only two diagnose
sub-states are shown for clarity, but there is one sub-
state for each possible fault.

Six simulation cases have been evaluated to
demonstrate the capabilities of the FDIR architecture for
Mars Sample Return autonomous rendezvous and
capture [21]. A summary of three representative
scenarios is presented here. In the first case, shown in
Fig. 11, an angular rate fault results in the loss of the OS
from the imager FOV; a fault is injected at 1,050 sec
during the planar hop by turning off the attitude tracking

Fig. 11 Simulation results for angular rate fault recovery

Fig. 10 Diagnostic state machine for MSR fault protection architecture
(Only a portion of this diagram is shown for readability)

Sky search
slew

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 13 of 15

controller. The OS slowly drifts out of the imager FOV
until it is no longer visible, triggering a fault detection.
 The fault protection system then initiates a sky
search slew, which scans the sky and quickly finds and
tracks the OS again. After reacquiring the OS in the
imager the SRO continues to capture at 20,534 sec and a
minimum range of 1 m. Similar responses have been
demonstrated for cases with the OS in eclipse and an
unconverged relative orbit filter prior to the beginning
of the v-bar approach.
 In the next case, shown in Fig. 12, a fault is injected
at 6,000 sec indicating that the relative orbit
determination filter is unconverged. Unlike the previous
scenario, in this scenario the planar hop has already

Fig. 12 Simulation results for unconverged relative

orbit filter resulting in passive abort

been completed and the v-bar approach has begun
before the fault is injected. The fault protection system
detects this fault and immediately commands a passive
abort because the SRO is in the Passive Miss Region
(Zone 1) of the v-bar approach. The SRO then stops
maneuvers and begins drifting; it passes through a
minimum range of 24.23 m at 8,706 sec (about 30
minutes after the fault time). After this minimum range,
the SRO drifts away from the OS in the negative along-

track direction. Once the along-track distance reaches
50 m, the SRO injects cross-track motion and returns to
a passively safe standby.

In the final case, shown in Fig. 13, a fault is injected
at 19,000 sec at a range of 4.32 m, indicating that the
camera has lost power. The FDIR system detects this
fault and immediately commands an active abort
because the SRO is in the Active Abort Region (Zone 2)
of the v-bar approach. The SRO then injects out-of-
plane motion and moves away from the OS. After
entering an out-of-plane ellipse, the SRO drifts away
from the OS in the negative along-track direction. Once
the along-track distance reaches 50 m, the SRO freezes
the drift and returns to a passively safe standby.

Fig. 13 Simulation results for camera power
fault resulting in active abort

Each of the tasks described above has been
completed successfully for an initial treatment of
defining fault protection behavior for autonomous
rendezvous and capture of the OS. A detailed
rendezvous and capture process concept of operations
has been created, accounting for safety concerns. The
architecture has been demonstrated in simulation for
several fault cases with fault responses dependent on the
mode state of the system.

Passive
Abort

Active
Abort

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 14 of 15

5. Conclusion
As aerospace vehicles become more complex and

require increased automation, the design of FDIR
systems must evolve to keep pace with vehicle
advancements. A generic, modular, and portable
architecture has been developed for aerospace vehicle
fault protection. The architecture has been adapted to
two distinct scenarios and has demonstrated the ability
to successfully detect, diagnose, and respond to a
variety of faults in real time using a state-based on-
board system. Flight testing and detailed simulation
have been used to thoroughly develop, verify, and
validate this capability for two distinct case studies in
very different regimes.

Acknowledgements

This material is based upon work supported by the
National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE-1148903.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the
National Science Foundation. FalconViz and the King
Abdullah University of Science and Technology
(KAUST) provided funding support and technical
guidance for development of the UAV Nervous System.
The Mars Sample Return fault protection work was
completed under contract with the NASA Jet Propulsion
Laboratory (JPL) at the California Institute of
Technology.

McClain Goggin at Purdue University completed
most of the MSR trajectory design work. Dr. Neil Smith
at KAUST provided ideas, mentorship, personal support,
and technical guidance that were invaluable to the UAV
portions of this study. Special thanks to Rob Lock (Mars
Program Office) and Peter Meakin (Fault Protection and
Autonomy group supervisor) at JPL for their mentorship
and assistance with the MSR portion of the study. Also,
the JPL MSR study team and Rendezvous Working
Group provided many inputs by participating in
breakout discussions. Many engineers at JPL were
consulted to solicit ideas for fault protection research.

References
[1] Fesq, L., Dennehy, N., Barth, T., Clark, M., Day, J., Fretz,

K., Johnson, S., Hattis, P., McComas, D., Newhouse, M.,
Melcher, K., Rice, E., West, J., Zinchuk, J., “Fault
Management Handbook”, NASA Technical Handbook,
NASA-HDBK-1002, Apr. 2012, https://www.nasa.gov/
pdf/636372main_NASA-HDBK-1002_Draft.pdf
[retrieved 12 Dec. 2016].

[2] Ingham, M.D., Rasmussen, R.D., Bennett, M.B., and
Moncada, A.C., “Engineering Complex Embedded
Systems with State Analysis and the Mission Data
System”, Journal of Aerospace Computing, Information,
and Communication, Vol. 2, No. 12, Dec. 2005, pp. 507-
536. doi: 10.2514/1.15265.

[3] Rasmussen, R.D., “Thinking Outside the Box to Reduce
Complexity in National Aeronautics and Space
Administration Flight Software”, NASA Study on Flight
Software Complexity, Jet Propulsion Laboratory,
Pasadena, CA, Mar. 2009, https://www.nasa.gov/pdf/
418878main_FSWC_Final_Report.pdf [retrieved 26 Oct.
2017].

[4] Cancro, G.J., Turner, R.J., Monaco, C.C., Wilson,
Nguyen, L., Pekala, M.J., Olson, C.C., Kahn, E.G.,
“Emphasizing Understandability, Flexibility, and
Verifiability in a Spacecraft Fault Management Autonomy
System”, American Institute of Aeronautics and
Astronautics Infotech@Aerospace Conference, Seattle,
WA, Apr. 2009. doi: 10.2514/6.2009-2029.

[5] Cancro, G.J., “APL Spacecraft Autonomy: Then, Now,
and Tomorrow”, Johns Hopkins APL Technical Digest,
Vol. 29, No. 3, 2010, pp. 226-233, http://www.jhuapl.edu/
techdigest/TD/td2903/Cancro_Autonomy.pdf [retrieved
19 Apr. 2018].

[6] Van Besien, B., “Investigating Model-Based Autonomy
for Solar Probe Plus”, Johns Hopkins Applied Physics
Laboratory, Dec 2013, http://flightsoftware.jhuapl.edu/
files/2013/talks/FSW-13-TALKS/BVB-FSW-
Presentation.pdf [retrieved 13 Dec. 2016].

[7] Wander, A., Förstner, R., “Innovative Fault Detection,
Isolation, and Recovery Strategies On-Board Spacecraft:
State of the Art and Research Challenges”, Deutscher
Luft- und Raumfahrtkongress 2012, Berlin, Germany,
Sept. 2012, http://www.dglr.de/publikationen/2013/
281268.pdf [retrieved 19 Apr. 2018].

[8] Marzat, J., Piet-Lahanier, H., Damongeot, F., Walter, E.,
“Model-based fault diagnosis for aerospace systems: a
survey”, Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering,
Vol. 226, No. 10, Jan 2012, 1329-1360.
doi: 10.1177/ 0954410011421717.

[9] Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.,
“Remote Agent: to boldly go where no AI system has
gone before”, Artificial Intelligence, Vol. 103, No. 1–2,
1998, pp. 5–47. doi: 10.1016/S0004-3702(98)00068-X.

[10] Brown, M.B., Johnson, S.A., “An Overview of the Fault
Protection Design for the Attitude Control Subsystem of
the Cassini Spacecraft”, American Control Conference,
Philadelphia, PA, June 1998.
doi: 10.1109/ACC.1998. 703535.

[11] Meakin, P.C., “Cassini Attitude Control Fault Protection
Design: Launch to End of Prime Mission Performance”,
AIAA Guidance, Navigation, & Control Conference and
Exhibit, Honolulu, HI, Aug. 2008.
doi: 10.2514/6.2008-6809.

[12] Fesq, L.M., “MARPLE: An Autonomous Diagnostician
for Isolating System Hardware Failures”, Ph.D.
Dissertation, Department of Computer Science, University
of California Los Angeles, 1993.

[13] Kolcio, K.O., “Model-Based Fault Detection and
Isolation System for Increased Autonomy”, AIAA Space
2016, Long Beach, CA, Sept. 2016.
doi: 10.2514/6.2016-5225.

[14] Schulte, P. Z. and Spencer, D.A., “Development of an
Integrated Spacecraft Guidance, Navigation, & Control
Subsystem for Automated Proximity Operations,” Acta
Astronautica, Vol. 118, Jan-Feb 2016, pp. 168-186.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-C1.5.11x45016 Page 15 of 15

 doi: 10.1016/j.actaastro.2015.10.010.
[15] Spencer, D.A., Chait, S.B., Schulte, P. Z., Okseniuk, K.J.,

and Veto, M., “Prox-1 University-Class Mission to
Demonstrate Automated Proximity Operations,” Journal
of Spacecraft and Rockets, Vol. 53, No. 5, July 2016, pp.
847-863. doi: 10.2514/1.A33526.

[16] Chait, S.B., Spencer, D.A, “Georgia Tech Small Satellite
Real-Time Hardware-in-the-Loop Simulation
Environment: SoftSim6D”, Master’s Project Report,
Georgia Institute of Technology, Atlanta, GA, Dec 2015,
http://ssdl.gatech.edu/sites/default/files/papers/mastersProj
ects/ChaitS-8900.pdf [retrieved 19 Apr. 2018].

[17] Schulte, P.Z., “A State Machine Architecture for
Aerospace Vehicle Fault Protection”, Ph.D. Dissertation,
School of Aerospace Engineering, Georgia Institute of
Technology, Atlanta, GA, 2018,
http://www.ssdl.gatech.edu/sites/default/files/papers/phdT
heses/SchulteP-Thesis.pdf [retrieved 13 June 2018].

[18] H.J Kim, W. E. Wong, et. al, “Bridging the Gap Between
Fault Trees and UML State Machine Diagrams for Safety
Analysis”, 2010 Asia Pacific Software Engineering
Conference, Sydney, Australia, Dec. 2010, 196-205.
doi: 10.1109/APSEC.2010.31.

[19] Schulte, P.Z., Spencer, D.A., Smith, N.G., McCabe, M.F.,
“Development of a Fault Protection Architecture Based
Upon State Machines”, 67th International Astronautical
Congress, Guadalajara, Mexico, Sept. 2016, IAC-16-
D1.IP.2x32540.

[20] Schulte, P.Z., Spencer, D.A., “State Machine Fault
Protection for Automated Proximity Operations”, 68th
International Astronautical Congress, Adelaide, Australia,
Sept. 2017, IAC-17-C1.5.11x36573.

[21] Schulte, P.Z., Spencer, D.A., Goggin, M., “Mars Sample
Return Terminal Rendezvous Fault Protection”, Journal of
Spacecraft and Rockets, submitted Apr. 2018.

