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Abstract Accurate, on-board classification of instrument
data is used to increase science return by autonomously 1 INTROD
identifying regions of interest for priority transmission or 1.1 SDI
generating summary products to conserve transmission 1 2 SN
bandwidth. Due to on-board processing constraints, such
classification has been limited to using the simplest 2 SYM D;
functions on a small subset of the full instrument data. 2 1 MD

FPGA co-processor designs for SVM' classifiers will lead 2.1 VA
to significant improvement in on-board classification 2.3 IM
capability and accuracy. 3 EU i

3 SEU MI
We implemented a SWIL2 classifier, developed for the 4 CONCLI
Hyperion instrument on the EO-1 spacecraft, on the Xilinx 5 ACKNON
Virtex-4FX60 FPGA as a baseline challenge. We have taken 6 REFERE
advantage of Impulse CTM, the commercially available C-to- 7 BIOGRA
HDL tool by Impulse Accelerated Technologies, which
supports the development of highly parallel, co-designed
hardware algorithms (from software) and applications. This
paper describes our approach for implementing the
Hyperion linear SVM on the Virtex-4FX FPGA, as well as
additional experiments with increased numbers of data 1.1 Smart i
bands and a more sophisticated SVM kernel to show the
potential for better on-board classification achieved with On board c
embedded FPGAs over current in-flight capabilities.34 advanced scie
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1 INTRODUCTION

Payload Motivation

omputation has become a bottleneck for
nce instrument and engineering capabilities.
,ilable spacecraft processors have high power
are expensive, require additional interface

re limited in their computational capabilities.
loped hybrid field-programmable gate arrays
,h as the Xilinx Virtex-4FX [1], offer the
running diverse software applications on

^ocessors while at the same time taking
reconfigurable hardware resources all on the

package. These tightly coupled
ware co-designed systems are lower power
t than general-purpose single-board computers
ind promise breakthrough performance over
lened SBCs, leading to a new architecture for
I development (Table I).



Computational Platform Performance
(DMIPS)

RAD750 SBC 240

Xilinx Virtex-I1 Pro 450

Xilinx Virtex-4 680

TABLE I. PERFORMANCE: SBC vs. EMBEDDED FPGAs

Designs based on embedded FPGA processors also benefit
from the following advantages over SBCs:

* Higher level of reuse
* Reduced risk of obsolescence
* Simplified modification and update
* Increased implementation options through

modularization

We have selected the Xilinx ML4 10 evaluation platform
(Figure 1) for development and demonstration of selected
Smart Payload concepts including the SVM implementation
on the Virtex-4FX FPGA.

Figure 1. A good candidate for the development of a future
instrument computer for space. The Xilinx ML4 10
evaluation board comes with the V4FX6O FPGA that
features two embedded PowerPC405 processors [3].

1.2 SVMs for Hyperspectral Classification

Support Vector Machines [4] have found broad application
in general machine learning and classification tasks as well
as onboard remote sensing [5]. A SVM is a maximum

margin classifier that finds a separating hyperplane between
two labeled classes such that the distance to the nearest
datum in each class is maximized (Figure 2). By selecting
such a maximum margin hyperplane, the SVM classifier can
exhibit better generalization to new data than other linear
classification methods.

The goal of training a support vector machine is to learn a
set of weights such that the sign of a weighted sum of dot
products between the training data, xi, and a test vector, t,
will correctly predict the class of the new data vector.

y = sgn wiKxi,t); y e [-1,+1]

SVMs also incorporate the kernel trick [6], which allows
them to be extended from purely linear to non-linear
classifiers. This trick is accomplished by formulating the
training and testing algorithms in terms of dot products,
<x,y>, and then replacing the dot products with a kernel
function, K(x,y) = <E(x),E(y)>, that represents a dot product
after passing the arguments through some non-linear
function, X. By cleverly constructing the kernel function, the
high-dimensional dot product can be computed efficiently.

Figure 2: Maximum margin separating hyperplane between
two data classes. The circled data points are the support
vectors that lie on the margin.

SVMs are well suited to onboard autonomy applications.
They represent a state-of-the-practice method in machine
learning and have a history of reasonable performance
across many domains. The property that makes SVMs
particularly applicable is the asymmetry of computational
effort in the training and testing stages of the algorithm.
Classifying new data points requires orders of magnitude
less computation than training because the process of
training a SVM requires solving a quadratic optimization
problem. This naively requires on the order of 0(n')

2



operations, where n is the number of training examples.
Faster algorithms that exploit the specific structure of the
SVM optimization problem have been developed [7], but
the training remains the primary computational bottleneck.

After a SVM is trained, many of the weights, wi, will be
equal to zero. This means that these terms can be ignored in
the classification formula. The input vectors that have a
corresponding non-zero weight are called support vectors.
Even more computational savings can be realized in the case
of using a linear kernel function. The weighted sum over
the kernel function is associative, so all the support vectors
can be collapsed into a single vector with a single weight.

Reducing the number of support vectors is key to
successfully deploying a SVM classifier onboard a
spacecraft where there are severe constraints on the amount
ofCPU resources available. Previously deployed classifiers
[5] have used such reduced-set methods, but were still
constrained to operate on only a subset of the available
classification features. Removing such bottlenecks is
critical to realizing the full potential of SVMs as an onboard
autonomy tool.

Original/legacy main loop:
r(c Lass_ index=; c lass_index-lLNUMJCLASSES; c lass-index++) {

PIXEL output =
(-svm bicuses[cIass index]) +
ref l8 * svm-coefs[cLass index][0 ] +
ref l21 * svm-coefs[cLass index][ ] +
ref l31 * svm-coefs[cLass index][2 ] +
ref 134 * svm-coefs[cLass_index][3 ] +
ref 141 * svm-coefs[cLass_index][4 ] +
ref 151 * svm-coefs[cLass_index][] +
ref 185 * svm-coefs[cIass index][6 ] +
ref 111 * svm-coefs[cLass_index][7 ] +
ref 1156 * svm-coefs[cLass_index][8 ] +
ref 1210 * svm-coefs[cLass index][9 ] +
ref 1213 * svmcoefs[cLass_index][1 ];

if (c Iss index==O 11 output > best-vaLue) {
best-class = cIass index;
best-value = output;

Figure 3. FPGA Co-design for the SVM Algorithm

2 SVM DEVELOPMENT FORV4FX FPGA

JPL has developed SVM classification algorithms that can
be used onboard spacecraft to identify high priority data for
downlink to Earth and to provide onboard data analysis to
enable rapid reaction to dynamic events. To meet NASA's
science objectives these classifiers detect flooding, volcanic
eruptions and sea ice break-up. Current pixel-based machine
learning and instrument autonomy algorithms that have
successfully detected and identified various natural
phenomena are flying on computational technologies such
as the RAD6000 and Mongoose V processors that have
limited computing power, extremely limited active storage
capabilities and are no longer considered state-of-the-art. To
date, such on-board classification has been limited to using
the simplest function, a linear kernel, on only a subset of the
full instrument data (11 of 242 bands for Hyperion on EO-
1).

We have implemented, on the Virtex-4FX60, a linear SVM
classification algorithm. This migration to a low power,
high-speed FPGA computing platform adds flexibility and
scalability to the system. For the FPGA-based development
of the SVM, the previously software-only legacy algorithm
is implemented in the FPGA hardware fabric to take
advantage of high-speed parallel processing capabilities
while the image file input and classification file output is
managed within the embedded PowerPC processor. Figure
3 illustrates the partitioned system.

The Producer is coded in a file called sw.c. It reads an input
image file containing 857,856 pixels and streams data to the
SVM. The Consumer, also coded in sw.c, streams data
from the SVM and writes pixel classifications (e.g., snow,
water, ice, land, cloud, or unclassified) to an output file.
The original legacy SVM code is put in a file called hw.c.
The SVM algorithm in hw.c was transformed from C-to-
HDL using the Impulse C tool set by Impulse [8] and
simulated to validate execution of the co-designed system.
The sw.c program will execute on the V4FX embedded
PowerPC processor and communicate with the hardware-
accelerated algorithm in the FPGA fabric.

Next the converted HDL code was synthesized for the
Virtex-4FX FPGA using the Xilinx ISE & EDK
development environment. Synthesis determined the V4FX
resource output for the SVM algorithm to be:

0

0

0

0

0

0

1 Adders/Subtractors (6 bit)
3 Adder/Subtractor (32 bit)
1 Multipliers (32 bit)
5 Comparators (32 bit)
2 Floating Point Adders/Subtractors (32 bit)
1 Floating Point Multipliers (32 bit)

This translates to the following resource utilization for the
V4FX6O device on the ML410 development platform (Table
II).
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Impulse C implementation. The two implementations
FPGA RESOURCES V4FX6O (on ML41O) produce identical classifications on a pixel-by-pixel basis.
...........................................................................................................................................................................................................................................................................

Number of SI T151 out of2 O4 The combination of the good agreement of our results with
Number of Slice Flip Flops, 1290 out of 50560 (2%) the ASE results as well as the independence of the results
Number of 4input LUTt: 1838 out o50560 (3%) from the software platform leads us to believe that our
Number of FIFORAMB1 6s 2 out of 232 (11%)
Numbe of DP48s 4 ou of 128 (3%) mpementatnsvad.

TABLE II. IMPULSE C RESOURCE REPORT FOR SVM. The color key is blue = water, cyan ice, dark purple
snow, lavender unclassified.

The results of the simulation effort were presented at the
2007 NASA Space Technology Conference [9] as a

preliminary report of this on-going task.

2.1 Validation

The output of the Producer-SVM-Consumer path is a file
composed of a column of integers indicating the resulting
class of each pixel in the image. This output file is then
reformatted in Matlab'TM to the original pixel-wise
dimensions of the image. Additionally, each class is
assigned an arbitrary color and the number of pixels
belonging to each class is tabulated. We can then easily
calculate the percentage of pixels belonging to each class
and visualize the resulting file of classified pixels.

Validation was required in two facets of this project. It was
necessary to validate both the pixel classification results
from the SVM and the Impulse C implementation of the
SVM. We began the classification process by comparing the
pixel classification percentage results to those achieved on
the SVM used in the ASE on the Earth Observing-i
Satellite. The classification percentages show good
agreement, particularly for the snow and water classes
(Table III).

It is possible, however, for the raw percentage results to
look reasonable, while the pixel classification visualization
shows no resemblance to the physical features in the image.
The visualizations were integral in our validation efforts.
Our resulting visualizations show excellent agreement with
the results from the ASE SVM (Figure 4). In addition to the
qualitative comparison of the images, we also conducted a
pixel-by-pixel comparison of the ASE results and our
classifications. This comparison was made less accurate due
to our lack of a raw classification data file for the ASE
image. The pixel-by-pixel classification comparison showed
that 76.8% of the pixel classifications in our results matched
those of the ASE results (Figure 5 & Table III). We believe
the discrepancies to be due to the differences in the training
datasets of the SVMs. A)

In order to dismiss the possibility of errors being introduced
by the Impulse C implementation of the SVM, we also Figure 4. A comparison of the results from a) the Impulse C
wrote a conceptually identical version of the code in C and SVM implementation, b) the ASE SVM, and c) the original
compared the resulting output to that achieved by the hyperspectral image.
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T______ _Percent of Pixels classified
ASE Run 0716 Agreement

Snow 30.6 31.9 82.1
Water 31.0 31.1 81.7
Ice 3.0 7.3 28.8
Land 0.0 0.7 0.0
Cloud/unclassified 35.3 29.0 79.3
TABLE III. A COMPARISON OF THE PERCENTAGES OF PIXELS
CLASSIFIED IN EACH CLASS BETWEEN THE ASE SVM AND
OUR IMPULSE C SVM IMPLEMENTATION. THE AGREEMENT

PERCENTAGES INDICATE THE PERCENT OF THE PIXELS
CLASSIFIED IN EACH CLASS BY THE IMPULSE C SVM THAT
WERE ASSIGNED TO THE SAME CLASS BY THE ASE SVM.

2.2 Implementation

In order to implement the SVM on the ML410 board, a
minor modification to the producer/consumer model was
required. The model requires the producer and consumer
modules run concurrently, so the producer-hardware-
consumer data flow necessitates a multi-threaded processing
environment. This design allowed for simultaneous
bidirectional communication between software and
hardware, which permitted us to use small-depth buffers
between hardware and software. In lieu of running a multi-
threaded operating system on the PPC, we combined the
producer and consumer functions into a single function that
alternated hardware read and write operations. The
communication between the software module and the
hardware core was then implemented as two separate
buffers (see Figure 6).

SWMod'Ula NWModuIJ

8 _elemnt, 32bit
FIFOs

Figure 6. Hardware (HW)/Software (SW) Modules.

After this small algorithmic change, we used Impulse C to
generate the hardware module. Following a few trivial
changes to the software (an endian-swap, using optimized
"printf' functions, etc.), the design was ready to be put onto
the ML410 board. For this project we used the following
board resources: a single PowerPC-405 (PPC) processor
running at 100MHz, a Processor Local Bus (PLB), a
256MB DDR2 DIMM, a System ACE Compact Flash
interface, an On-Chip Peripheral Bus (OPB), a PLB-to-OPB
bridge, and a UART (see Figure 7). In addition, the
hardware portion of the project was instantiated in the
FPGA fabric.

PLBI_I

A) B) j C)

Figure 5. The black pixels in image (b) indicate the indices
where the classifications of pixels (a) and (c) were not
identical.

Figure 7. FPGA Hierarchy
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The PPC ran the software portion of the task, which sends
data to and collects data from the SVM hardware module.
We chose to use the PPC instead of a Microblaze processor
because the PPC can operate at triple the clock frequency of
the Microblaze, and the Microblaze would be instantiated in
valuable FPGA fabric, whereas the PPC exists external to
the fabric. Since the 256MB DIMM is the largest source of
memory on the board, we used it as main memory for the
program. The PLB is a high-speed bus (compared to the
OPB) that allows for fast data transfer to/from the memory
and SVM core peripherals. The 16GB Compact Flash card
was used to hold the input and output data files, which are
too large to fit on the DIMM. The UART was used to for
debugging output. The OPB is a low-speed bus that is the
default interface between the processor and the System Ace
controller and UART peripherals. We synthesized the
design and ran it on the ML410 board. The classification
output is shown in Figure 8a.

2.3 Extensions

Having successfully implemented the legacy SVM designed
for Hyperion, we considered two extensions to the
algorithm: using a larger number of bands with the same
linear kernel SVM, and creating a new SVM with a
nonlinear kernel. For the expanded linear kernel SVM, we
arbitrarily selected 30 of the available 242 bands in the
image. For the nonlinear kernel SVM, we used the same 11
bands as the legacy SVM with the kernel K(x,y)=(<x,y> +
1)2, where <x,y> is the dot product of 'x' and 'y'. Because
training data was not available for the original legacy SVM,
we could not generate new SVMs that would be comparable
to it, so we used new training data to generate the two new
SVMs then also generated a new 11-band linear-kernel
SVM for comparison to the legacy SVM. See Table IV for
FPGA fabric utilization percentages for each of these
SVMs. Table V shows a runtime comparison of each SVM
in a software-only implementation (PPC+FPU) and in the
Impulse C co-designed implementation (PPC + HW).

TABLE IV. PERCENT FABRIC UTILIZATION FOR SVMs
. .in..ar (II Ihangd5. Lanear (3(2band3 (1) Poomial

Lices
Stke Flip Flops
4iput LUIs
FIF016/RAM.B16S

IDSP4$s

41

3

8 8

6

1

9

la

TABLE V. SVM RuN-TIME COMPARISON (IN MIN: SEC)
Speedup

itssirer P PP( + Spe r (IPHW)
ll1band Liear

(I) MynomLal

2.04
5.,3

32:24

0:52
1, 45

3:11

A)

112
3 F=28

29:13

24
5.8
10.2

C)

Figure 8. A comparison of the results from a) the 11-band
linear SVM hardware implementation, b) the 30-band linear
SVM hardware implementation, c) the polynomial SVM
hardware implementation, to d) the original hyperspectral
image. Color differences between image b) and the other 2
images (a & c) are due to the different bands (qty. 11 vs. 30)
selected for each classification.
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The hardware implementation of these SVMs produced
results that agree very well with the software simulations of
the algorithms. Figure 8b shows the 30-band linear SVM
classification output. Figure 8c shows the polynomial SVM
classification output. See Table VI for a summary of
classification disagreement for each of the three SVMs.
These disagreements may be due to floating-point hardware
implementation differences between the FPGA hardware
and the processor that ran the software simulations.

SW/HW Implementation
SVM Classifier Difference 1%]
11-band Linear 0.34

30-band Linear 0*19

(,) Polynomial 1.23

TABLE VI. CLASSIFICATION DISAGREEMENT PERCENTAGE
BEWTEEN SOFTWARE SIMULATION & PHYSICAL

IMPLEMENTATION

3 SEU MITIGATION

Space-flight qualified FPGAs are susceptible to radiation
single event upsets (SEUs), therefore this issue must be
addressed for the SVM V4FX design to be flight-ready. The
expected SEU rates of Rad-Hard flight processors, such as
the RAD750, in a GEO environment is on the order of 1
error every 5-10 years. Expected SEU rates for the Xilinx
Virtex FPGA are approximately one error per week. Recent
data from similar FPGAs flown on JPL's Mars Exploration
Rovers validate these predictions [10]. (It should be noted
that next generation Xilinx parts such as the Virtex-4 are
expected to be produced on CMOS SOI process lines,
providing an order of magnitude improvement in SEU rate
as well as other speed/power and radiation tolerance
improvements). In order to achieve parity with Rad-Hard
processors, we must reduce the SEU error rates by
approximately two orders of magnitude and do this in a way
that is relatively transparent to the application. Future work
toward this goal could use the Xilinx Triple Modular
Redundancy (TMR) Tool [11] to triplicate logic as there are
sufficient remaining resources, as well as run the dual-core
processors in lock-step. The simplest approach may be to
include only SEU detection in the design and when
detection occurs re-load the FPGA configuration file. This is
a viable strategy for non-critical applications that can
withstand occasional interruption for re-configuration.
Partial reconfiguration is another possible solution, albeit
more complex to implement, where only the effected
portion of the FPGA needs to be configured.

4 CONCLUSION

FPGAs with embedded processing capabilities are
demonstrating breakthrough performance previously
impossible with traditional processors. This paper presented
results from the synthesis of a legacy software SVM
classification algorithm to the Xilinx V4FX60 FPGA
platform as well as two extensions to demonstrate the
increased capabilities of this implementation. Using
commercially available C-to-HDL translation tools, this
work was made possible under very limited funding.
Hardware acceleration, of legacy software algorithms such
as the described SVMs, promises to provide needed
capability for more advanced on-board data processing in
future science missions.

While the current method is to implement only those
software classification algorithms that will fit within very
constrained on-board processing resources, with embedded
FPGAs such as the V4FX60, increasingly advanced SVMs
may be implemented with "room to grow" in on-board
resources. Our results demonstrate that our most advanced
extension, the (2,1) polynomial kernel, is achieved with only
9°0 utilization of the FPGAs DSPs. Imagine the
possibilities!
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