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Abstract—One challenging aspect in designing complex 
engineering systems is the task of making informed design 
decisions in the face of uncertainty.1,2  This paper presents a 
probabilistic methodology to facilitate such decision-
making, in particular under uncertainty in decision-maker 
preferences.  This methodology builds on the frequently-
used multi-attribute decision-making techniques of the 
Analytic Hierarchy Process (AHP) and Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS), and it 
overcomes some typical limitations that exist in relying on 
these deterministic techniques.  The methodology is divided 
into three segments, each of which consists of multiple 
steps.  The first segment (steps 1-4) involves setting up the 
problem by defining objectives, priorities, uncertainties, 
design attributes, and candidate designs.  The second 
segment (steps 5-8) involves applications of AHP and 
TOPSIS using AHP prioritization matrices generated from 
probability density functions.  The third segment (steps 9-
10) involves visualization of results to assist in selecting a 
final design.  A key characteristic measured in these final 
steps is the consistency with which a design ranks among 
the top several alternatives.  An example satellite orbit and 
launch vehicle selection problem illustrates the 
methodology throughout the paper. 
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1. INTRODUCTION 

One challenging aspect in designing complex engineering 
systems is the task of making informed design decisions in 
the face of uncertainty.  Typically, uncertainty about system 
performance and cost is high in early design phases since 
little hardware has yet been produced.  Moreover, during 
these early design phases, the engineer is faced with the 
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challenge of trading system performance and cost objectives 
against each other, and the decision-maker’s preferences for 
one objective over another (e.g., how much he or she 
prefers high performance over low cost) are also uncertain. 

The study of multi-attribute decision-making has made 
significant strides over the past several decades in 
developing approaches to informing decisions that depend 
on trades among multiple deterministic attributes.  
Developments have also been made in incorporating 
uncertainty into the estimation of system attributes (for 
example, through Monte Carlo simulation).  The work 
presented here combines these probabilistic methods with 
the multi-attribute decision-making techniques of the 
Analytic Hierarchy Process (AHP) and Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) in 
order to facilitate informed decisions under uncertainty in 
decision-maker preferences.  Provided are a description of 
the decision-making methodology, application to a sample 
practical engineering scenario, and sample visualization of 
results. 

Brief Overview of AHP and TOPSIS 

The primary contributions of this paper are in (1) combining 
probabilistic versions of the AHP and TOPSIS tools, (2) 
visualizing and summarizing the resulting data in a 
meaningful way, and (3) demonstrating this method for a 
practical engineering scenario.  Since this requires the 
reader to be familiar with AHP and TOPSIS in advance, 
provided here is a brief overview of these tools and 
previous work incorporating uncertainty information. 

Analytic Hierarchy Process (AHP) — Developed by Saaty 
in the mid-1970s [1-3], the Analytic Hierarchy Process 
(AHP) is a multi-attribute decision-making technique that 
allows for the prioritization of objectives and selection of 
alternatives based on a set of pairwise comparisons.  
Objectives are prioritized by first populating a matrix of 
pairwise comparisons describing each objective’s 
importance relative to each other objective.3  The pairwise 

 
3 There is a subtle distinction between the terms “attribute” and “objective”, 
which is that an objective is an attribute with direction.  For example, 
“cost” is an attribute while “low cost” is an objective.  Despite AHP’s 
classification as a multi-attribute decision-making (MADM) technique, the 
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comparison matrix consists of elements aij and is reciprocal, 
i.e., such that aji = 1/aij.  This matrix is then reduced to a 
vector of weights describing the relative importance of each 
objective.  If multiple alternative concepts are to be 
evaluated according to these weights, each concept is 
compared to each other concept in a pairwise manner in 
terms of each objective category.    Using the objective 
weights vector, scores from each single-objective concept 
comparison matrix are then aggregated into a single score 
vector describing the relative desirability of each concept.  
From here, the user may either select the highest-scoring 
concept or distribute resources to all concepts according to 
the weights [2]. A diagram of the AHP hierarchy is shown 
in Fig. 1. 

Over the past three decades, AHP has become a common 
tool for decision-making. One advantage is its versatility in 
that it can be used for both objective prioritization and 
concept selection.  While a number of multi-attribute 
decision-making techniques address the concept selection 
procedure assuming that objective weights are known, AHP 
is distinct in its simple but structured approach for obtaining 
these weights.  The pairwise comparison method is 
straightforward, and its internal consistency can be 
                                                                                                  
notion of direction (and therefore objectives) is essential in order for 
decisions to be made.  Confusion can exist because multi-objective 
decision-making (MODM) is a classification of techniques distinct from 
MADM, but the distinction does not lie in the use of objectives over 
attributes.  Rather, MADM deals with concept selection from a list of 
possible solutions while MODM deals with concept design when a list of 
solutions does not exist.  To be clear, this paper deals only with MADM 
techniques.  

evaluated through methods proposed by Saaty [1-3].  AHP 
is also flexible in its ability to handle both qualitative and 
quantitative (ratio-scale) judgement inputs.  However, 
disadvantages exist in that pairwise comparisons become 
time-consuming as the number of objectives and 
alternatives increases.4  Furthermore, the conventional use 
of AHP is deterministic, which hinders the user’s ability to 
generate confidence estimates in the final results. 

Pertinent to this paper is the history of probabilistic 
modifications to the original deterministic version of AHP.  
One of the earliest analyses in this area by Vargas, one of 
Saaty’s colleagues, in 1982 considered the implications of 
assuming that the ½ · (n² – n) pairwise comparisons in the 
AHP matrices are independent gamma-distributed random 
variables [5].  A 1991 study by Zahir suggested beta 
distributions for each pairwise comparison but introduced a 
distribution-neutral uncertainty analysis, assuming only an 
uncertainty Δaij in each comparison.  The 1991 study 
developed analytic expressions for priority uncertainties in 
the case of n = 2 and n = 3 items and suggested that it is 
possible to have consistency but still have uncertainty 
within an AHP matrix [6].  Around the same time, Rahman 
and Shrestha showed that uncertainty could be 
approximated through the inconsistency of the pairwise 
comparison matrix [7-9],5 and some recent papers have 

 
4 The number of pairwise comparisons required for an AHP matrix is ½ · 
(n² – n), where n is the number of items to be compared.  It is the n² 
dependence that drives the unmanageability of the comparisons as n 
becomes large. 

5 This clearly conflicts with the finding of Zahir that inconsistency and 
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Figure 1 – Schematic depiction of AHP hierarchy (adapted from [4]).  Pairwise comparisons are performed 
among attributes/objectives at the overall goal level and among alternatives/designs at the attribute/objective level.
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developed the idea of estimating uncertainties without 
explicitly requiring the user to provide additional 
information [10-11].  The more traditional approach (of 
which the present work is one) of requiring users to provide 
information on the uncertainty of the individual pairwise 
comparisons is employed by studies by Hauser and 
Tadikamalla, Rosenbloom, and Hihn and Lum [12-14]. 

Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) — The Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS) is a multi-attribute 
decision-making technique developed around 1980 by Yoon 
and Hwang [15-16] that allows for scoring of alternatives 
based on their euclidean distances from positive and 
negative ideal solutions.  As Fig. 2 illustrates, the TOPSIS 
positive ideal design is an imaginary design representing the 
combination of the best performance attributes of the entire 
set of designs considered.  This design probably does not 
exist in the actual space of alternatives, but the decision-
maker would prefer to select a solution “as close as 
possible” [17] to it.  Similarly, the negative ideal design is 
an imaginary design representing the   combined worst 
attributes of the entire set of designs considered.  
Presumably, the decision-maker would prefer an alternative 
“as far as possible” from the negative ideal, and the need for 
consideration of both negative and positive ideal designs 
becomes clear for scenarios in which a series of designs has 
identical distances to the positive ideal but varying distances 
to the negative ideal.   

TOPSIS too has found broad use for decision-making 
applications over the past few decades.  Advantages include 
its fairly intuitive physical meaning based on consideration 
of distances from ideal solutions (e.g., see Fig. 2), the fact 
that it reflects the empirical phenomenon of diminishing 
marginal rates of substitution [15, 18], and its consideration 
of performance characteristics directly, rather than through 
pairwise comparisons.  The latter makes it particularly 
useful for scenarios in which dozens, hundreds, or 
thousands of alternative designs are considered (i.e., where 
pairwise comparisons become impractical) and for scenarios 
in which performance metrics can be computed directly 
rather than rated in a qualitative fashion. 

However, TOPSIS still requires the specification of 
weightings on objectives (e.g., to determine the scaling or 
“stretching” of the axes in Fig. 2).  Thus, a method like 
AHP is still required in order to determine proper objective 
weightings.6  Additionally, like AHP, TOPSIS in its 
standard form is deterministic and does not consider 
uncertainty in weightings.  Much of the literature on 
overcoming this limitation focuses on the application of 

                                                                                                  
uncertainty are conceptually different, and the issue seems to be unresolved 
in the literature. 

6 For this reason, deterministic combinations of AHP and TOPSIS are 
somewhat common in the literature, such as in [19-21]. 

fuzzy logic [22-25], whereas this paper focuses on the use 
of longer-established probabilistic techniques. 

Example Application: Orbit and Launch Vehicle Decision 
for a Small Reconnaissance Satellite 

Integrated throughout this paper is an example application 
of this method to the scenario of choosing a launch vehicle 
and circular orbit for a small, responsive military 
reconnaissance satellite.  In this scenario, a 400 kg satellite 
is to be launched to monitor activity at an unfriendly missile 
launch site at 40.85°N latitude, and the decision-maker must 
choose the orbit in which to place the satellite as well as 
what launch vehicle to use.  The on-board targeted sensor is 
assumed to have a total field of view angle of 1° and a nadir 
ground sample distance of 1.0 m at a reference altitude of 
400 km.  The satellite’s ballistic coefficient is assumed to be 
110 kg/m², a representative average for satellites [26, 27], 
and minimal propellant is available for orbit maintenance.  

This class of mission and spacecraft is similar in some 
respects to the 2006 TacSat-2 project, a joint effort among 
Department of Defense organizations and NASA. TacSat-2 
was launched on December 16, 2006 from Wallops Flight 
Facility in Virginia with the mission of both demonstrating 
responsive space capabilities and delivering 11 onboard 
instrument packages and experiments [28-29]. The mass of 
TacSat-2 was 370 kg, and it was launched aboard a 
Minotaur I rocket to a 40° inclined circular orbit with an 
altitude of approximately 410 km [28-29].  The imager 
carried aboard TacSat-2 had a 1º field of view and an 
expected ground sample distance resolution of 1 m.7 

 
7 M.P. Kleiman, Kirtland AFB, Personal Communication, 26 Oct. 2009. 
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Figure 2 – Depiction of TOPSIS in two dimensions.  
Small black circles represent alternatives represented in 
terms of how they perform with respect to Objectives #1 

and #2. 
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2. METHODOLOGY  

Figure 3 summarizes the basic steps of the probabilistic 
AHP and TOPSIS methodology introduced in this paper.  
Each step is covered in detail in this section and is 
illustrated using the satellite application defined in Section 
1.  Overall, the methodology is divided into three segments, 
each of which consists of multiple steps.  The first segment, 
consisting of steps 1-4 and to the left in Fig. 3, involves 
setting up the problem by defining objectives, priorities, 
uncertainties, design attributes, and alternatives (candidate 
designs).  This segment also involves the evaluation of each 
candidate design with respect to the defined attributes.  
Most of these steps, with the exception of the specification 
of uncertainties in step 4, would normally be required even 
in a deterministic decision process.  The second segment, 
which consists of steps 5-8 in Fig. 3 and is easily 
automated, involves several thousand applications of AHP 
and TOPSIS under different (random) AHP prioritization 
matrices based on probability density functions (PDFs) 
assigned in step 4.  The third segment, consisting of steps 9-
10 and to the right in Fig. 3, involves visualization of the 
results to assist in making a final design selection. 

Setting up the Problem 

Detailed next are the first four steps of the methodology 
outlined in Fig. 3.  These steps are focused on setting up the 
decision problem in terms of objectives, priorities, 
uncertainties, design attributes, and alternatives.  Most of 
these steps would normally be required in a deterministic 
decision process, and step 4 describes the additional inputs 
required for the desired probabilistic process. 

Step 1: Generate List of Objectives/Attributes — As shown 
in Fig. 3, the first step in this methodology is the 
specification of objectives and attributes for consideration 

in the design problem.  These objectives and attributes are 
application-specific, and brainstorming exercises may be 
required to determine the relevant objectives for a particular 
application; however, for this methodology to be effective, 
attributes must be quantifiable.  In the case of inherently 
qualitative attributes, the user may decide to use a 
quantitative scale to convert a qualitative degree to a 
number (common choices include, for example, mapping 
“low/medium/high” ratings to a 1-3-5 or 1-3-9 scale). 

Table 1 lists the objectives for the example satellite 
application used throughout this paper.  In this particular 
application, all attributes are quantifiable.  One objective is 
high launch margin, defined as the difference between 
actual and required payload capability divided by the 
required capability.  Since satellite mass is given in this 
example (400 kg), this attribute is governed by the selection 
of launch vehicle.  Two additional objectives, low launch 
cost and high launch reliability, are also governed by the 
selection of launch vehicle.  Image field of view (FOV) and 
nadir ground sample distance (GSD) are measures of the 
breadth and resolution of the resulting reconnaissance 
images, both of which depend on the altitude of the selected 
orbit.  Higher orbits produce greater the fields of view but 
also lower resolution (i.e., larger ground sample distance).  
Mean worst-case daily data latency refers to the maximum 
time a user must wait between image acquisition and 
downlink to the ground, averaged over a range of dates and 
assuming use of the Schriever Air Force Base Air Force 
Satellite Control Network (AFSCN) node in Colorado for 
downlink.  Mean daily coverage time refers to the average 
amount of time per day that the target site is visible from the 
satellite.  Both the data latency and daily coverage attributes 
depend on orbit altitude and inclination.  Finally, orbit 
lifetime is an estimate of the amount of time the satellite can 
remain in orbit assuming no reboost maneuvers.  Since this 
attribute depends on atmospheric drag, it is altitude-
dependent. 
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Figure 3 – Probabilistic AHP and TOPSIS Flowchart. 
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Step 2: Generate List of Candidate Designs — The second 
step in this methodology is the specification of all candidate 
designs to be evaluated.  If the set of possible designs is 
small (e.g., a dozen or less), candidate designs may be 
enumerated manually.  If the trade space is large and 
unmanageable (e.g., consisting of billions or trillions of 
designs), themed or otherwise brainstormed designs may 
generated with the assistance of a morphological matrix 
[30-31].  If the trade space is large but manageable (e.g., 
consisting of dozens to millions of designs), it is likely 
feasible to enumerate every possible design within the 
design variable ranges and resolutions of interest; this more 
rigorous approach is used in the example application here. 

Table 2 lists the three design variables defined for this 
application.  These are the variables for which values can be 
chosen by the decision maker.  The launch vehicle can be 
selected from one of twelve domestic options that are well-
suited to launching small payloads.  Orbit altitude can take 
on seven values between 200 and 2000 km, and orbit 
inclination can take one of ten values between 0° and 90°.  
Overall, this represents 840 discrete design options. 

Step 3:  Evaluate each Design’s Performance with respect 
to each Attribute — In this third step, each candidate design 
from the second step is evaluated according to the attributes 
of the first step.  The methods by which these evaluations 
are made are application-specific, ideally using validated 
engineering models and tools.  In the satellite example 
application, launch vehicle cost and reliability are estimated 
from available data [32], and margin is estimated from 
launch vehicle payload capacity models [33].  Image field 
of view area and ground sample distance are estimated 
using analytic relationships to scale the baseline capability 
(1° field of view and 1.0 m resolution at 400 km altitude) to 

different altitudes.  Data latency and coverage time statistics 
are based on simulations using the Satellite Tool Kit (STK) 
software package, and orbit lifetime is based on interpolated 
estimates conservatively assuming launch during a solar 
maximum period [27]. 

The initial result of step 3 is a table of performance with 
respect to each of the eight attributes for each of the 840 
candidate designs, similar in format to Table 3.  In some 
cases, however, it may be realized that some designs can be 
easily eliminated from consideration.  In the satellite 
example, filters are applied to eliminate any designs with 
negative launch margins, with no coverage of the 
reconnaissance target, or with orbit lifetimes less than three 
months.  Any such designs would either never realistically 
launch or would be of negligible operational value once 
launched.  In addition, designs with more than 100% launch 
margin are eliminated since mass growth and practical 
launch margins of this order are rare.  After these filters are 
applied, 59 candidate designs remain.  These designs are 
shown in Table 3.  Note that the format of Table 3 is such 
that a row is dedicated to each candidate design.  In each 
row, the design is defined (by altitude, inclination, and 
launch vehicle), and the performance of that design with 
respect to each attribute is recorded.  A table of this format 
is the primary result of step 3. 

Table 2.  Design Variables for Satellite Example. 

Design Variable Options Considered 

Launch Vehicle 
Falcon 1, Falcon 1e, Pegasus XL, Pegasus XL with HAPS, Taurus 2110, Taurus 2210, 

Taurus 3110, Taurus 3210, Minotaur I, Minotaur IV, Athena I, Athena II 
Orbit Altitude (km) 200, 300, 400, 600, 1000, 1500, 2000 
Orbit Inclination (deg.) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 

Table 1.  Objectives for Satellite Example. 

Attribute Units Preferred Value 

Launch Margin percent High 
Launch Cost $FY2009M Low 
Launch Reliability percent High 
Image Field of View Area km² High 
Image Nadir Ground Sample Distance km Low 
Mean Worst-Case Daily Data Latency hours Low 
Mean Daily Coverage Time hours High 
Orbit Lifetime years High 
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Table 3.  Evaluation of the 59 designs that remain after applying filters. 

Design Definition Design Attributes 

Design 
No. 

Orbit 
Alt. 
(km) 

Orbit 
Inclin. 
(deg.) 

Launch 
Vehicle 

Launch 
Margin 

(percent)

Launch 
Cost 

($FY09M)

Launch 
Reliability
(percent) 

Image 
FOV 
Area 
(km²) 

Image 
Nadir 
GSD 
(m) 

Mean 
Worst-Case 
Daily Data 

Latency 
(hrs) 

Mean 
Daily 

Coverage 
Time 
(hrs) 

Orbit 
Lifetime 

(yrs) 

1 400 30 Pegasus XL 0.1 22.4 93.6 38.3 1.0 14.8 0.62 0.5
2 400 30 Minotaur I 31.9 22.4 97.9 38.3 1.0 14.8 0.62 0.5
3 400 30 Athena I 86.4 42.4 95.2 38.3 1.0 14.8 0.62 0.5
4 400 40 Minotaur I 27.4 22.4 97.9 38.3 1.0 14.1 1.00 0.5
5 400 40 Athena I 76.9 42.4 95.2 38.3 1.0 14.1 1.00 0.5
6 400 50 Minotaur I 22.8 22.4 97.9 38.3 1.0 12.8 1.18 0.5
7 400 50 Athena I 67.1 42.4 95.2 38.3 1.0 12.8 1.18 0.5
8 400 60 Minotaur I 18.0 22.4 97.9 38.3 1.0 11.7 1.10 0.5
9 400 60 Athena I 56.9 42.4 95.2 38.3 1.0 11.7 1.10 0.5

10 400 70 Falcon 1e 91.5 10.2 93.1 38.3 1.0 6.3 0.80 0.5
11 400 70 Minotaur I 13.1 22.4 97.9 38.3 1.0 6.3 0.80 0.5
12 400 70 Athena I 46.4 42.4 95.2 38.3 1.0 6.3 0.80 0.5
13 400 80 Falcon 1e 80.9 10.2 93.1 38.3 1.0 4.7 0.72 0.5
14 400 80 Minotaur I 8.0 22.4 97.9 38.3 1.0 4.7 0.72 0.5
15 400 80 Athena I 35.5 42.4 95.2 38.3 1.0 4.7 0.72 0.5
16 400 90 Falcon 1e 69.4 10.2 93.1 38.3 1.0 3.7 0.72 0.5
17 400 90 Taurus 2210 88.8 28.6 97.6 38.3 1.0 3.7 0.72 0.5
18 400 90 Minotaur I 2.8 22.4 97.9 38.3 1.0 3.7 0.72 0.5
19 400 90 Athena I 24.3 42.4 95.2 38.3 1.0 3.7 0.72 0.5
20 600 30 Minotaur I 18.6 22.4 97.9 86.1 1.5 14.8 0.94 20.4
21 600 30 Athena I 70.0 42.4 95.2 86.1 1.5 14.8 0.94 20.4
22 600 40 Minotaur I 14.4 22.4 97.9 86.1 1.5 13.2 1.31 20.4
23 600 40 Athena I 61.1 42.4 95.2 86.1 1.5 13.2 1.31 20.4
24 600 50 Falcon 1e 96.3 10.2 93.1 86.1 1.5 11.9 1.51 20.4
25 600 50 Minotaur I 10.0 22.4 97.9 86.1 1.5 11.9 1.51 20.4
26 600 50 Athena I 51.8 42.4 95.2 86.1 1.5 11.9 1.51 20.4
27 600 60 Falcon 1e 87.8 10.2 93.1 86.1 1.5 11.0 1.52 20.4
28 600 60 Minotaur I 5.5 22.4 97.9 86.1 1.5 11.0 1.52 20.4
29 600 60 Athena I 42.2 42.4 95.2 86.1 1.5 11.0 1.52 20.4
30 600 70 Falcon 1e 78.4 10.2 93.1 86.1 1.5 6.5 1.16 20.4
31 600 70 Taurus 2210 95.4 28.6 97.6 86.1 1.5 6.5 1.16 20.4
32 600 70 Minotaur I 0.9 22.4 97.9 86.1 1.5 6.5 1.16 20.4
33 600 70 Athena I 32.2 42.4 95.2 86.1 1.5 6.5 1.16 20.4
34 600 80 Falcon 1e 68.2 10.2 93.1 86.1 1.5 4.8 1.04 20.4
35 600 80 Taurus 2210 84.3 28.6 97.6 86.1 1.5 4.8 1.04 20.4
36 600 80 Athena I 21.9 42.4 95.2 86.1 1.5 4.8 1.04 20.4
37 600 90 Falcon 1e 57.0 10.2 93.1 86.1 1.5 3.9 1.00 20.4
38 600 90 Taurus 2210 72.5 28.6 97.6 86.1 1.5 3.9 1.00 20.4
39 600 90 Athena I 11.3 42.4 95.2 86.1 1.5 3.9 1.00 20.4
40 1000 20 Taurus 2210 98.8 28.6 97.6 239.3 2.5 14.7 0.94 2050.1
41 1000 30 Taurus 2210 92.7 28.6 97.6 239.3 2.5 12.7 1.48 2050.1
42 1000 30 Athena I 39.8 42.4 95.2 239.3 2.5 12.7 1.48 2050.1
43 1000 40 Taurus 2210 85.8 28.6 97.6 239.3 2.5 11.8 1.84 2050.1
44 1000 40 Athena I 32.0 42.4 95.2 239.3 2.5 11.8 1.84 2050.1
45 1000 50 Taurus 2210 78.2 28.6 97.6 239.3 2.5 10.6 2.07 2050.1
46 1000 50 Athena I 23.9 42.4 95.2 239.3 2.5 10.6 2.07 2050.1
47 1000 60 Taurus 2210 69.9 28.6 97.6 239.3 2.5 9.7 2.14 2050.1
48 1000 60 Athena I 15.5 42.4 95.2 239.3 2.5 9.7 2.14 2050.1
49 1000 70 Taurus 2110 99.5 28.6 97.6 239.3 2.5 8.9 2.00 2050.1
50 1000 70 Taurus 2210 60.7 28.6 97.6 239.3 2.5 8.9 2.00 2050.1
51 1000 70 Athena I 6.7 42.4 95.2 239.3 2.5 8.9 2.00 2050.1
52 1000 80 Taurus 2110 89.0 28.6 97.6 239.3 2.5 5.0 1.64 2050.1
53 1000 80 Taurus 2210 50.8 28.6 97.6 239.3 2.5 5.0 1.64 2050.1
54 1000 80 Taurus 3210 88.4 31.6 97.6 239.3 2.5 5.0 1.64 2050.1
55 1000 90 Taurus 2110 77.6 28.6 97.6 239.3 2.5 4.0 1.58 2050.1
56 1000 90 Taurus 2210 40.2 28.6 97.6 239.3 2.5 4.0 1.58 2050.1
57 1000 90 Taurus 3210 75.6 31.6 97.6 239.3 2.5 4.0 1.58 2050.1
58 1500 30 Athena I 7.2 42.4 95.2 538.3 3.8 11.2 2.08 28984.7
59 1500 40 Athena I 0.9 42.4 95.2 538.3 3.8 10.3 2.40 28984.7
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Step 4: Populate AHP Prioritization Matrix, including 
Uncertainties — This fourth step consists of two parts.  The 
first involves population of an AHP objectives prioritization 
matrix and would be required even for a deterministic 
process.  The second involves population of an objectives 
prioritization uncertainty matrix and the assignment of 
probability density functions to describe uncertainty in the 
first part’s pairwise prioritization. 

Table 4 shows the baseline AHP objectives prioritization 
matrix for the example satellite application.  In this matrix, 
each of the design objectives from Table 1 are compared to 
each other in a pairwise manner using integers from 1 to 9 
and the reciprocals of those integers.  These integers and 
reciprocals correspond to the scale developed by Saaty [3].  
For example, a rating of 5 in the “High Launch Margin” 
row and “High Image FOV Area” column indicates that the 
decision-maker feels it is strongly more important to have a 
high launch margin than to have a large swath of land 
visible in individual images.8  The opposite comparison 
(“High Image FOV Area” in the row and “High Launch 
Margin” in the column) by definition is the reciprocal, or 
1/5.  The diagonal consists entirely of ones, since clearly no 
objective is more or less important than itself. 

Once an objectives prioritization matrix is populated, the 
user may follow Saaty’s recommendation to check the 
consistency ratio, CR, of the matrix.  The consistency ratio 
serves as a measure of the randomness (or inconsistency) of 
the matrix, based on the fact that the columns of the matrix 
would ideally be scalar multiples of each other if the user 
were perfectly consistent in his pairwise priorities (i.e., if he 
or she conformed to a single underlying set of ratio-scale 
priorities).  The formula for CR is given in Eq. (1).  In this 

 
8 In this example, the mission is reconnaissance of a single site rather than 
surveillance or mapping of large swaths of land. 

formula, λmax refers to the maximum (real) eigenvalue of the 
prioritization matrix, n refers to the rank of the matrix, and 
RIavg refers to the average value of the consistency index CI 
= (λmax - n)/(n - 1) for a randomly generated matrix.  
Precomputed values for RIavg are readily available in the 
literature as a function of n [3].  In this case, n = 8 and RIavg 
= 1.41.  For the matrix in Table 4, λmax = 8.91 and thus CR = 
0.092, which is within Saaty’s suggested criterion of CR ≤ 
0.100.  In general, some iteration may be required in filling 
out the prioritization matrix in order to reach an acceptable 
consistency ratio. 

 ( ) avgavg RIn

n

RI

CI
CR

1
max

−
−== λ

       (1) 

To proceed with the second part of step 4, it will be 
necessary to assign uncertainties to the elements of the AHP 
prioritization matrix.  However, the AHP rating scale is 
asymmetric in that the subtractive difference between 
ratings aij is constant for a > 1 but not for a < 1.  For 
example, the difference between the adjacent ratings a = 3 
and a = 4 is Δa = 1, and the same is true between a = 8 and 
a = 9.  However, the difference between adjacent ratings a 
= 1/4 and a = 1/3 is Δa = 1/12, and the difference between 
adjacent ratings a = 1/9 and a = 1/8 is Δa = 1/72.  The 
practical complication that this creates is that if a decision-
maker wishes to assign ranges of uncertainty Δa to his 
prioritization matrix ratings a, an additive scale a ± Δa will 
not properly represent this in the domain a < 1. 

A solution to this problem proposed by Hauser and 
Tadikamalla [12] is the conversion of the prioritization 
matrix elements to a virtual scale, described in Eq. (2), Eq. 
(3), and Table 5.  Here, a represents the element value on 
the actual AHP scale (i.e., a = 1/9 through a = 9), and v 
indicates the corresponding value on the virtual scale.  The 

Table 4.  Baseline AHP Prioritization Matrix for the Satellite Example. 
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High Launch Margin 1 1/3 3 5 1/6 1/3 1/2 3 
Low Launch Cost 3 1 5 7 1/4 1/3 1/2 5 
High Launch Reliability 1/3 1/5 1 3 1/8 1/5 1/4 1/5 
High Image FOV Area 1/5 1/7 1/3 1 1/9 1/8 1/7 1/7 
Low Image Nadir GSD 6 4 8 9 1 4 5 7 
Low Mean Worst-Case Daily Data Latency 3 3 5 8 1/4 1 2 5 
High Mean Daily Coverage Time 2 2 4 7 1/5 1/2 1 3 
High Orbit Lifetime 1/3 1/5 5 7 1/7 1/5 1/3 1 
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basic idea of this approach is to convert the prioritization 
matrix to the virtual scale in order to assign and interpret 
uncertainties, and then to convert the matrix back to the 
actual scale to compute the AHP priority vector. 

 ( )








≥

<−
=

1 if     

1 if  
12

aa

a
a

a

av        (2) 

 ( )








≥

<
−=

1 if     

1 if  
2

1

vv

v
vva        (3) 

Table 6 shows the resulting conversion of Table 4 to the 
virtual scale.  By definition, the matrix is no longer 
reciprocal, but because the a(1) = v(1) = 1, the diagonal is 
still made up entirely of ones. 

The next part of step 4 requires the assignment of 
uncertainties.  The example application used in this paper 
assumes that AHP prioritization matrix ratings on the virtual 
scale are independently distributed as symmetric triangular 
random variables.  These distributions are simple to 
construct (requiring just two parameters), and the use of 
triangular distributions for early project planning 
applications is well supported in the literature [12, 14, 34-
36]  Using the baseline AHP ratings (the vij’s in Table 6) as 

the modes of the triangular distributions9 captures the notion 
that the baseline rating is more likely to be the true rating 
than is any other value.  As a result, just one additional 
piece of information is needed to specify the distributions 
for each element.  This additional piece of information is the 
width of the tail of the distribution, or the maximum 
uncertainty in the baseline virtual-scale rating.  This 
information is recorded by the user (or by the group of users 
among whom vij estimates differ) in the uij elements of a 
matrix such as in Table 7.  These uij uncertainties need not 
be integers, since the original AHP rating scale (and by 
extension, the new virtual scale) is valid for any ratio 
scale.10  Note that these uncertainties are only defined at and 
to the upper right of the matrix diagonal, since the lower-
left entries of an AHP prioritization matrix are correlated 
with those in the upper right.  Thus, in more formal terms, a 
matrix of random variables Xij on the virtual scale is formed 
as in Table 8.  Each Xij is distributed as a triangular random 
variable, where the entries to the upper right of the diagonal 
are independently distributed as in Eq. (4). Entries to the 
lower left of the diagonal are dependent on the upper right 
as described by Eq. (5).  By definition, the diagonal itself 
consists of deterministic values of unity (i.e., it is always 
certain that an objective is as important as itself). 

 
9 Since the triangular distributions are symmetric, the modes also 
correspond to the mean and median values. 

10 The primary caveat to this is that if one wishes to find the consistency 
ratio of an AHP prioritization matrix that has been populated based on a 
continuous ratio scale (rather than the traditional discrete scale in the first 
row of Table 5), the random indices that are available in most published 
tables are invalid and must be recomputed. 

Table 6.  Baseline AHP Prioritization Matrix converted to Virtual Scale. 
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High Launch Margin 1 -1 3 5 -4 -1 0 3 
Low Launch Cost 3 1 5 7 -2 -1 0 5 
High Launch Reliability -1 -3 1 3 -6 -3 -2 -3 
High Image FOV Area -3 -5 -1 1 -7 -6 -5 -5 
Low Image Nadir GSD 6 4 8 9 1 4 5 7 
Low Mean Worst-Case Daily Data Latency 3 3 5 8 -2 1 2 5 
High Mean Daily Coverage Time 2 2 4 7 -3 0 1 3 
High Orbit Lifetime -1 -3 5 7 -5 -3 -1 1 

Table 5.  Actual-to-Virtual Scale Conversion Chart. 

Actual AHP Scale, a 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9
Virtual AHP Scale, v -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
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( )ijijijijijij uvvuvTriangularX +− ,,~         (4) 

ijji XX −= 2         (5) 

Monte Carlo Simulation 

Detailed next are steps 5-8 of the methodology outlined in 
Fig. 3.  These steps are focused on executing the Monte 
Carlo simulation and acquiring the data which will be 
analyzed in the final segment.  Since all relevant aspects of 
the problem have been set up in the first segment, steps 5-8 
are easily automated.  In the example application, steps 5-8 
are repeated 10,000 times, taking only a few minutes of 
time on a standard personal computer, to produce 
statistically significant results. 

Step 5: Select an AHP Prioritization Matrix — The first 
step in the Monte Carlo simulation is the selection of an 
AHP prioritization matrix by sampling from the random 
matrix generated in step 4 (e.g., Table 8).  This can be 
accomplished by independently sampling from ½ · (n² – n) 
virtual-scale triangular distributions as defined in step 4, 
assigning those values to the proper elements in the upper 
right of the matrix, computing the lower-left elements based 
on Eq. (5), and then converting the resulting sample matrix 
to the actual AHP scale based on Eq. (3).  The resulting 
matrix is one possible AHP prioritization matrix based on 
the uncertainties the user assigned in step 4. 

Step 6: Determine AHP Priority Vector — The next step in 
the Monte Carlo simulation is the conversion of the AHP 
prioritization matrix selected in step 5 into a single vector of 
objective weights.  This is a standard step in AHP, although 

Table 8.  Probabilistic Prioritization Matrix on the Virtual Scale. 
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High Launch Margin 1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 
Low Launch Cost 2-X1,2 1 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 
High Launch Reliability 2-X1,3 2-X2,3 1 X3,4 X3,5 X3,6 X3,7 X3,8 
High Image FOV Area 2-X1,4 2-X2,4 2-X3,4 1 X4,5 X4,6 X4,7 X4,8 
Low Image Nadir GSD 2-X1,5 2-X2,5 2-X3,5 2-X4,5 1 X5,6 X5,7 X5,8 
Low Mean Worst-Case Daily Data Latency 2-X1,6 2-X2,6 2-X3,6 2-X4,6 2-X5,6 1 X6,7 X6,8 
High Mean Daily Coverage Time 2-X1,7 2-X2,7 2-X3,7 2-X4,7 2-X5,7 2-X6,7 1 X7,8 
High Orbit Lifetime 2-X1,8 2-X2,8 2-X3,8 2-X4,8 2-X5,8 2-X6,8 2-X7,8 1 

Table 7.  Uncertainty Matrix in the Virtual Scale. 
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High Launch Margin 0 3 1.5 2 2 2.5 2.5 2.5 
Low Launch Cost  0 1.5 2 2 3 3.5 4 
High Launch Reliability   0 3 1 1.5 1.5 5.5 
High Image FOV Area    0 0 0.5 0.5 1.5 
Low Image Nadir GSD     0 2 2 1.5 
Low Mean Worst-Case Daily Data Latency      0 0.5 0.5 
High Mean Daily Coverage Time       0 1.5 
High Orbit Lifetime        0 
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the literature contains some debate about the best way to 
execute it.  In his original book on AHP, Saaty proposes the 
vector of weights is the principal right eigenvector of the 
prioritization matrix.  However, he also posits that a 
normalized arithmetic mean over the columns, an arithmetic 
mean over the normalized columns, or a normalized 
geometric mean over the columns would also approximate 
this vector for computationally-constrained applications [3]. 
 In 1988, Hihn and Johnson [37] evaluated 16 such 
conversion techniques against several numerical criteria and 
concluded that Saaty’s eigenvector technique is generally 
inferior.  A recent textbook by Winston [38] suggests using 
the arithmetic mean of the normalized columns, which is 
one of the approximations Saaty suggests.  This is the 
convention used here; if applied to the baseline matrix of 
Table 4, it yields the priority vector in Table 9.  However, it 
is worth noting that if a user desires, any of the methods 
listed above may be used in this step in lieu of the 
arithmetic mean of the normalized columns. 

Note that the priority vector on the right in Table 9 indicates 
that by far the highest priority for this mission is low (or 
small) image ground sample distance.  This reflects the fact 
that the primary mission of this satellite is reconnaissance of 
a specific ground target.  The second-highest priority 
according to Table 9 is low data latency, which is also to be 
expected for a responsive reconnaissance mission.  The 
lowest priority is for the mission to have a high (or long) 
orbit lifetime, as in this scenario the focus is on a short-term 
threat from a particular location. 

Recall that in each of the 10,000 Monte Carlo runs, a new 
prioritization matrix is selected.  A new priority vector is 
thus computed each time a new prioritization matrix is 
selected, and the vector in Table 9 represents just one such 
priority vector considered throughout this methodology. 

Step 7: Apply Traditional Deterministic TOPSIS — With 
computation of the priority vector complete, TOPSIS may 
be used to score the various alternative designs (e.g., each 
of the 59 options in Table 3) in terms of how well they 
fulfill the prioritized objectives.  This proceeds as a standard 
implementation of TOPSIS, whereby closeness for design i, 
Ci, is computed as in Eq. (6).  Here, Si

- is the euclidean 
distance between the normalized and weighted design 
attribute vector di and the normalized and weighted negative 
ideal design attribute vector d-.  The quantity Si

+ indicates 
the euclidean distance between the normalized and 
weighted design attribute vector di and the normalized and 
weighted positive ideal design attribute vector d+.  Details 
on the TOPSIS computation process are available in [4,15-
16]. 

−+
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−+−

−
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

           (6) 

Step 8: Record Scores and Rank Order of Alternatives — 
The closeness scores Ci from step 7 indicate, in a weighted 
sense, how distant each design is from the negative ideal.  
By definition, these values range from zero to unity, with 
unity most desirable.  Thus, designs may be ranked by their 
Ci values.  Table 10 shows the closeness scores and ranks 
for each of the 59 designs under consideration in the 
satellite example, assuming the baseline priority vector in 
Table 9.  On each of the 10,000 iterations of step 8, a table 
like Table 10 is recorded.  The resulting tables are then used 
in the next segment of analysis. 

Results Visualization and Decision-Making 

Steps 9 and 10 of this methodology involve (1) the 
visualization of the results of the 10,000 Monte Carlo 
simulations run in steps 5-8 and (2) the interpretation of 

Table 9.  Baseline Prioritization Matrix with Normalized Columns and Priority Vector. 
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High Launch Margin 0.063 0.031 0.096 0.106 0.074 0.050 0.051 0.123  0.074
Low Launch Cost 0.189 0.092 0.160 0.149 0.111 0.050 0.051 0.205  0.126
High Launch Reliability 0.021 0.018 0.032 0.064 0.056 0.030 0.026 0.008  0.032
High Image FOV Area 0.013 0.013 0.011 0.021 0.049 0.019 0.015 0.006  0.018
Low Image Nadir GSD 0.378 0.368 0.255 0.191 0.445 0.598 0.514 0.288  0.380
Low Mean Worst-Case Daily Data Latency 0.189 0.276 0.160 0.170 0.111 0.149 0.206 0.205  0.183
High Mean Daily Coverage Time 0.126 0.184 0.128 0.149 0.089 0.075 0.103 0.123  0.122
High Orbit Lifetime 0.021 0.018 0.160 0.149 0.064 0.030 0.034 0.041  0.065
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these results in order to down-select to a single design or, 
alternatively, a handful of designs for more detailed 
analysis. 

Step 9: Visualize and Review Results — The visualization 
of results suggested here involves four parts.  In the first 
part, the resulting TOPSIS scores from the Monte Carlo 
runs are plotted as a function of design number and Monte 
Carlo case number.  In the example satellite application, 
each of the 59 designs in Table 3 was evaluated according 
to 10,000 different possible AHP prioritization matrices.  
Thus, the plot in Fig. 4 displays 590,000 TOPSIS scores on 
the color axis.  Red indicates high (desirable) TOPSIS 
scores, and blue indicates low scores. 

Notice that in Fig. 4, colors occur in distinct vertical stripes. 
 For example, designs 10, 13, 16, and 17 have distinct red-
orange stripes, and design 42 has the most distinct dark blue 
stripe.  Thus, this simple plot of the raw TOPSIS scores 
provides a first glance of which designs are likely to emerge 
as top candidates.  In addition, the plot provides some 
information on the variability of the TOPSIS scores for 
particular designs.  For example, design 55 has a more 
consistent color across all Monte Carlo cases than design 
30, suggesting that the TOPSIS score for design 55 is 
relatively insensitive to the prescribed uncertainty in the 
AHP prioritization matrix. 

The next part consists of visualizing the rank-order of 
alternatives, as opposed to the TOPSIS score itself as was 
done in Fig. 4.  As described earlier, the rank-order of the 
alternatives has been recorded for each of the 10,000 Monte 
Carlo runs, and what remains is to plot this data in a 
meaningful way.  One question that this data can answer is, 
“In the 10,000 Monte Carlo runs, how often does a 
particular design appear as the best alternative?”  In other 
words, this data allows a decision-maker to compute the 
probability that any particular design (e.g., any of designs 1 
through 59) will be the highest-scoring alternative.  By 
extension, this data can also answer the question, “In the 
10,000 Monte Carlos runs, how often does a particular 
design appear among the top five alternatives?” or “How 
often does any particular design appear among the top ten 
alternatives?”  These questions are slightly different, since it 
is possible that one may encounter a situation where Design 
A is the top design 70% of the time and Design B is the top 
design 20% of the time, but Design B may be among the top 
five designs 90% of the time while Design A is in the top 
five only 80% of the time.  The N-value of the “Top N” 
threshold will depend in part on whether the goal of the 
decision process is to select a single candidate (N = 1) or 
instead to downselect to a family of candidates for further 
study (N > 1). 

Table 10.  Closeness Scores and Ranks of the 59 
example designs under consideration, according to 

the baseline priority vector in Table 9. 

Design Definition 
Scores according to 

Baseline Prioritization 

Design 
No. 

Orbit 
Alt. 
(km) 

Orbit 
Inclin.
(deg.)

Launch 
Vehicle 

Closeness, Ci Rank 

1 400 30 Pegasus XL 0.5546 27
2 400 30 Minotaur I 0.5603 23
3 400 30 Athena I 0.5574 25
4 400 40 Minotaur I 0.5694 18
5 400 40 Athena I 0.5657 21
6 400 50 Minotaur I 0.5783 12
7 400 50 Athena I 0.5739 16
8 400 60 Minotaur I 0.5817 11
9 400 60 Athena I 0.5765 14

10 400 70 Falcon 1e 0.6166 3
11 400 70 Minotaur I 0.5979 7
12 400 70 Athena I 0.5918 10
13 400 80 Falcon 1e 0.6183 2
14 400 80 Minotaur I 0.6000 6
15 400 80 Athena I 0.5931 9
16 400 90 Falcon 1e 0.6194 1
17 400 90 Taurus 2210 0.6134 4
18 400 90 Minotaur I 0.6017 5
19 400 90 Athena I 0.5939 8
20 600 30 Minotaur I 0.5089 38
21 600 30 Athena I 0.5063 39
22 600 40 Minotaur I 0.5228 36
23 600 40 Athena I 0.5190 37
24 600 50 Falcon 1e 0.5557 26
25 600 50 Minotaur I 0.5320 33
26 600 50 Athena I 0.5272 35
27 600 60 Falcon 1e 0.5594 24
28 600 60 Minotaur I 0.5359 32
29 600 60 Athena I 0.5302 34
30 600 70 Falcon 1e 0.5732 17
31 600 70 Taurus 2210 0.5653 22
32 600 70 Minotaur I 0.5503 28
33 600 70 Athena I 0.5435 31
34 600 80 Falcon 1e 0.5761 15
35 600 80 Taurus 2210 0.5683 20
36 600 80 Athena I 0.5465 30
37 600 90 Falcon 1e 0.5768 13
38 600 90 Taurus 2210 0.5692 19
39 600 90 Athena I 0.5473 29
40 1000 20 Taurus 2210 0.3634 58
41 1000 30 Taurus 2210 0.3807 55
42 1000 30 Athena I 0.3533 59
43 1000 40 Taurus 2210 0.3931 51
44 1000 40 Athena I 0.3672 57
45 1000 50 Taurus 2210 0.4042 49
46 1000 50 Athena I 0.3796 56
47 1000 60 Taurus 2210 0.4092 47
48 1000 60 Athena I 0.3858 53
49 1000 70 Taurus 2110 0.4206 46
50 1000 70 Taurus 2210 0.4082 48
51 1000 70 Athena I 0.3859 52
52 1000 80 Taurus 2110 0.4359 42
53 1000 80 Taurus 2210 0.4253 45
54 1000 80 Taurus 3210 0.4334 43
55 1000 90 Taurus 2110 0.4391 40
56 1000 90 Taurus 2210 0.4295 44
57 1000 90 Taurus 3210 0.4363 41
58 1500 30 Athena I 0.3842 56
59 1500 40 Athena I 0.3938 53
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Figure 5 shows such rank-order results for the satellite 
example application.  The top graph of Fig. 5 indicates the 
probability that the indicated designs (16, 10, 13, and 17) 
rank as the top alternative in the TOPSIS evaluation.  This 
graph shows that design 16 (i.e., launching the satellite of 
interest on a Falcon 1e rocket to a 400 km altitude, 90° 
inclination orbit) ranks as the top design in 88.7% of the 
10,000 Monte Carlo runs.  Next in line is design 10 (top 
design 5.8% of the time), design 13 (top design 5.4% of the 
time11), and design 17 (top design 0.05% of the time).  No 
other designs have positive probabilities; that is, in none of 
the 10,000 Monte Carlo runs do other candidate designs 
rank as the top design.  A reasonable conclusion to draw 
from this data is that design 16 is a clear winner; however, it 
is worth noting that the first three of the four designs in this 
graph are very similar, differing only in their orbital 
inclinations.  As a result, this may suggest that further trade 
studies are warranted for inclination (e.g., to resolve the 
“best” inclination to the level of 1-5° rather than increments 
of 10°).  In this case, a useful result of this probabilistic 
analysis is the identification of a family of potential 
solutions for further study. 

In support of identification of such a family of potential 
solutions, a user may generate graphs such as at the bottom 
of Fig. 5.  The bottom left graph in Fig. 5 shows the 
probabilities that particular designs rank among the top five 
alternatives among the 10,000 Monte Carlo runs.  Notice 

 
11 Interestingly, design 10 is the top design more frequently than design 13 
even though design 13 has the higher baseline TOPSIS score (see Table 
10). 

that designs 10, 13, 16, and 17 always fall within the top 
five, and design 18 falls within the top five 96.4% of the 
time.  Eight additional designs with small probabilities are 
plotted in the top-five graph of Fig. 5; no other designs had 
positive probabilities of falling within the top five. 

The bottom right graph of Fig. 5 shows the probabilities that 
particular designs rank among the top ten alternatives 
among the 10,000 Monte Carlo runs.  Notice that ten 
designs (17, 16, 13, 10, 11, 14, 18, 19, 15, and 12) nearly 
always fall within the top ten, while another eleven designs 
(8, 37, 34, 6, 30, 4, 7, 9, 27, 5, and 24) rank in the top ten 
only occasionally.  Furthermore, notice that among the ten 
most frequent top ten designs, only four launch vehicles are 
used (Falcon 1e, Taurus 2210, Minotaur I, and Athena I), 
only one altitude appears (400 km), and just three 
inclinations occur (70°, 80°, and 90°).  Thus, if the goal of 
this decision process is to narrow the scope of future trade 
studies, the graphs at the bottom of Fig. 5 provide a rigorous 
basis for such a downselection. 

The data in Fig. 5 can also be visualized as the line graph of 
Fig. 6.  The y-axis of Fig. 6 indicates the probability that a 
particular design, indicated by a particular line on the graph, 
will rank within the top N designs in an AHP and TOPSIS 
evaluation.  The x-axis of Fig. 6 indicates the value of N.  
Thus, for example, Fig. 6 shows that design 16 (the lime-
green line) has an 89% probability of being the top design 
(N = 1) and a nearly 100% probability of falling within the 
top three, four, five, etc. designs (N > 2).  Design 13 (the 
light olive line) has only a 5% probability of being the top 
design but has a 100% probability of falling within the top 

 

Figure 4 – TOPSIS Score as a function of Design Number (1-59) and Monte Carlo Case 
Number (1-10,000) for the Satellite Example Application. 
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three, four, five, etc. designs.  Thus, each graph in Fig. 5 
corresponds to a particular vertical slice of Fig. 6 (in 
particular, the N = 1, N = 5, and N = 10 vertical slices). 

One characteristic Fig. 6 highlights well is the presence of 
“probability reversal” scenarios.  The hypothetical example 
presented earlier is a scenario in which Design A is the top 
design 70% of the time and Design B is the top design 20% 

of the time, but Design B is among the top five designs 90% 
of the time while Design A is in the top five only 80% of 
the time.  In such a scenario, the apparent desirability of a 
design depends on the selected value of N.  In Fig. 6, this 
occurs between designs 13 and 16 as well as between 
designs 15 and 19:  In the latter example, design 19 falls 
within the top eight designs 71% of the time and design 15 
does so 16% of the time.  However, design 15 falls within 
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Figure 5 – Probabilities that designs in the satellite trade space fall within the top one (top graph), top five 
(bottom left graph), or top ten (bottom right graph).   Only designs with positive probabilities are shown. 
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the top nine 90% of the time while design 19 does so only 
79% of the time.  This “probability reversal” occurs 
whenever two lines in Fig. 6 cross.  Thus, if a decision-
maker is uncertain of which N to examine (e.g., if there is 
some leeway in how many designs to select for further 
study), sensitivity data such as in Fig. 6 can be informative. 

The final suggested part of this visualization and review is 
identification of Pareto-optimal designs in terms of the 
probabilistic metrics presented thus far.  In a multi-attribute 
decision-making context, the set of Pareto-optimal designs 
is the set of designs that are non-dominated, or for which no 
designs exist that are more desirable in every attribute.  If a 
design is Pareto-optimal, it cannot be improved in one 
attribute without sacrificing performance in others.12  Given 
the “probability reversal” phenomenon described earlier and 
the fact that the decision-maker is likely also interested in 
baseline TOPSIS scores of the alternatives (see Table 10), 
identification of Pareto-optimal designs provides a means to 
rigorously synthesize all this information. 

Table 11 indicates the baseline TOPSIS scores as well as 
the probabilities of falling in the top N designs (N = {1, 2, 3, 
5, 10}) for each of the 59 candidate designs in the satellite 
example.  Identification of Pareto-optimal designs in terms 
of these metrics shows that just two designs are Pareto-
optimal.  These designs (13 and 16) are highlighted in Table 
11.  Note that design 16 has the highest baseline TOPSIS 
score (0.6194) and also is the most likely to rank as the top 
design (88.7% of the time).  This correlation makes some 
sense since the triangular distributions used to represent the 
AHP prioritization matrix uncertainties were symmetric 
about the baseline ratings.  However, it is notable that 
11.3% of the time, this design was not the baseline top 

 
12 The reader is invited to review sources such as [4, 38] for more 
discussion on Pareto optimality. 

design.  This percentage would be likely to increase if 
values in the uncertainty matrix were to increase (a 
problem-dependent circumstance).  Interestingly, design 13 
falls on the Pareto frontier because it has the highest 
probability of falling within the top two designs (even 
higher than design 16, a “probability reversal”). 

The result of this Pareto optimality analysis is that the 59 
original candidate designs have been reduced to just two.  
This step is particularly appropriate if downselection to a 
single design is desired; otherwise, it may suffice to observe 
the probabilities associated with a desired N-value in Fig. 5 
or Fig. 6.  It is worth noting that this Pareto optimality 
analysis could also have been performed with respect to the 
original set of design attributes in Table 3; however, this 
analysis would have reduced the set of possible designs to 
39 (eliminating 20 designs, or just 33% of the candidates).  
It is unlikely that this measure alone would have provided 
enough information to make possible a clear decision. 

Step 10: Select Alternative(s) — The final and perhaps least 
structured step in this methodology is the final selection of 
design alternatives (i.e., making a downselection decision).  
As mentioned earlier, this final selection is based partially 
on the original goals of the decision-maker, i.e., whether the 
original intent is to select a single design for further 
development or instead to select a family of designs for 
further detailed study.  The nature of this final selection 
may also be influenced by the trends in the data seen 
through step 9, as will be discussed. 
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Figure 6 – Probabilities that designs in the satellite trade space fall within the top N designs as a function of N. 

 Designs with negligible probabilities for N ≤ 10 are omitted. 
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Table 11.  Probabilistic AHP/TOPSIS Attributes considered for identification of Pareto-optimal 
designs for the example satellite application.  Pareto-optimal designs are bold and highlighted. 

Design Definition Probabilistic AHP/TOPSIS Attributes 

Design 
No. 

Orbit 
Alt. 
(km) 

Orbit 
Inclin. 
(deg.) 

Launch 
Vehicle 

Baseline 
Closeness,

Ci 

Probability of ranking in the Top N designs 

N = 1 N = 2 N = 3 N = 5 N = 10 

1 400 30 Pegasus XL 0.5546 0 0 0 0 0 
2 400 30 Minotaur I 0.5603 0 0 0 0 0 
3 400 30 Athena I 0.5574 0 0 0 0 0 
4 400 40 Minotaur I 0.5694 0 0 0 0 0.0018 
5 400 40 Athena I 0.5657 0 0 0 0 0.0002 
6 400 50 Minotaur I 0.5783 0 0 0 0 0.0320 
7 400 50 Athena I 0.5739 0 0 0 0.0001 0.0010 
8 400 60 Minotaur I 0.5817 0 0 0 0 0.0669 
9 400 60 Athena I 0.5765 0 0 0 0 0.0004 

10 400 70 Falcon 1e 0.6166 0.0582 0.0940 0.9343 1.0000 1.0000 
11 400 70 Minotaur I 0.5979 0 0 0 0.0150 0.9998 
12 400 70 Athena I 0.5918 0 0 0 0.0133 0.9154 
13 400 80 Falcon 1e 0.6183 0.0542 0.9645 1.0000 1.0000 1.0000 
14 400 80 Minotaur I 0.6000 0 0 0 0.0045 0.9996 
15 400 80 Athena I 0.5931 0 0 0 0.0022 0.9355 
16 400 90 Falcon 1e 0.6194 0.8871 0.9382 0.9992 1.0000 1.0000 
17 400 90 Taurus 2210 0.6134 0.0005 0.0033 0.0665 1.0000 1.0000 
18 400 90 Minotaur I 0.6017 0 0 0 0.9636 0.9995 
19 400 90 Athena I 0.5939 0 0 0 0.0009 0.9393 
20 600 30 Minotaur I 0.5089 0 0 0 0 0 
21 600 30 Athena I 0.5063 0 0 0 0 0 
22 600 40 Minotaur I 0.5228 0 0 0 0 0 
23 600 40 Athena I 0.5190 0 0 0 0 0 
24 600 50 Falcon 1e 0.5557 0 0 0 0 0.0001 
25 600 50 Minotaur I 0.5320 0 0 0 0 0 
26 600 50 Athena I 0.5272 0 0 0 0 0 
27 600 60 Falcon 1e 0.5594 0 0 0 0 0.0003 
28 600 60 Minotaur I 0.5359 0 0 0 0 0 
29 600 60 Athena I 0.5302 0 0 0 0 0 
30 600 70 Falcon 1e 0.5732 0 0 0 0.0003 0.0219 
31 600 70 Taurus 2210 0.5653 0 0 0 0 0 
32 600 70 Minotaur I 0.5503 0 0 0 0 0 
33 600 70 Athena I 0.5435 0 0 0 0 0 
34 600 80 Falcon 1e 0.5761 0 0 0 0.0001 0.0393 
35 600 80 Taurus 2210 0.5683 0 0 0 0 0 
36 600 80 Athena I 0.5465 0 0 0 0 0 
37 600 90 Falcon 1e 0.5768 0 0 0 0 0.0470 
38 600 90 Taurus 2210 0.5692 0 0 0 0 0 
39 600 90 Athena I 0.5473 0 0 0 0 0 
40 1000 20 Taurus 2210 0.3634 0 0 0 0 0 
41 1000 30 Taurus 2210 0.3807 0 0 0 0 0 
42 1000 30 Athena I 0.3533 0 0 0 0 0 
43 1000 40 Taurus 2210 0.3931 0 0 0 0 0 
44 1000 40 Athena I 0.3672 0 0 0 0 0 
45 1000 50 Taurus 2210 0.4042 0 0 0 0 0 
46 1000 50 Athena I 0.3796 0 0 0 0 0 
47 1000 60 Taurus 2210 0.4092 0 0 0 0 0 
48 1000 60 Athena I 0.3858 0 0 0 0 0 
49 1000 70 Taurus 2110 0.4206 0 0 0 0 0 
50 1000 70 Taurus 2210 0.4082 0 0 0 0 0 
51 1000 70 Athena I 0.3859 0 0 0 0 0 
52 1000 80 Taurus 2110 0.4359 0 0 0 0 0 
53 1000 80 Taurus 2210 0.4253 0 0 0 0 0 
54 1000 80 Taurus 3210 0.4334 0 0 0 0 0 
55 1000 90 Taurus 2110 0.4391 0 0 0 0 0 
56 1000 90 Taurus 2210 0.4295 0 0 0 0 0 
57 1000 90 Taurus 3210 0.4363 0 0 0 0 0 
58 1500 30 Athena I 0.3842 0 0 0 0 0 
59 1500 40 Athena I 0.3938 0 0 0 0 0 
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In terms of the example satellite application, the data 
through step 9 indicates a strong preference for design 16, 
which involves launch on a Falcon 1e rocket to a 400 km 
altitude, 90° inclination orbit.  Design 16 has favorable 
performance in terms of several important attributes, such as 
a 1-meter ground sample distance, 3.7-hour mean worst-
case daily data latency, and $10.2 million launch cost (all 
three of which are the lowest and best possible values 
among all 59 designs considered).  However, Fig. 5 also 
indicates that launch on a Taurus 2210, Minotaur I, or 
Athena I, or an orbit inclination lower than 90° (but higher 
than 70°) is not unreasonable.  Although designs with 600 
km orbits do not stand out, they do appear with positive 
probabilities in the top five and top ten designs (see Fig. 5) 
and may be worth some consideration.  A key point in this 
example application is that two of the design variables 
(orbit altitude and inclination) are discretized versions of 
continuous variables.  Thus, the fact that inclinations of the 
top designs tended to be in the 70-90° range and that 
altitudes tended to be 400-600 km suggests that a second 
iteration of this procedure within this narrower domain may 
be warranted with higher resolution on altitude and 
inclination (e.g., 20 km instead of 200 km on altitude and 1° 
instead of 10° on inclination).  An additional iteration such 
as this would provide a higher confidence level in the 
optimality of the top designs identified in this first iteration. 

If a single best solution is required of the decision-maker 
after the first iteration (e.g., due to time or budget 
constraints), this procedure does identify a clear best 
solution given the resolution of the study and given the 
decision-maker’s preferences and preference uncertainty.  
In this scenario, the recommended design is design 16, 
launch on a Falcon 1e rocket to a 400 km altitude, 90° 
inclination orbit.  This design ranked as the top design in 
89% of Monte Carlo simulations, 15 times more frequently 
than the next most frequent top design.  This design also 
happens to possess the highest baseline TOPSIS score. 

3. CONCLUSION  

In summary, this paper has presented a probabilistic 
methodology to facilitate informed engineering decisions 
under uncertainty, building on the deterministic multi-
attribute decision-making techniques of AHP and TOPSIS.  
As shown previously in Fig. 3, the methodology is divided 
into three segments, each of which consists of multiple 
steps.  The first segment, consisting of steps 1-4, involves 
setting up the problem by defining objectives, priorities, 
uncertainties, design attributes, and alternatives (candidate 
designs).  This segment also involves the evaluation of each 
candidate design with respect to the defined attributes.  The 
second segment, which consists of steps 5-8, involves 
several thousand applications of AHP and TOPSIS under 
different (random) AHP prioritization matrices based on 
probability density functions (PDFs) assigned in step 4.  
The third segment, consisting of steps 9-10, involves 

visualization of the results to assist in making a final design 
selection.  An example satellite orbit and launch vehicle 
selection problem has been used to illustrate the 
methodology throughout this paper. 

The contributions of this paper fall into three categories.  
First, this paper has introduced and outlined the coupling of 
probabilistic AHP with TOPSIS.  This distinguishes the 
present work from previous works which have combined 
deterministic versions of these tools [19-21] or which have 
covered probabilistic AHP only [5-14].  Second, this paper 
has introduced several ways of visualizing and analyzing 
this method’s probabilistic results, useful for efficiently and 
clearly understanding the data.  Third, this work has 
illustrated its probabilistic decision support process using a 
practical engineering application. 

Several avenues exist for future expansion of the basic 
methodology presented here.  Among them is inclusion of 
uncertainties on the attributes in the TOPSIS scoring.  At 
present, it has been assumed that uncertainty in a design’s 
attributes (e.g., cost, reliability, ground sample distance, 
data latency statistics) is small compared to the uncertainty 
in decision-maker preferences (i.e., the AHP priority 
vector).  Uncertainty in attributes, e.g., due to uncertainty in 
the models used to estimate them, can be accommodated 
within this framework by assigning PDFs to the attributes 
and drawing from those PDFs in the Monte Carlo 
simulation (steps 5-8).  Another area for expansion or 
customization is use of nonsymmetric or non-triangular 
distributions to describe uncertainty in AHP prioritization 
matrices.  Such distributions would require more decision-
maker inputs to specify their additional parameters, but they 
may be more accurate, particularly in situations in which 
uncertainty is skewed to the left or right. 

Overall, this paper is intended to provide a useful 
engineering framework and tool for facilitating design 
decisions under uncertainty.  Like all engineering tools 
(including AHP and TOPSIS in their original deterministic 
forms), this method is meant to inform, but not make, the 
decision which is the ultimate responsibility of the decision-
maker himself.  Thus, this tool is most useful in scenarios 
where large numbers of alternatives need to be reduced to a 
manageable few, or where it yields a statistically significant 
“best” design subject to little dispute.  In instances where 
two or more designs rank similarly, further study is 
warranted.  In closing, it is hoped that the methods and 
ideas presented here find broad use with systems engineers 
and decision-makers in the future. 
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APPENDIX:  NOMENCLATURE 

aij = element of AHP prioritization matrix 
Ci = TOPSIS closeness score for design i  
CI = AHP consistency index 
CR = AHP consistency ratio 
d- = negative ideal design attribute vector  
d+ = positive ideal design attribute vector 
di = design attribute vector of design i  
Di = design alternative i 
Gi = overall goal i  
n = number of objectives 
N = number of top designs considered 
Oi = objective i 
RIavg = AHP random index 
Si

- = euclidean distance between di and d- 
Si

+ = euclidean distance between di and d+ 
uij = element of virtual-scale uncertainty matrix 
vij  = element of virtual-scale prioritization matrix  
Xij = element of random virtual-scale prioritiz. matrix 
λmax = maximum eigenvalue of AHP prioritization matrix  
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