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ABSTRACT  
 
In this research, the task of object recognition and relative navigation is accomplished by fusing visible spectrum and infrared 
images. The appearance matching technique is briefly explained and it is shown how it can be extended to infrared images. A 
series of tests are performed to demonstrate the object recognition and pose estimation capabilities of the system in the visible 
and infrared spectra. It is also shown how the fusion of both types of images can provide greater accuracy and robustness in 
relative navigation than either visual or infrared images alone. Additionally, a simulation environment software tool has been 
developed to facilitate the creation of training images and to perform software-in-the-loop verification. 
 

INTRODUCTION  
 
The advent of cheaper and more prevalent launch opportunities, combined with the miniaturization of modern electronics, 
means that putting advanced technology into space is easier today than it has ever been historically. Image sensors now are 
smaller, cost less, and have higher resolutions than previous generations of space-qualified cameras. These improved devices 
facilitate cooperative control for clusters of small satellites or space debris detection and avoidance on larger satellites.  
 
In order to further the capabilities of current visual navigation techniques, visible-spectrum images can be used in combination 
with infrared images. This adds eclipse to the usable portion of the orbit while also extending the operating range to a few 
hundred meters.  



 
Another way to expand the utility of spacecraft imaging sensors for navigation is to apply terrestrial image processing and 
recognition techniques. Thus far, these strategies have been beyond the computing capabilities of many smaller budget 
missions. The appearance matching technique is a powerful algorithm that works particularly well with the on-orbit space 
environment. It was introduced by Murase and Nayar [1]. The motivation behind the research was to create a technique whereby 
the recognition system would learn to identify an object from its appearance rather than from a geometric model. Appearance 
matching has since been used for facial identification [2] and 3D model searches [3]. 
 
The appearance matching algorithm also can be extended to the infrared spectrum by adding temperature as an additional 
parameter. This research applies the technique to spacecraft imaging in both the visible and infrared spectra for the purposes 
of object identification and relative navigation. Additionally, a simulation environment was created and used to generate the 
training images necessary for the training step of the appearance matching algorithm. 
 
BACKGROUND 
 
Current technology and algorithms exist that can be leveraged for use in sensor fusion optical navigation. High resolution and 
high accuracy visual navigation sensors have been flown on numerous satellites, including Orbital Express [4], 
MESSENGER [5] and HST SM4 [6]. Infrared (IR) sensors have also traditionally been employed for vehicle navigation, for 
example on the Dragon capsules flown by SpaceX [7]  
 
Combined vision and IR sensors are commonly employed in ground-based security applications [8, 9, 10] and the robustness 
this field requires can be leveraged for implementation in space. The primary reason for combining images from the two 
spectra is to extract greater detail in poor or inconsistent lighting conditions. Since the human body is typically much warmer 
than the surrounding atmosphere, the infrared sensor can be used to determine regions of interest in the image. Those regions 
can then be applied to the visible-light image for background removal and processing. Alternatively, the infrared image can 
be used on its own if the lighting in the scene is poor or non-existent.  
 
The nature of infrared and visible light images is such that the former are better for edge detection and the latter for feature 
detection. These two sensors can be combined into a single image or processed separately in a filter. The ground-based 
software state-of-the-art includes numerous algorithms for image processing, object identification and recognition, and pose 
estimation. This existing research can be adapted to the particular challenge of proximity operations in space using both 
vision and infrared images. 
 
One of the necessary steps to visual navigation is to determine what part of image is the object of interest and what part can 
be ignored. These regions are referred to as the foreground and background, respectively. For terrestrial applications, this can 
be a challenging task, especially in the visible spectrum because there are more varied potential backgrounds in the scene. In 
space, however, the vast majority of on-orbit images will have a black or nearly black background, and a background which 
will also be much cooler than the object being imaged. 
 
Important to any visual navigation scheme is to define an intended range of operation. If the observer is too close, and the 
entire object cannot fit within the field of view, recognition is much more difficult. Likewise, when the object gets too far 
away from the observer, it becomes just a small group of pixels and indistinguishable from stars or other picture artifacts. The 
ideal range will vary based on the focal length and sensor size of the cameras as well as the size of the target, but generally 
the operational range in this application will extend from a few meters to approximately 100 meters for visible light and up to 
200 meters for infrared without an installed moving lens. Under the assumption of this operating range, distant objects, such 
as stars or planets, can be easily filtered out given their relative size. The appearance matching algorithm is also robust to 
shadows giving the appearance of more than one object.  
 
The end result of the image processing is a foreground object presented on a black background. For this reason, the presence 
of an object is assumed if this filtered image contains any foreground pixels. The emphasis of the current research is therefore 



placed on the object recognition and pose estimation portion of the problem. The appearance matching process, which to this 
point has only been applied to terrestrial, visible images, can be leveraged for infrared measurements and spacecraft relative 
navigation. 
 
OBJECT RECOGNITION AND POSE ESTIMATION 
 
The use of images for relative navigation consists of answering three questions: is an object present, if so which object is it, 
and what is its position and orientation with respect to the camera? These questions translate to the tasks of object detection, 
object recognition, and pose estimation. As previously discussed, when used in space and given a specified operating range, 
object identification can be a fairly straightforward process.  
 
Single pixels and small pixel groups are assumed not to be part of the foreground when in the proscribed operating range. These 
artifacts are removed using erosion and dilation. When an image is eroded, any pixel that is the neighborhood of the current 
background is set to the background. Dilation is the reverse, setting any pixel near current foreground pixel to foreground. 
When an image is first eroded and then dilated, it is said to be “opened,” a process which removes small foreground objects 
[11]. The additional information provided by the infrared sensor also helps determine the background, since it is generally 
cooler than the foreground, especially in space applications. These two techniques can be combined for quick and robust 
foreground determination, as shown in Conaire, et al. [12].  
The next step is then to determine which object is present, if the identity is not already established. Previous versions of this 
research conducted by the authors have used the blobber algorithm [13]. Its main advantages are simplicity and robustness, 
which come at the expense of accuracy. Part of that simplicity is the fact that the algorithm cannot perform object recognition. 
The geometry of the target object must be provided beforehand.  
 
Appearance matching [1] is an approach to object recognition and pose estimation that analyzes the image of the object pixel 
by pixel as whole, as opposed to identifying points of interest. Training images are vectorized and mapped as points in a 
parametric eigenspace, where the parameters are the object pose and illumination. These points can then be interpolated into a 
hypersurface in the eigenspace. A new images is mapped into the same eigenspace, and its location and proximity to the 
hypersurface is used to determine the identity of the object in the image. 
 
The final step is pose estimation. The blobber algorithm approaches the relative navigation problem by analyzing the geometric 
properties of the image foreground, which is subject to error when the body is only partially illuminated. This error results from 
the fact that while the blobber algorithm takes into account varying orientations of the object, all of the orientations are viewed 
with the same illumination conditions.  
 
Appearance matching performs pose estimation by mapping the test image into an eigenspace specific to the object which was 
identified previously. Its location and proximity to the object-specific hypersurface determines the orientation and lighting of 
the object in the test image. This process takes into account the relative brightness of the pixels and thus is robust to varying 
lighting conditions, as long as they are similar to the training images. The appearance matching algorithm's robustness to 
varying illumination is the primary reason it was selected. Harsh or inconsistent illumination of the object can be accounted for 
by using simulated or actual training images under the difficult conditions. 
 
Algorithm overview 
First, the training image set is normalized. This process begins by cropping the image to include as little of the background as 
possible while maintaining a square aspect ratio. This result is then scaled to a specified size, for example 100 by 100 pixels. 
Finally, these images are vectorized by reading the brightness values in a raster scan pattern to create an image vector. In 
order to account for varying lighting intensity, each image vector is scaled so that the total energy in the image is unity, 
resulting in the normalized image vector 𝒙𝒙  
 

𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2 … , 𝑥𝑥𝑛𝑛]𝑇𝑇 



The normalized image vectors are combined side by side to form image sets. The universal image set consists of every 
training image, while the object sets contain all of images of a single object. Similarly, the average image 𝒄𝒄 can be calculated 
by found by summing each column of the image set and dividing by the total number of images, while the object average 
image 𝒄𝒄(𝑝𝑝) is found by averaging the image vectors of each object. 
 
These averages are used to construct both the universal eigenspace, which is calculated from every image in the training set, 
and the object eigenspaces, which are calculated using only images from each object. The image matrix 𝑿𝑿 is found by 
subtracting the average image from each 𝒙𝒙 and combining them as shown in Equation [ref]. This leads to the covariance 
matrix 𝑸𝑸 ≜ 𝑿𝑿𝑿𝑿𝑇𝑇. 
 

𝑿𝑿 ≜ �𝒙𝒙1,1
(1) − 𝒄𝒄, … ,𝒙𝒙𝑅𝑅,1

(1) − 𝒄𝒄, … ,𝒙𝒙𝑅𝑅,𝐿𝐿
(𝑃𝑃)� 

 
The eigenvalue problem is solved for 𝑸𝑸. Finding the full set of eigenvalues would be impractical, so only the first 𝑘𝑘 pairs of 
eigenvalues 𝜆𝜆𝑖𝑖 and eigenvectors 𝒆𝒆𝑖𝑖 are calculated. According to Murase and Nayar [1], a value for 𝑘𝑘 of 10 or fewer is 
sufficient for learning and recognition. Finally, for each image in the universal set, the point 𝒈𝒈𝑟𝑟,𝑙𝑙

(𝑝𝑝) is located as a point in the 
k-dimensional eigenspace (Eq. [eq:grlp]). These points are interpolated from the hypersurface 𝒈𝒈(𝜃𝜃1,𝜃𝜃2), where 𝜃𝜃1 and 𝜃𝜃2 are 
the indices of the orientation and illumination conditions, respectively. 
 

𝒈𝒈𝑟𝑟,𝑙𝑙
(𝑝𝑝) = [𝒆𝒆1, 𝒆𝒆2, … , 𝒆𝒆𝑘𝑘](𝒙𝒙𝑟𝑟,𝑙𝑙

(𝑝𝑝) − 𝒄𝒄) 
 
The images of each object p can be projected into its object eigenspace by creating the object specific covariance matrix 
𝑿𝑿(𝑝𝑝)  and calculating the resulting eigenspace from the object covariance matrix 𝑸𝑸(𝑝𝑝) ≜ 𝑿𝑿(𝑝𝑝)(𝑿𝑿(𝑝𝑝))𝑇𝑇. 
 

𝑿𝑿(𝑝𝑝) ≜ �𝒙𝒙1,1
(𝑝𝑝) − 𝒄𝒄, … ,𝒙𝒙𝑅𝑅,1

(𝑝𝑝) − 𝒄𝒄� 
 
The first 𝑘𝑘 pairs of eigenvalues 𝜆𝜆𝑖𝑖

(𝑝𝑝) and eigenvectors 𝒆𝒆𝑖𝑖
(𝑝𝑝) are calculated as well the hypersurface 𝒇𝒇(𝑝𝑝)(𝜃𝜃1,𝜃𝜃2) from the points 

𝒇𝒇𝑟𝑟,𝑙𝑙
(𝑝𝑝) (Eq. [eq:frlp]) 

 
𝒇𝒇𝑟𝑟,𝑙𝑙

(𝑝𝑝) = �𝒆𝒆1
(𝑝𝑝) , 𝒆𝒆2

(𝑝𝑝), … , 𝒆𝒆𝑘𝑘
(𝑝𝑝)� (𝒙𝒙𝑟𝑟,𝑙𝑙

(𝑝𝑝) − 𝒄𝒄(𝑝𝑝)) 
 
The preceding steps are part of the initialization of the algorithm. They are performed only once and the results are stored. For 
each new image received, the algorithm maps it to the universal eigenspace for object recognition. First, the location 𝒛𝒛 of the 
new image in the universal eigenspace is found. The object 𝑝𝑝 that minimizes the distance between 𝒛𝒛 and the universal 
hypersurface 𝒈𝒈(𝜃𝜃1,𝜃𝜃2), is determined. 
 

𝒛𝒛 = [𝒆𝒆1, 𝒆𝒆2, … , 𝒆𝒆𝑘𝑘]𝑇𝑇(𝒚𝒚 − 𝒄𝒄) 
𝑑𝑑1

(𝑝𝑝) = min
𝜃𝜃1,𝜃𝜃2

||𝒛𝒛 −𝒈𝒈(𝜃𝜃1,𝜃𝜃2)|| 

 
If 𝑑𝑑1

(𝑝𝑝) is within a specified threshold, then the image is concluded to be of object 𝑝𝑝. In order to perform pose estimation, the 
image is then mapped into eigenspace of object 𝑝𝑝. The indices 𝜃𝜃1 and 𝜃𝜃2 that result in the minimum value of 𝑑𝑑1

(𝑝𝑝) define the 
pose of the object. 
 

𝒛𝒛(𝑝𝑝) = �𝒆𝒆1
(𝑝𝑝), 𝒆𝒆2

(𝑝𝑝), … , 𝒆𝒆𝑘𝑘
(𝑝𝑝)�

𝑇𝑇
(𝒚𝒚 − 𝒄𝒄(𝑝𝑝)) 

𝑑𝑑2
(𝑝𝑝) = min

𝜃𝜃1,𝜃𝜃2
||𝒛𝒛(𝑝𝑝) −𝒇𝒇(𝑝𝑝)(𝜃𝜃1,𝜃𝜃2)|| 



Advantages of appearance matching 
The appearance matching algorithm [1] accounts for the main issues with the blobber algorithm described previously. The 
learning step involves the measurement or simulation of the target object at various orientations and illuminations. These 
parameters are only varied slightly from image to image. Images that have similar orientation or illumination conditions are 
highly correlated and therefore map to nearby locations in a multi-dimensional eigenspace. Features on the object lead to 
distinctive shading and shadowing on the body that is used to locate a new image in the space. It also mitigates the problem 
with partial illumination and variable lighting conditions, since the number, location, and intensity of foreground pixels is part 
of the “signature” of that pose and illumination state. Figure 1 shows a simulated image of a cube and its corresponding lighting 
signature. Finally, the additional object recognition step means the algorithm can recognize the object in the image from a 
library of multiple objects instead of being limited to just one option. 
 

   
 

Figure 1 – Simulated image (a) and brightness signature (b) 

Application to infrared 
Another advantage to employing appearance matching is that it can be extended to infrared images. In the training step, 
images are generated at different orientations and illuminations. To apply this to the infrared spectrum, it is only necessary to 
add temperature as an additional dimension to this training image space. Instead of being a function of two indices, the 
universal hypersurface and the object hypersurfaces are now functions of three indices. There is an additional computational 
cost to generating another dimension of training images. However, if the thermal behavior of the object's material is well 
understood, it is possible that only a few temperature values need to be generated; the rest can be interpolated. This topic will 
be more fully explained with algorithms in the final version of the paper. 
 
SPACECRAFT IMAGING SIMULATION ENVIRONEMENT 
 
Simulation is a key aspect to the implementation of the appearance learning object identification procedure. In an ideal 
scenario, the images necessary for the learning step of the algorithm would come from actual images of the object using the 
camera and bolometer. However, the possibility exists that such images are unavailable before launch. The desired target 
could have been launched after the visual navigation system is on orbit, or it could be an object like space debris that varies in 
size and shape. Obtaining real images is also time and labor intensive. Therefore, a modeling environment which can create 
realistic images under various orientations and lighting conditions is necessary for the full implementation of the appearance 
matching algorithm. 
 
In addition to providing training data, the simulation environment can also be used to perform software-in-the-loop tests to 
verify the accuracy of the object recognition and the resulting relative navigation solution. In order to provide images for 
these two applications, a MATLAB script was written called the spacecraft imaging simulation environment (SISE). The 
purpose of the SISE is to generate a series of simulated images of a target spacecraft as viewed by a sensing spacecraft. A 
preliminary version was developed for the work performed by McBryde and Lightsey [5]. The software tool has since been 



refined to improve the speed of simulated image generation as well as to incorporate various errors sources which may be 
present in actual images. A block diagram is shown in Figure 2. 
 

 
Figure 2 - SISE block diagram 

 
Target Modeling 
The target modeling subroutine, targModel populates a target structure from given parameters. These parameters include the 
size and shape of all of the primitive components of the object, their optical and thermal properties, and the starting 
temperature for the object. The resulting targ structure includes the location in space of each vertex of the object, the optical 
and thermal attributes of each vertex, and the list of vertices that make up each object face. Note that this structure is solely a 
function of the object properties, location, and orientation, and thus do not have to be recalculated if only the position of the 
camera is changing. 
 
Radiation simulation 
The radiation simulation subroutines predict the visible or infrared light emanating from each vertex on the target object. This 
radiation is function of the location, normal direction and optical properties of the vertex; the relative location of the 
illumination sources in the scene; and, for infrared radiation, the thermal properties and temperature of the object. For the 
types of radiance that are dependent on the direction to the observer (i.e., specular reflection), that vector is taken into 
account as well. Attributes are then added to the targ structure for visible spectrum radiance. Finally, the temperature of each 
vertex is updated based on energy absorbed, emitted, and conducted to neighboring vertices. There are two subroutines, 
optIllumSim and irThermSim, which simulate the visible and infrared spectra, respectively. Equation [eq:radiation] gives a 



general framework for the calculation of spectral radiance from a vertex. It was developed based on equations from Christian 
[6] and Garnier, et al. [7]. 
 

𝐿𝐿𝑷𝑷𝑜𝑜(𝜆𝜆) = 𝑘𝑘𝑎𝑎𝐿𝐿𝑎𝑎(𝜆𝜆) + �𝐿𝐿𝑙𝑙(𝜆𝜆)(𝑘𝑘𝑑𝑑(𝑁𝑁 ∙ 𝐼𝐼) + 𝑘𝑘𝑠𝑠(𝐸𝐸 ∙ 𝑉𝑉)𝛼𝛼) + 𝛿𝛿𝑒𝑒𝐿𝐿𝑡𝑡(𝜆𝜆)
𝑛𝑛

𝑙𝑙=1

 

Sensor measurement 
The last required step is to calculate the radiation incident on the sensors and produce images. The sensor model subroutines 
go pixel by pixel and calculate if objects are seen by the pixel, which of the observed objects is the closest, and how much the 
object irradiates that pixel. Then, the subroutines translate that irradiance into a greyscale brightness values based on the 
internal physics of the sensors. The final result is a simulated image which can they be used either for appearance matching 
learning or a software-in-the-loop simulation. Equation [eq:irradiance] gives the general framework for irradiance on a pixel, 
while Equation [eq:measurement] relates that to a greyscale value in the final image. These two equations were also based on 
work from Christian [6] and Garnier, et al. [7]. 
 

𝑆𝑆𝑷𝑷𝑖𝑖(𝜆𝜆) = 𝐿𝐿𝑷𝑷𝑜𝑜(𝜆𝜆)𝜏𝜏(𝜆𝜆)
𝐴𝐴𝑎𝑎𝑎𝑎
𝑓𝑓2

cos4 𝜃𝜃 

𝑠𝑠 = � � 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑷𝑷𝑖𝑖(𝜆𝜆)𝐹𝐹𝐹𝐹(𝜆𝜆)𝑑𝑑𝑑𝑑 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆min𝑇𝑇

 

The sensor measurement subroutine is also where the first of the error sources in implemented: radial distortion. Since this 
effect bends light that enters the outside of the lens, a distortion function shifts the incident radiation from each vertex toward 
the outside of the image, based on the level of radial distortion required. 
 
Errors 
After the image has been simulated, the other possible error sources can be added, if needed. One potential error source is 
pixel blur, either due to defects in the lens or object motion. This effect can be simulated by a convolution function based on 
the amount of required blur, which is then iterated over each pixel in the image. Shot noise can also be introduced using a 
point spread function based on a normal distribution. Finally, amplifier and digitization noise can be added. These effects are 
functions of the dynamic range and the saturation limit, respectively. 
 
Verification 
The Ames Research Center optics lab was used to verify the SISE. Figure 3 shows an actual image taken of a satellite analog 
and its simulated counterpart. The analog was a 3-inch aluminum sphere at a distance of approximately 44 cm. Verification 
tests were performed and these tests show a strong correspondence between the simulated and actual images (Figure 4). The 
average pixel error was 1.24 out of 255. 
 

    
Figure 3 - Actual image (a) and simulated image (b) 



 
Figure 4 - Verification results 

 
 
RESULTS 
 
In order to test the accuracy of the appearance matching algorithm, four objects of different shapes were simulated in various 
poses and illumination conditions. In order to represent potential on-orbit tasks for this visual navigation system, these 
objects were selected to be the Mars Reconnaissance Orbiter (MRO), the Hubble Space Telescope (HST), the asteroid 
Geographos, and the Space Shuttle orbiter. An example training image of each is shown in. 

   
(a)        (b) 

 

   
 (c)        (d) 

Figure 5 - Simulated images of MRO (a), HST (b), Geographos (c), and Space Shuttle orbiter (d)  



Training data sets of each of these models were generated using the SISE under different conditions. These data sets were 
structured so as to test the effect of various parameters on the object identification and pose estimation performance: number 
of orientations, number of lighting conditions, and spectrum (visible, infrared, or fused). The results of the object recognition 
tests are given in Table 1, Table 2, and Table 3. Pose estimation results are shown in Table 4, Table 5, and Table 6. 
 
Object Recognition 
Table 1 - Visible spectrum recognition accuracy percentage 

 4 light 8 light 
20 orientations 74 97 
40 orientations 74 98 
60 orientations 74 100 

 
Table 2 - Infrared spectrum recognition accuracy percentage 

 4 light 8 light 
20 orientations 100 100 
40 orientations 100 100 
60 orientations 100 100 

 
Table 3 – Fusion recognition accuracy percentage 

 4 light 8 light 
20 orientations 96 100 
40 orientations 96 100 
60 orientations 96 100 

 
The first thing to note is how strong the performance of the infrared images is in object recognition. Despite changing the 
number of training orientations and lighting conditions, the infrared object recognition is perfect. It does logically follow that 
the lighting would not have a large effect on the infrared, since most of the radiation is coming from the heat of the body 
itself. Still, infrared is clearly the best way to identify an object if that signal is available. It should also be observed that 
number of illumination conditions trained had a much greater effect on the accuracy of the visible spectrum recognition than 
did number of training orientations. 
 
Pose Estimation 
Table 4 – Average visible spectrum pose error (degrees) 

 4 light 8 light 
20 orientations 31.027 24.584 
40 orientations 3.6322 3.2949 
60 orientations 4.0315 3.2868 

 
Table 5 – Average infrared spectrum pose error (degrees) 

 4 light 8 light 
20 orientations 31.027 26.014 
40 orientations 3.3881 1.5345 
60 orientations 4.0315 1.5435 

 



Table 6 – Average fusion pose error (degrees) 

 4 light 8 light 
20 orientations 32.302 25.647 
40 orientations 3.3180 1.5362 
60 orientations 3.3828 1.4527 

 
The pose estimation tests yielded some interesting results. First, there is a clear threshold of performance when it comes to 
the number of training orientations necessary for good pose estimation. Every case shows a significant drop-off between 20 
and 40 training orientations. As one might expect, the number of lighting conditions did not have as much of an effect as 
number of orientations when it came to pose estimation performance. However, the cases with 8 lighting conditions 
displayed approximately half of the error as the 4 lighting condition cases for the 40 and 60 orientation cases. As above, we 
can see an improvement in nearly every case with the application of sensor fusion, though at times the gains are marginal. 
 
One surprising result was the better average performance of the infrared images versus the visible spectrum images. Given 
the greater detail in the visible images, they should perform better for pose estimation. Upon analyzing the results, it became 
apparent that the third object, the asteroid, had returned some pose errors near plus or minus pi. These large errors are clearly 
the result the symmetricity of the asteroid. Once those results are removed, the visible spectrum images have similar 
performance to those in the infrared spectrum. 
 
Finally, it is worthwhile to compare the performance between types of object. The MRO, HST, Geographos, and orbiter had 
the following average performance for the 60 orientation and 8 lighting condition case (Table 7) 
 
Table 7 - Average pose error for 60 and 8 case (degrees) 

MRO HST Geographos Space Shuttle Orbiter 
1.339567 1.6348 3.908467 1.494533 

 
The object’s performance, as expected, is arranged in rough order of symmetricity, with Geographos having the worst 
performance and MRO the best. 
 
CONCLUSION 
 
The SISE will be a useful tool for software-in-the-loop verification, tuning of the relative navigation algorithm, and 
generating training images. Application of sensor fusion extends the usability of visual navigation into the eclipse portion of 
the orbit as well as augmenting the accuracy of object identification and pose estimation. By employing appearance 
matching, this system can provide training data for objects that cannot be imaged on the ground and return accurate relative 
pose information. 
 
In terms of future work, the actual fusion filter needs to be improved and refined. In theory, this kind of filter can mitigate the 
effects of symmetricity of the object. Also, the system should be tested with real world images. A follow-up test using 3-D 
printed models is planned. 
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