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ABSTRACT 

As the required payload masses for planetary 
entry systems increase, innovative entry vehicle 
decelerator systems are becoming a topic of 
interest. With this interest comes a growing need 
for the capability to characterize the performance 
of such decelerators. This work proposes a first-
order mass model for fully-rigid deployable 
decelerator systems. The analytical methodology 
that is presented can be applied to a wide range of 
entry conditions and material properties for rapid 
design space exploration. The tool is applied to a 
case study of a C/SiC hot structure decelerator at 
Mars for comparison to the performance of the 
Hypersonic Inflatable Aerodynamic Decelerator 
concepts presented in a recent EDL-SA study. 
Results show that the performance of a rigid 
deployable structure can be comparable to that of 
a Hypersonic Inflatable Aerodynamic Decelerator 
at high entry ballistic coefficients and small 
decelerator diameters.  
 
NOMENCLATURE 
 
 vehicle aerodynamic reference area = ܣ
 Batdorf equation correction factor = (ܼ)ܥ
 ஽ = drag coefficientܥ
 ௣ = buckling pressure coefficientܥ
 flexural rigidity of shell = ܦ
݀ = decelerator diameter 
 Young’s modulus = ܧ
 atmospheric scale height = ܪ
 ୶,୷,୸ = ring cross-section second moments of areaܫ
 ring cross-section torsional rigidity = ܩܬ
݈ = cylinder length 
݈௘௤ = equivalent cylinder length 
݈௥ = ring length parameter 
݉௘௡௧௥௬ = entry mass 

݉୮ୟ୷୪୭ୟୢ = RDD payload mass ( = ݉௘௡௧௥௬ −݉ோ஽஽) 
݉ୖୈୈ = RDD mass 
݊ = number of circumferential buckling waves 
 pressure load = ݌
௖ܲ௥ = critical buckling pressure 
௠௔௫ݍ  = maximum dynamic pressure 
 cylinder radius = ݎ
 ௕ = RDD bottom radiusݎ
 ௙ = frustum shell thicknessݐ
 ௥ = ring thicknessݐ
 ଴ = velocity at atmospheric interfaceݒ
ܸୖ ୈୈ = RDD volume 
ܼ = curvature parameter ( = ௟మ

௥௧
√1− υଶ ) 

 ballistic coefficient = ߚ
Γ = ring cross-section warping constant 
 ଴ = flight path angle at atmospheric interfaceߛ
 scar mass factor = ߜ
 = RDD mass fraction ( = ݉௘௡௧௥௬/݉ோ஽஽) 
 half cone angle = ߠ
ν = Poisson’s ratio 
ρ = material density 

1 INTRODUCTION 
 
As planetary entry systems are required to deliver 
higher payload masses, the ballistic coefficient 
associated with their entry trajectory increases.  The 
ballistic coefficient is a quantitative measure of the 
ratio of inertial to aerodynamic forces and is 
calculated as the ratio of the vehicle mass to the drag 
area: 

ߚ  =
݉௘௡௧௥௬

ܣ஽ܥ
=
݉௘௡௧௥௬
ߨ
4 ஽݀ܥ

ଶ
 

(1) 

Higher ballistic coefficients result in a diminished 
entry timeline1-5. This implies that with increasing  
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ballistic coefficient, the altitude at which a vehicle 
reaches a given velocity decreases, and there exists a 
ballistic coefficient where the desired velocity at a 
particular altitude may not even be achievable. In 
addition to timeline considerations, the aerothermal 
and aerodynamic loading environment become 
harsher with increasing ballistic coefficient.  
 
Reducing the ballistic coefficient of the vehicle 
provides one way to mitigate these problems. For a 
given entry mass, the ballistic coefficient can only be 
reduced by increasing the entry system’s drag area.  
One means of attaining the desired additional drag 
area that has been widely studied is using deployable 
devices that increase the area exposed to the flow 
while allowing the vehicle’s diameter to remain 
constrained to that of the launch vehicle2-7.  Inflatable 
devices have been studied extensively and tested 
experimentally8; rigid deployable concepts have been 
shown to overcome some fluid-structure interaction 
problems that inflatables exhibit but, in general, have 
been less studied9,10. Hypersonic devices are 
deployed either exo- or endo-atmospherically and are 
used through the hypersonic regime and potentially at 
lower velocities. Supersonic devices are deployed 
endo-atmospherically and used in the supersonic 
regime and potentially at lower velocities. 
 
This work provides a systems-level comparison 
between one hypersonic rigid deployable decelerator 
(RDD) concept and a hypersonic inflatable 
aerodynamic decelerator (HIAD) concept developed 
for NASA’s Entry, Descent, and Landing-Systems 
Analysis study9,10. Included in this analysis is the 
development of a physics-based mass model for the 
rigid decelerator. 

2 CONCEPT DESIGN SPACE 
 
Multiple architectures could be used to implement a 
RDD. Design choices regarding the deployment 
regime and staging events are critical to the overall 
feasibility of such a technology. Since the primary  
 

 
 
goal of the work presented here is to develop a mass 
model for a rigid deployable decelerator, which is a 
function of both the size of the decelerator and the 
maximum dynamic pressure of the entry trajectory, a 
single architecture was selected as a baseline. This 
baseline RDD architecture calls for an exo-
atmospheric deployment of the RDD. Following 
atmospheric interface, the RDD would provide 
aerodynamic drag and aerothermal protection 
throughout the maximum heating and maximum 
dynamic pressure events in the hypersonic regime. 
The vehicle would then shed the RDD in the low 
supersonic or subsonic portion of the trajectory and a 
terminal decent stage would deliver the payload to 
the surface. Fig. 1 illustrates this concept of 
operations for the technology.  
 
In addition, there are some aspects of the mission 
design that will need to be considered for 
development of higher fidelity models but are not 
considered in this work. For instance, the baseline 
RDD concept of operations does not use a supersonic 
parachute or the staging events that come along with 
it. However, this choice might have an impact on 
interfaces within the RDD concept. Various 
engineering challenges regarding the construction, 
packaging, and supersonic and subsonic staging 
events (such as those proposed by the ADEPT18 
mission) are not addressed explicitly in this study 
because of the independence of the mass model on 
these details. 
 

 
Fig. 1. Concept of operations for the baseline RDD 

architecture. 
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Table 1. Summary of RDD designs in the existing literature11-18. 

Concept and Use
Operational 

Regime
Rigidity

Structural 
Configuration

Size (m) Image

SPED: Qualification 
of Viking Parachutes

Supersonic 
(M0=2.62)

Semi-Rigid
Radial stringers 

covered with 
Nomex fabric

4.57

Patent 5108046: 
Planetary Entry

Unspecified Semi-Rigid
Solid panels with 
radial stringers

≈ 1.8×DAeroshell
†

   (As Depicted)

Patent 5108047: 
Planetary Entry

Unspecified Fully Rigid
Solid panels with 
circumferential 

rings

≈ 2.75×DAeroshell 
†

   (As Depicted)

Trabandt Concept: 
Mars entry with 8 t 

payload
Hypersonic Fully Rigid

Solid panels with 
radial stringers 

8.5

SABr: Modification 
to MSL class EV

Supersonic 
(M0=4.5)

Semi-Rigid or 
Fully Rigid

Individual panels 
with or without 
fabric webbing

≈ 7 (non-circular 
cross-section)

ADEPT: Mars human 
class (40 t payload) 

or Venus robotic 
class

Hypersonic Semi-Rigid
Radial stringers 

covered with 
flexible fabric

23-44

 
† Patent documents did not specify a dimensions; this is an approximation based on images. 

2.1 SUMMARY 
 
Although the idea has been around for decades, the 
concept of a rigid or semi-rigid deployable 
decelerator has limited literature or substantial 
engineering groundwork on which to build. This lack 
of heritage is somewhat problematic for architecture 
studies because of the general lack of historical data 
(such as decelerator mass) to use for extrapolation or 
verification purposes.  
 
Of the six existing RDD concepts that were found 
with supporting literature, NASA is responsible for 
three. Only one of these was constructed in full scale 
and flown. This vehicle was part of the Supersonic 
Planetary Entry Decelerator (SPED)11 program and 
was flown on a simulated entry trajectory to provide 
a lightweight and compact drag surface to qualify the 
supersonic parachute for the Viking Mars program. 
The other two concepts developed by NASA, SABr17 
and ADEPT18, came following the EDL-SA study as 
possible alternatives to other technologies required to 
enable improved landing capabilities.  
 
In addition to the concepts introduced by NASA, 
three concepts have been patented. Two of these were 
contributed by French inventor Jean-Francois 
Puech12,13, but they lack many of the details and 
supporting analyses required to contribute more than 
configuration ideas to this study. Finally, in 2003 and 
2006, Trabandt and Schmid contributed papers14,15  
 

 
and in 2008 were awarded a patent16 for a RDD 
concept utilizing Ceramic Matrix Composite (CMC) 
panels. Key aspects relevant to this study are 
presented in Table 1 for each of the concepts found in 
the literature review. 

3 BASELINE DECELERATOR CONCEPT 

3.1 MATRIX OF ALTERNATIVES  
 
Using aspects of the various configurations proposed 
in the existing literature, combined with additional 
considerations for geometric and system variables, a 
matrix of configurations was constructed. This 
matrix, shown in Table 2, shows various design 
trades that can be considered within the design space 
for RDDs.  
 
Among the combinations of alternatives possible in 
the morphological matrix, one concept was selected 
for use in the development of the mass model. The 
characteristics selected for this concept are 
highlighted in Table 2. Only parameters that would 
directly affect the first order mass model (shaded in 
red) were considered. Thus, many detailed design 
characteristics such as the exact details of the 
deployment and actuation mechanisms (shaded in 
blue) remain for a more focused study. The mass 
model produced in this study is independent of these 
parameters.
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Characteristic/Alternative 1 2 3 4
Deployment Regime Hypersonic Supersonic - -

Entry Vehicle Type Blunt Slender - -
Location Trailing Mid-Body Shoulder -

Panel Connectors Continuous Webbing None -
Lifting Yes No - -

Panel Shape Flat Concave Convex
Structural Configuration Circumferential Rings Radial Stringers Monocoque Struts

Panel Features Corrugated Perforated Solid -
Materials Metallic Metallic + TPS Ceramic Matrix Composites -

Deployment Path Iris Folding Dropping Opening
Actuation Mechanism Springs Hydraulic Aerodynamic Pneumatic

Actively Controlled Yes No - -
Other Functions Backshell Launch Fairing Landing Attenuation -

 
 
3.1.1. OPERATING REGIME 
 
An exo-atmospheric deployment was chosen so that 
the performance comparison to the HIAD concepts 
presented in the EDL-SA study could be direct. Also, 
only non-lifting, ballistic trajectories were 
considered. When the Allen-Eggers assumptions are 
applied, this reduces the maximum dynamic pressure 
to a function of ballistic coefficient and entry flight 
path angle only.  
 

3.1.2. MATERIAL SELECTION 
 
In developing a mass model for the RDD, a critical 
design choice was the material(s) selected for the 
decelerator panels. Configurations in the literature 
were constructed of lightweight metals, Ceramic 
Matrix Composites (CMCs), or a combination of 
metal or composite stringers with flexible fabric 
webbing. Since the intent of this study is to develop a 
concept for a fully rigid deployable decelerator as 
opposed to a semi-rigid device, two material 
candidates from the literature search were considered 
for use—metals and CMCs.  
 
A lightweight metal configuration fabricated out of a 
material such as aluminum or titanium is a low-risk 
configuration due to the aerospace community’s 
familiarity with fabricating, testing, and flying these 
materials. Given the low ballistic coefficients under 
consideration (and the relatively benign loads 
associated with them), an entirely metallic structure 
would be capable of carrying the required structural 
loads.  
 
Ceramic Matrix Composite panels for use in extreme 
aerospace engineering applications also have 
appreciable heritage. Hypersonic vehicles such as the 
X-43 and the Space Shuttle have used CMCs for 
leading edges and control surfaces due to their ability  

 
 
to carry substantial mechanical loads at very high 
operating temperatures.19 This is appealing for 
atmospheric entry applications because of the 
demanding aerodynamic environment (in terms of 
both heating and pressure) experienced by entry 
vehicles. The density and strength of CMCs are often 
comparable or even superior to those of the aerospace 
metals.   

3.1.2.1 AEROTHERMAL CONSIDERATIONS 
 
Assuming the structural loads could be carried by 
either a metallic or a CMC structure of proper 
thickness at their respective optimum operating 
temperatures, the driving down-selection criterion 
becomes the performance of the materials in the 
aerodynamic heating environment experienced 
during entry. To determine the approximate expected 
heating environment for the vehicles, the planar 
equations of motion were integrated to obtain 
velocity as a function of altitude. Assuming an 
exponential atmosphere, the atmospheric density at 
every time step along the trajectory is also known. 
Using the velocity and density, the stagnation point 
heat rate was calculated using the Sutton-Graves 
relation for Mars.20 The maximum stagnation point 
temperature for various entry conditions is shown in 
Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 

Table 2.  Morphological matrix of alternatives. 

Fig. 2. Maximum heat rate and stagnation temperature 
for various entry conditions. 
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This figure shows that for much of the trajectory 
design space, maximum stagnation point 
temperatures approach or exceed 1000 K. Under 
these operating conditions, a titanium decelerator 
would experience a significant loss in strength. This 
performance decrease is depicted in Figures 3 and 4.  
Fig. 3 is a generic depiction of the specific strength of 
several material classes as a function of temperature, 
illustrating the thermostructural advantages of using 
CMCs for high temperature applications. The 
operation of C/SiC at temperatures upward of 1900 K 
without depreciation in strength is a well-documented 
advantage of that and other CMC materials.14,19,21 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 is a more quantitative description of the 
strength of several titanium alloys as a function of 
temperature. Although the data is truncated prior to 
1000 K, the yield strength decreases by 
approximately a factor of two over the given 
temperature range for each of the alloys.  
 
Given the severe loss in strength that would occur for 
a titanium (or similar) decelerator exposed to reentry 
environments, a thermal protection system (TPS) 
would have to be employed for these configurations 

to be feasible. This is not unlike the traditional rigid 
aeroshells used for planetary entry. In order to bound 
the mass fraction penalty that the vehicle would incur 
to accommodate TPS, a 1-D finite element analysis 
built into the Planetary Entry Systems and Synthesis 
Tool (PESST) 22 was used to assess the required TPS 
mass (using PICA, an ablative TPS material), and the 
results are shown in Fig. 5. 
 
In general, we would expect shallow, high ballistic 
coefficient trajectories to require the greatest amount 
of TPS mass, since they incur the greatest integrated 
heat load due to longer flight times and deceleration 
occurring deeper in the atmosphere. However, the 
TPS mass fraction displays the opposite trend with 
respect to ballistic coefficient – Fig. 5 shows that the 
lowest TPS mass penalties (on the order of 10%) 
correspond to steep, high ballistic coefficient 
trajectories. This is because to decrease the ballistic 
coefficient for a given vehicle, the entry mass must 
be decreased, resulting in a reduction in the required 
TPS mass. However, the decrease in entry mass 
outpaces the savings in TPS mass, so the mass 
fraction increases with decreasing ballistic 
coefficient. For low ballistic coefficients, the TPS 
mass is upward of 25% of the entry mass for both 15- 
and 30-meter decelerators. These findings are 
consistent with the analysis of Trabandt, who 
performed a similar trade with aluminum structural 
panels covered in an ablative TPS and found that 
configuration to be approximately twice the mass of 
an equivalent C/SiC decelerator14.  
 

 
Fig, 5. TPS mass fraction as a function of entry 

conditions and decelerator size. 

3.1.2.2. MATERIAL CHOICE 
 
Given the previously discussed benefits of using 
Ceramic Matrix Composite materials for the 
structural panels of an RDD, a material from this 
class known as Carbon/Silicon-Carbide (C/SiC) was 
selected as the candidate material for this study. It 
was chosen because its mechanical properties are 
representative of the many potential CMC materials 
that could be considered and because it has flight 
heritage on hypersonic vehicles such as the 
experimental UK aircraft SHyFE, the X-38 re-entry 

Fig. 3. Specific strength of various materials as a 
function of operating temperature. 

Fig. 4. Scatter band for yield strength versus 
temperature of several cast titanium high-

temperature alloys and Ti-6Al-4V.23 
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vehicle, and as repair cover plates for the Space 
Shuttle19.  
 
C/SiC was also proposed for use on a decelerator 
system by Trabandt14 in 2003. Although the scale of 
that proposed system was much smaller than the sizes 
examined in this study and the material properties 
used were less conservative, Trabandt’s conclusion to 
use a CMC material was based on the same 
arguments made here.  
 
For the purpose of examining the sensitivity of the 
decelerator performance to material properties, three 
sets of material properties will be used for 
comparison to the HIAD configuration, as shown in 
Table 3. 
 
Table 3. Three material sets for C/SiC investigated.  

(*Poisson’s ratio values all taken from Set 2 14 ) 

 Set 1 24 Set 2 25 Set 3 14 
Density 
(g/cm3) 2.05 2.10 2.20 

Young’s 
Modulus 

(GPa) 
78.9 140 300 

Poisson’s 
Ratio 0.085* 0.085 0.085* 

 

3.1.3. GEOMETRIC AND STRUCTURAL 
CONSIDERATIONS 
 
The structural configuration of the RDD consists of 
decelerator panels that deploy into a continuous 
surface, forming a conical extension of the main body 
aeroshell. This type of structure could be folded up in 
a manner similar to that shown in Patent 510804713. 
This configuration was selected for analysis due to its 
large ratio of drag area to structural mass and its 
ability to achieve increases in drag area comparable 
to inflatable aerodynamic decelerators. The conical 
structure is self-sustaining, employing a series of 
circumferential rings for weight reduction. This 
choice of a ring-stiffened monocoque structure over 
other structural configurations (semi-monocoque, 
honeycomb sandwich, corrugations, etc.) was guided 
by the some of the trade studies examined during the 
construction of the Viking aeroshell27. Fig. 6 shows a 
diagram of the selected configuration with the main 
decelerator parameters indicated. 
 

 

 
Fig. 6.  3-dimensional rendering (top) and cross-

sectional drawing (bottom) of RDD configuration. 

4 ANALYSIS METHODOLOGY 

4.1 ANALYSIS PROCESS OVERVIEW 
 
An analysis methodology was developed to quantify 
the performance of the RDD concept using three 
main parameters: the mass of the RDD system, the 
RDD mass fraction, , and the total payload mass 
delivered by the RDD. 
 

   =
݉ୖୈୈ

݉ୣ୬୲୰୷
 

(2) 

 ݉୮ୟ୷୪୭ୟୢ = ݉ୣ୬୲୰୷ −݉ୖୈୈ (3) 
 
By fixing the planetary parameters (H), entry 
conditions (v0, 0) and basic RDD parameters (d, rb, 
), it is possible to obtain the performance parameters 
as a function of entry ballistic coefficient. Fig. 7 
shows an overview of the analysis process. 
 

 
Fig. 7. Overview of RDD analysis process. 
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After fixing the entry conditions and basic RDD 
parameters, a ballistic coefficient is selected. The 
total vehicle diameter and entry ballistic coefficient 
are used to obtain the total entry mass through 
Equation 1. The trajectory model translates a given 
entry condition and ballistic coefficient into a 
maximum aerodynamic load. The maximum 
aerodynamic load and RDD parameters are then used 
to calculate the RDD mass using the developed mass 
model. Finally, the performance of the concept can 
be calculated from the total entry mass and RDD 
mass. 
 

4.2 TRAJECTORY AND AERODYNAMIC 
MODELS 

 
To perform a mass sizing of the decelerators, the 
loading environment that the structure would have to 
withstand must be characterized. The maximum 
dynamic pressure experienced during the trajectory 
was used as the critical loading value for the 
structural analysis of the RDD.  
 
In 1958, Allen and Eggers26 derived a closed-form 
analytical description of the velocity and altitude as a 
function of time for a ballistic planetary entry 
vehicle. For cases that adhere to the required 
assumptions, this simplified model provides an 
excellent approximation of the more computationally 
expensive practice of propagating the full planar 
equations of motion. Using these relations, the 
maximum dynamic pressure can be derived as a 
function of the ballistic coefficient of the vehicle, the 
atmospheric scale height of the given atmosphere, 
and the entry conditions:  

௠௔௫ݍ  =
ߚ଴ଶݒ− sinߛ଴

ܪ2݁  (4) 

For this investigation, the outer mold line of the 
entry-vehicle and decelerator combination was a 
constant 70o sphere-cone with the nose radius equal 
to half of the maximum radius. It was assumed the 
vehicle would be photographically scaled so that the 
drag coefficient is constant, independent of the size 
of the vehicle. A hypersonic drag coefficient of 1.727 
was used, obtained using modified Newtonian impact 
methods.  

4.3 MASS MODEL 
 
An accurate mass model is required to assess the 
performance of the rigid decelerator system. The 
objective of the mass model is to approximate the 
RDD mass given a maximum entry pressure load and 
some basic decelerator dimensions. As previously 
discussed, the model will be limited to rigid 
deployable decelerators with a monocoque ring-

stiffened design. The model should be valid over a 
wide range of loading pressures and decelerator sizes 
to allow for the exploration of the decelerator design 
space and trade studies. The approach presented here 
uses approximate analytic relations with corrections 
based on data from Finite Element Analyses (FEA) to 
model the structure.  
 
4.3.1.  NOTIONAL STRUCTURAL MODEL 
 
The rigid decelerator is conceptually modeled as a 
continuous monocoque frustum with L-shaped 
stiffening rings. The structure is modeled as a single 
solid body, assuming that panels are integrally 
connected. The stiffening ring design is similar to 
that used for the Viking aeroshell, which had a 
sphere-cone aeroshell design with similar loading and 
boundary conditions. Modeling the rings is 
important, since a ring-stiffened structure can be 
considerably lighter than a simple monocoque 
structure in a given loading environment. While the 
structure requires a ring on the top edge for stability 
reasons, it may have any number of intermediate 
rings. This number is optimized for each specific 
RDD design. The location of each stiffening ring can 
also be optimized to reduce mass; however, in this 
study the rings are placed uniformly, since analysis 
showed that optimization has a negligible impact on 
the mass of the RDD ( 6%).  
 
The load consists of a uniform external pressure with 
simple supports at the bottom edge as shown in Fig. 
8. Non-uniform distributions such as those resulting 
from flight at an angle of attack were not considered 
due to the assumption of ballistic flight. The 
magnitude of the pressure load, p, corresponds to the 
maximum dynamic pressure of the trajectory 
multiplied by a factor of safety of 1.2. 
 
 

 

Fig. 8. Diagram of selected RDD design concept 
showing relevant nomenclature and loads. 
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Fig. 9. Illustration of representative notional RDD 
design (top) in comparison to the Viking aeroshell 

design (bottom).27 

 
4.3.2. SIZING CRITERIA 
 
A number of failure modes were initially considered 
as potential sizing criteria. These criteria were: 
failure due to yield during entry loads, failure due to 
structural instability (buckling) during entry loads, 
and failure due to launch loads. It is assumed that 
proper launch packaging would exclude launch loads 
as the critical sizing factor. Early analyses showed 
that, due to the large size of the decelerators under 
study, the structure would fail by structural instability 
long before yield stresses would be reached; therefore 
instability was selected as the sizing criteria for the 
structure. Structural instability encompasses a 
number of failure modes, including ring instability, 
panel instability and general instability. To simplify 
the analysis, a panel-critical design was selected in 
which the rings would be slightly over-designed so 
that the panels would buckle first. Given that the 
rings represent a relatively small percentage of the 
structural mass, this assumption has a small impact 
on the final mass of the RDD. Given the requirement 
that the panels buckle first, it was then assumed that 
each stiffened section would fail independently; thus, 
the critical buckling pressure of the RDD would be 
given by the buckling pressure of the weakest 
stiffened section. This assumption was confirmed 
through FEA. 
 
Given the level of fidelity required for a conceptual 
analysis and the fact that no usable experimental data 
was available to validate the analytical model 
directly, the analytical model was created and 
validated by comparison to a numerical Finite 
Element Analysis (FEA) of the notional RDD using 
eigenvalue buckling analysis. A representative case 
of the critical buckling mode is shown in Fig. 10. 
 

 

Fig. 10. Sample buckling solution and mesh for 
notional RDD. 

4.3.3. ANALYTICAL MASS MODEL 
 

4.3.3.1. BUCKLING OF THE RING 
STIFFENERS 

A relation by Cheney28 was used to predict the 
buckling load of the stiffening rings:  
 

 

௖ܲ௥ =
9

௥ଷ(4ݎ secଶ θ − 1) × 

቎ܫܧ௬ +
௫ܫܧ tanଶ θቀܩܬ + Γܧ4

ଶݎ ቁ

ቀܩܬ + Γܧ4
ଶݎ ቁ+ ௫ܫܧ

4
቏ 

(5) 

 
This expression assumes the rings are constrained to 
displacements normal to the surface and neglects 
torsional, in-plane, and tangential constraints.  The 
stiffening ring second moments of area are calculated 
about the centroid of the cross-section. Expressions 
for these (and other) section properties were derived 
as a function of three main ring parameters: l, θ, and 
tr (defined in Fig. 11). The thickness of the rings, tr, 
was assumed to be 1% of the length l. Therefore once 
the half cone angle is chosen, l is the only free 
parameter used to size a ring in order to meet a 
required buckling load. 

 

Fig. 11. Diagram of representative stiffening ring 
showing relevant nomenclature. 
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4.3.3.2. BUCKLING OF THE FRUSTUM 
 
An expression for the buckling load of a conical 
section is also needed to quickly predict the buckling 
pressure of each stiffened section. For this purpose, 
an “equivalent cylinder” method is used which 
approximates the conical shell as cylindrical shell of 
equivalent dimensions. This approach allows 
analytical equations for the buckling of a cylindrical 
shell to be used for conical sections after applying a 
correction factor.  For the equivalent cylinder 
method, the slant length of the frustum replaces the 
length of the cylinder, while the mean normal radius 
of the frustum replaces the radius of the cylinder, as 
shown in Fig. 12. 
 

 

Fig.12. Equivalent cylinder approximation for the 
analysis of frustum buckling. 

There are many formulas available for calculating the 
buckling load of a cylinder (Pcr) under uniform 
external pressure and held by simple supports. An 
expression developed by Batdorf29 was found to work 
well for the problem at hand and is shown below: 
 

 ௖ܲ௥ =
ܦଶߨ௣ܥ
ଶ݈ݎ  (6) 

 
where Cp is the critical buckling pressure coefficient, 
given by: 

 

௣ܥ =
ቈ1 + ቀ݈݊ݎߨቁ

ଶ
቉
ଶ

ቀ݈݊ݎߨቁ
ଶ + 

12ܼଶ

ସߨ ቀ݈݊ݎߨቁ
ଶ
ቈ1 + ቀ݈݊ݎߨቁ

ଶ
቉
ଶ 

(7) 

For a given configuration, the number of 
circumferential waves, n, must be varied until the 
minimum value of buckling pressure is found. The Z 
value is a dimensionless parameter used by Batdorf 
to characterize a specific cylinder design, known as 
the curvature parameter. 
 
To assess the effectiveness of the equation when 
applied to a frustum using the equivalent cylinder 

approach, a number of frustums of various sizes were 
evaluated using both FEA and the Batdorf equation 
under fixed and simple boundary conditions on the 
top and bottom edges. The design points were 
obtained through a face-centered central composite 
design of experiments that spanned a representative 
range of Z. Fig. 13 shows a comparison of the results 
plotted versus Z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 13. Comparison of analytic vs. computational 
buckling pressures for frustums. 

A number of conclusions can be drawn from these 
results. The first observation is that the use of the 
Batdorf equation combined with the equivalent 
cylinder method is accurate at large values of Z, but 
diverges from the FEA results at values of Z below 2. 
Low values of Z correspond to frustums that have an 
exceptionally large radial dimension relative to the 
total length, a property shared by the stiffened 
sections in the RDD. Secondly, this divergence 
follows a trend that is insensitive to cone angle but a 
strong function of the boundary conditions. This 
means that a correction curve can be derived from the 
data to correct the Batdorf equation for a given 
boundary condition as a function of Z.  A similar 
correction curve could be developed to enable the use 
of the Batdorf equation to predict the buckling 
pressure of a stiffened section of a RDD.  A number 
of RDD designs were selected to be analyzed in order 
to create this correction curve. Selected designs had 
diameters of 15 or 30 m, 0, 1, 2, or 5 stiffeners, and 
half cone angles of 40 or 70 degrees. Fig. 14 shows 
the comparison of the RDD buckling pressure given 
by FEA versus the Batdorf equation. The RDD 
buckling pressure for the Batdorf equation is defined 
as the lowest buckling pressure obtained when 
Batdorf’s equation is applied to each of the stiffened 
sections using the equivalent cylinder method.  The 
results are summarized in Table 4. 
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Fig. 14. Correction factor for RDD stiffened sections. 

The data shows the expected trend.  The larger scatter 
in the data is due to difficulties with controlling the 
mesh density when modeling the entire decelerator.  
 

The data was fitted to create a correction factor for 
the Batdorf equation as applied to the RDD concept, 
independent of cone angle and material properties, as 
shown in Equations 8 and 9. 
 

 ௖ܲ௥ =
ܦଶߨ௣ܥ
ଶ݈ݎ  (8) (ܼ)ܥ 

(ܼ)ܥ  = 1.61 + 
2.94
ܼ  (9) 

The corrected Batdorf equation can be applied to 
each stiffened section of the RDD to quickly 
determine the buckling pressure of the RDD. As 
shown in Table 4, this method provides a reasonable 
approximation of the RDD buckling pressure 
calculated by FEA in a fraction of the computation 
time, over a reasonable range of pressures, diameters, 
and cone angles. 
 

 
Table 4. Comparison of RDD buckling pressure predicted by corrected Batdorf equation and FEA 

d [m] θ [°] n t f  [cm] l  [m] Corrected Batdorf [Pa] FEA [Pa] Error [%]
30 70 1 2.09 1.0311 8105 8213 -1.32
30 70 2 1.65 0.6597, 0.9201 8246 7846 5.1
30 70 3 1.44 0.5290, 0.6941, 0.8470 10954 10302 6.33
30 70 6 0.69 0.3859, 0.4600, 0.5304, 0.5979, 0.6630, 0.7260 7623 8126 -6.19
15 70 1 0.3 0.2335 495 499 -0.79
15 70 2 0.22 0.1748, 0.2015 506 510 -0.88
15 70 3 0.16 0.1513, 0.1677, 0.1836 415 403 3.03
15 70 6 0.09 0.1216, 0.1287, 0.1356, 0.1425, 0.1492, 0.1558 493 566 -12.83
30 40 1 1.73 0.7107 10146 10295 -1.45
30 40 2 1.44 0.4546, 0.6338 10171 9696 4.9
30 40 3 1.22 0.3645, 0.4781, 0.5832 10242 9696 5.63
30 40 6 0.84 0.2658, 0.3167, 0.3652, 0.4115, 0.4563, 0.4996 10713 10191 5.12
15 40 1 0.25 0.1604 630 623 1.25
15 40 2 0.19 0.1201, 0.1384 610 599 1.84
15 40 3 0.16 0.1040, 0.1152, 0.1261 632 633 -0.25
15 40 6 0.11 0.0835, 0.0884, 0.0931, 0.0978, 0.1024, 0.1070 663 642 3.25

RDD Dimensions RDD Buckling Pressure

4.3.4. CALCULATING SYSTEM MASS 
 
The mass of the RDD system is calculated using the 
volume of the system and the density of the material, 
as shown in Equation 10. To account for deployment 
mechanisms, hinges, connectors, and other 
mechanical devices which were not modeled, a scar 
mass factor, , was added to the mass of the RDD. 
This factor was estimated to be 15% based on results 
obtained in a study by Trabandt13 on the design of a 
comparable rigid deployable system. 

 ݉ୖୈୈ = ܸୖ ୈୈ1)ߩ +  (10) (ߜ
 
4.3.5  MASS SIZING PROCEDURE 
 
The Cheney and corrected Batdorf equations 
provided the tools necessary to analyze the buckling 
load characteristics of a notional RDD of given its  
 

 
dimensions and materials. However, the mass model 
requires the reverse process: the determination of an 
RDD mass given the loading. Fig. 15 illustrates this 
process. 

 
Fig. 15. RDD sizing process. 
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The process begins with a number of input 
parameters: the pressure load magnitude, the basic 
RDD geometry parameters (d, rb,), and RDD 
material properties (E, , ). The frustum is then 
divided evenly into n frustum sections, where n is the 
total number of rings. The entire RDD sizing process 
is run a number of times with increasing number of 
rings to find the optimum n to minimize the mass. At 
this point, the ring for each of the frustum section is 
sized. Since the goal is to over-design the rings in 
order to get a panel-critical design, a conservative 
ring load can be obtained by assuming each ring 
takes the entire load placed on its frustum section. 
Using these ring loads, the rings are sized by 
iteratively solving the Cheney equation (Equation 5) 
for the parameter lr, which fully defines the 
dimensions of all the rings. Having the ring 
dimensions, the dimensions of the stiffened sections 
for each frustum section can be determined. The 
corrected Batdorf equation is then solved iteratively 
to get a required thickness for each of the stiffened 
sections. The largest of these thicknesses is selected 
for the entire frustum. At this point, all the 
dimensions of the RDD are known, and the mass can 
be calculated through Equation 10. 

5 RESULTS 

5.1 RDD PERFORMANCE 
 
The developed mass model and analysis 
methodology enables the study of the RDD system 
performance. Figures 16 through 18 show the 
performance of the RDD system as a function of 
entry ballistic coefficient and decelerator diameter. 
The data shown was generated for a Martian entry at 
a flight path angle of 14⁰, an entry velocity of 4 km/s, 
and the intermediate set (Set 2) of material properties 
given in Table 3. The half cone angle of the RDD, θ, 
is 70 degrees and the bottom radius of the 
decelerator, rb, was fixed at 5 m. 

 

Fig. 16. RDD system mass as a function of diameter 
and ballistic coefficient. 

 

Fig. 17.  RDD mass fraction as a function of diameter 
and ballistic coefficient. 

As expected, the RDD mass increases with increasing 
decelerator diameters for a fixed ballistic coefficient.  
Higher ballistic coefficients lead to a steeper increase 
of system mass with diameter due to the increased 
aerodynamic loads. As shown in Fig. 16, the RDD 
masses can take values in the range of 875 kilograms 
at a ballistic coefficient of 10 kg/m2 and 15 m in 
diameter, up to 26 metric tons at a ballistic 
coefficient of 100 kg/m2 and a 30 m diameter RDD. 
Fig. 17 plots contours of the decelerator mass as a 
fraction of total entry mass for a range of ballistic 
coefficients and decelerator diameters. While the 
mass of the RDD system goes up at higher ballistic 
coefficients and diameters, it will be a smaller 
fraction of the total entry mass. It is evident from Fig. 
17 that the RDD system will be more viable mass-
wise at low decelerator diameters and large ballistic 
coefficients.   
 

 

Fig. 18. RDD payload mass. 

Fig. 18 shows a plot of the maximum payload 
delivered by the RDD system versus RDD diameter 
and ballistic coefficient.  Even though the decelerator 
mass fraction increases with increasing diameter, the 
delivered payload also increases. Higher decelerator 
diameters become more beneficial at higher ballistic 
coefficients.   
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5.2 COMPARISON TO HIAD 
PERFORMANCE 

 
To evaluate the potential mass benefits of the RDD, it 
was compared to a hypersonic inflatable aerodynamic 
decelerator (HIAD) model developed for NASA’s 
Entry, Descent, and Landing-Systems Analysis task 
(EDL-SA)17. The EDL-SA model creates a two-
parameter quadratic regression for the mass of the 
HIAD at Mars with a fixed 4.6 m diameter aeroshell. 
It includes the deployment mechanisms as well as the 
thermal protection system mass required for entry. 
The HIAD mass model used for comparison is shown 
in Fig. 19.  

 

Fig. 19. HIAD mass model. 

Analogous to the development of the RDD mass 
model, this two-parameter space was transformed 
into a useful single parameter for ballistic entry 
system design, , by assuming a Mars entry at a 
velocity of 4 km/s and a flight path angle of 14 
degrees. The comparison of the two decelerator 
devices is shown in Fig. 20. 

 

Fig. 20. RDD vs. HIAD performance. 

The results show the mass performance of the HIAD 
system to be generally better than that of the RDD 
except at high entry ballistic coefficients and low 
decelerator diameters. For a 15 m diameter 
decelerator, both concepts perform equally well at a 

ballistic coefficient of around 70 kg/m2, while the 
RDD shows slight improvements in performance at 
higher ballistic coefficients.  For larger diameters, the 
crossover point moves to higher entry ballistic 
coefficients.  The crossover point for a 20 m diameter 
decelerator falls at a ballistic coefficient of 105 
kg/m2. 
 
Despite showing only slight improvements in mass 
performance, other factors such as reliability, 
reusability and structural stability considerations 
could make an RDD a favorable choice over a HIAD 
system for certain entry missions.  These aspects 
should be taken into account in a complete system 
analysis. 

5.3 TRADE SPACE EXPLORATION 
 
The developed mass model enables trade space 
exploration and sensitivity studies such as those 
presented in Fig. 21 through Fig. 23. 

 

Fig. 21. Sensitivity of RDD performance to material 
properties. 

Material properties pose one of the largest 
uncertainties in the mass model. Analysis shows that 
uncertainties in material properties cause a maximum 
variation in the RDD mass of approximately 28% 
relative to the intermediate set of properties presented 
in Table 3.  
 

 

Fig. 22. Sensitivity of RDD performance to entry flight 
path angle. 



13 
 

 

Fig. 23. Sensitivity of RDD performance to entry 
velocity. 

Figures 22 and 23 show the effect of various entry 
conditions on the performance of the system. Fig. 22 
shows the RDD mass to vary 7% for a 3° variation in 
flight path angle. Fig. 23 shows the performance of 
the RDD at different entry velocities corresponding 
to various arrival trajectories.  The analysis shows 
that the different entry velocities from an orbital 
versus direct Mars entry could have an impact on the 
RDD mass upwards of 27%. 

6 CONCLUSIONS 
 
As the need for unconventional entry vehicle 
decelerator systems for exploration of celestial bodies 
with atmospheres increases, there is a growing need 
for the capability to characterize the performance of 
such decelerators. This work proposed a first order 
mass model for a fully rigid deployable decelerator. 
The analytical methodology that is presented can be 
applied to a wide variety of entry conditions and 
material properties for rapid design space 
exploration. The methodology was applied to a case 
study of a C/SiC hot structure decelerator at Mars for 
comparison to the performance of the HIAD 
architectures presented in the recent EDL-SA study. 
The results show that the performance of a rigid 
deployable structure can be comparable to that of a 
Hypersonic Inflatable Aerodynamic Decelerator at 
high entry ballistic coefficients and decelerator 
diameters on the order of 15 m. From this, we can 
conclude that for missions requiring ballistic 
coefficients greater than around 70 kg/m3, a hot 
structure rigid deployable decelerator could yield an 
improvement in mass efficiency and an increase in 
useable payload mass. Furthermore, a sensitivity 
study of the material properties showed that 
improvements in composite materials could cause 
RDDs to surpass the mass efficiency of HIAD 
systems at even lower ballistic coefficients. The mass 
fraction was insensitive to entry flight path angle and 
decreased with increasing entry velocity. 
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