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BINARY INTEGER LINEAR PROGRAMMING FORMULATION FOR
OPTIMAL SATELLITE CONSTELLATION RECONFIGURATION

Hang Woon Lee* and Koki Ho'

Satellite constellations are commonly designed for fixed mission requirements.
However, these systems are often subject to change in mission operations. This
paper integrates the constellation transfer problem and the constellation design
problem that are otherwise independent and serial in nature. Building upon the
integrated model, this paper provides a solution to the following general problem
statement. Suppose an existing satellite constellation system, a group of satellites
with some form of shared orbital characteristics, is undertaking a reconfiguration
process from its initial configuration to a final configuration due to variations in
mission operations. The problem is to find the specifications of the reconfigura-
tion process that maximizes the utility. An illustrative example is conducted to
demonstrate the value of the framework.

INTRODUCTION

Satellite constellations are commonly designed for fixed mission requirements. However, these
systems are often subject to change in mission operations. Potential factors that contribute to such
operational variations include the change in mission coverage requirements (e.g., changing from in-
termittent coverage to continuous coverage), change in an area of interest (e.g., disaster monitoring,
observation of new scientific events of interest, etc.), the addition of new satellites (e.g., increase in
capacityl), and/or loss of existing satellites (e.g., due to failures,? or end-of-life decommissions).
In such cases, it is logical for system operators to seek an option to reconfigure an existing sys-
tem to fully maximize the utility of active on-orbit assets. Satellite constellation reconfiguration
provides stakeholders with greater managerial flexibility to efficiently respond to both endogenous
and exogenous variations in mission operations. In this paper, a satellite constellation reconfigura-
tion is defined as a process of deliberately changing the relative positions of system satellites such
that a constellation transforms from an initial orbital configuration A to a final orbital configuration
B. Such a process is nontrivial and is often formulated as a large-scale brute-force design prob-
lem, which solicits theoretical development in numerous disciplines to enable a robust constellation
reconfiguration framework.

Generally, the problem of reconfiguring satellite constellations is divided into two different, yet
coupled, subproblems—constellation design and constellation transfer>* The former deals with
an optimization problem of designing a constellation configuration given a set of static mission re-
quirements whereas the latter deals with an optimal assignment of satellites from one configuration
to another given the knowledge of both end states. Although these two problems may be approached
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independently, which have been explored by many researchers, the outcome of such a decoupled
consideration may result in a suboptimal reconfiguration process as pointed out in numerous past
studies>? The complexity, however, arises when the system operators wish to simultaneously op-
timize the design problem and the transfer problem that are otherwise independent and serial in
nature. Particularly, there is an unsolved technical conundrum associated with formulating and in-
corporating the design features that enhance the utility of constellation reconfiguration—namely,
the N-fixed formulation and regional coverage, which are discussed in the following paragraphs.

The nature of the satellite constellation design methods in the context of constellation reconfigu-
ration dictates that the design of a reconfigured system must be constrained to the fixed number of
satellites from the precedent stage (assuming no launch of new satellites nor loss of any). We refer
to such a design optimization approach as the N-fixed formulation of the design problem (here, N
indicates the number of satellites in a system). On the other hand, the classical methods focus on
the design of optimal configurations without constraining the number of satellites where the goal
is to strictly satisfy certain coverage requirements, which is beneficial when designing an initial
configuration for known static mission requirements (we call this N-flexible methods).

Traditionally, satellite constellation reconfiguration problems have been focused on the staged de-
ployment problems (e.g., increase in capacity®”) and the loss reduction problems.? However, there
is another attractive, perhaps one of the most significant but scarcely studied, design philosophy
that is known to encompass the idea of constellation reconfiguration: regional coverage” A satel-
lite constellation covering a portion of the Earth can be reconfigured into a new configuration such
that it provides coverage over other areas of interest. For example, when a constellation wishes to
conduct a single-fold continuous coverage remote sensing task over a certain ground target or when
system stakeholders wish to change the area of communications service, the constellation would
need to be reconfigured into a new configuration to meet the new mission requirement. The con-
cept of regional coverage justifies the rationale for satellite constellation reconfigurations and boosts
operational flexibility under mission variations and uncertainties.

The framework introduced herein incorporates the aforementioned design features of the con-
stellation design problem in the context of satellite constellation reconfiguration based on the APC
decomposition modeling of satellite constellation architecture,*? which makes the use of the re-
peating ground track orbits and the common ground track constellation. The main contribution of
this paper lies in the development of an integrated model that enables a coupled consideration of
design and transfer problems that are otherwise independent and serial in nature. The formulation
of the optimization problem is of binary integer linear programming (BILP) form, which enables
the use of global optimization techniques.

This paper provides a solution to the following general problem statement. Suppose an existing
satellite constellation system is undertaking a reconfiguration process from its initial configuration
A to a final configuration B due to variations in mission operations. The problem is to find the
specifications of the reconfiguration process that maximizes the utility. Here, the specifications of
the reconfiguration process refer to both the design and transport factors; the utility refers to the
coverage performance and the AV cost incurred due to reconfiguration. The goal of this paper is to
construct a framework that will allow system operators to efficiently meet the emerging operational
needs. An illustrative example is conducted to demonstrate the value of the framework.

The remainder of this article is organized as follows. The second section overviews the key
literature relevant to this study. The third section overviews the definitions and assumptions made in



this paper. The fourth section introduces the modeling of the reconfiguration process and pertinent
figures of merit. The fifth section then formulates various optimization problems based on the
modeling. The sixth section demonstrates the value of the framework through a case study. The last
section provides conclusions of this paper and discusses the potential extensions of this work.

LITERATURE REVIEW

The satellite constellation reconfiguration problem is an active field of space systems operations
research. This section reviews the key literature relevant to this study.

Several satellite constellation patterns that finite the design space have been proposed. The most
notable classical methods include the Streets-of-Coverage (SoC) >l and Walker patterns 1#14 The
SoC and Walker patterns approach the constellation coverage problem from a geometric perspective
and hence lead to easy-to-use global coverage constellations patterns that are symmetric in nature.
Flower constellation set theory is one of the latest development in the modern constellation design
theories'>1% which has shown to be a general framework that encompasses Walker patterns
The Flower constellation leverages the concept of restricting all satellites to follow a closed 3D
trajectory; it has shown to be beneficial for regional coverage purposes, which is one of the design
features this paper is seeking after. Note that, despite its attractiveness, the Flower constellation,
per se, is only a mathematical set theory that describes a constellation pattern, not an optimization
method that designs optimal configurations.

The transfer problem, also known as the transportation problem, of the satellite reconfiguration
is a relatively well-established field of study. It consists of two tasks: identifying optimal orbital
transfer between initial and final orbits and the assignment of satellites. The optimal orbital transfer
problem has been studied by numerous researchers, mainly exploring non-Hohmann orbital trans-
fers #18 For the assignment, de Weck et al. applied the balanced assignment problem formulation
to the satellite constellation reconfiguration and solved it using the auction algorithm'® The nature
of the assignment problem requires the given knowledge of both the initial and final configurations
such that the flows between the orbital slots (i.e., the nodes) of bipartite sets be the design variables;
the objective function of the assignment problem is to minimize the total cost of the flows (in their
case, the cost matrix was hard-coded based on Hohmann transfer scheme).

Several satellite constellation reconfiguration studies have been proposed encompassing both the
constellation design and the constellation transfer. Ferringer et al. explored a case when one or more
satellites experience failures and formulated a framework that can be used to minimize the loss. In
his study, the state of the terminal configuration is undetermined and was found via multi-objective
numerical optimization (e.g., propellant usage, coverage performance, etc.). The mathematical for-
mulations exhibited nonlinear behaviors and therefore the e-NSGA-II algorithm is used to approxi-
mate the Pareto front.? Several studies have explored the concept of a reconfigurable constellation
(ReCon). Paek constructed an optimization framework based on the concept of a satellite constella-
tion switching between two operational modes—global observation mode and regional observation
mode—for geo-spatially adaptive Earth observation missions>! Legge extended this concept to
optimize the overall ReCon architecture by concurrently considering constellation pattern design,
satellite design, and operations design; in his approach, the e-NSGA-II algorithm is also used?
While these efforts demonstrated the value of the concurrent optimization, their mathematical for-
mulations were nonlinear and in the form of nested-optimization, which constrained their choice of
optimization solvers to be metaheuristics algorithms.



This paper deals with the integration of constellation design and constellation transfer optimiza-
tion problems. The uniqueness of this study lies in the consideration of design aspects that reinforce
the argument of satellite constellation reconfigurations: the regional coverage and the N-fixed for-
mulation. Particularly, the regional coverage feature unveils the hidden design space by enabling
asymmetric constellation patterns. The constructed framework is general in the sense that it can be
used to respond to various combinations of variations in mission operations.

PRELIMINARIES

This section introduces the definitions of key terms used in this paper and the assumptions that
lay the foundation for the modeling of a general reconfiguration process. This article adopts and
extends prior works®? on the design of satellite constellations for regional coverage based on the
circular convolution formulation.

Regional Coverage Satellite Constellation

Two assumptions are made about the constellation pattern based on the need for satellite constel-
lation reconfiguration considering regional coverage: (1) the repeating ground track orbits and (2)
the common ground track constellation. This subsection briefly discusses each item.

Repeating Ground Track Orbit A ground track is the trace of satellite’s sub-satellite points on
the surface of a planetary body. A repeating ground track (RGT) orbit mandates that if a satellite
makes Np number of revolutions in one period of repetition 7}, which is defined by the multiple of
an integer Np and the nodal period of Greenwich 7§, then the ground track of that satellite repeats
exactly and periodically. Expressing this condition:

T; = Npls = NpTg e)

where Np and Np are positive integers and 7 is the nodal period of a satellite due to both nominal
motion and perturbations.

The practicality of an RGT orbit is greatly acknowledged in the field of satellite constellation
design and optimization. The received wisdom is that an RGT orbit provides better coverage per-
formance over a locally-bounded target than a non-RGT orbit%* This is because the ground track is
fixed relative to the target. To find the value of a semi-major axis a that forms an RGT orbit under
the Earth oblateness effect (e.g., Jo perturbation effect), one would need to perform an iterative
numerical method, such as the Newton-Raphson method, with given orbital parameters Np, Np,
eccentricity e, and inclination ¢ (for more information, refer to Reference 23)).

Common Ground Track Constellation A common ground track constellation enforces all system
satellites to follow a same 3D trajectory in a rotating frame, which is equivalent to having a common
ground track when the trajectory is projected on to the surface of a planetary body. Based on the
rationale for persistent regional coverage, we only consider circular orbits or elliptic orbits with
critical inclinations (: € {63.4°,116.6°}). This is since non-critically-inclination elliptic orbits
incur heavy orbital maintenance costs to maintain its apogee under perturbation effects. Note that,
we consider the Earth-Centered Earth Fixed frame as the rotating frame of interest.

All system satellites in a common RGT constellation share identical semi-major axis a, eccentric-
ity e, inclination ¢, and argument of perigee w but independently hold right ascension of ascending
node (RAAN) 2 and mean anomaly M pairs that satisfy the following relation:



NpQy + Np M}, = constant mod (27) 2)

The APC Decomposition: Coupling Configuration and Coverage Performance

The two assumptions made in the prior subsection together constitute the cyclic property of a
common RGT constellation. The APC decomposition’} a representation of a common RGT con-
stellation architecture via three finite-length sequences—a seed satellite access profile v ;, constel-
lation pattern vector x, and coverage timeline b;, describes not only the physical configuration but
also the coverage performance of the system, which is the time-dependent coverage figure of merit
for satellite constellations. This section briefly introduces the APC decomposition and its pertinent
definitions.

Definitions Following definitions are the core elements that describe the APC decomposition:

e Seed satellite access profile vg ; € Z% stores binary information whether a seed satellite—a
hypothetical reference satellite that stores orbital information that is inherent to actual system
satellites—has access to (or is visible from) a designated target point of interest j at each
discrete-time instant 7.

o Constellation pattern vector € Z% stores binary information about system satellites’ relative
temporal spacing with respect to the seed satellite at each discrete-time instant 7.

e Coverage timeline b; € ZQO stores information about satellite diversity (i.e., a number of
satellites in view) at each discrete-time instant n. For example, if b;[100] = 2, then there are
two satellites that are visible from or have access to a target point j at n = 100.

Here, j € J is the index of a target point, 7 is a set of target points, and n € {0, ..., L — 1} refers
to the discrete-time instant. A superscript z is added appropriately to each definition to specify the
definition’s relation with the corresponding zth subconstellation; a subconstellation is defined as
a subgroup within a constellation system (a system being the system-of-subconstellations). Note
that, following the convention from the digital signal processing community, this article utilizes a
zero-based numbering: the index of a vector of length L ranges [0, L — 1].

The Circular Convolution Phenomenon A coverage timeline b; is the result of circularly con-
volving a seed satellite access profile v ; with a satellite constellation pattern vector x. Expressing
this relation mathematically:

L-1

bj[n] = z[n| ® vo j[n] = x[m]vg j[(n —m) mod L]
0 mz::() 0 3)

=vp,j[n] ® z[n] (commutative property)

The proof of this relation is referred to Reference 9. Eq. (3) can be shown in terms of a circulant

matrix:
bj = ‘/07]'.’17 (4)

where Vj ; € ZéXL is a circulant matrix constructed by augmenting each column with circularly-
shifted seed satellite access profiles vy ;.

*It is named after the acronyms of seed satellite access profile, constellation pattern vector, and coverage timeline



Using Eq. (@), one can formulate a binary integer linear program to find the N-minimizing
constellation pattern a* that strictly satisfy the given coverage requirement; this is introduced in
Eq. (I9). The optimization problem, hence, is in the form N-flexible formulation; the number of
satellites is allowed to freely vary during the optimization process. The APC decomposition is
demonstrated in the following sub-subsection.

Lllustration of the APC decomposition To demonstrate the APC decomposition modeling, con-
sider an arbitrarily defined two-satellite constellation system with a seed satellite orbital elements
vector ®g = [a, e,,w, Q, M]T = [9064.7km, 0, 70°, 0°, 20°, 0°] which corresponds to the RGT
ratio of 7 = Np/Np = 10/1 (i.e., a satellite makes 10 revolutions during 1 nodal day). A single
target of interest J = {(¢ = 60°N, A\ = 30°E)} is assumed to require a minimum elevation angle
threshold ey, = 10° to be visible from the on-orbit satellites, which is determined a priori based
on mission requirements. (¢ is the latitude and A is the longitude of a target point.) Assume an
arbitrarily defined satellite constellation pattern vector x:

1, forn = 0,360
x[n] = ) 5)
0, otherwise

The constellation pattern vector in Eq. (3) is equivalent to having two satellites each with its own
orbital elements vector; note that all satellites have identical a, e, 7, and w but each satellite holds
an independent pair of {2 and M:

e =[9064.7 km, 0,70°,0°,20°,0°] (6a)
e, =[9064.7 km, 0, 70°,0°, 200°, 0°]7 (6b)

The visualization of the example system is shown in Figure [I] Each satellite exhibits identical
but circularly-shifted access profiles as shown in the top part of Figure The resulting coverage
timeline for this two-satellite system is shown in the bottom part of Figure [Ta] The corresponding
illustration of such a system in the Earth-centered inertial (ECI) frame is shown in Figure [1b} which
can be shown directly from plotting the actual orbits of each satellite from specified orbital elements
vectors in Egs. (6). For this specific demonstration, the length of vectors is chosen, L = 720 for
one period of repetition, such that it corresponds to a time-step of approximately 120s. Note that
all values in Eqgs. (6)) are referenced to the epoch 15 Feb 2017 12:00:00 UTC.

The main advantage of utilizing the APC decomposition is that it enables a linear expression of
satellite constellation design space, i.e., a single z[n] element is a single point in the (€2, M )-space
via coupling the time and space. Additionally, it couples each satellite constellation configuration
with its corresponding coverage timeline, which can be computed analytically as shown in Eq. (3).
Such a representation allows any common RGT satellite constellation configuration G to be ex-
pressed as a set of seed satellite orbital elements vector e and constellation pattern vector x:

= {af’,. .. & 2, . 202} (7)

where z is the index of a subconstellation and | Z| is the cardinality of a set of system sub-constellations
Z.

*Note that the mean anomaly of a seed satellite can be set to zero without loss of generality as shown in Eq. (2)
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Figure 1: The APC decomposition and its equivalent constellation representation in 3D space

The APC decomposition model is an instance of the /V-flexible method class, in which the num-
ber of satellites [V is free to vary. While this can be directly used to design an initial configuration,
it has a limitation when we start to consider the reconfiguration problem, which is in the form of a
N-fixed formulation. Therefore, it is imperative that we need a new approach. As will be discussed
later in this paper, the new approach is introduced exploiting the linear property granted by the APC

formulation and the linear assignment problem, which is the crux of the present study. Figure [2]

visualizes the scope of this paper. The scope of this article is the reconfiguration process such that
the prior works deal with the design of satellite constellations for optimal coverage; a combination
of which provides comprehensive and useful tools for system designers and operators.
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Figure 2: The scope of this paper and its alignment with respect to prior works

MODELING

This section discusses the modeling of the reconfiguration process and pertinent figures of merit
that can be used to measure the optimality of satellite constellation reconfigurations.



Modeling the Reconfiguration Process

Suppose an arbitrary single-subconstellation common RGT satellite constellation configuration,
ga = {(P,Q A, ZA}, undertakes a reconfiguration process due to one or more following operational
variations:

1. Change in the mission coverage requirement, 7o — 7T'p

e Example coverage types: continuous coverage (single-fold, double-fold, etc.), intermit-
tent (discontinuous) coverage, time-dependent coverage, etc.

e Change in the minimum elevation angle threshold, emin A — €min.B
2. Change in the area of interest, J5 — JB
3. Change in the number of satellites, No — Np

e Addition of new satellites (e.g., capacity expansion)

e Removal of existing satellites (e.g., loss, decommission)
that necessitates the change in one or both of the following system constituent variables:

1. Change in the seed satellite orbital elements vector, @y o — o B

2. Change in the constellation pattern vector, x5 — Tp

which results in the new coverage timeline bg.

A reconfiguration process pap is defined as the state-to-state mapping from an initial satellite
constellation configuration A to a final configuration B given a combination of mission operational
variations. Generalizing the above steps to a multiple-subconstellation system as defined in Eq. (7)),

‘SOAB ng—>gB‘ ®)

One can view a reconfiguration process @ap as the deliberate change in the common orbital char-
acteristics and/or the constellation pattern of the system in response to given operational decisions
or perturbations. The coverage timeline bg of the final constellation configuration B is the output
of such a mapping. Note that the reconfiguration process is a “mapping” that describes which satel-
lite in configuration A moves to which orbital slot in configuration B. Hence, specifications of a
reconfiguration process involves both the design of configuration B as well as the assignment of
satellites.

We can model the addition or the removal of satellites during a reconfiguration process as:
L-1
Ng=Na+a=)» zsln+a )
n=0
where o € 7Z represents a change in the number of satellites for the subsequent stage. If o > 0,
a number of satellite(s) are being added to the subsequent stage. We make an assumption that o
number of satellites are initially positioned at n = 0, where satellites are deployed from a launcher.
This is equivalent to having x4[0] = «. On the other hand, the loss or removal of o number of
satellite(s) is assumed when o < 0. In this case, the specific referral of which satellites from the
initial configuration are removed is required (e.g., removal of k = 3 satellite). Likewise, if o = 0,
then no addition or removal of satellites from the preceding stage is assumed.



Quantifying the Performance and the Cost of the Reconfiguration Process

The prior subsection introduced the model that describes a reconfiguration process from an initial
configuration A to a final configuration B (e.g., inputs and outputs). To assess the quality of the
reconfiguration process, we introduce two figures of merit: the coverage performance and the cost
incurred due to the state transition. The following two sub-subsections discuss each item in detail.

Coverage Figure of Merit The N-fixed formulation dictates that no system may strictly satisfy
the coverage requirement if the number of satellites in a system is fewer than the theoretical lower
bound. Therefore, this study utilizes the percent coverage as an appropriate figure of merit for
quantifying the coverage performance of satellite constellations relative to the desired coverage
performance. The percent coverage computation from the coverage timeline bg and the desired
coverage rp is explained. If the coverage timeline is greater than or equal to the desired coverage
at discrete-time instant n, then we consider the coverage is satisfied at that discrete-time instant
(6[n] € {0,1} being the indicator). Hence, the percent coverage is computed by summing up all
coverage satisfactoriness indicators and dividing it by the cardinality of the discrete-time set, which
is L. The goal is to maximize the percent coverage objective function. Under the minimization
problem, the objective function is:

L—-1
100
Ji=—— ) dln] (10)
n=0

where d[n] is defined as:

5[n]:{1, if bln] > r[n] an

0, otherwise

Note that Eq. involves a nonlinear conditional statement. This can be linearized by formu-
lating it via the Big M method and introducing binary variables. Let u[n] € {0,1} be a binary
variable that is true (1, in boolean algebra) when b[n] > r[n] and that is false (0) otherwise.

bln] > r[n] & uln| =1
This equivalence can be represented in the following way by employing the Big M method,

where M is a sufficiently large number:

bin]
b[n]

r[n] — M(1 — uln]) (12a)
r[n] + Mu[n] (12b)

IN IV

To illustrate how this method works, knowing the fact that {if b[n] > r[n], then u[n] = 1},
then, Eq. (12a) becomes b[n| > r[n] and Eq. (IZb) becomes b[n] < r[n] + M. In order for these
two inequalities to be true, M must be a sufficiently large number, of which this article utilizes

M =103

Now that the conditional statement is linearized as shown in Egs. (I2), we have to couple each
condition with its corresponding value. Define another variable d[n] that varies based on the condi-
tion of u[n|:

]

1=9
0= d[n]

(13a)

uln] 1
0 (13b)

uln]



Egs. yield a total of four inequality constraints for each n:

1 — M(1 —uln]) <6[n] <1+ M(1—uln)) (14a)
—Muln] <én] < Mu|n] (14b)

Combining, Eqgs. (12) and Egs. (I4), there are six inequality constraints for each discrete-time
instant n. The conditional statements are successfully linearized. These inequality constraints are
referred to as the Big M method constraints.

An important observation is made—a one-to-one same-value matching between u[n| and §[n]
in Eq. (I3). Therefore, we will simply ignore constraints in Eq. (I4) hereafter to reduce the total
number of constraints per discrete-time instant n from six to two. This effort also halves the total
number of design variables by not considering & variables (without it, there are u and § variables).
Hence, the objective function .J; in Eq. (I0) can be rewritten in terms of u[n] instead of 0[n]:

1003~

J1 = 17

uln] (15)

n=0

Cost All reconfiguration processes incur costs except for the case of an isomorphic reconfigura-
tion process, in which all configuration constituent design variables and satellite assignments remain
unchanged during the process. In this paper, we consider the sum of the total AV’s consumed by
all system satellites as the cost, that is:

N L—-1
Jo = cost(pap) = Y AVe = c[n]f[n] (16)
k=0 n=0

We assume that the AV consumption is the only cost factor and the time to reconfigure does
not affect the performance of the system; the system this paper is dealing with is not conducting a
reconfiguration process in response to time-critical mission requirements. However, note that the
time cost is a reasonable cost factor to consider in practice.

Weighted Sum Objective Function To consider both the coverage figure of merit and the sum of
AV’s used by all satellites, the weighted sum approach is used to define a new objective function
J:

Lfé:wljl%-wglg

100 ¥ (17)

—wy —— ul[n] + ws 2_: c[n] fln]
n=0

L

n=0
where w; and wy are the weighting factors for J; and Ja, respectively.

Note that the units for J; and Jo do not match. The cost estimation in dollars for Jy is trivial;
the cost conversion is in the form of $ per km/s. However, the cost conversion for .J; is nontrivial,
which requires in the form of $ per coverage percentage; such a metric requires the modeling of
a loss cost for not meeting one or more satellites in view. Hence, the linear combination of these
two objective functions dictates the unit to be dimensionless. The normalization of two objective
functions is considered as part of the weighting factors.
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Coupling the Constellation Design and Transfer Problems

This subsection examines the nature of the constellation design problem and the constellation
transfer problem and attempts to couple them together. The following Egs. (I8) and (19) lists nom-
inal optimization formulations for transfer and design problem, respectively.

N L-1
' Clk,n] f[k, =
s z_:z_: k.l f{k.m min x[n]
k=1n=0 P
=0
1

N n
s.t. k,n=1, n=0,.,L—1 L=
kzlf[ =t (18) s.t.

L—1
> flkn <1, k=1,..,N z[n] € {0,1}, Vn
n=0 19)
flk,n] € 0,1}, Vk.n
Unbalanced Linear Assignment Problem Regional Constellation Design Problem”

The constellation transfer problem can be modeled as a linear assignment problem (LAP). The
transportation problem in general mandates that its design variables to be flows f (i.e., edges)
between the nodes of given bipartite sets. In this context, the sets here refer to a set of existing
satellites for configuration A (N nodes) and a set of orbital slots for configuration B (L nodes).
This leads to the combinatorial nature of the problem in which every node in a set A spans L
edges that directs to every node in a set B. Since the number of nodes in set B is larger than
that of set A (i.e., L > N), we form an unbalanced assignment problem. Hence, the problem
is in a binary integer linear programming form as shown in Eq. (I8). The cost of each flow is
represented as a matrix C'. In this paper, the cost matrix is hard-coded based on the strategy outlined
in Reference|19; the orbital transfer strategy assumes a simultaneous inclination/RAAN change and
the super-synchronous phasing for mean anomaly correction.

On the other hand, the optimization of a regional satellite constellation configuration design fol-
lowing the APC decomposition requires the design variables to be constellation pattern vector x,
which represents discrete-time shifts that indicate the relative temporal positions of satellites with
respect to the seed satellite. The regional constellation design problem based on the APC decompo-
sition is shown in Eq. (19)), which is also in the form of binary integer linear programming.

Both LAP and regional constellation design problems are in the form of BILP. However, each
problem is formulated with a different type of design variables (i.e., flows vs. constellation pattern
vector) and a different number of design variables (N L vs. N).

The assignment problem and the design problem based on the APC decomposition method can
be coupled as follows:

N
z[n] =Y flk,n], n=0,..,L—1 (20)
k=1

This coupled relationship enables an integrated BILP formulation that simultaneously considers
both the constellation transportation problem and the constellation design problem; both the regional
coverage and the N-fixed formulation aspects are embedded in this relationship. This integration is
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the main contribution of this paper. The following section introduces the integrated BILP problem.

PROBLEM FORMULATION

This section introduces the general problem statement and the integrated BILP formulation to
solve a satellite constellation reconfiguration problem that incorporates both the regional coverage
and V-fixed formulation aspects. An optimization formulation is introduced such that it can serve
as the baseline formulation for optimizations with special cases. Further, several additional fea-
tures to the baseline formulation are discussed such that system operators can adapt the framework
depending on the use cases.

General Problem Statement

Suppose a common RGT satellite constellation system undertakes a reconfiguration process g
from its initial configuration G4 to a final configuration Gg, of which is unknown. The reconfigura-
tion process is subject to some combination of variations in mission operations. The problem is to
find the specifications of pap (i.e., both design and assignment) that maximizes the utility.

Baseline Optimization Formulation

The baseline optimization formulation is of the form Binary Integer Linear Program (BILP):

100 |T|IL—1 |Z|NL—1
minimize J = —wj—— uln| +w c[n|fln
i L L el e X clalfl
|Z|NL—1
subjectto hj = Z frln] =1, k=1,..,N
n=0
N
glzz.fk[n]SL n:077’2|NL_1
k=1
|Z|NL—1
g = — Z (V[n, l]x[l]) + Mun] < —r[n]+ M, n=0,..]|Z|NL-1
1=0
|Z|NL—1
g= > (V[n, l]x[l]) — Muln] < r[n], n=0,..|2|NL—1
1=0
dc ZSZ\NL-H;UL)
2D
where we have the following definitions of the design variable vector d:
f=1fr, e " (22a)
u=[ug,...,u 7" (22b)
d=[f ul’ (22¢)

The flow variables f follow the notation convention as shown in Figure [3| The artificial variables
u are added due to the Big M method. There are | Z| N L number of f variables and |7 | L number
of u variables. Hence, there are |Z| NL + || L design variables.

12



The constraints h; and g; are the assignment problem-related constraints; hq guarantee that there
should be only one out-going flow (i.e., matching) per satellite and g; guarantee that each orbital
slot in B may host at most one satellite (i.e., unbalanced linear constraint). The constraints g, and
g3 are the Big M method constraints as introduced previously.

£11,0] 0 , o
£11,0] £10]
1 ’ fL1] 1]
2 f12,0] fIL] h
flk,n] . f=| rlz1 |=| fiL+1 [=|2
k o Py : : )
1 ol | |- onf Uy

N%L . i -ul Lz |

Figure 3: Design variable convention (assuming | Z| = 1)

Additional Features to the Baseline Formulation

The following additional features are handy depending on the situation in addition to the baseline
optimization formulation as shown in Eq. 2I).

To enforce the maximum AV consumption constraint on each satellite, the g4 constraints can be
additionally used:
g4 = AV, < A‘/max,lm k=1,..,N
=c[n]fn] < AViaxk, n=0,..,|Z|NL -1

With these constraints, it is logical to replace the objective function from J to J; such that the
optimization problem becomes the coverage percentage maximization problem given the individual
maximum AV constraints:

(23)

mgn Ji st.{h1,91,92,93,94,d € Zg\ZINL+|J|L)} (24)

To enforce the maximum total AV consumption constraint used by all system satellites, the
following g5 constraint can be additionally used:

N
gs S Z Avk: < A‘/max
k=1
|Z|NL—1
= Z c[n]f[n] < AV

n=0

(25)

Similarly, it is logical to formulate the coverage percentage maximization problem:

mdin Jl S.t. {h1,g1,92,93,g5, dc ZQZ'NL—HJ‘L)} (26)

Packing and Unpacking Procedures

In this section, we introduce two procedures to properly code and decode the variables and pa-
rameters. The packing procedure is critical to ensure proper implementation of the program. This
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is shown in Algorithm (I} Note that, there exists an inherent weighting factor scheme for each cir-
culant matrix in Eq. (27) (the default is the equal weight). Once the optimization returns an optimal
solution d*, the unpacking procedure is required to decode the result as shown in Algorithm 2}

Algorithm 1 Packing V and r

1: procedure PACK(e'V), ..., (%) 7y, 7 1)
2: Define an augmented circulant matrix V':
V1(1) V1(2) L Vl(\Z\)
_ v v@ 02D
2 27)
W @ D
Vil Vgl 71 q71mxizin)
3: Repetitively extend the augmented circulant matrix V' by N times to get the new circulant
matrix V':
A e _
V= [V e V} (|TILx|Z|NL)
4: Define an augmented coverage requirements vector r:

A T
T = [7’1, ,T‘j‘](‘j‘Lxl)

5: Return V and r
6: end procedure

Algorithm 2 Unpacking d*
1: procedure UNPACK(d")

2: The argument of the minimum d* is in the form of:
d* = [,f*7 u*]T
3: Decompose the optimal design variable f* € Zng‘NL) into a set of NV equal-length seg-
ments:
T
Fr= U I
4: Do element-wise sum over all segments f}, ..., fi; to create an aggregated vector Zy:
N
— A
7ol 23 fill, =021 -1
k=0
5: If a system consists of | Z| subconstellations, decompose the augmented vector g € ZngL)
into | Z| segments:
T~ [mg)*, ...,mgz‘)*]T
6: Return 1:](31)*, ey ngD*

7: end procedure
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Optimization Problem Formulation for Strict Coverage Requirement

This subsection explores the case when the optimization now necessitates the coverage require-
ment strictness. That is, the configuration B must strictly fulfill the new coverage requirement rg.
There are two ways to formulate this problem: either via setting all w variables to one or adding
strict coverage requirement constraints. Implementing the latter, one can remove all Big M-related
variables and constraints (i.e., no w variables nor g, and g3 constraints). Formulating the optimiza-
tion problem:

|Z|NL-1
minimize Jo = cin|fin
pize Jo= 3 clilfl
|Z|L—1
subjectto h; = Z feln]=1, k=1,..,N
=0 (28)

N
g =Y fill] <1, n=0,.|Z[L~1
k=1

g=Vx>r
fe ZgIZINL)

Unlike the coverage percentage maximization problems in Eq. (24) and Eq. (26)), the optimization
in Eq. is a minimization problem with respect to the cost function. This is since the coverage
requirement is strictly satisfied via constraints gg. A problem can be infeasible if it cannot satisfy
the coverage requirement with the given number of satellites (i.e., less than the minimum number of
satellites required to strictly fulfill the coverage requirement). However, this can be avoided by pre-
solving for the minimum number of satellites required via the original APC decomposition method
as shown in Eq. (T9). The difference is the number of newly launched satellites.

ILLUSTRATIVE EXAMPLE

This section demonstrates the general applicability of the reconfiguration framework developed
in this paper.

Synopsis

Suppose a satellite constellation system with five satellites spanning in two-subconstellations
undertakes a reconfiguration process due to variations in mission operations. The system operators
wish to reconfigure the existing constellation system such that it provides increased coverage over
new areas that are recently affected by natural disasters: Getty, California and Asheikri, Nigeria.
The new configuration is aided with o number of new satellites.

Nominal Configuration

The five-satellite two-subconstellation system has the following initial configuration state, Go =

{mélll, (Bé%l, :c&l), xf)}. The seed satellite orbital elements vectors are:

@) = [10527.4km,0,70°,0°,0°,0°]"

(
0,A
@’ = [12758.4km, 0,47.92°,0°,0°,0°)"

)
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The constellation pattern vectors are:

(1)[ ] 1, forn = 67,155,285
xy'[n] =
A 0, otherwise

(2) 1, forn = 199,399
zp [n] =

0, otherwise

Interpreting, there are three satellites placed in 4149.2 km-altitude circular orbits and two satellites
placed in 6380.2 km-altitude circular orbits. Figure [6a]illustrates the system in the Earth-centered
inertial (ECI) frame.

Variations in Mission Operations

Change in the area of interest is demanded. The new area of interest Jg consists of two target
points, Getty, California and Asheikri, Nigeria (shown in Figure [6a):

Js = {(<Z> = 34.09°N, A = 118.47°W), (¢ = 12.93°N, A = 11.960E)}

We wish to maximize the coverage over both target points of interest (both targets have equal
weights). Hence, the desired coverage vectors for all target points can be defined as:

rig="Top =1

Assuming €min,1 = €min2 = 10°, the initial configuration G provides 54.4% and 50.6% coverage
over j = 1 and 7 = 2, respectively. The corresponding coverage timelines over the new areas of
interest with the initial configuration G are shown in Figure ] As one can observe, the initial
configuration provides poor coverage performances on both targets.

2 4 [ ] Actual Coverage 2 4
2 — — Desired Coverage 4 - - DeS|red Coverage
g s g s
a a
o 2 o 2
© ©
5 o] 1 ﬂ T s ol A Tf H H H
200 400 100
n n
(a) Coverage timeline over Getty, California (b) (b) Coverage timeline over Asheikri, Nigeria (b)
Figure 4. Coverage timelines with the initial configuration G
Additionally, we assume a batch launch of two satellites for the new configuration, o = 2.

These two new satellites are deployed simultaneously together from a launcher at a position in
space a:S) [0] (same as oe((f[),‘). Therefore, the total number of satellites for the final configuration is

Ng=Npa+a=T.

Lastly, without loss of generality, the seed satellite orbital elements vectors of the new configura-
tion are assumed to remain the same (note that this does not mean that satellites must remain within
their own subconstellation, but they are free to relocate per optimization):

2
@) = oy
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Hence, the goal of the optimization is to find the distribution of satellites, i.e., sc](;) and 33](32), that

maximizes the coverage over the new target points of interest while minimizing the reconfiguration
AV costs.

Results

The formulation of the optimization problem is identical to that of the baseline in Eq. (21)). The
weights for each objective function is set to w; = 1 /% and wo = 1 /km/{"| In addition to this
baseline case, we additionally explore different combinations of constraints and objective functions
to better understand the trade space.

The argument of the minimization is obtained:

d* = arg muian s.t. {h1,91,92,93,d € ZSZWLHJ'L)}

where m](;) and ac](f) can be deduced from d* following the unpacking procedure (Algorithm :

(1)[ ] 1, forn =285
xy'[n| =
B 0, otherwise

in] 1, forn =27,78,144,199,406, 459
xy ' [n| =
B 0, otherwise

The corresponding objective function value is:

JH(d*) = —81.6

Decomposing J*,
Ji =-96.3 and J5 = 14.7

where J; is the mean value of two percent coverage metrics over two target points: the configuration
Gg provides 95.6 % and 97 % coverage over j = 1 and j = 2 targets, respectively (see Figure |3)).
This is the significant improvement in the coverage over both target points of interest. J» can be
translated as the total AV consumed by all system satellites including the newly launched ones,
hence, 14.7km/s.

2 4 [ ] Actual Coverage = 4 "] Actual Coverage
o — — Desired Coverage [ — — Desired Coverage
o 3 o 3
= =
(m] [a)]
2 ? e ?
S g -
© ©
7] w
0 v T T N N T 1 0 v T N T N T T 1
0 100 200 300 400 500 0 100 200 300 400 500
n n
(a) Coverage timeline over Getty, California (b) (b) Coverage timeline over Asheikri, Nigeria (b)

Figure 5: Coverage timelines with the optimized configuration Gg

*The units of the weighting factors are chosen such that the weighted-sum objective function is non-dimensionalized.
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The labeling of satellites and the observation of where each satellite is relocated are provided in
Table [T} The satellite indices 6 and 7 refer to those of the newly added satellites. Out of seven
satellites, five satellites (k = 1,2,5,6,7) are relocated into new orbital slots. Only k = 5 satellite
moved within the same subconstellation regime, but the rest of the four satellites moved from the
subconstellation 1 regime to the subconstellation 2 regime. The mean AV used by the system
satellites is 2.94 km /s. Figure [6b|shows the final configuration in the ECI frame.

Table 1: Constellation pattern vector analysis

Satellite index k  Position in configuration A Position in configuration B~ AV (km/s)

1 2 [67] 2 2[78] 3.59
2 2 D[155] 2D [144] 2.90
3 2 [285] ') 285 0
4 2 [199] 2$2)[199] 0
5 2 [399] 22 [406] 0.53
6 (newly added) 2[0] 22 127] 3.44
7 (newly added) 20[0] 2$2) 459 4.24

(a) Initial configuration G (b) Final configuration Gg

Figure 6: Side-by-side comparison of the initial configuration and the final configuration in the ECI
frame. The inner blue orbits refer to the subconstellation z = 1 and the outer orange orbits refer to
the subconstellation z = 2. Note that k = 3, 4 satellites remain unchanged.

One can solve for the same optimization problem with just the coverage percentage metric ob-
jective function J; (no cost factor is considered) to identify the maximum percentage it can provide
with Ng = 7 satellites. In this case, the result yields .J; = —98.4, which corresponds to 96.8 %
over target point j = 1 and 100 % over target point j = 2.

Additional Considerations

Zero Satellite Addition Considering o = 0 and with the baseline optimization, one can get J =
—76.29 (J; = —88.7 and Jo = 12.41). The percent coverage for each target point of interest is:
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86.2% for j = 1 and 91.2% for j = 2 target, respectively (see Figure [7). This is a significant
improvement in the percent coverage compared to the initial configuration: 54.4% and 50.6% for
7 = land j = 2, respectively. Hence, even without the addition of satellites, this optimization
demonstrates the value of the satellite constellation reconfiguration and the framework.

2 4 [ ] Actual Coverage > 4 "] Actual Coverage
2 — — Desired Coverage » — — Desired Coverage
o 3 o 3
= =
o [a)]
e ? e ?
T 1 T 1
© ©
D 9 Sl e : . P : : : , )
0 100 200 300 400 500 0 100 200 300 400 500
n n
(a) Coverage timeline over Getty, California (b) (b) Coverage timeline over Asheikri, Nigeria (b)

Figure 7: Coverage timelines (no satellites added)

Individual AV Constraints Assuming AViyaxr = AVmax, VE and solving the optimization
problem shown in Eq. (24)) while keeping the rest of parameters the same, one can get the following
results as shown in Table

Table 2: Individual AV Constraints
AViyax (km/s) Ji Jocov.j=1 %cov.j=2

1 -63.3 68.0% 58.6 %
2 -75.0 76.4 % 73.6 %
3 -95.0 93.6 % 96.4%
4 -98.4 96.8 % 100 %

The result of the AVj,.x = 3km/s case outperforms the zero satellite addition case, this is
because the objective function is solely the coverage maximization. The AV, = 4km/s case is
essentially identical to that of without any AV restriction.

AV Sum Constraint Instead of setting the maximum AV values for individual satellites, we
can set up AVpax on the sum of AV”’s used by all satellites. Solving the optimization problem in
Eq. (26) while keeping the rest of the parameters the same, we get the following results as shown in
Table

Table 3: AV Sum Constraint
AVipax Sum (km/s)  J; JDocov.j=1 Jcov.j=2

1 -58.8 61.4% 56.2 %
5 -72.0 73.0% 71.0%
10 -87.0 82.2% 91.8%
15 -96.5 96.2 % 96.8 %

One can observe that even with AV}« sum of 1km/s, the reconfigured system outperforms the
initial configuration. Increase in AVj,,x starts to mimic the result obtained without setting any AV
constraint.
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Strict Coverage Requirement Solving the optimization problem shown in Eq. (28)), one would
need at least 8 satellites to strictly satisfy single-fold continuous coverage over both j = 1 and j = 2
target points concurrently. This indicates & = 3. One can achieve this with Jo = 23.42 (i.e., the
sum of AV’s is equal to 23.42 km/s). A total of seven satellites require relocation.

CONCLUSION

This paper presents a method for reconfiguration of satellite constellations under various combi-
nations of mission operational variations. The main intellectual merit delivered by this paper is in
the integration of constellation design and constellation transfer problems that are otherwise serial
and independent in nature. The integrated optimization problem is in the form of a modified linear
assignment problem (i.e., a binary integer linear programming) and enables the use of global opti-
mization algorithms to find globally-optimal solution(s). Two core design philosophies— NV -fixed
formulation and regional coverage—that justify and reinforce the utility of satellite constellation re-
configuration are successfully incorporated into the formulation. The method is the extension of the
N-flexible regional coverage constellation design method, in which a combination of both provides
a set of streamlined design and operational analysis tools for system designers and operators. The
case study attests to the value of the proposed framework by demonstrating its efficacy in various
reconfiguration settings.

Several promising future works are discussed. The optimization problem is in the form of LAP
plus additional constraints (e.g., the Big M method), thereby making the problem NP-hard if it were
to be solved by nominal mixed-integer linear programming solvers (e.g., Gurobi). One may modify
an established algorithm such as the Hungarian algorithm or the auction algorithm to guarantee the
polynomial problem runtime. Furthermore, because of its form, one can formulate a network flow
optimization problem such that it quantifies an economic critical point that manifests ‘“when recon-
figuring makes sense” versus “when launching a whole new constellation makes sense” given a new
set of mission requirements. Any mixed strategy (i.e., launch some and reconfigure some) is only
contingent upon the construction of a complete design space that incorporates both the constella-
tion design problem and the constellation transfer problem. This will provide important business
strategic insights for system stakeholders in addition to the tools provided for system designers and
operators.
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NOTATION

" DEONE Se3BZ2s S oNe Qo & Qa oo

semi-major axis
coverage timeline
cost vector

cost matrix
design vector
eccentricity

flow variables

satellite constellation configuration set

inclination
set of target points

length (number of time steps) of vectors

mean anomaly

discrete-time instant

number of satellites

orbital elements vector
desired coverage vector
access profile

access profile circulant matrix
constellation pattern vector
set of subconstellations
change in number of satellites
argument of perigee

right ascension of ascending node
elevation angle

Subscripts

J

target index

Superscripts

z

subconstellation index
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