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Resonance hopping transfers between science orbitgound two circular, coplanar
moons of a common planet are designed using seriek alternating V-infinity leveraging
maneuvers and zero-point patched conic gravity asss. When this technique is combined
with an efficient global search based on Bellman’®rinciple, the end result is an exhaustive
set of fuel and time optimal trajectories betweenthe two moons in question. The associated
Pareto front of solutions represents the classic @l versus flight time trade study sought in
preliminary mission design. Example numerical resubk are produced for orbital transfers
between scientifically interesting moons in the Jaan system due to NASA and ESA’s
particular interest in executing future tour missions in this environment. Finally, resonant
transfers between neighboring pairs of moons are pehed together to obtain fuel and flight
time estimates for a full Jovian system tour betwe® intermediate previously discovered
circulating eccentric science orbits. Results fronthis fast, preliminary design procedure are
intended to serve as useful starting points for higer fidelity multi-body mission design. In
general, the resonant hopping design approach anché associated design procedure are
found to be most relevant for missions with shortlfght time requirements.
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I. Introduction

V., leveraging maneuver (VILM) is defined as a techrithat utilizes a propulsive burn well beforeang at

a gravity assist body in order to efficiently inase or decrease the arrival {excess hyperbolic velocity). At
the expense of extra flight time, the typical effed the propulsiveAV maneuver and associated flyby is a
significant amplification in the change in,\(that otherwise would be directly changed usiriguach vehicle or
propulsive AV). The two-body zero-point patched conic approxiorg also referred to as the zero-sphere-of-
influence patched conic approximation, is usedréliminary analysis of missions employing flybyj&etories. The
method approximates the flyby as a collision of paint particles where the state of the attrackinody, in this case
the moon, is unaffected. In this work,, \leveraging maneuvers and zero-point patched cgrdeity turns are
combined into resonance hopping to complete fuglteme efficient inner-moon orbital transfers.

A. Background

The delta-velocity Earth gravity assiafM-EGA), the first example of a.Vleveraging, is introduced in (Ref. 1).
Additionally, the analytic theory of two-body VILMs developed in (Ref. 2), and it is explored furtaed applied
to relevant problems in (Ref. 3-7). The zero-ppiatched conic method approximates the moon’s regfion
influence to be infinitesimally small and the spaedt’s velocity change to be instantaneous apttiat of flyby
(Ref. 8). Each VILM requires the spacecraft torbe near-resonant orbit with respect to the moajuistion, so
the process of moving between different near-resoorbits from one moon to another is termedi&veraging-
based resonance hopping (which is a variation@félsonance hopping technique defined in (Ref. 8)).

B. Motivation

While previous studies are focused on its heliatestpplications, it is important to note tha \éveraging is
not specific to the Sun-Earth system, \éveraging has considerable heritage from useeireral heliocentric
missions, but the associated design space in mivisomment is relatively small. As a result, thereat state of the
art of V,, leveraging mission design is manual point desigkeordingly, this work studies the application of
VILMs to the phase-fixed planetary moon tour prabjevhere the distance and time scales are drarfigtica
different from the heliocentric problem. Variousudies on different aspects of the planetary moarr tare
conducted in (Ref. 8-16). In the general three-disienal case, the region of moon influence is &spliRef. 17
and 18), but in this research only the planar,uténiccase is considered. Tours with long flightdgrand very low
fuel requirements using three-body applicationsdemonstrated in (Ref. 11, 19, and 20). On therdthad, this
work is intended to be most applicable to shorighf-time missions, such as those in the Joviastesy where
radiation exposure is a driving constraint.

Particular motivation for this work comes from retéterest from NASA and ESA to send flagship sltsur
and orbiting missions to the planetary moon systédupiter. In FYQ7, under sponsorship of NASA hmaatters,
the Jet Propulsion Laboratory completed the JugBystem Observer mission stud¥oncurrently, three other
outer planet mission studies were completed abuarresearch centers as part of an initiative iokbuassess
potential mission scenarios for the next outer gldtagship mission. Among the many challengesnigenission
design for the Jupiter System Observer and othangphry moon missions is the open issue of how dstm
effectively and efficiently connect the inner-maoortion of the trajectory design with the carefidblected science
orbits.

In general, the end goal of this research is tdgdeime and fuel efficient transfers between poeely
discovered circulating eccentric science orbits udbmoons in the Jovian system. Among the many optio
considered in the preliminary trade space for thgtér System Observer mission, the proposed ne¢erenission
included a one year mission phase where the sgtectoosely captured around Ganymede in a hgaeitturbed
third body orbit. The circulating orbit cycles beten high and low eccentricity while distributing @dlose approach
locations throughout most latitudes and all londgitsi (Ref. 21). The orbital geometry and timingfaxerable for a
variety of both Ganymede and Jupiter system scieBeeause the dynamics of orbiters around planetagns are
largely governed by the unstable perturbing effeftshe planet, the science orbit design is chglleyp and the
resulting set of feasible orbits that satisfy massand dynamical constraints are limited. Thusbedy inner-moon
transfers apply established, everaging methods, basic targeting, and enunogrdagchniques to connect these
eccentric science orbits and consequently provigiesmlution to the planetary moon tour problem (R&j.

" http://www.Ipi.usra.edu/opag/jso_final_report.jcited Mar 20 2008]



Il. Models

The modeling of this work is divided into three maomponents: Y leveraging maneuver, zero-point patched-
conic approximation, and resonance hopping. THeiahg sections detail each component and discossthese
models were integrated to create the capabilifintband optimize families of inner-moon transfers.

A. V., Leveraging Maneuver

Phasing between the body and the spacecraft istegral part of a VILM. At the beginning of thejeetory, the
spacecraft departs from the body’s orbit into a'lygasonant orbit (Ref. 2). In the case of a ptanemoon system,
the specific parameters of this resonance are ibesicby the variables L (humber of spacecraft asbiblutions), K
(number of moon orbit revolutions), ang Ratio between the spacecraft and resonant oebiogs). Additionally,
M represents the spacecraft orbit revolution onciwhihe maneuver is performed, and + denotes thaitocof the
moon rendezvous (after or before the spacecrafisemthe line of apsides, respectively). This teotoDy is
consistent with the interplanetary application of lgveraging introduced in (Ref. 2). The correspogdjeometry
for forward and backward interior and exterior maregs in the planetary moon system is depictedganre 1 and
Figure 2.
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Figure 2 Exterior V., Leveraging Maneuver Geometry

As can be seen in Figure 1 and Figure 2, a smafiyssive burn is performed tangent to the orbithatline of
apsides crossing directly across from the launchtion. In the case of a forward interior maneutiee, burn is
performed in the direction of the velocity vectotlze periapse of the spacecraft’s orbit. The locaand magnitude



of this burn allow the spacecraft to increase tlze sf its orbit and ultimately rendezvous with theon at an
inertial position different than that of the laurlcleation. Alternately, a backward interior VILMwerses the effect
of a forward interior maneuver so that the agnitude decreases. A backward interior VILM dep&iom the £
location that is opposite of its forward countetjsareencounter position with its spacecraft velpeiector pointed
off-tangent with respect to the moon’s orbit. Ferthore, the propulsive burn at periapse occurhéndpposite
direction of the spacecraft’s velocity, and itsdermvous with the moon is tangent to the moon’stoflifie relative
symmetry of these two maneuvers results in idehfieadl usage and time of flight regardless of dii@t. Along

these lines,AV.o. (magnitude of escape propulsive maneuver at maomw) Avg,, (magnitude of small

propulsive maneuver at line of apsides) are intceduas two parameters that quantify the fuel efficy of each
VILM. Forward and backward exterior leveraging mawvers are very similar to their interior countetpaFigure 2
and analyses in (Ref. 1, 2, and 4) give thorougttidations of their important similarities and @ifénces.

This work relies on the assumption that the nedirrapmn location and direction of each leveraging marer
burn is at the line of apsides and tangent to paeecraft's orbit, respectively (Ref. 2). This stard burn location
and direction could be further optimized for eacineuver, but a departure from either of these assons would
significantly complicate the resulting flyby timirend geometry. In fact, it is well known that chiswggthe \, is
akin to changing the Jacobi constant in the thiadproblem (Ref. 4 and 20). Further, the maximurange in
Jacobi constant occurs when a maneuver is perfotarggent to the orbit and at the apses where ttairrg
velocity is greatest (Ref. 4). Therefore, the stdtern location and direction are indeed optimalnfiaximizing the
change in \, during a single leveraging maneuver.

The current work also assumes that the spacedvedlya escapes from and returns to the moon tangdmth
orbits during forward and backward VILMs, respeehlx Again, this key starting or ending directioautd be
marginally improved when optimizing multiple seques of maneuvers, but as already discusseds Wnost
efficiently changed when the rotating velocity ieagtest. The tangent departure provides for theirman (or
minimum) apse distance, thereby optimizing the & for change in Y. Furthermore and perhaps more
importantly, applying the tangential strategy aldothie local problem to be decoupled from the glgaahfinding
problem.

B. Zero-Point Patched-Conic Approximation

In order to complete each step of the resonancpihgprocedure, a specific change ip ¢ targeted for each
VILM; the targeted change in Mis necessary for the spacecraft to achieve it§ mear-resonant orbit in the path.
The V,, change that results from a single VILM is contdllby varying three of its defining parameters.
Specifically, the three influential parameters iregtion are R(continuous), M (discrete), and + (discrete). BRor
given set of M and + values, the problem is reduced simple one-dimensional root-solving problemdentify
the R that leads to the targeted change in(¥s the physical dynamics allow). Upon arrivinghet moon with the
correct \,, a zero-point patched conic flyby is completedeatdezvous to turn the spacecraft’s velocity bacfot
away from) tangent with the moon’s orbit so the Milprocess can be repeated. Figure 3 is a visuatseptation
of the planet-relative and moon-relative velocitiesing the flyby.

Sphere of Constant V,,

Figure 3 Two-Body Zero-Point Patched Conic Velocjt Diagram



In Figure 3,V,y andVoyr are the planet-relative spacecraft approach apdrtiee velocity vectors, andy, is
the velocity vector of the moon with respect to filenet. The zero-point patched conic model impthest the
incoming and outgoing hyperbolic excess velocitiase the same magnitude (Ref. 23). It is well kndkat this
model is a better approximation in the interplanetaroblem than the planetary moon problem. Howgtes
approximation does remain useful and is succegsémfiployed in preliminary design for many compléangetary
moon tours (Ref. 12 and 24).

C. Resonance Hopping

While transfers between two moons are symmetriandigss of direction, this work focuses on the glesif
interior inner-moon transfers because they are nlikedy to be included in realistic moon tour mizss. The
procedure to accomplish this task is broken ineotito phases depicted in Figure 4.
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Hohmann Transfer Orbit

Final Phase 1
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Figure 4 Interior Inner-moon Transfer Phase Diagram

As can be seen in Figure 4, Phase 1 of the traimsfelves changing the spacecraft W¥om the initial resonant
orbit V,, to the Hohmann transfer (HT).\between the two moon orbits. The necessarychange for Phase 1 is
accomplished using a resonance hopping procedunerised of alternating forward interior VILMs (sEgure 2)
and zero-point patched conic flybys. Phase 1 fegslvhen the spacecraft passes near the arrival taagentially
after it completes the inner-moon HT. Phase 2 eftthnsfer involves changing from the inner-moon pé¢fiapse
V,, to the final resonance orbit,VSimilar to Phase 1, this,\thange is accomplished using alternating flybysd an
VILMs, but this time the flybys turn the spacecrafiocity vector away from tangent and the manesrege of the
backward exterior variety (see Figure 2). Phasedrs with a gravity turn at the initial arrival om rendezvous
point, which provides the necessary initial velpeiector orientation for the first backward exteAdLM. Phase 2
finishes when the spacecraft re-encounters theahmioon with a \, that corresponds to the final resonant orbit.
The initial relative phase angle between the tw@nsop) represents the relative initial geometry thateiguired to
ensure that the arrival moon is in the correcttpsiupon completion of the phase patching HT.



IV. Methodology

A multi-level procedure is used to calculate andlyzre the solutions to each inner-moog l€veraging transfer
problem. The objective is to patch a known sequeficeear-resonant orbits with gravity assisted yg/bVILMs are
designed to progressively adjust the & each flyby to the level appropriate for thesmduent resonant orbit. The
V,, for a given L:K resonance is easily calculatechgshe expression in Eq. (1).

v =Vu(L=K)
” K
Once the resonant ,Vis calculated, a value slightly above or belowpg@heling on the particular VILM

geometry) this reference is targeted so the spafteamters into the appropriate near-resonant.ofbi inner-level
algorithm calculates the characteristics of theMtrajectory and subsequently root-solves for VILMat result in

the targeted change in VVThe algorithmadjusts the magnitude of the small propulsive t(tAMSPM ) to ensure that

a spacecraft-moon rendezvous occurs at the intehdebit intersection (Ref. 2). Then, for each camaltion of the
discreet variables M and #, the continuoysvBlue is adjusted until the targeted change jnisvachieved (as the
physical dynamics allow). Since flybys are suchirgegral part of the resonance hopping procedusmeauvers
with unrealistic approach radii are filtered outlamot considered further. The accepted expressiomdcessary

radius of closest approachfd,. ) is shown in Eq. (2).

1)

_ Hn _ My
V. 2sink,. /2) V.’

The necessary flyby radius must be greater thamtission’s specified minimum radius of closest apgh
(rPmin) in order for the corresponding VILM to be consild viable. Once all of the targeted maneuvers are
enumerated and filtered, the inner-level algorittaturns the single VILM that achieves the targefedchange in
the most fuel efficient manner.

The outer-level algorithm calculates and analydeefdhe possible resonance combinations, or hogmiaths,
between the two transfer moons. An exhaustiveofigtll of the possible L:K resonant orbits is ceshbased on the
initial and final resonances as well as maximurovedible time of flights for each phase. Table 1 shawlist of

possible resonant orbits for Phase 1 of a Ganyrnte#earopa transfer with a 6:5 initial resonance artdree-month
maximum allowable time of flight.

"Prec )

Table 1 Possible Resonant Orbits for Phase 1 of Gamede-Europa Transfer

L K L/K
Initial V, (6:5) 1.2000
5 4 1.2500
9 7 1.2857
4 3 1.3333
8 6 1.3333
Hohmann Transfer (HT) 1.3632

Although Table 1 includes only four potential reanoes, it is important to note that a maximum fligme of a
six months leads to 32 potential resonances toidens While repeat L:K ratios (i.e. 4:3 and 8:6)e allowed at
this stage due to the potential to vary the manemolution, the results will show that the shorfigght time
solutions are almost always preferable. Based erish of possible resonances, a resonance hoppegs then
created to enumerate all of the useful combinationshopping paths, of the resonant orbits thatwvethin the
allowable time of flight. This tree configuratios treated by starting at the HT orbit and workiraghkwards
through each resonant path until the given inigalonance orbit is reached, a backward sweep tpehfiased on
the principles of Bellman’'s Dynamic Programming {R&5). Figure 5 shows the resonance hoppingttratis
created from Table 1's data, along with its coroggling numbering system.



Figure 5 Resonance Hopping Tree for Phase 1 of Gamgde-Europa Transfer

Each branch of the example resonant tree stadstadh box and terminates at the HT box; consequesgich
branch represents a complete resonance hopping paithof the possible resonant paths are recontttl by
organizing the tree’s boxes in a matrix. Each rasphox is given an ascending integer from lefight down each
row, or generation. Then, each box’'s parent (theneoting box from the previous generation) andenirtotal
moon revolutions (the sum of K from the L:K termliogy) are collected and organized in matrix formtrae
enumeration matrix created from the tree in Figuig shown in Table 2.

Table 2 Tree Enumeration Matrix for Phase 1 of Ganynede-Europa Transfer

Current Box # Parent Box # L K L/K Total K
1.3632
1.3333
1.3333
1.2857
1.2500
1.2000
1.2000
1.2500
1.2000
1.2000
1.2000
1.2000

el
SRRhEBowo~ouprwNER
CUAWWNRE R R R
DU UTIO© N :!
OO ANIWO !
B oo P = '
RoGo~N~RurNwwo

After the data points are collected and organirethé tree enumeration matrix, each path is recoctsd by
starting at each row with the initial resonance doltbwing the parent trail up to the HT (Box #I)able 3
illustrates the reconstruction from bottom to témoe path from the matrix.

Table 3 Example Resonant Path Reconstruction for Gggmede-Europa Phase 1 Transfer

Current Box # Parent Box # L/K
12 8 1.2000
!
8 3 1.2500
!
3 1 1.3333

Once all of the resonant paths for each transfas@lave been reconstructed, the inner-level dhgori
described at the beginning of this section is usddrget and optimize the set of VILMs that areessary to
change the spacecraft,¥tom the specified initial to final resonance. Tesulting complete trajectory totaV and
time of flight for each path is then organizedhe form of a scatter plot which represents the ¥eesus flight time
trade study that is critical for preliminary design



V. Results

The aforementioned procedure is used to generalevirsus flight time trade study results for aietyr of
transfers between several moons in the Jovianrmysd of these moon orbits are approximated asutar and
coplanar, and their orbit radii, body radii, and\gtational parameters are listed in Table 4

Table 4 Jovian System Moon Orbit and Physical Chareteristics

Moon Orbit Radii (km) Body Radii (km) GravitationBarameter (krifs)
Callisto 1882700 2410.3 7.1795e3
Ganymede 1070400 2631.2 9.8879e3
Europa 671100 1560.8 3.2027e3
lo 421800 1821.6 5.959e3

All of the possible \ leveraging-based resonance hopping paths betveefour representative moons are
calculated and analyzed based on several reatigticerical assumptions. Minimum flyby altitude i a&100 km,
and the maximum allowable time of flight for eachnisfer is set at 20 times the orbital period & teparture
moon. The initial and final resonances, 6:5 and &$§pectively, are chosen to be consistent wihsti flight time
constraints and low energy tours (Ref. 11 and #6he VILM sequences are initiated or terminateithwow
altitude orbit insertion at one of the moons, (R&) gives a simple quadrature for the optimal lozun V.,
conditions. On the other hand, the transfers is Work begin and end with near-resonant orbits raddhe central
body. In other words, the orbit insertion costst thee left out of this analysis cover the aforerimergd escape
propulsive maneuver for each transfer, so totdl dasts for the following trajectories are basediwa sum of their
small propulsive maneuvers. The resulting scatter @f possible trajectories between Ganymede amchia is
shown in Figure 6, where the numbered trajectaesprise the Pareto front; scatter plots for thmeai@ing Jovian
system inner-moon transfers can be found in (R&f. 2
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Figure 6 Complete Trajectory Scatter Plot for Ganynede-Europa (6:5-5:6) Transfer

Each point in Figure 6 represents a complete regdmapping sequence, or branch of the previouspiated
tree (see Figure 5). Table 5 shows a comparisosaoh transfer’s fuel and time optimum trajecto(le®T and

" URL: http://ssd.jpl.nasa.gov/ [cited 16 Jan 2009].



TOT, respectively) from the aforementioned scapflets. The maximum allowable times of flight andrsfer
distances are normalized by the orbit period add cé the departure moon, respectively.

Table 5 Jovian System Time and Fuel Optimum Trajeairy Costs

Transfer Moons Transfer Distance/ TOT TOT FOT FOT Max. TOF/

(Departure- Departure Moon AV Flight Time AV Flight Time Departure Moon
Arrival) Radii (m/s) (days) (m/s) (days) Period
Callisto- 0.4314 289.3 156.9 279.6 214.0 20

Ganymede

Ganymede- 0.3734 249.2 83.14 225.3 122.1 20
Europa

Europa-lo 0.3715 259.0 50.20 254.7 62.55 20

As can be seen in Table 5, the differencAVhcost between the Callisto-Ganymede FOT and TO/Eig small
(~3%, which is consistent with the phase free tesiibm (Ref. 26)), but the difference in time &gt is quite
large (~27%). Similar trends occur in the data frib other two Jovian system inner-moon transféssa result,
the TOT of each transfer is chosen for further @eTation because it is consistently the most iefficoption in this
design space. The orbital trajectory diagram seeRigure 7 depicts the motion of the three bodiesng the
Ganymede to Europa transfer's TOT; orbital trajectdiagrams for the remaining Jovian system innepm
transfer TOTs can be found in (Ref. 22).
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Figure 7 Complete Orbital Trajectory Diagram for Ganymede-Europa (6:5-5:6) Transfer TOT

In Figure 7, departure (D), burn (B), flyby (F),daarrival (A) times and locations are all labeladd the initial
phasing anglef) between the two transfer moons is depicted.



Figure 6, Figure 8, and Table 6 show the resulteepéating the earlier Ganymede to Europa trarsialysis
with a 50% longer allowable maximum time of flightd comparing their respective fuel optimum trajees
(FOT); the additional Jovian system Table 6 datmlkected from similar scatters plots found in {R22).
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Figure 8 Complete Trajectory Scatter Plot for LongTOF Ganymede-Europa (6:5-5:6) Transfer

Table 6 Jovian System Maximum Allowable Time of Fljht Experiment Results

Transfer Moons FOT FOT Max. TOF/ FOT FOT Max. TOF/
(Departure- AV Flight Time Departure AV Flight Time Departure Moon Period
Arrival) (m/s) (days) Moon Period (m/s) (days)
Callisto- 279.6 214.0 20 249.1 454.0 30
Ganymede
Ganymede- 225.3 122.1 20 221.5 204.0 30
Europa
Europa-lo 254.7 62.55 20 245.7 89.01 30

It is known from phase-free theory that a mathecahtiimit for the minimumAV for leveraging transfers
between moons exists (Ref. 26), and the data frablel6 substantiates this claim. In other wordstgasing the
maximum allowable time of flight by 50% only marglly improves the fuel cost and significantly inases the
trajectory time of flight. Along these lines, (R@6) gives a quadrature expression for the thezadetninimum fuel
limit for exterior and interior leveraging. Unlikbe theoretical explanation, the results of thislgtnot only clearly
indicate the existence of the aforementioned lilmit, they also indicate the approximate time afHfliwhere the
Pareto front approaches it.

Finally, full planetary moon tour costs are caltethby adding the TOT fuel and flight time totats fnultiple
transfers in the same system. Table 7 shows tHeafdetime of flight costs for a full planetary motour from
Callisto to lo with intermediate loosely capturedits at Ganymede and Europa to gather scientifarination.
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Table 7 Jovian System Moon Tour Costs

Transfer Moons (Departure-Arrival) TOT Tot&V (m/s) TOT Time of Flight (days)
Callisto-Ganymede 289.3 156.9
Ganymede-Europa 249.2 83.14

Europa-lo 259.0 50.20
Complete Tour 797.5 290.24

These loosely captured science orbits don’t recauieadditional propulsive burns; alternativelyisiestimated
that insertion and departure from low altitude sciorbits would cost less than 100 m/s per moosinflar tour
analysis was considered for the Saturnian systeirthle unique physical characteristics and dynamwiéts moons
make it very difficult for this particular proceduto complete transfers involving thelis important to note that
completing each of these tours in the reverse tilimeaevould involve identical fuel and time of fliglcosts due to
the leveraging maneuvers’ inherent symmetry. Asgliitional time and fuel would need to be allotteda actual
mission to account for science and phasing asagadrbit departure and insertion considerations.

VI. Conclusions

The resonance hopping and associated pathfindofmigue developed in this study addresses the ghesk
planetary moon tour problem. This research offersaatomated alternative that efficiently producasiifies of
Pareto optimized trajectory solutions, which isessary due to the considerable size of the planetaon tour
design space. A preliminary design software tooMIATLAB has been written that utilizes the aforertiened
procedure to solve the phasing and resonant pdth§in problem associated with planetary moon tours.
Additionally, applying \, leveraging in the heliocentric environment regsiige system design trade involving
launch energy versus mid-course correction fueltand considerations. The planetary moon tour gmbiloes not
require this trade, which makes, everaging a more viable mission design optiorthis environment from a
systems engineering perspective. Furthermoreaftpsoach verifies fuel costs predicted by phase thieory, and it
provides the flight times associated with thesé liugts that are inherently missing from theoryloAg these lines,
lower fuel tour solutions are possible using maotidy models, but these trajectories typically imeolong flight
times (Ref. 20). Therefore, the results from thagkvare most useful for missions requiring shaghfl times, which
is a likely constraint for future planetary moorutamissions. Finally, it is important to note tlthe zero-point
patched conic moon tour solutions from this redeatwuld be used as preliminary designs that gbefuli initial
estimations and ultimately lead to the discoverynofe robust trajectories from three-body and emrenmodels.
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