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Resonance Hopping Transfers                                         
Between Moon Science Orbits                                   

Adam T. Brinckerhoff*  
Georgia Institute of Technology, Atlanta, GA, 30332-0150 

Resonance hopping transfers between science orbits around two circular, coplanar 
moons of a common planet are designed using series of alternating V-infinity leveraging 
maneuvers and zero-point patched conic gravity assists. When this technique is combined 
with an efficient global search based on Bellman’s Principle, the end result is an exhaustive 
set of fuel and time optimal trajectories between the two moons in question. The associated 
Pareto front of solutions represents the classic fuel versus flight time trade study sought in 
preliminary mission design. Example numerical results are produced for orbital transfers 
between scientifically interesting moons in the Jovian system due to NASA and ESA’s 
particular interest in executing future tour missions in this environment. Finally, resonant 
transfers between neighboring pairs of moons are patched together to obtain fuel and flight 
time estimates for a full Jovian system tour between intermediate previously discovered 
circulating eccentric science orbits. Results from this fast, preliminary design procedure are 
intended to serve as useful starting points for higher fidelity multi-body mission design.  In 
general, the resonant hopping design approach and the associated design procedure are 
found to be most relevant for missions with short flight time requirements.  

Nomenclature 
V∞ = Excess Hyperbolic Velocity  VM = Planet-relative Moon Velocity 

Vector 
VILM =  V∞ Leveraging Maneuver  V∞IN = Excess Hyperbolic Spacecraft 

Approach Velocity Vector 
L = Number of Spacecraft Orbit 

Revolutions 
 V∞OUT = Excess Hyperbolic Spacecraft 

Departure Velocity Vector 
K = Number of Moon Orbit Revolutions  θ = Initial Transfer Moon Phase Angle 
RP = Ratio Between Spacecraft and 

Resonant Orbit Periods 
 

necrp  = Necessary Radius of Closest 
Approach for Flyby 

M = Spacecraft Orbit Revolution on 
which the Maneuver is Performed 

 
minrp  = Minimum Radius of Closest 

Approach for Flyby 
± = Rendezvous After or Before the 

Line of Apsides Crossing 
 

mµ  = Moon Gravitational Parameter 

ESCv∆  = Magnitude of Escape Propulsive 
Maneuver at Moon 

 
neck  = Necessary Turn Angle of the V∞ 

Vector for Flyby 

SPMv∆  = Magnitude of Small Propulsive 
Maneuver at Line of Apsides 

 HT = Hohmann Transfer 

VIN = Planet-relative Spacecraft Approach 
Velocity Vector 

 FOT = Fuel Optimum Trajectory 

VOUT = Planet-relative Spacecraft Departure 
Velocity Vector 

 TOT = Time Optimum Trajectory 

                                                           
* Graduate Research Assistant, Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of 
Technology, 270 Ferst Drive, Atlanta, GA 30332-0150. 
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I.  Introduction  
V∞ leveraging maneuver (VILM) is defined as a technique that utilizes a propulsive burn well before arriving at 
a gravity assist body in order to efficiently increase or decrease the arrival V∞ (excess hyperbolic velocity). At 

the expense of extra flight time, the typical effect of the propulsive ∆V maneuver and associated flyby is a 
significant amplification in the change in V∞ (that otherwise would be directly changed using a launch vehicle or 
propulsive ∆V). The two-body zero-point patched conic approximation, also referred to as the zero-sphere-of-
influence patched conic approximation, is used in preliminary analysis of missions employing flyby trajectories. The 
method approximates the flyby as a collision of two point particles where the state of the attracting body, in this case 
the moon, is unaffected. In this work, V∞ leveraging maneuvers and zero-point patched conic gravity turns are 
combined into resonance hopping to complete fuel and time efficient inner-moon orbital transfers.  

A. Background 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 
 The delta-velocity Earth gravity assist (∆V-EGA), the first example of a V∞ leveraging, is introduced in (Ref. 1). 

Additionally, the analytic theory of two-body VILMs is developed in (Ref. 2), and it is explored further and applied 
to relevant problems in (Ref. 3-7). The zero-point patched conic method approximates the moon’s region of 
influence to be infinitesimally small and the spacecraft’s velocity change to be instantaneous at the point of flyby 
(Ref. 8). Each VILM requires the spacecraft to be in a near-resonant orbit with respect to the moon in question, so 
the process of moving between different near-resonant orbits from one moon to another is termed V∞ leveraging-
based resonance hopping (which is a variation of the resonance hopping technique defined in (Ref. 8)).  

B. Motivation 
While previous studies are focused on its heliocentric applications, it is important to note that V∞ leveraging is 

not specific to the Sun-Earth system. V∞ leveraging has considerable heritage from use in several heliocentric 
missions, but the associated design space in this environment is relatively small. As a result, the current state of the 
art of V∞ leveraging mission design is manual point designs. Accordingly, this work studies the application of 
VILMs to the phase-fixed planetary moon tour problem, where the distance and time scales are dramatically 
different from the heliocentric problem. Various studies on different aspects of the planetary moon tour are 
conducted in (Ref. 8-16). In the general three-dimensional case, the region of moon influence is a sphere (Ref. 17 
and 18), but in this research only the planar, circular case is considered. Tours with long flight times and very low 
fuel requirements using three-body applications are demonstrated in (Ref. 11, 19, and 20). On the other hand, this 
work is intended to be most applicable to shorter flight-time missions, such as those in the Jovian system where 
radiation exposure is a driving constraint.  

Particular motivation for this work comes from recent interest from NASA and ESA to send flagship class tour 
and orbiting missions to the planetary moon system of Jupiter. In FY07, under sponsorship of NASA headquarters, 
the Jet Propulsion Laboratory completed the Jupiter System Observer mission study* . Concurrently, three other 
outer planet mission studies were completed at various research centers as part of an initiative to quickly assess 
potential mission scenarios for the next outer planet flagship mission. Among the many challenges facing mission 
design for the Jupiter System Observer and other planetary moon missions is the open issue of how to most 
effectively and efficiently connect the inner-moon portion of the trajectory design with the carefully selected science 
orbits. 

In general, the end goal of this research is to design time and fuel efficient transfers between previously 
discovered circulating eccentric science orbits about moons in the Jovian system. Among the many options 
considered in the preliminary trade space for the Jupiter System Observer mission, the proposed reference mission 
included a one year mission phase where the spacecraft is loosely captured around Ganymede in a heavily perturbed 
third body orbit. The circulating orbit cycles between high and low eccentricity while distributing its close approach 
locations throughout most latitudes and all longitudes (Ref. 21). The orbital geometry and timing are favorable for a 
variety of both Ganymede and Jupiter system science. Because the dynamics of orbiters around planetary moons are 
largely governed by the unstable perturbing effects of the planet, the science orbit design is challenging and the 
resulting set of feasible orbits that satisfy mission and dynamical constraints are limited. Thus, two-body inner-moon 
transfers apply established V∞ leveraging methods, basic targeting, and enumeration techniques to connect these 
eccentric science orbits and consequently provide one solution to the planetary moon tour problem (Ref. 22). 

                                                           
* http://www.lpi.usra.edu/opag/jso_final_report.pdf [cited Mar 20 2008] 
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II.  Models 
The modeling of this work is divided into three main components: V∞ leveraging maneuver, zero-point patched-

conic approximation, and resonance hopping. The following sections detail each component and discuss how these 
models were integrated to create the capability to find and optimize families of inner-moon transfers. 

A. V∞ Leveraging Maneuver 
Phasing between the body and the spacecraft is an integral part of a VILM. At the beginning of the trajectory, the 

spacecraft departs from the body’s orbit into a nearly resonant orbit (Ref. 2). In the case of a planetary moon system, 
the specific parameters of this resonance are described by the variables L (number of spacecraft orbit revolutions), K 
(number of moon orbit revolutions), and RP (ratio between the spacecraft and resonant orbit periods). Additionally, 
M represents the spacecraft orbit revolution on which the maneuver is performed, and ± denotes the location of the 
moon rendezvous (after or before the spacecraft crosses the line of apsides, respectively). This terminology is 
consistent with the interplanetary application of V∞ leveraging introduced in (Ref. 2). The corresponding geometry 
for forward and backward interior and exterior maneuvers in the planetary moon system is depicted in Figure 1 and 
Figure 2. 
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Figure 1 Interior V ∞ Leveraging Maneuver Geometry 
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Figure 2 Exterior V∞ Leveraging Maneuver Geometry 

As can be seen in Figure 1 and Figure 2, a small propulsive burn is performed tangent to the orbit at the line of 
apsides crossing directly across from the launch location. In the case of a forward interior maneuver, the burn is 
performed in the direction of the velocity vector at the periapse of the spacecraft’s orbit. The location and magnitude 
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of this burn allow the spacecraft to increase the size of its orbit and ultimately rendezvous with the moon at an 
inertial position different than that of the launch location. Alternately, a backward interior VILM reverses the effect 
of a forward interior maneuver so that the V∞ magnitude decreases. A backward interior VILM departs from the ± 
location that is opposite of its forward counterpart’s reencounter position with its spacecraft velocity vector pointed 
off-tangent with respect to the moon’s orbit. Furthermore, the propulsive burn at periapse occurs in the opposite 
direction of the spacecraft’s velocity, and its rendezvous with the moon is tangent to the moon’s orbit. The relative 
symmetry of these two maneuvers results in identical fuel usage and time of flight regardless of direction. Along 

these lines, ESCv∆  (magnitude of escape propulsive maneuver at moon) and SPMv∆  (magnitude of small 

propulsive maneuver at line of apsides) are introduced as two parameters that quantify the fuel efficiency of each 
VILM. Forward and backward exterior leveraging maneuvers are very similar to their interior counterparts; Figure 2 
and analyses in (Ref. 1, 2, and 4) give thorough descriptions of their important similarities and differences. 

This work relies on the assumption that the near-optimum location and direction of each leveraging maneuver 
burn is at the line of apsides and tangent to the spacecraft’s orbit, respectively (Ref. 2). This standard burn location 
and direction could be further optimized for each maneuver, but a departure from either of these assumptions would 
significantly complicate the resulting flyby timing and geometry. In fact, it is well known that changing the V∞ is 
akin to changing the Jacobi constant in the three-body problem (Ref. 4 and 20). Further, the maximum change in 
Jacobi constant occurs when a maneuver is performed tangent to the orbit and at the apses where the rotating 
velocity is greatest (Ref. 4). Therefore, the stated burn location and direction are indeed optimal for maximizing the 
change in V∞ during a single leveraging maneuver. 

The current work also assumes that the spacecraft always escapes from and returns to the moon tangent to both 
orbits during forward and backward VILMs, respectively. Again, this key starting or ending direction could be 
marginally improved when optimizing multiple sequences of maneuvers, but as already discussed, V∞ is most 
efficiently changed when the rotating velocity is greatest.  The tangent departure provides for the maximum (or 
minimum) apse distance, thereby optimizing the potential for change in V∞.  Furthermore and perhaps more 
importantly, applying the tangential strategy allows the local problem to be decoupled from the global pathfinding 
problem. 

B. Zero-Point Patched-Conic Approximation 
In order to complete each step of the resonance hopping procedure, a specific change in V∞ is targeted for each 

VILM; the targeted change in V∞ is necessary for the spacecraft to achieve its next near-resonant orbit in the path. 
The V∞ change that results from a single VILM is controlled by varying three of its defining parameters. 
Specifically, the three influential parameters in question are RP (continuous), M (discrete), and ± (discrete).  For a 
given set of M and ± values, the problem is reduced to a simple one-dimensional root-solving problem to identify 
the RP that leads to the targeted change in V∞ (as the physical dynamics allow). Upon arriving at the moon with the 
correct V∞, a zero-point patched conic flyby is completed at rendezvous to turn the spacecraft’s velocity back to (or 
away from) tangent with the moon’s orbit so the VILM process can be repeated. Figure 3 is a visual representation 
of the planet-relative and moon-relative velocities during the flyby. 
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Figure 3  Two-Body Zero-Point Patched Conic Velocity Diagram 
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In Figure 3, VIN and VOUT are the planet-relative spacecraft approach and departure velocity vectors, and VM is 
the velocity vector of the moon with respect to the planet. The zero-point patched conic model implies that the 
incoming and outgoing hyperbolic excess velocities have the same magnitude (Ref. 23). It is well known that this 
model is a better approximation in the interplanetary problem than the planetary moon problem. However, the 
approximation does remain useful and is successfully employed in preliminary design for many complex planetary 
moon tours (Ref. 12 and 24). 

C. Resonance Hopping 
While transfers between two moons are symmetric regardless of direction, this work focuses on the design of 

interior inner-moon transfers because they are more likely to be included in realistic moon tour missions. The 
procedure to accomplish this task is broken into the two phases depicted in Figure 4. 

 

Figure 4 Interior Inner-moon Transfer Phase Diagram 

As can be seen in Figure 4, Phase 1 of the transfer involves changing the spacecraft V∞ from the initial resonant 
orbit V∞ to the Hohmann transfer (HT) V∞ between the two moon orbits. The necessary V∞ change for Phase 1 is 
accomplished using a resonance hopping procedure comprised of alternating forward interior VILMs (see Figure 2) 
and zero-point patched conic flybys. Phase 1 finishes when the spacecraft passes near the arrival moon tangentially 
after it completes the inner-moon HT. Phase 2 of the transfer involves changing from the inner-moon HT periapse 
V∞ to the final resonance orbit V∞. Similar to Phase 1, this V∞ change is accomplished using alternating flybys and 
VILMs, but this time the flybys turn the spacecraft velocity vector away from tangent and the maneuvers are of the 
backward exterior variety (see Figure 2). Phase 2 begins with a gravity turn at the initial arrival moon rendezvous 
point, which provides the necessary initial velocity vector orientation for the first backward exterior VILM. Phase 2 
finishes when the spacecraft re-encounters the arrival moon with a V∞ that corresponds to the final resonant orbit. 
The initial relative phase angle between the two moons (θ) represents the relative initial geometry that is required to 
ensure that the arrival moon is in the correct position upon completion of the phase patching HT. 
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IV. Methodology 

A multi-level procedure is used to calculate and analyze the solutions to each inner-moon V∞ leveraging transfer 
problem. The objective is to patch a known sequence of near-resonant orbits with gravity assisted flybys. VILMs are 
designed to progressively adjust the V∞ at each flyby to the level appropriate for the subsequent resonant orbit. The 
V∞ for a given L:K resonance is easily calculated using the expression in Eq. (1).   

 
K

KLV
V M )( −=∞  (1) 

Once the resonant V∞ is calculated, a value slightly above or below (depending on the particular VILM 
geometry) this reference is targeted so the spacecraft enters into the appropriate near-resonant orbit. The inner-level 
algorithm calculates the characteristics of the VILM trajectory and subsequently root-solves for VILMs that result in 

the targeted change in V∞. The algorithm adjusts the magnitude of the small propulsive burn ( SPMv∆ ) to ensure that 

a spacecraft-moon rendezvous occurs at the intended ± orbit intersection (Ref. 2). Then, for each combination of the 
discreet variables M and ±, the continuous RP value is adjusted until the targeted change in V∞ is achieved (as the 
physical dynamics allow). Since flybys are such an integral part of the resonance hopping procedure, maneuvers 
with unrealistic approach radii are filtered out and not considered further. The accepted expression for necessary 

radius of closest approach (necrp ) is shown in Eq. (2).  

 
22 )2/sin( ∞∞

−=
VkV

rp m

nec

m
nec

µµ
 (2) 

The necessary flyby radius must be greater than the mission’s specified minimum radius of closest approach 

( minrp ) in order for the corresponding VILM to be considered viable. Once all of the targeted maneuvers are 

enumerated and filtered, the inner-level algorithm returns the single VILM that achieves the targeted V∞ change in 
the most fuel efficient manner.  

The outer-level algorithm calculates and analyzes all of the possible resonance combinations, or hopping paths, 
between the two transfer moons. An exhaustive list of all of the possible L:K resonant orbits is created based on the 
initial and final resonances as well as maximum allowable time of flights for each phase. Table 1 shows a list of 
possible resonant orbits for Phase 1 of a Ganymede to Europa transfer with a 6:5 initial resonance and a three-month 
maximum allowable time of flight. 

Table 1 Possible Resonant Orbits for Phase 1 of Ganymede-Europa Transfer  

L K L/K 
Initial V∞ (6:5) 1.2000 

5 4 1.2500 
9 7 1.2857 
4 3 1.3333 
8 6 1.3333 

Hohmann Transfer (HT) 1.3632 

Although Table 1 includes only four potential resonances, it is important to note that a maximum flight time of a 
six months leads to 32 potential resonances to consider.   While repeat L:K ratios (i.e. 4:3 and 8:6)  are allowed at 
this stage due to the potential to vary the maneuver revolution, the results will show that the shorter flight time 
solutions are almost always preferable. Based on the list of possible resonances, a resonance hopping tree is then 
created to enumerate all of the useful combinations, or hopping paths, of the resonant orbits that are within the 
allowable time of flight. This tree configuration is created by starting at the HT orbit and working backwards 
through each resonant path until the given initial resonance orbit is reached, a backward sweep technique based on 
the principles of Bellman’s Dynamic Programming (Ref. 25).  Figure 5 shows the resonance hopping tree that is 
created from Table 1’s data, along with its corresponding numbering system. 
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Figure 5 Resonance Hopping Tree for Phase 1 of Ganymede-Europa Transfer 

Each branch of the example resonant tree starts at a 6:5 box and terminates at the HT box; consequently, each 
branch represents a complete resonance hopping path.  All of the possible resonant paths are reconstructed by 
organizing the tree’s boxes in a matrix. Each resonant box is given an ascending integer from left to right down each 
row, or generation. Then, each box’s parent (the connecting box from the previous generation) and current total 
moon revolutions (the sum of K from the L:K terminology) are collected and organized in matrix form. A tree 
enumeration matrix created from the tree in Figure 5 is shown in Table 2. 

Table 2 Tree Enumeration Matrix for Phase 1 of Ganymede-Europa Transfer 

Current Box # Parent Box # L K L/K Total K 
1 - - - 1.3632 - 
2 1 8 6 1.3333 6 
3 1 4 3 1.3333 3 
4 1 9 7 1.2857 7 
5 1 5 4 1.2500 4 
6 1 6 5 1.2000 5 
7 2 6 5 1.2000 11 
8 3 5 4 1.2500 7 
9 3 6 5 1.2000 8 
10 4 6 5 1.2000 12 
11 5 6 5 1.2000 9 
12 8 6 5 1.2000 12 

 
After the data points are collected and organized in the tree enumeration matrix, each path is reconstructed by 

starting at each row with the initial resonance and following the parent trail up to the HT (Box #1). Table 3 
illustrates the reconstruction from bottom to top of one path from the matrix. 

Table 3 Example Resonant Path Reconstruction for Ganymede-Europa Phase 1 Transfer 

Current Box # Parent Box # L/K 
12 8 1.2000 

  ↓ 
8 3 1.2500 

  ↓ 
3 1 1.3333 

 
Once all of the resonant paths for each transfer phase have been reconstructed, the inner-level algorithm 

described at the beginning of this section is used to target and optimize the set of VILMs that are necessary to 
change the spacecraft V∞ from the specified initial to final resonance. The resulting complete trajectory total ∆V and 
time of flight for each path is then organized in the form of a scatter plot which represents the fuel versus flight time 
trade study that is critical for preliminary design. 
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V. Results 

The aforementioned procedure is used to generate fuel versus flight time trade study results for a variety of 
transfers between several moons in the Jovian system. All of these moon orbits are approximated as circular and 
coplanar, and their orbit radii, body radii, and gravitational parameters are listed in Table 4*. 

Table 4 Jovian System Moon Orbit and Physical Characteristics 

Moon Orbit Radii (km) Body Radii (km) Gravitational Parameter (km3/s2) 
Callisto 1882700 2410.3 7.1795e3 

Ganymede 1070400 2631.2 9.8879e3 
Europa 671100 1560.8 3.2027e3 

Io 421800 1821.6 5.959e3 
 
All of the possible V∞ leveraging-based resonance hopping paths between the four representative moons are 

calculated and analyzed based on several realistic numerical assumptions. Minimum flyby altitude is set at 100 km, 
and the maximum allowable time of flight for each transfer is set at 20 times the orbital period of the departure 
moon. The initial and final resonances, 6:5 and 5:6, respectively, are chosen to be consistent with realistic flight time 
constraints and low energy tours (Ref. 11 and 26). If the VILM sequences are initiated or terminated with low 
altitude orbit insertion at one of the moons, (Ref. 26) gives a simple quadrature for the optimal boundary V∞ 
conditions. On the other hand, the transfers in this work begin and end with near-resonant orbits around the central 
body. In other words, the orbit insertion costs that are left out of this analysis cover the aforementioned escape 
propulsive maneuver for each transfer, so total fuel costs for the following trajectories are based on the sum of their 
small propulsive maneuvers. The resulting scatter plot of possible trajectories between Ganymede and Europa is 
shown in Figure 6, where the numbered trajectories comprise the Pareto front; scatter plots for the remaining Jovian 
system inner-moon transfers can be found in (Ref. 22).   
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Figure 6 Complete Trajectory Scatter Plot for Ganymede-Europa (6:5-5:6) Transfer  

Each point in Figure 6 represents a complete resonant hopping sequence, or branch of the previously depicted 
tree (see Figure 5). Table 5 shows a comparison of each transfer’s fuel and time optimum trajectories (FOT and 

                                                           
* URL: http://ssd.jpl.nasa.gov/ [cited 16 Jan 2009]. 
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TOT, respectively) from the aforementioned scatter plots. The maximum allowable times of flight and transfer 
distances are normalized by the orbit period and radii of the departure moon, respectively. 

Table 5 Jovian System Time and Fuel Optimum Trajectory Costs 

Transfer Moons 
(Departure-

Arrival) 

Transfer Distance/ 
Departure Moon 

Radii 

TOT 
∆V 

(m/s) 

TOT  
Flight Time 

(days) 

FOT 
∆V 

(m/s) 

FOT  
Flight Time  

(days) 

Max. TOF/  
Departure Moon 

Period 
Callisto-

Ganymede 
0.4314 289.3 156.9 279.6 214.0 20 

Ganymede-
Europa 

0.3734 249.2 83.14 225.3 122.1 20 

Europa-Io 0.3715 259.0 50.20 254.7 62.55 20 

As can be seen in Table 5, the difference in ∆V cost between the Callisto-Ganymede FOT and TOT is very small 
(~3%, which is consistent with the phase free results from (Ref. 26)), but the difference in time of flight is quite 
large (~27%). Similar trends occur in the data from the other two Jovian system inner-moon transfers. As a result, 
the TOT of each transfer is chosen for further consideration because it is consistently the most efficient option in this 
design space. The orbital trajectory diagram seen in Figure 7 depicts the motion of the three bodies during the 
Ganymede to Europa transfer’s TOT; orbital trajectory diagrams for the remaining Jovian system inner-moon 
transfer TOTs can be found in (Ref. 22).   
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Event # Time (days) Event 

1 0 D (6:5, |V∞| = 0.7288 km/s) 
2 32.78 B1 (∆V = 127.2 m/s) 
3 34.94 F1 (HT, |V∞| = 1.329 km/s, necr = 5330 km)  

4 37.56 F2 (5:7, |V∞| = 1.494 km/s, necr = 3992 km) 

5 44.84 B2 (∆V = 22.99 m/s) 
6 62.25 F3 (5:6, |V∞| = 1.320 km/s, necr = 1789 km) 

7 63.96 B3 (∆V = 99.04 m/s) 
8 83.14 A (5:6, |V∞| = 0.7665 km/s) 

Figure 7 Complete Orbital Trajectory Diagram for Ganymede-Europa (6:5-5:6)  Transfer TOT  

In Figure 7, departure (D), burn (B), flyby (F), and arrival (A) times and locations are all labeled, and the initial 
phasing angle (θ) between the two transfer moons is depicted.  
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Figure 6, Figure 8, and Table 6 show the results of repeating the earlier Ganymede to Europa transfer analysis 
with a 50% longer allowable maximum time of flight and comparing their respective fuel optimum trajectories 
(FOT); the additional Jovian system Table 6 data is collected from similar scatters plots found in (Ref. 22). 
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Figure 8 Complete Trajectory Scatter Plot for Long TOF Ganymede-Europa (6:5-5:6) Transfer  

Table 6 Jovian System Maximum Allowable Time of Flight Experiment Results 

Transfer Moons 
(Departure-

Arrival) 

FOT 
∆V 

(m/s) 

FOT  
Flight Time 

(days) 

Max. TOF/  
Departure 

Moon Period 

FOT 
∆V 

(m/s) 

FOT  
Flight Time  

(days) 

Max. TOF/  
Departure Moon Period 

Callisto-
Ganymede 

279.6 214.0 20 249.1 454.0 30 

Ganymede-
Europa 

225.3 122.1 20 221.5 204.0 30 

Europa-Io 254.7 62.55 20 245.7 89.01 30 

It is known from phase-free theory that a mathematical limit for the minimum ∆V for leveraging transfers 
between moons exists (Ref. 26), and the data from Table 6  substantiates this claim. In other words, increasing the 
maximum allowable time of flight by 50% only marginally improves the fuel cost and significantly increases the 
trajectory time of flight. Along these lines, (Ref. 26) gives a quadrature expression for the theoretical minimum fuel 
limit for exterior and interior leveraging. Unlike the theoretical explanation, the results of this study not only clearly 
indicate the existence of the aforementioned limit, but they also indicate the approximate time of flight where the 
Pareto front approaches it. 

Finally, full planetary moon tour costs are calculated by adding the TOT fuel and flight time totals for multiple 
transfers in the same system. Table 7 shows the fuel and time of flight costs for a full planetary moon tour from 
Callisto to Io with intermediate loosely captured orbits at Ganymede and Europa to gather scientific information. 
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Table 7 Jovian System Moon Tour Costs 

Transfer Moons (Departure-Arrival) TOT Total ∆V (m/s) TOT Time of Flight (days) 
Callisto-Ganymede 289.3 156.9 
Ganymede-Europa 249.2 83.14 

Europa-Io 259.0 50.20 
Complete Tour 797.5 290.24 

These loosely captured science orbits don’t require any additional propulsive burns; alternatively, it is estimated 
that insertion and departure from low altitude science orbits would cost less than 100 m/s per moon. A similar tour 
analysis was considered for the Saturnian system, but the unique physical characteristics and dynamics of its moons 
make it very difficult for this particular procedure to complete transfers involving them. It is important to note that 
completing each of these tours in the reverse direction would involve identical fuel and time of flight costs due to 
the leveraging maneuvers’ inherent symmetry. Also, additional time and fuel would need to be allotted for a actual 
mission to account for science and phasing as well as orbit departure and insertion considerations.  

VI. Conclusions 

The resonance hopping and associated pathfinding technique developed in this study addresses the phase-fixed 
planetary moon tour problem. This research offers an automated alternative that efficiently produces families of 
Pareto optimized trajectory solutions, which is necessary due to the considerable size of the planetary moon tour 
design space. A preliminary design software tool in MATLAB has been written that utilizes the aforementioned 
procedure to solve the phasing and resonant pathfinding problem associated with planetary moon tours. 
Additionally, applying V∞ leveraging in the heliocentric environment requires a system design trade involving 
launch energy versus mid-course correction fuel and tank considerations. The planetary moon tour problem does not 
require this trade, which makes V∞ leveraging a more viable mission design option in this environment from a 
systems engineering perspective. Furthermore, this approach verifies fuel costs predicted by phase free theory, and it 
provides the flight times associated with these fuel limits that are inherently missing from theory. Along these lines, 
lower fuel tour solutions are possible using multi-body models, but these trajectories typically involve long flight 
times (Ref. 20). Therefore, the results from this work are most useful for missions requiring short flight times, which 
is a likely constraint for future planetary moon tour missions. Finally, it is important to note that the zero-point 
patched conic moon tour solutions from this research should be used as preliminary designs that give useful initial 
estimations and ultimately lead to the discovery of more robust trajectories from three-body and ephemeris models.  
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