

Design, Modeling, and Simulation of a
 Hydrogen-Induced

 Air Liquefaction System Applicable to
 Space Access Vehicles

John E. Crowley

AE 8900 Special Problem Report
May 2, 2004

School of Aerospace Engineering
Space Systems Design Lab

Georgia Institute of Technology
Atlanta, GA 30332-0150

Advisor: Dr. John R. Olds

 1

Table of Contents
Abstract...6

Introduction..8

1 State of the Art in Air Liquefaction ..9

1.1 Liquid Air Engine Cycles ...10

1.1.1 Basic LACE ..10

1.1.2 ACES...11

1.1.3 SuperLACE ..12

1.1.4 RamLACE and ScramLACE ...13

1.2 Enabling Technologies for Air Liquefaction14

1.2.1 Para/Ortho Hydrogen Conversion14

1.2.2 Compact Cryogenic Heat Exchangers16

1.2.3 Water Ice Fouling Alleviation...18

2 Design Problem and Methodology Model Engineer20

2.1 Model Engineer ...23

2.1.1 Object Engineer ...23

2.1.2 Thermal Systems Library ...25

2.1.3 Data Viewing Library..26

2.1.4 Data Flow Library ...26

2.2 ModelCenter..27

2.2.1 FileWrappers..28

2.2.2 Optimization...29

2.2.3 Link Editor ...31

2.3 The ALS Model ...31

2.3.1 Heat Exchanger Components ...32

2.3.2 Water Separator Components ..35

2.3.3 Model Engineer ALS ...37

2.3.4 ModelCenter ALS ..39

2.4 ModelCenter vs. Model Engineer..42

 1

3 Validation..44
3.1 Heat Exchanger Validation..44

3.2 Water Separator Validation...47

4 ALS Model Analysis ..50
4.1 Sea Level Static ...50

4.2 Additional Cases..52

4.3 Trade Studies...54

5 Conclusions...56

References...58

Appendix A—ALS Model User Guide...59

 2

List of Figures

Figure 1: A Basic LACE Engine (Ref 3).

Figure 2: An ACES Schematic (Ref 3).

Figure 3: RamLACE Engine Schematic (Ref 3).

Figure 4: ScramLACE Engine Concept (Ref 3).

Figure 5: Standard Heat Exchange Setup (Ref 3, 4-2).

Figure 6: The Air Liquefaction System.

Figure 7: A Typical Tube Bank Heat Exchanger (Ref 3).

Figure 8: ModelCenter Optimization Window.

Figure 9: Heat Exchanger Tube Spacing (Ref 3).

Figure 10: Feedback Version of Model Engineer ALS.

Figure 11: FPI Version of Model Engineer ALS.

Figure 12: Feedback Version of ModelCenter ALS.

Figure 13: OBD Version of ModelCenter ALS.

Figure 14: Comparison of Predicted Cold Side Output Temperatures for ME and ALS.

Figure 15: Absolute Percent Discrepancy for Weights and Sizing.

Figure 16: Water Removed vs. Inlet Temperature.

Figure 17: Comparison of ME and ALS Water Removal.

Figure 18: Optimization History of ALS Model for SLS Conditions.

Figure 19: Run History for High Speed Case (Mach = 2.5).

Figure 20: Effect of Para/Ortho Conversion Catalyst on Heat Exchanger Weight.

Figure 21: System Weight vs. Required System Efficiency.

Figure A1: Visual Basic Component Window.

 3

List of Tables

Table 1: Effect of Ethylene Glycol on the Freezing Point of Water (Ref 7).

Table 2: ATREX Precooler Data and ALS Predicted Performance.

Table 3: SLS Air Liquefaction System Parameters.

Table 4: Results of Optimizer-Based Decomposition on SLS ALS.

Table 5: Results of Optimizer-Based Decomposition on High Speed and Altitude ALS.

Table A1: ALSHEX System Inputs.

Table A2:ALSHEX System Outputs.

Table A3: ALSWS System Inputs.

Table A4: ALSWS System Outputs.

 4

List of Acronyms

ACES Air Collection and Enrichment System

ALS Air Liquefaction System

DLL Dynamic Linked Library

FPI Fixed Point Iteration

HEX Heat Exchanger

Isp Specific Impule

LACE Liquid Air Cycle Engine

LAIR Liquid Air

LEA Liquid Enriched Air

LH2 Liquid Hydrogen

MDO Multidisciplinary Design Optimization

ME Model Engineer

OBD Optimizer Based Decomposition

OE Object Engineer

RBCC Rocket Based Combined Cycle

SLS Sea Level Static

WS Water Separator

 5

Abstract
Air liquefaction has been advocated as a concept for reducing the gross mass of

spaceplanes since the 1950s. However, little has come of this promising technology thus

far. The purpose of air liquefaction is to use cryogenic propellants to supercool air after it

enters the inlet of a moving vehicle. The resulting liquefied air can be used immediately

or stored for use in later stages of flight. Although the concept has been revisited multiple

times since its inception, various problems have surfaced to keep it from being a viable

technology for incorporation into an access-to-space vehicle. Among the many design

challenges, one of these problems is the formation of solid ice due to the freezing of

water in the humid air. This ice fouls heat exchanger surfaces and results in decreased

efficiency and eventually total shut-down of the engine. Therefore, a system to

dehumidify the air before it is used as an oxidizer or stored is necessary.

To combat this problem, an Air Liquefaction System (ALS) is proposed that

utilizes a system of two water separators, four heat exchangers, and an atomized glycol

spray inserted into the air stream in order to remove water from the humid incoming air.

In the scope of this project, a computer tool will be created that models the effectiveness

of such a system given inlet conditions. Utilizing the temperature, pressure, mass flow

rate, and relative humidity of the incoming air stream, the required mass flow rate of

liquid hydrogen needed to cool the air to a liquid state will be calculated for an ALS of

specified size. The heat exchangers will all be of a counter-flow design. This software is

of interest to and supported by employees of NASA Langley, SAIC, and Modelogics Inc.,

and is also of interest to the U.S. Air Force.

The primary system of interest is the ALS system model specified by Larry Hunt.

This system models the ALS at sea level static (SLS) conditions. Air enters the inlet at

6000 lbm/min, a temperature of 540 R, a relative humidity of 80%, and a pressure of 14.7

psia. An appropriate mass flow of liquid hydrogen at 40 R and 800 psia must be added to

the system so that the air at the exit of the ALS is liquid at a temperature around 130 R,

and a pressure around 10 psia. Furthermore, most of the water must be removed from the

flow utilizing the two water separators and the atomized ethylene glycol spray. The ratio

of mass flow of liquid air produced to the mass flow of the hydrogen added to the system

should be somewhere between 4 and 5.

 6

The ALS model was created so that it could execute within both the Model

Engineer and ModelCenter design frameworks. To this end, the components of the ALS

were coded in Visual Basic and C++. These components were validated against existing

components and actual hardware data. While the performance characteristics of each

component match known values for that component fairly well, there are sometimes large

errors in the weights and sizing components.

The components were assembled into the total system model, and the efficacy of

the two approaches was compared. Executing the ALS model from ModelCenter proved

to be the superior approach for optimization. The optimization was conducted for the

conditions specified above, using Optimizer-Based Decomposition. The objective

function was to minimize the system weight as a function of heat exchanger effectiveness

values and liquid hydrogen mass flow. The optimization completed successfully, with a

run time of about 5.5 minutes. The resulting ALS weighs 2783 lbm and produces 5935

lbm/min of liquid air at 129 R and 10.8 psia. This ALS requires a mass flow of liquid

hydrogen of 1419 lb/min, for a total system efficiency of 4.18 lb air/lb LH2.

 7

Introduction

Air liquefaction has been advocated as a technology for reducing the gross mass

of space planes since the 1950s. The purpose of air liquefaction is to use cryogenic

propellants to supercool the air entering an engine as the aircraft moves through the

atmosphere. The resulting liquefied air can be immediately used or stored for use in later

stages of flight. Liquid air (or LAIR) has a couple of advantages over gaseous air. In

order to use air in a combustion system, it must be pressurized to the high pressure levels

required for combustion. This requires heavy compressors; in contrast, a liquid oxidizer

can be pumped to high pressures with basic turbomachinery for a much lower weight

penalty. Additionally, for combined cycle engines, liquid oxidizer must often be stored

and carried throughout the early stages of flight where it acts only as dead weight. If

liquid air can be stored and separated into liquid nitrogen and oxygen, a vehicle can

collect its oxidizer as it flies through the atmosphere, again making huge system weight

savings.

In its most basic form, an Air Liquefaction System (ALS) consists of a precooler

and a condenser. The precooler is used to bring the incoming air close to its liquefaction

point, while the condenser does the work of actually changing the air’s state to its liquid

form. However, there are numerous other ways to structure an ALS, consisting of any

number of heat exchangers and other components.

One such component is a water separator. There are a number of design issues

that have prevented this technology from being realized and utilized in current systems,

but one of the more prevalent challenges is the fouling of heat exchanger surfaces due to

the formation of water ice from humid incoming air. This ice fouls heat exchanger

surfaces and results in decreased efficiency and can eventually result in engine failure. By

including a water separation capability into an ALS, this problem is neatly averted.

A number of programs already exist within the private and public sectors for

analyzing heat exchangers, water separators, and other engine components. In the 1990s,

Optimal Corporation designed LACEX for NASA Glenn Research Center. Additionally,

SAIC created the Vehicle Thermal Management Analysis Code (VITMAC) (Ref XX) to

analyze the operation of an air-liquefaction system. These programs model air-

 8

liquefaction, but have no capability to simulate removing water from the incoming air,

nor are they conducive to methods of Multidisciplinary Design Optimization. Such

methods make the analysis of a design space much easier and more rapid, and can greatly

aid engineers in choosing a direction for a specific design.

Therefore the desired approach for modeling the ALS is one that can be executed

within a modeling environment that allows the user to assemble different components

into an overall system model. This model can then be analyzed at a number of design

points, and optimized for different objective functions. Both Georgia Tech’s Space

Systems Design Lab and NASA have experience using Phoenix Integration’s

ModelCenter software. It has the capability to “wrap” user codes, and then conduct

optimization upon system variables. The US Air Force has also had some recent

experience with the Model Engineer software from Modelogics, Inc. This thermally-

centered software also embraces the concept of “wrapping” user codes and allowing the

construction of large systems from basic components, although its optimization

capabilities are not as strong.

This project utilizes these two codes to create an ALS model. These two models

can be compared, and the ALS performance studied. The completed models output the

mass flows, pressures, temperatures, and other system properties to the user. The model

may also be optimized for system parameters such as gross weight.

1 State of the Art in Air Liquefaction

Because air liquefaction does go back so many years, there has been a lot of work

done already in the field. Therefore it is helpful to understand where the technology has

been proposed to be applied, and what kind of progress has been made. Different types of

engine cycles have been proposed that are capable of using liquid air as a propellant.

These include the well-known LACE and ACES concepts, as well as more exotic

configurations like SuperLACE, RamLACE, or ScramLACE. Depending on the type of

cycle being analyzed, different components will be necessary; however, all cycles will

require multiple heat exchangers, and there are many types available for this application.

Because many of these cycles fly at low altitudes, fouling from water freezing upon heat

 9

exchanger surfaces out of the humid air becomes a problem. Therefore an approach to

removing water from the air stream will also be required.

1.1 Liquid Air Engine Cycles

Air liquefaction is of interest today due to the number of combined cycle engine

vehicle concepts being proposed. Whereas typical space vehicles utilize rockets

throughout all stages of flight, these combined cycles will use different propulsion

solutions through different regimes of flight, such that an optimal propulsive device is

used at most points of a spaceplane’s trajectory. Rocket Based Combined Cycle (RBCC)

engines generally use a rocket through the early and late stages of a vehicle’s flight.

During supersonic flight, the vehicle switches to ramjet and scramjet (supersonic

combustion ramjet) modes so that the oxygen in the atmosphere can be used for

propulsion rather than carrying heavy oxygen in tanks for the rocket to use. There may be

slight modifications to this basic design; the term “combined cycle” can apply to vehicles

with two separate flowpaths, or vehicles with a single flow path. However, the idea

remains the same. The cycles that employ air liquefaction are the basic LACE, ACES,

and other exotic variations on the LACE concept.

1.1.1 Basic LACE

A Liquid Air Cycle Engine (LACE), pictured in Figure 1, is one of the simplest

engine cycles proposed. Air enters an inlet, where it is decelerated and gains static

pressure. It then enters the air liquefaction heat exchangers. There it is exposed to liquid

hydrogen which cools the air until it reaches its liquid state and can be pumped to the

combustion chamber. This hydrogen has already been pumped to the high pressures

needed for combustion. By exchanging heat with the air, the liquid hydrogen becomes a

high pressure gas. Once the air is liquefied and pumped, there are now two high pressure

reactants ready to combust in the thrust chamber. This operation is very similar to a liquid

rocket except for the use of the inlet, and can be considered an air-augmented rocket in its

truest form. Because much more hydrogen is needed to cool the incoming air than is

 10

required for combusting with that air, the cycle is very fuel rich; however, the specific

impulse produced is on the order of 1000 sec, and may be pushed as high as 6000 sec

given the right technological gains. (Ref 2, 164).

Figure 1: A Basic LACE Engine (Ref 3).

1.1.2 ACES

The Air Collection and Enrichment System (ACES) cycle shown in Figure 2 still

utilizes air liquefaction, but instead of immediately using all of the produced liquid air,

some or all is saved for use later on in flight. During early atmospheric flight, the oxidizer

tanks can be refilled with liquid oxygen for upper atmospheric flight, where the

atmosphere is thinner and there is less oxygen to be collected. This cycle does have some

drawbacks; storing liquid air itself is a wasteful and inefficient process. Because liquid air

is mostly nitrogen, tanking it means carrying a large amount of inert weight that will not

aid combustion, raising overall system weight to the point where the advantages of the

cycle disappear. However, through the use of a cryogenic rotary air separator, the lighter

liquid nitrogen can be removed from the air and discarded or used to regeneratively cool

the currently incoming air. This nitrogen can also be expelled through the engine’s nozzle

as inert mass; while it does not combust, it can still aid in the production of thrust. The

resulting tanked Liquid Enriched Air (LEA) is about 10% nitrogen. (Ref 2, 169).

 11

Figure 2: An ACES Schematic (Ref 3).

1.1.3 SuperLACE

As mentioned previously, the basic LACE is very fuel-rich. There have been

numerous ways proposed to alleviate this problem and lean out the cycle. The

SuperLACE concept combines three of these approaches to achieve this leaning out. It

consists of a precooler and two condensers. The precooler is different in that it uses

regenerative liquid air cooling in addition to hydrogen cooling. The liquid air enters this

precooler after being compressed to high pressures in a pump, after the gains from

converting the air to a liquid have already been made. Secondly, it uses a para/ortho

hydrogen converter to make the hydrogen more effective as a heat exchanging fluid. This

process will be described in detail in Section 1.2.1. A turbine expander is inserted

between the first condenser and the precooler, and extracts energy from the hydrogen

before returning it to the LH2 tank. This recycling of the hydrogen reduces the extra

amount that must be carried to cool the air. Finally, the hydrogen itself is stored as its

slush form. This partly solidified hydrogen provides extra cooling capability, and aids in

the recycling of liquid hydrogen. The combination of these technologies is what enables

the LACE cycle to produce Isps of the order of 6000 sec (Ref 2, 170).

 12

1.1.4 RamLACE and ScramLACE

Air liquefaction was not the only promising concept to be studied in the 1960s. At

this time, the ramjet and scramjet (supersonic combustion ramjet) combined cycles were

also explored as enabling technologies for a spaceplane concept. Because these engines

cannot provide thrust at low speeds or very high speeds, it was necessary to combine

them with rocket engines. Many RBCC configurations were proposed, and among them

were the RamLACE (Figure 3) and ScramLACE (Figure 4) concepts. During the mid-

phase exploration of the various RBCC concepts, these two cycles were studied

extensively, although the only design to be considered for detailed study was the

ScramLACE concept.

Figure 3: RamLACE Engine Schematic (Ref 3).

 13

Figure 4: ScramLACE Engine Concept (Ref 3).

1.2 Enabling Technologies for Air Liquefaction

The development of the engine cycles outlined above also included the

identification of technologies that would have to be developed in order to realize the

performance gains assumed. Such technologies include catalyzing a para/ortho

conversion in the liquid hydrogen as well as approaches for removing water from the air

stream. These technologies include systems that will be modeled within the ALS, so a

description of each technology and its benefits and costs is useful.

1.2.1 Para/Ortho Hydrogen Conversion

The hydrogen atom consists of a single proton and electron. While the fact that

electrons have a spin parameter is well known, the protons of the hydrogen atom also

spin. Therefore the hydrogen molecule, which consists of two hydrogen atoms, has two

different configurations; the protons may be spinning in opposite directions (anti-parallel),

 14

or the same (parallel) direction. The former kind of hydrogen is known as parahydrogen,

while the latter is orthohydrogen. Because there are basically three ways in which a

binary molecule like H2 could be structured as orthohydrogen, and only one way for it to

be in its para form, H2 at equilibrium is approximately 75% ortho and 25% para.

When liquid hydrogen is produced, this equilibrium is affected. In fact, at

cryogenic temperatures the para form is favored, and the hydrogen will shift to this form.

This is a very slow process normally. However, the process is exothermic, releasing heat

and raising the temperature of the hydrogen liquid. Hydrogen producers have to provide

extra refrigeration in order to combat this process, or the liquid hydrogen would boil off

in a number of hours. Because all liquid hydrogen will essentially be supplied as 100%

parahydrogen, it is possible to take advantage of the reverse reaction (para to ortho). This

process is endothermic, and hydrogen converting to its ortho form will readily absorb

heat from its surroundings. The applicability to air liquefaction is obvious; allowing

hydrogen to shift from para to ortho form greatly enhances the ability of hydrogen to cool

incoming air (Ref 6).

It seems as if this process should occur naturally without any need for

technological development, and it does; however, the actual conversion of hydrogen is a

very slow process normally, on a time scale that is unsuitable for air liquefaction

purposes. Therefore a catalyst must be used to drive the para/ortho conversion at a

suitable rate. These catalysts have been studied extensively in the air liquefaction

industry. However, the facilities used by this industry are all ground based, and thus

unconcerned with the weight issues of flight. Para/ortho catalyzers have been proven up

to efficiencies of 75%. Such a shift in hydrogen properties can provide a “refrigerative

enhancement effect” of about 1.3 (Ref 3, 6-4). This translates to a leaning out of the cycle,

lowering the equivalence ratio by a factor of 0.8. System weight reductions are obviously

made by this catalysis, but the catalyst itself adds to the system weight. The most

promising of the possible catalysts is ruthenium (SiO2,Al2O3), but previous efforts at

creating a catalyzer capable of converting 1 lb/sec of parahydrogen to 75% ortho per

pound of catalyzer failed (Ref 3, 6-6).

 15

1.2.2 Compact Cryogenic Heat Exchangers

Although heat exchangers are very common and a number of different types exist,

applying them for use in an aircraft system severely limits the choices available. Heat

exchangers as flight hardware must be small, light, and reliable, all while delivering the

high amount of performance needed for air liquefaction. As mentioned previously, the air

liquefaction process can most simply be described in two phases: precooling and

condensing. Systems can be more complex than this, of course.

Figure 5 displays a common temperature profile of the hot and cold fluids in a

heat exchanging environment. The point on the graph circled, or more accurately the

temperature difference between the two lines at that point, is known as the pinch

temperature. This is the point in the heat exchanging system where the temperatures of

the two fluids are most near to one another. This pinch temperature has important

consequences on heat exchanger properties. Having a low pinch point (i.e. a small

distance between the two lines) means that the system is very effective. This results in a

reduction of the hydrogen necessary to cool the air to a liquid state, leaning out the cycle

and helping alleviate a troublesome aspect of air liquefaction. However, it is also at this

point that the heaviest heat exchangers are produced. A balance must be struck between

the system weight and the hydrogen weight. Reasonably sized heat exchangers often have

pinch temperatures around 10 to 30 R (Ref 3, 4-1).

 16

Figure 5: Standard Heat Exchange Setup (Ref 3, 4-2).

Heat exchangers for cryogenic applications are most often constructed of

aluminum or stainless steel alloys. These metals have a reasonable coefficient of thermal

conduction to enable heat transfer, can function within the range of temperatures

necessary, and have a favorable density. Heat exchange may be carried out between the

fluids in a variety of ways. The three primary schemes are parallel flow, cross flow, and

counter flow. In parallel flow, the two fluids travel in the same direction, exchanging

energy until they both reach some equilibrium temperature between their initial

temperatures. Cross flow heat exchangers run the two fluid flows perpendicular to one

another, offering a slightly more advantageous method of heat transfer. Finally, counter

flow systems run the fluids in opposite directions, allowing heat exchange along the

entire length; if the mass flows are in proper balance and the exchanger is long enough,

the two fluids may swap temperatures almost completely by the time they have left the

heat exchanger.

Because the two fluids must not mix during heat exchange, it is common to run

the fluid with lower mass flow through tubes while the other fluid passes over the tubes.

 17

These tubes may have fins which increase the heat exchange surface area but also

increase the volume and subsequently the mass of the tubes. This increase in heat

exchange effectiveness is offset by higher pressure losses and the increased ability for

fouling agents to form. For precooling heat exchangers, both types of tubes are favored,

while condensers mostly utilize bare tubes. Alternatively, a plate-fin system may be used

instead of tubes. Plates are sandwiched on top of each other, and the fluids are run

through channels in alternating layers. Plate-fin heat exchangers suffer the same

drawbacks as tube-fin systems, however, although they are easier to manufacture.

1.2.3 Water Ice Fouling Alleviation

Because atmospheric air does not solely consist of oxygen and nitrogen, there is

the opportunity for the fouling of heat exchanger surfaces as other substances liquefy and

freeze before the air can even become a liquid. These fouling agents include carbon

dioxide and argon, but by far the most prevalent danger is that posed by water in humid

incoming air, especially during low atmospheric flight. Accumulation of water ice on

heat exchanging surfaces causes two problems; firstly, it alters the conductive properties

of the surface, and secondly it can block the mass flow of the air and degrade

performance. The amount of liquid air produced will drop, and engine performance may

suffer so badly that the engine can fail completely. Even when the water is removed from

the air stream, there may still be parasitic weight issues unless the water is ejected from

the aircraft completely (Ref 3, 5-7).

There have been many approaches to solving the fouling problem, many of them

unsuccessful. The successful approaches include cyclic de-icing, snow formation, glycol

injection, and liquid condensation. Cyclic de-icing involves turning off the air

liquefaction system for short periods of time while the tubes are heated. While it

performs as needed, the additional heat exchanging capacity, valving, and ducting adds

significant weight to the system. In snow formation, the water in the bulk air stream is

induced to freeze before entering the primary heat exchangers. This method still requires

extra hardware to actually remove the “snow”, and more space between the heat

exchanger tubes in order to prevent the system from seizing up. One of the more

 18

promising approaches is to inject ethylene glycol as either a spray or in droplet form to

prevent the water from freezing as readily on heat exchanger surfaces. This method has

been experimentally tested and has provided good results. Finally, the air may be cooled

to high humidity levels so that the water can be removed as a liquid from the air stream.

Experimental work with this method is not as developed, but initial analysis is

encouraging.

Liquid condensation and glycol injection may be combined to produce an even

more effective method for fouling alleviation. Researchers from Marquardt studied this

problem back in the 1960s when the air liquefaction problem was first explored. They

tested an experimental system and successfully removed enough water to prevent the

system from shutting down (Ref 3, 5-13).

 19

2 Design Problem and Methodology

Air liquefaction has once again become of interest to NASA and the U.S. Air

Force. Building on the knowledge obtained back in the 1960s when the problem was

originally formulated, a new approach for modeling the system is desired. This approach

will take advantage of the development of system integration software developed in the

1990s. Using the practices of Multidisciplinary Design Optimization (MDO), these

software tools can combine a number of different contributing analyses that have

historically been “owned” by one group or another within an organization. By allowing

various codes to be “wrapped” and connected to each other, one can rapidly explore a

design space and find the best design to meet a particular goal or set of requirements.

The goal here is to model an Air Liquefaction System (ALS) consisting of four

heat exchangers and two water separators. The technical points of contact for the

development of this system are Larry Hunt of SAIC, and Jeff Robinson and John Martin

of NASA LaRC. An outline of the system can be seen in Figure 6. Air enters the ALS

after traveling through the vehicle inlet. Conditions are prescribed to the ALS model after

this inlet, and the air travels through the system being progressively cooled by the heat

exchangers. These heat exchangers are of the counter-flow design, and are arranged in a

tube bank architecture such as that seen in Figure 7. In the initial stages, the air is only

cooled to the point where water can be removed from the air stream utilizing the water

separators. After the first water separator, an atomized ethylene glycol spray is injected

into the air flow. This glycol travels through the second precooler and is removed along

with the water in the second water separator. Its purpose is to prevent the water from

freezing and modifying the saturation properties of the humid air, thus making the

removal of the water much easier.

 20

LH2 in
T=40 R
P=800 psia

Pre-Cooler
1

Pre-cooler
2 Chiller Condenser

Separator 1
and atomized
Ethylene
Glycol spray

Separator 2

Humectant
Para/Ortho Converter
(80% efficient)

W
at

er

W
at

er
 /

EG

Air in
6000 lbm/min

T=540 R
P=14.7 psia
V=100 ft/s
RH=80%

Gaseous Hydrogen out

LAIR out
6000 lbm/min
T=130 R
P=10 psia

Provide capability for
extracting power by
decreasing pressure and
temperature

Ethylene Glycol, C2H6O2

LH2 in
T=40 R
P=800 psia

Pre-Cooler
1

Pre-cooler
2 Chiller Condenser

Separator 1
and atomized
Ethylene
Glycol spray

Separator 2

Humectant
Para/Ortho Converter
(80% efficient)

W
at

er

W
at

er
 /

EG

Air in
6000 lbm/min

T=540 R
P=14.7 psia
V=100 ft/s
RH=80%

Gaseous Hydrogen out

LAIR out
6000 lbm/min
T=130 R
P=10 psia

Provide capability for
extracting power by
decreasing pressure and
temperature

Ethylene Glycol, C2H6O2

Pre-Cooler
1

Pre-cooler
2 Chiller Condenser

Separator 1
and atomized
Ethylene
Glycol spray

Separator 2

HumectantHumectantHumectant
Para/Ortho Converter
(80% efficient)

W
at

er

W
at

er
 /

EG

Air in
6000 lbm/min

T=540 R
P=14.7 psia
V=100 ft/s
RH=80%

Gaseous Hydrogen out

LAIR out
6000 lbm/min
T=130 R
P=10 psia

Provide capability for
extracting power by
decreasing pressure and
temperature

Ethylene Glycol, C2H6O2
Figure 6: The Air Liquefaction System.

Figure 7: A Typical Tube Bank Heat Exchanger (Ref 3).

 21

Properties specified after the inlet include the mass flow, temperature, pressure,

velocity, and relative humidity of the incoming air. These properties are fed forward

through the system, with the output from each successive component becoming the input

for the next section. The outputs will depend on the inputs from the “cold” side, or the

liquid hydrogen properties as it enters the heat exchangers. The liquid hydrogen only

travels through the heat exchangers, and its mass flow may be modified at each point by

removing some mass and either returning it to the tanks or feeding it to the combustion

chamber. The properties of the liquid hydrogen are specified at the inlet to the condenser

stage. These properties include the temperature and pressure of the liquid hydrogen.

The goal of the system is to obtain liquid air by the end of the cycle, at a

temperature of about 130 R (-330 °F) and a pressure of 10 psia. The mass flow rate of

liquid air should be 4 to 5 times that of the liquid hydrogen required to cool the air to its

liquid state. These goals must be met while keeping system weight (and thus costs) down.

MDO practices will be used to reach this goal. The components will each be

designed separately so that they can be used alone or in tandem to model the ALS itself.

The components will then be assembled within a modeling environment so as to simulate

the entire ALS at once. This will be accomplished on two separate software

environments: Phoenix Integration’s ModelCenter and Modelogics, Inc. Model Engineer.

Both pieces of software are designed to allow a user to “wrap” user codes, whether

legacy or newly devised, and combine them to make a larger system. ModelCenter is

widely used within Georgia Tech’s Space Systems Design Lab and also within NASA

and industry. Recently Model Engineer has become involved in a number of Air Force

and other government contracts. It boasts a large library of predesigned components and

is especially well-suited to tackling a thermal systems problem. However, its

optimization capabilities are not as developed as ModelCenter’s. Additionally, each

platform uses a different method of “wrapping”, thus requiring that the components be

coded in two different languages.

 22

2.1 Model Engineer

Model Engineer relies on Microsoft’s COM framework for computers. This

makes it possible to use Model Engineer’s components on any computer using the

Windows operating system, just as one can open an Excel file on any computer with

Office installed. This is achieved using the highly flexible Visual Basic language. New

codes may be created directly using Visual Basic and the utility Object Engineer, or

legacy codes may be wrapped using DLLs. FORTRAN codes, Excel spreadsheets, any

many other types of codes can be directly wrapped in Model Engineer and incorporated

into a model. The toolkit comes supplied with several libraries created by Modelogics,

Inc. The most useful libraries are the Thermal Systems, Data Viewing, and Data Flow

libraries. These features will be described in detail (Ref 4).

2.1.1 Object Engineer

Object Engineer is a utility included with the Model Engineer toolkit. It simplifies

the component creation process with a series of input pages. The Control page is where

the name and type of the component is defined, and is where embedded components are

added. If there is a legacy code that needs to be wrapped, it is possible to create a DLL in

a program like Visual Fortran or Visual C++. This DLL is then referenced in the Control

window and is fully available to the component. There are also a number of references

already provided in the Model Engineer toolkit that may be embedded in the component.

The Property window is the heart of the component creation process. It is here

that each variable of interest is defined, typed, and bounded. There are two basic types of

variables, not considering types such as integer, double, etc. Data flow variables consist

of an input and output variable, and thus exist to pass information in and out of the

component. When building models, links can be created between components using these

flow variables. For example, the mass flow through a heat exchanger would be modeled

by a data flow variable. In addition, there are static variables; these consist of simple

functions that compute a single property. Variables can be grouped, and placed on

different pages in the eventual windowed model created by Model Engineer. Object

 23

Engineer will automatically use the variable definitions to create property pages in Visual

Basic, eliminating most of the grunt work of coding the components.

The final window is the Function window. Any variable that requires calculations

will be defined as a function within the Visual Basic pages created by Object Engineer.

Using the Function window, the variables necessary to make those calculations will be

automatically provided to the function. It is simply a matter of selecting the variables

defined in the Property window and checking boxes next to the variables required to

make calculations.

It is not necessary to define the component in Object Engineer, although the

utility is required to actually build it. The three windows previously discussed are used to

create an MS Excel file that lists all of the variables and their properties. A user

sufficiently familiar with the component he is creating and Model Engineer itself can

define a component entirely in Excel, and often much faster than within Object Engineer

itself. This Excel file, a comma separated value file, can be imported into OE and used to

create the Visual Basic files that will be used to complete the component creation.

The files created include class and control forms, as well as the forms that a

component user will see when he uses a component. These files are manipulated using

Visual Basic. Most of the work needed to create a component has been done by Object

Engineer; essentially all that is required is to define the functions that will calculate the

variables of interest. One drawback to this approach is that every time a variable is added

to the program, it is necessary to rebuild the component in Object Engineer and then

rewrite all of the functions over again. Often this is just a matter of cutting and pasting,

but this can be a time consuming and frustrating process. Presumably, a strong

knowledge of Visual Basic would prevent the need for rebuilding components every time

it is updated, but for the casual user it is much easier to rebuild. It is a testament to the

flexibility of Model Engineer that a novice user of Visual Basic can easily create

components.

 24

2.1.2 Thermal Systems Library

Although the user is in no way limited to the components and libraries already

created by Modelogics, a number of these components are available. The thermal systems

library was created as part of a Modelogics contract with the Air Force, but is available to

all Model Engineer users. It includes common thermal components such as cross flow,

counter flow, and cooled panel heat exchangers. It also consists of turbines, compressors,

condensers, feed lines, among others. These components are clearly useful in designing

the Air Liquefaction System, but as will be seen later there are advantages to creating

custom components to fulfill the ALS requirements. These components are added to a

Visual Basic form that is created by starting a new Standard EXE file in Visual Basic. By

simply including a library and dragging components into the active window, a model can

be created.

Upon first glance, the cross flow heat exchanger is perfect for purposes of

designing the ALS model. Its data flow variables include mass flow, temperature,

pressure, and enthalpy. It is designed to model a number of different working fluids,

using Model Engineer’s Map Tool. This tool is used to conduct table lookups of various

fluid properties. The input values for the hot and cold sides of the heat exchanger are

specified, as well as a desired heat exchanger efficiency.

 For the final system model, however, it was decided that new heat exchanger

components would be created. This was done for several reasons, one being that it was

desired to gain an understanding of heat exchangers rather than utilizing a pre-existing

“black box”. Additionally, the provided heat exchanger component consists of functions

and inputs that are not used in the ALS model as specified in the problem statement. A

much more streamlined heat exchanger could be built that would execute faster and could

be modified as needed. Finally, the fluid databases native to Model Engineer are not best

equipped to handle liquid air or cryogenic hydrogen. This user-created component would

also expand the capability of Model Engineer in some ways, as it is provided to

Modelogics as part of the agreement that allowed Georgia Tech to obtain the software.

 25

2.1.3 Data Viewing Library

The Data Viewing library helps make sense of the possibly large amount of data

that is produced by a model. Using the Schematic Viewer (or S-Viewer), a pictorial

representation of the model can be displayed while it executes. This picture is created in

Microsoft PowerPoint and saved as a Windows metafile (*.wmf). By editing the S-

Viewer’s properties, any variable from any component can be linked to the picture, and

the current value of that variable will be displayed on the picture at every point in time.

The units may also be displayed. This functionality can be very useful during model

execution, allowing a user to visually understand the direction a model is taking and

identify points in the model of interest.

Model Engineer also provides the capability to interact with Microsoft Excel and

PowerPoint using the Data Viewing library. The ReadXcells, WriteXcells, and

PasteViewtoPPT components all open the appropriate MS Office application and can

paste or copy whatever data is needed. In this way, the input variables may be defined in

an Excel worksheet and read by the component. Output variables can be similarly written

to an Excel sheet where they can be further manipulated. The pictorial representation of

the model in the S-Viewer can be pasted into a Power Point slide making it easy to create

visuals for a presentation or paper. Overall, it is a much more visual application than

using a standalone code or some other modeling approach.

2.1.4 Data Flow Library

The Data Flow library makes it possible to build models out of individual

components. Its primary components include the Connector Arrows which pass data

between components’ data flow variables. When the arrow is dragged from one

component to another, a connection definition window will open; if the components are

designed for modularity well, Model Engineer will automatically connect the outputs of

one component to the appropriate inputs of the other component. Dragging an arrow from

one heat exchanger to another, for example, will neatly match up the mass flow,

temperature, pressure, and enthalpy data flow variables. By defining groups of variables,

 26

it is possible to automatically match variables like hot side (air) properties to other hot

side properties, and similarly cold side (hydrogen) properties. This can all be controlled

from the arrows’ properties window summoned by right clicking on the arrow itself on

the Visual Basic form.

The Data Generator is one of the most important components of this library. It

drives the model forward and defines the execution order for each component. It can also

specify points in the model where iteration should occur. When the model executable is

created, this component is the button that begins the execution. It can be configured to

run in series or step mode; in step mode, the model will execute only once. In series

mode, a specific input variable can be changed by some increment for a specified number

of iterations.

Although Model Engineer’s optimization capability is somewhat limited, it does

have a limited functionality. The Data Flow library has components that can iterate on

specific variables to optimize another variable. These components include the

RFcontroller and Interval Halving. The RFcontroller uses the Reguli-Falsi method of

finding an optimum for a single variable and response (Ref 4). The Interval Halving

method examines the response for the range of a single input variable and halves that

range until it finds the optimum point. It will only function on a monotonically increasing

or decreasing response. For advanced optimization, it is better to use a program like

ModelCenter.

2.2 ModelCenter

ModelCenter is a product of Phoenix Integration and is a package designed to

allow the integration of various contributing analyses and then conduct analysis on them.

User codes can be accessed in ModelCenter through the use of various “wrappers”,

depending on the type of input and output the program uses. This includes any file based

program no matter the language used, and MS Excel files. More complex wrapping can

be accomplished through the use of scripting; many scripting languages are supported

including Java and Visual Basic or VBA. New codes can easily be written within

 27

ModelCenter itself, although it is generally as easy to write a file-based input/output code

in the programming language of preference.

2.2.1 FileWrappers

By far the most common kind of wrapper is the fileWrapper, which instructs

ModelCenter where to look in a file for input and output information. A basic

fileWrapper consists of three sections; input, execution, and output. The input section

contains all the information needed for ModelCenter to write the code’s input file. Using

a template file, ModelCenter can be instructed where in the file certain variables are to be

stored. Using ModelCenter’s interface, a user can enter data of any supported type (such

as integer, double, or string) within bounds set by the wrapper’s author. When the

wrapper is executed, the template file is opened and the wrapper uses indices to tell

where the data should be placed. Different template files can even be specified if a

program’s input file changes considerably for different analyses.

The wrapper then executes the code of interest. Generally the executable, as well

as any input, template, output, and other necessary files must be stored in an Analysis

Server directory. Analysis Server is the portion of ModelCenter that manages

fileWrappers and serves wrappers and executables to any user who can connect to the

server. In this way distributed computing becomes very simple; anyone who can connect

to an Analysis Server may run the analyses therein.

Once the file has been executed, the wrapper can open any resulting output files

and read the data inside. By means of the same indexing as used to specify input variable

locations, ModelCenter will read the output and display it within the user interface.

Multiple output files can be handled by adding multiple output sections in the wrapper.

The data obtained from the output can be graphed, studied parametrically, or even

optimized upon using the tools available in ModelCenter.

 28

2.2.2 Optimization

Optimization is a relatively simple matter in ModelCenter. By creating a model,

either out of single components or multiple ones working as a system, any variable can be

used as an objective function, constraint, or design variable within an optimization

problem. If the objective of interest can be calculated from data available from the

components, it is a simple thing to create a script to calculate an overall evaluation

criterion. The optimization window has three areas of interest. The objective function is

defined in the first box in Figure 8. Values from the model can simply be dragged into the

box to define the optimization criteria. Additional variables can be dragged in to add

them to the current function. For example, if one wanted to minimize the system weight

of multiple heat exchangers, the individual weights from each heat exchanger component

could be dragged into the window and ModelCenter would automatically add them

together.

Figure 8: ModelCenter Optimization Window.

 29

The next box in the window describes the constraints on the problem. Constraints may be

defined in the window by dragging any variable into it, and setting upper and lower

bounds that variable must meet. In the options window, constraint criteria may be altered.

The conditions upon which a constraint is violated or met can be changed. If different

constraints have highly different values, it may be beneficial to have ModelCenter

normalize them. Alternatively, such alterations may be made within a script.

Variables can be squared and normalized within a script, making them easy to

define. For instance, if the output temperature of a component was desired to remain at a

certain point, that desired temperature could be fed as an input variable to a script. The

actual temperature would also be fed as an input variable. By subtracting and squaring

the difference between the two, adding that output to the optimizer, and putting an upper

bound of 0 on the constraint, the optimizer will strive to make sure the actual and desired

temperatures match. This allows an equality constraint to be modeled as an inequality

constraint which can be much more easily handled by many optimizers.

The final portion of the main optimizer window is the design variable window.

Again, by simply dragging model variables into the window, it is possible to define all

the variables that can be changed during optimization. A starting value for each variable

can be chosen, or if left blank the optimization simply begins at the current point in the

model. This can be useful if a design space is finicky and needs a good starting point, or

if an optimization stops before being fully completed. The values that the optimizer is

allowed to set each variable at can also be specified. Therefore the optimizer can be

stopped from causing a problem if certain values make no sense or would cause a

program crash.

The results of the optimization are stored in a table that can be exported as a

comma separated value file, or viewed from within ModelCenter. In fact, ModelCenter

will plot any combination of variables automatically by choosing the independent

variable, and adding as many dependent variables as desired. This greatly simplifies the

understanding and visualizing of the process of optimization. Plots can easily be created

for any purpose.

 30

2.2.3 Link Editor

The link editor is what enables a user to build a model from disparate components.

When an output from one component must be passed to another, this is done by dragging

the output variable on top of the input variable in the link editor screen. A connection is

created, represented by a black line between the two variables. Breaking the link is

possible by selecting a variable and clicking the break link button. Links that feed

forward in a system are preferred from a Multidisciplinary Design Optimization (MDO)

perspective, but it is possible to create feedback links. When the model is executed, it will

iterate until all links are updated and agree, although this feature can be turned off.

2.3 The ALS Model

The ALS model created here utilizes several of the concepts explained in the

introductory section to air liquefaction. As stated, it consists of four heat exchanging

sections and two water separators. These components were designed so that they could be

executed within Model Engineer and ModelCenter, as well as exist as standalone

components. The ModelCenter components are written in C++ and utilize basic text file

input and output. These components can therefore be compiled as executables and run

outside of any modeling environment, or wrapped and executed from ModelCenter’s

Analysis Server. Both C++ and Visual Basic serve well as programming languages; C++

serves especially well due to its heavily object-oriented approach. The Model Engineer

components use the same basic functions and calculations, but are coded in Visual Basic

using the Object Engineer utility. The use of these components is explored explicitly in

the User’s Guide of Appendix A, but the general function of each is outlined below.

 31

2.3.1 Heat Exchanger Components

Whether executed in C++ or Visual Basic, the heat exchanger components

conduct the same analyses based on the same equations. The heat exchangers used in the

ALS are of the counter flow design, with a tube bank architecture. Air enters the heat

exchanger and is exposed to pipes filled with flowing liquid hydrogen. The input

properties of both the fluid streams (referred to as the hot and cold sides) are specified by

the user, and the component returns the output properties of both streams, in addition to

heat exchanger properties such as size, weight, and relative cost. The inputs are defined

in the file hx.inp, written to the output file hx.out, and the program is executed using

HX.exe.

Heat exchange within the component is governed by the basic equations of heat

transfer. Due to the law of energy conservation, any heat lost by one fluid will be gained

by the other (discounting losses to the surroundings). This is expressed in Equation 1:

 (1)
COLD

p
HOT

p TCmTCm ⎥⎦
⎤

⎢⎣
⎡ ∆=⎥⎦

⎤
⎢⎣
⎡ ∆

..

This equation assumes that neither fluid is changing state; if this is the case, then the heat

lost or gained by one fluid is equal to

vHmQ ∆=
..

 (2)

where Hv is equal to the heat of vaporization of the fluid. It is assumed that no other state

changes will be made other than the liquid/gas transition. The specific heat Cp is normally

a function of temperature for a gas; for a liquid, it can be assumed constant. When the

heat exchanger evaluates Cp of a gas for calculation purposes, it does so using JANNAF

curve fits. This Cp is evaluated at some average temperature.

 The output temperature of the air is defined by inputting a desired effectiveness

into the component. This takes into account the difference in initial temperatures of the

two fluids, and modifies the air temperature by some percentage of that difference. This

is expressed in Equation 3.

 32

)(112 COLDHOTHOT
TTeT HOT −= (3)

Based on this required temperature change, the heat needed to be extracted from the air

stream can be calculated using the relations above. This heat is then added to the

hydrogen stream and its output temperature can be calculated. This temperature can also

be related as a cold side effectiveness based on the initial temperatures of each flow.

An effectiveness of 1 for either side would technically require an infinitely long

heat exchanger. In reality, it is possible to get very close with a very long heat exchanger,

so there is no error returned by the program if the effectiveness is input as 1. However, it

may be impossible in any case to achieve any desired effectiveness due to insufficient

mass flow of liquid hydrogen. If this is the case, the program will find the cold side

effectiveness to be over 1. This is impossible, as it indicates that the temperature of the

hydrogen has exceeded that of the air. Once the hydrogen reaches the same temperature

as the air, it will no longer result in any heat transfer. Therefore, the program calculates

the amount of possible heat that can be absorbed by the hydrogen stream. This heat is

extracted from the air, and then the actual hot side temperature and effectiveness are

calculated and written to the output file. Additionally, this condition triggers an error flag

that is reported in the output file.

These hot and cold side properties help define the size and weight of the heat

exchanger. Based on the velocity of the incoming air stream, its density, and the mass

flow, a certain cross-sectional area will be required. The velocity and mass flow are

inputs; the density is calculated using perfect gas relations or constant liquid densities

depending on state. To help size the heat exchanger in the length direction, the diameter

of the hydrogen tubes is specified, as well as a material. Currently, aluminum and

stainless steel are the only options, and serve well as heat exchanging material. Based on

the conductive properties of the material, a certain amount of surface area will be

necessary to accommodate the heat transfer between air and hydrogen. This surface area

is divided by the number of tubes present to find the surface area of a single tube. Since

the diameter is specified, the length of a tube can be calculated from this required surface

area. Figure 9 shows a common spacing; there is 2.0-2.5 times the diameter of a tube

 33

between each tube. Although normal heat exchangers may have much more tightly

packed matrices, this spacing helps design against any water freezing that may not be

removed by the separators.

Figure 9: Heat Exchanger Tube Spacing (Ref 3).

Given the material and volume of the heat exchanger, a core weight can be

calculated. This core weight represents the mass of a volume that is filled solid with the

material. Given this core weight, the total weight of the heat exchanger can be found (Ref

9, 244). This guide is an industry standard even 20 years after its initial publication.

Using the same source, relationships for cost, reliability, and development risk are found.

These relationships unfortunately do not include units, but optimizing upon them can be

beneficial. As they are generally functions of weight, however, it is probably just as

useful to optimize upon weight.

An ALS heat exchanger can also utilize a para/ortho conversion catalyst to

improve heat transfer efficiency at the cost of the extra catalyst weight. This functionality

is accessed by using a switch variable for the para/ortho catalyst. When the switch is on

(has a value of 1) the initial heat transfer is conducted through the conversion process

rather than raising the temperature. The incoming hydrogen must be liquid for the

para/ortho shift catalyst to be used.

 34

2.3.2 Water Separator Components

The two water separators in the ALS model are essentially the same; however, the

second separator must take into account some mass of ethylene glycol in the stream. The

basic idea behind the water separator is that the air enters the separator at a very high

relative humidity. This is achieved by cooling the air in the earlier heat exchanging

sections. The water droplets moving in the stream, not yet cold enough to freeze, hit

vanes within the separator. While the air hitting these vanes continues through the system

uninterrupted, the water is stopped and is removed from the system due to gravity. There

are several issues that must be dealt with in order to model a water separator.

The first is that the humidity of the system is defined at the inlet to the ALS itself,

not at the separator entrance. As the air goes through the precoolers, its temperature and

pressure drop, altering the relative humidity of the air. However, the absolute humidity in

pounds of water per pounds of air remains constant. The separator therefore takes in the

reference temperature, pressure, and relative humidity, as well as the current temperature

and pressure. The reference absolute humidity is calculated from the other reference

properties, and this absolute humidity is converted to a relative humidity for the air

entering the separator. The equations governing this process are outlined in Equations 4

through 6 (Ref 1, Ref 8).

v

v

pp
p

HR
−

= (4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

−

30
8.1

exp108624.8
15.273

8.1
67.17

2

T
xp

T

v (5)

vvTdew pRHp *= (6)

HR stands for absolute humidity, while RH stands for relative humidity. The pressures

given are measured in psia, while the temperatures are in degrees Rankine.

For the separator to remove any water, the relative humidity must be 100%. For

any air stream considered “humid”, this will generally be the case by the time the air

 35

reaches the separator. The separator will not remove all water from the air, of course. One

of the system inputs is the efficiency of the water separator. This value is by default 85%,

a standard value for a typical water separator and well within obtainable limits. This

default should not be changed under normal circumstances.

The bigger problem with separating water occurs at the second water separator.

At this point the air has been cooled twice, and may be at the point where the condensed

water will freeze. There are separators mentioned in Section 1.2.3 that remove frozen

water from a system; however, that solution is not desired here. The first separator is

designed to remove liquid water from the air, and from a robustness and reliability

standpoint it is better to have two separators that are essentially the same design.

Therefore, the solution of adding ethylene glycol (C2H6O2) to the air is modeled. This

ethylene glycol is added to the flow as an atomized spray before the air enters the second

precooler. There, it has very little effect on the heat exchanging properties of the mixture

except to add to the mass flow.

However, it has multiple effects on the operation of the water separator. Ethylene

glycol is entirely miscible in water. The model therefore assumes that the atomized spray

will mix perfectly with the water droplets that manage to escape the first water separator.

This will lower the freezing point of the water as outlined in Table 1. The heat exchanger

is protected from having ice water fouling, and the water separator can remove the water

from the air. The ethylene glycol is removed as well, as it has mixed perfectly with the

water droplets. Of course, because of separator efficiency, some water and glycol will

remain in the stream, but it should not contribute significantly to fouling.

Table 1: Effect of Ethylene Glycol on the Freezing Point of Water (Ref 7).

% Ethlyene Glycol Freezing Point of Water (R)
0 491.67
10 484.67
20 479.67
30 464.67
40 449.67
50 429.67
60 404.67
70 399.67
80 409.67
90 439.67
100 469.67

 36

The ethylene glycol has a smaller, secondary role in that a water/glycol mixture

has different vapor pressure properties than plain water. According to Raoult’s Law (Ref

5), the vapor pressure of a mixture is defined by Equation 7, where χi and pvi represent the

molar fraction and vapor pressure of the compounds comprising the mixture.

∑= viiv pp χ (7)

Ethylene glycol has a vapor pressure of 0.00135 psia at room temperature; therefore,

adding it to the water droplets causes the vapor pressure of the mixture to be lower than

that of water by itself. This has the effect of raising the boiling point of the mixture. The

air will reach its saturation point at a higher temperature and water will condense out of

the stream much easier. This is generally not an issue since the water should have

condensed already in the first separator, but it is an added benefit to consider.

 The water separator also has weight, sizing, and cost relationships. These

relationships come from the same source as the heat exchangers (Ref 9, 288). These

relationships are based on smaller scale rotary water separators, so they may not be quite

as accurate as desired.

2.3.3 Model Engineer ALS

The components were created in both Visual Basic and C++; it is the Visual Basic

components that go into the Model Engineer ALS. The model is created by compiling the

components into OCX files, then starting a new EXE Project in VB. The components are

simply dragged onto the form, and then connected using the Model Engineer Data Flow

library. There are two approaches to making these connections; both the hot and cold side

inputs and outputs can be linked, forcing the model to execute until every side is matched

properly. This requires some method of working around the connecting restrictions, as

there can only be one directional link from one component to another. By adding the

Splice component, the cold side data is passed through the component and then to the

next heat exchanger. This set up can be seen in Figure 10.

 37

Figure 10: Feedback Version of Model Engineer ALS.

This “brute force” method of executing the ALS runs in a reasonable timeframe,

coming to a possible solution in less than a minute given reasonable inputs. However, this

solution is not guaranteed to be optimal, and may in fact be far from optimal.

Furthermore it is possible, given poor inputs, for the system to become increasingly more

divergent from a converged solution.

A better alternative from an MDO perspective is to not create these cold side

feedback links. Model Engineer is not natively suited to MDO practices, but it is possible

to set up a Fixed Point Iteration scheme by utilizing Excel files and the ReadXcells and

WriteXcells components. Initial values for all of the hot and cold side inputs are set

within the Excel input file. Model Engineer reads these inputs and executes the model

once, returning the outputs of each component to the Excel file. The Excel sheet is able to

take those outputs and return them as new inputs to a new execution. Using the Data

Generator, the model is told to repeatedly run through this process some set number of

times. The current state of the model and how well the inputs match the outputs is tracked

through the Excel file. Unfortunately, it is not possible to tell the model to stop when

convergence is obtained. An appropriate number of model executions must be determined

from trial and error. Luckily, even when unnecessary executions are made, they do not

 38

take very long; the components execute very quickly. The model for this setup can be

seen in Figure 11.

Figure 11: FPI Version of Model Engineer ALS.

Comparing the two approaches, it is found that the feedback method tends to

work slightly faster due to the inevitable system slowdown caused by reading from and

writing to the Excel file. The answers gained from the FPI approach tend to be more

reliable, however, except in those cases where the solution is unstable. Using relaxation

may help improve the FPI results. Further information on creating executing both of these

models can be found in the User’s Guide in Appendix A.

2.3.4 ModelCenter ALS

The ModelCenter ALS was created with the same philosophy as the Model

Engineer ALS; the largest difference is that all control of input and output can take place

from within ModelCenter rather than an external Excel file. Instead of creating a Fixed

Point Iteration model, Optimizer-Based Decomposition could be used instead to enforce

constraints between the hydrogen inputs and outputs between heat exchangers. Figures12

and 13 show the feedback loop and OBD approach, respectively. The primary

optimization problem is as follows:

 39

Minimize: Wsys=Wp1+Wp2+Wcond+Wchill+Ws1+Ws2

Subject to: 0
2

2

21 ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

outp

outpinp

T
TT

 0
2

2 ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

chillout

chilloutinp

T
TT

 0
2

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

condout

condoutchillin

T
TT

 0
2

2

21 ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

outp

outpinp

P
PP

 0
2

2 ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

chillout

chilloutinp

P
PP

0
2

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

condout

condoutchillin

P
PP

0≤
−

air

reqair

T
TT

02

.

2

.
≥− chillLHcondLH mm

022

.

2

.
≥− pLHchillLH mm

012

.

22

.
≥− pLHpLH mm

012

.

22 ≥− pLHpLH mT

 By Changing: EGcondLHchillLHpLHpLH mmmmm
.

2

.

2

.

22

.

12

.
,,,,

condLHchillLHpLHpLH eeee 222212 ,,,

inpinpchillin PPP 12 ,,

inpinpchillin TTT 12 ,,

 40

Figure 12: Feedback Version of ModelCenter ALS.

Figure 13: OBD Version of ModelCenter ALS.

 41

The greatest benefit of the ModelCenter ALS is the ability to add an optimizer

and scripts to help control execution of the model. For the basic OBD version of the

model, the optimizer is designed to alter the cold side mass flows, temperatures, and

pressures of each heat exchanger, as well as the hot side effectiveness, in order to achieve

a minimum overall system weight. The hot side temperatures and pressures are fed

forward through links. A script calculates constraints for the model. These constraints

include matching the temperatures and pressures between each heat exchanger’s cold

sides. This script also enforces the constraint that the air exiting the ALS is at the desired

temperature and pressure. These desired values are input by accessing the

LH2_constraints script from the Model window.

This is a large and unwieldy optimization for ModelCenter to perform. When

executed, it is easy for the optimizer to become bogged down in a certain part of the

design space and either stop at an answer that is not a true minimum or cause a crash due

to attempts to set variables at inappropriate points. In order to avoid this, some

preconditioning can be done to start the model at a reasonable point in the design space.

By doing this, the optimizer will be able to find a true minimum rather than exploring

undesirable regions of the design space. Through multiple executions, it was found that

the Method of Feasible Directions provided the best optimization behavior and results.

 A better way of accomplishing this optimization is to take control of some of the

design variables away from the optimizer. This also reduces the number of compatibility

constraints needed in the OBD. This makes the optimizer much more efficient overall,

but makes it even more dependent on the user input.

2.4 ModelCenter vs. Model Engineer

Although the two ALS models rely on the same relationships and equations, the

operating environments under which they function significantly affect the relative

advantages and disadvantages of each approach. As already explored, ModelCenter’s

capacity for optimizing and converging the ALS model exceeds that of Model Engineer.

The utilities that provide that capability could probably be achieved in Model Engineer,

 42

but it would require coding that capability from the ground up. It is much more

advantageous to use the already formulated optimizers and parametric study tools within

ModelCenter.

However, there are advantages to Model Engineer execution. Creating

components is extremely simple in Model Engineer. Whereas for the C++ programs

significant thought had to be put into defining algorithms, variable and function

declarations, and debugging/compiling, the Object Engineer utility allowed for the

“grunt” work of programming to be removed almost entirely. The only coding necessary

was defining the variables within the Excel file and then filling in the functions within the

Visual Basic class file.

However, the C++ approach had its own merits. The initial setup was more

difficult than the Visual Basic approach, certainly. Even so, once the initial programs

were written it was very easy to make changes, especially because C++ is such an object

oriented language. Any time a variable or function needed to be added to the Model

Engineer components, the project file had to be rebuilt and all of the functions redefined.

This generally involved a lot of cutting and pasting, which while not difficult is very time

consuming and can be frustrating. Additionally, there were some problems between

different versions of Model Engineer that caused compiler issues.

The key advantage of the Model Engineer approach is that it promotes the

building of libraries of components, from many different authors. While there is nothing

stopping ModelCenter from taking a similar approach, Modelogics is dedicated to

spreading components created with Object Engineer to all its users. Although it was

desired to create the components of the ALS model fresh, preexisting components were

available. The ALS could even be incorporated into a larger system model by adding

additional engine or aircraft components. For a system that requires little optimization

complexity, Model Engineer is an ideal approach to solving the problem of model

construction; otherwise ModelCenter remains the superior approach.

 43

3 Validation

Before analysis on the models could begin, it was necessary to validate both the

individual components and their ability to model a total system. Data on preexisting

systems is in very short supply, simply because these systems barely exist outside of

studies done in the 1960s. However, those studies can shed some light on the validity of

the ALS model. Model Engineer itself can help verify the models as it had its own heat

exchanger and water separator components. Additionally, there has been some recent

work on an air liquefaction cycle engine; the Japanese have been working on the LACE

ATREX engine for some time and results from that project can be used to validate the

heat exchangers.

3.1 Heat Exchanger Validation

Because it was decided to create the ALS model components completely new and

not use the already available Model Engineer components, these preexisting components

make excellent bases for comparison of heat exchanger model performance. Although the

Model Engineer heat exchangers require slightly different inputs for some variables, the

ALS is close enough that an easy comparison could be made. For the purposes of

validation, the CounterFlowHX component in Model Engineer’s Thermal Systems library

was used.

The CounterFlowHX component can be configured to force a particular heat

exchanger effectiveness just as the ALSHEX component does. Therefore, the hot side

output temperatures will always match up and there is no real validation possible (or

needed) for this number. However, the cold side properties can be matched. For a cold

side input temperature of 200 R, and a range of hot side inputs from 250 to 500 R, the

cold side output temperature was found at two heat exchanger effectiveness values. This

analysis is summarized in Figure 14. The results are very close, especially when the two

input temperatures are close in value. As the difference between hot and cold side inputs

increase, however, the ALSHEX component begins to deviate more from the Model

Engineer heat exchanger. This difference does not exceed 2% within the maximum range

 44

studied; temperature differences of more than 300 R will probably not occur in any single

component. The reason for this deviation is probably due to the necessity of estimating

specific heat at an average temperature with curve fits. Model Engineer components rely

on table lookups from Cp data, and thus probably have slightly more accurate calculations.

Nevertheless, the temperature predicting capability of the ALSHEX component would

seem more than adequate.

200

210

220

230

240

250

260

270

280

0 100 200 300 400 500 600
Hot Side Input Temperature (R)

C
ol

d
Si

de
 O

ut
pu

t T
em

pe
ra

tu
re

 (R
)

ALS e=0.8
ME e=0.8
ALS e=0.4
ME e=0.4

Figure 14: Comparison of Predicted Cold Side Output Temperatures for ME and ALS.

In the case of pressure drop calculations, it would appear that CounterFlowHX

relies on the same relationships as those in the ALSHEX component (Ref 9, 122). The

pressure drop across the heat exchangers always matched up for any input value.

The weight and sizing results Model Engineer provided did not prove to match as

well, unfortunately. The graph in Figure 15 shows the percent discrepancy between the

ALS heat exchanger and Model Engineer’s CounterFlowHX. The discrepancies for the

volume are decent, although they do reach a maximum of nearly 5%. More concerning is

the high difference between the weight estimates, up to 25% for the highest temperature

difference. Again, the percent error rises as the difference between hot and cold side

temperatures rises, pointing to a possible issue with specific heats. The volume error does

not increase in precisely this manner; although it appears to be fluctuating, the errors

 45

displayed in the graph are absolute errors. They increase from almost -5% at the smallest

temperature difference to almost 5% at the largest. This behavior cannot simply be

attributed to the Cp calculation, although it remains to be discovered why this is so.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00

Hot Side Temperature In (R)

Pe
rc

en
t D

is
cr

ep
an

cy

Weight
Volume

Figure 15: Absolute Percent Discrepancy for Weights and Sizing.

Additional performance validation could be achieved by comparing results of the

ALS heat exchanger component with the ATREX engine under development in Japan.

They conducted an experiment testing some precooler designs running air and hydrogen.

Data available for two of these engines, the ATREX8-3 and the ATREX8-5, are available

in Table 2, along with the predicted performance by the ALS model given the same

inputs (Ref 10). The model predicted the performance of the ATREX8-3 precooler very

well. The greatest error occurred in the pressure of the outgoing hydrogen, 2.25%. The

outgoing hydrogen temperature had an error of 1.5%. These errors are somewhat

significant, but overall are acceptable from a conceptual design standpoint. The

ATREX8-5 predictions, however, were somewhat more troubling. The pressure

predictions were very good, both within 1% error. However, the prediction for the

outgoing hydrogen temperature was off by almost 10%. This is a significant error,

 46

although it is difficult to speculate why it exists as there is almost no other information

about the precooler setup available. There may be factors unaccounted for in the model,

or there may be something about the precooler itself that makes the model inappropriate.

Overall, the ability of the heat exchanger components to correctly model a real system

seems fairly good.

Table 2: ATREX Precooler Data and ALS Predicted Performance.

Fluid Property Actual ALS Percent Error Actual ALS Percent Error
Engine --
Mass Flow In (lb/min) --
Temperature In (deg R) --
Temperature Out (deg R) 394.20 400.10 -1.50% 365.40 397.43 -8.77%
Pressure In (psia) -- 532.30
Pressure Out (psia) 342.29 349.98 -2.25% 506.19 505.68 0.10%
Mass Flow In (lb/min) --
Temperature In (deg R) --
Temperature Out (deg R) 338.40 338.37 0.01% 320.40 320.24 0.05%
Pressure In (psia) --
Pressure Out (psia) 13.98 14.03 -0.32% 13.79 13.90 -0.80%
Effectiveness --0.37

ATREX8-3
38.50
55.80

992.25
504.00

14.63

0.41

ATREX8-5

368.40

959.18
502.20

14.77

32.94
55.80

Hydrogen

Air

3.2 Water Separator Validation

The water separator component can be validated from two different sources.

Subscale hardware was built and tested by Marquardt and Garrett AiResearch in the

1960s, and data was obtained about how much water was removed from an operating

water separator as a plane flew through the atmosphere. In Figure 16, the water removed

per mass flow rate of air entering the separator can be seen for an initial relative humidity

of 70%. This test had a duration of 80 seconds. To compare this data to the ALS

separator component, the water removed from the system per minute was multiplied by

this flight time and divided by the mass flow of air. As seen in the figure, the results

matched very closely with that of the test system. This system had no ethylene glycol

added, nor is any data available which would suggest the performance of an ethylene

glycol water separator.

 47

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140

Temperature (F)

W
at

er
 R

em
ov

ed
 (l

b
w

at
er

/lb
 a

ir/
s)

70% Actual
70% Predicted

Figure 16: Water Removed vs Inlet Temperature.

Model Engineer’s separator component can also be used to validate some of the

data, although it also has no capability to add ethylene glycol to the mixture so it is

impossible to fully validate the water separator data. The two models were executed for a

reference relative humidity of 70% at a range of reference temperatures from 510 to 580

R, and an actual air temperature of 500 R. The two models show almost perfect

agreement, especially when the reference temperature is close to the actual temperature.

At the far end of the graph in Figure 17, the percent difference has risen to 5%, which

while not optimal is still reasonable for a conceptual design tool.

 48

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Air Temperature (R)

W
at

er
 R

em
ov

ed
 (l

b
w

at
er

/m
in

)

Model Engineer
ALS

Figure 17: Comparison of ME and ALS Water Removal.

Given that data concerning the addition of ethylene glycol to a fast moving air

stream is unavailable, it was impossible to verify the model’s performance for that

variable. However, if the assumption that the ethylene glycol is completely and evenly

absorbed by the water is a good one, then the component should be very accurate as it is

known that Raoult’s law is very accurate for non-electrolytic solutions.

 49

4 ALS Model Analysis

With the model validated and running correctly, the original goal of the project

could be reached. The model was mandated to run at sea level static (SLS) conditions,

but an additional analysis was conducted to test the model at other points in the design

space, and to gain an understanding of what drives the model. The program SCCREAM

was used to simulate the flight of an aircraft through the atmosphere at high speeds and

altitudes. The inlet conditions were then extracted from SCCREAM’s output deck, and

fed to the ALS model to determine system efficiency at those conditions.

4.1 Sea Level Static

The conditions prescribed by Larry Hunt of SAIC for SLS conditions are listed in

Table 3. These conditions represent an aircraft taking off, most likely under power of a

rocket engine as the ALS model is designed primarily to act as the front end to a LACE

RBCC engine. There are no specific requirements for water removal, but if the

component works properly 97.75% of the water should be removed from the air stream if

both separators work given a separator efficiency of 85%. Additionally, the system

efficiency of pounds of liquid air produced per pound of hydrogen necessary to produce it

should be around 4 to 5.

Table 3: SLS Air Liquefaction System Parameters.

Fluid Property Input Variables Output Requirements
Air Mass Flow 6000 lbm/min ~6000 lbm/min

Temperature 540 deg R ~130 R
Pressure 14.7 psia ~10 psia
Velocity 100 ft/sec
Relative Humidity 80%

LH2 Temperature 40 R
Pressure 800 psia

Using the complete Optimizer Based Decomposition approach where all

compatibility constraints are handled by the optimizer, it took 5.5 minutes to converge to

a solution. The large number of constraints tended to bog the optimizer down and initially

 50

sent it in directions that were far off minimum to meet constraints, as can be seen in

Figure 18. The most important results from the optimized ALS are summarized in Table

4. The limiting components seem to be the water separators and the condenser. In the

case of the condenser, this makes sense as it has to do much of the work of creating the

liquid air. However, due to the fact that the water separator weight functions were not

able to be validated, those numbers may be off.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12

Run Number

Sy
st

em
 W

ei
gh

t (
lb

s)

Figure 18: Optimization History of ALS Model for SLS Conditions.

In any event, the system has met the design goals. The mass flow of liquid air

produced is 5935 lb/min at a temperature of 130 R and a pressure of 10.81, which

roughly match the goals set in Table 3. Furthermore, the water separators worked

correctly and removed most of the water from the air stream which should guarantee that

the engine will continue to run. The highest mass flow of hydrogen necessary to run the

system is 1419 lb/min, which results in a system efficiency of 4.18 lb liquid air per lb

liquid hydrogen, within the stated requirements.

 51

Table 4: Results of Optimizer Based Decomposition on SLS ALS.

In Out In Out In Out In Out In Out In Out
T (R) 540.00 513.99 513.99 513.99 513.99 489.53 489.53 489.53 489.53 382.84 382.84 129.67
P (psia) 14.70 13.97 13.97 13.27 13.27 12.60 12.60 11.97 11.97 11.37 11.37 10.81
Mdot (lbm/min) 6000.00 6000.00 6000.00 5957.73 5967.88 5967.88 5935.21 5935.21 5935.21 5935.21
e
T (R) 279.92 294.87 269.36 279.92 229.01 267.72 40.00 231.04
P (psia) 686.91 652.57 721.98 685.88 759.22 721.26 800.00 760.00
Mdot (lbm/min)
Weight (lbm)
Volume (ft3)

1419.481173.36750.01 992.03

Separator2 Chiller Condenser

Air

0.41 0.74

Precooler1 Separator1 Precooler2
Fluid

H2

0.10 0.10

Property

31.003.20
187.53

26.97
558.59 1388.98

0.62
43.81

0.60
42.95

25.10
561.60

4.2 Additional Cases

Finally, it was desired to attempt to use the model at different conditions other

than SLS. Using the program SCCREAM most of the data for the air entering the inlet at

speeds above Mach 2.5 and altitudes above 30000 ft could be obtained. However, the

humidity at these altitudes is unknown, so the water separator components were removed

for this analysis. The optimization problem had to change somewhat. The optimization

problem for this high speed case is the same as for the SLS system, but the design

variable for the mass of ethylene glycol added to the system (mEG) was removed as the

water separators are not being used.

The results of one optimization, which finished in roughly 6 minutes, are shown

in Table 5 and Figure 19 below. The input conditions are for the entrance to a Scramjet

inlet at Mach 2.5 at an altitude of 40000 ft. The exact model used for the SLS case had

trouble converging and used zero gradients. It became clear that the system is very

sensitive to the mass flow of hydrogen supplied to the condenser. Enough mass flow of

hydrogen must be specified, or the optimizer will not be able to find a feasible and viable

solution. However, a solution was found; the resulting system has a system efficiency of

5.24. Clearly the SLS system is easier to operate at the desired efficiency, but this result

is very close to the desired goal. A total of 15765 lb air/min in liquid form at a pressure of

47.63 psia is the result of this system.

It is interesting to note that in both the SLS and high speed cases, the condenser is

a large component. This is due primarily to the fact that it experiences the largest mass

flow rates; the other components can use lower hydrogen mass flow rates, but hydrogen

 52

flow can never be increased once it has been reduced. Another behavior of the ALS

system that becomes more obvious for the high speed case is the optimizer dependence

on initial values for mass flow rates. The optimizer explores a large range of heat

exchanger effectiveness values, but rarely strays far from the initial guesses for mass flow

rate. Therefore, it is vitally important to make good guesses for these flow rates if a

solution near the system’s true minimum is to be found.

Table 5: Results of Optimizer Based Decomposition on High Speed and Altitude ALS.

In Out In Out In Out In Out In Out In Out
T (R) 882.00 840.42 840.42 650.95 650.95 422.62 422.62 129.67
P (psia) 58.48 55.56 55.56 52.78 52.78 50.14 50.14 47.63
Mdot (lbm/min) 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00
e
T (R) 466.15 881.99 386.74 464.11 295.78 385.07 40.00 295.57
P (psia) 685.90 651.61 722.00 685.90 760.00 722.00 800.00 760.00
Mdot (lbm/min)
Weight (lbm)
Volume (ft3)

2999.83
3884.94

99.481.78 19.0310.75
111.76 903.12545.82

0.64

H2
2700.00 2898.382798.82

Air

0.10 0.42 0.77

Precooler2 Separator1 Chiller CondenserFluid Property Precooler1 Separator1

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Number

Sy
st

em
 W

ei
gh

t (
lb

s)

Figure 19: Run History for High Speed Case (Mach = 2.5).

 53

4.3 Trade Studies

Finally, some trade studies using the model were conducted. The use of the

para/ortho catalyst was investigated for a single heat exchanger, as it can only be used

when the hydrogen is in liquid form; this condition will only occur in the condenser.

Although the results of the original study (Ref 3-3) showed that the desired catalyst

performance was unattainable, the actual catalyst weight needed to convert hydrogen to

its ortho form is sufficient to increase performance without gaining weight. The data

suggests that at higher mass flows of hydrogen, this will no longer be the case; however,

by the time this occurs more hydrogen would be used than liquid air produced. The

previous system weight optimization showed that such high system efficiencies are not

necessary. Figure 20 demonstrates this behavior.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500

Mass Flow Rate of Hydrogen (lb/min)

H
ea

t E
xc

ha
ng

er
 W

ei
gh

t (
lb

s)

Para/Ortho Catalyst
No Catalyst

Figure 20: Effect of Para/Ortho Conversion Catalyst on Heat Exchanger Weight.

Additionally, a study was performed to determine how the required system

efficiency affects system weight. The ALS goal was to obtain system efficiencies of 4 to

5; in other words, 4 to 5 times the amount of liquid air is created for every unit of liquid

hydrogen required. Obtaining higher system efficiencies may be possible, but lower

 54

system efficiencies will result in lower weight systems. Figure 21 shows the behavior of

the system weight as the system efficiency is raised. The behavior is fairly linear for low

efficiency values, but rapidly begins to become exponential after an efficiency of 3. A

system efficiency of 6 was not even possible to obtain (or at least could not be found by

the optimizer). A system efficiency of 5 seems to be roughly the best that could be

achieved.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

System Efficiency (lb LAIR/lb LH2)

Sy
st

em
 W

ei
gh

t (
lb

s)

Figure 21: System Weight vs. Required System Efficiency.

 55

Conclusions

Air liquefaction has not become prevalent as a technology for enabling

spaceplanes. This is in large part due to the design challenges and uncertainty in creating

an engine cycle that can incorporate the heavy heat exchangers necessary to cool the air

to its liquid state. Additionally, ice water fouling can ruin the effectiveness of such

schemes to the point where the engine fails. In order to better understand the process of

air liquefaction and to assess its suitability for incorporation into spaceplanes, the ALS

tool has been created to model any air liquefaction scheme.

The ALS tool is comprised of two components: heat exchangers and water

separators. These components have been validated against components already created

for Modelogics’ Model Engineer software. Additionally, the heat exchanger performance

was validated against the ATREX engine currently in development. Overall, the

components performed as expected, except in the category of weights and sizing. The

heat exchanger components match fairly well with the Model Engineer components,

although errors get worse as the temperature difference between the two working fluids

rises. The water separator component was not validated for weights and sizing due to a

dearth of data.

These components can be connected in virtually any configuration to demonstrate

air liquefaction potential. In the scope of this project, a particular ALS design as specified

by Larry Hunt of SAIC was explored. This ALS contains four heat exchangers and two

water separators, with the capability to add an ethylene glycol spray to the air flow to

prevent water fouling and improve water separation performance.

The resulting model can be executed in two design frameworks: Modelogics’

Model Engineer and Phoenix Integration’s ModelCenter. While both of these frameworks

offer advantages to a user, it is within ModelCenter that the ALS really reaches its

potential. The inability of Model Engineer to conduct complex optimizations leaves it

suitable only for examining the performance of point designs. Within ModelCenter, the

ALS model can be optimized upon until a minimum system weight is achieved and all

performance requirements are met.

 56

This optimization was conducted for a specific set of conditions. SAIC provided

the author with sea level static conditions after the engine inlet. These conditions and

design requirements were listed in Table 3. This optimization completed successfully,

and in only 5.5 minutes. The resulting ALS weighs 2783 lbm and produces 5935 lbm/min

of liquid air at 129 R and 10.8 psia. This ALS requires a mass flow of liquid hydrogen of

1419 lb/min, for a total system efficiency of 4.18.

The ALS model was also executed for conditions at Mach 2.5 and 40000 ft. The

results here were not as conclusive due to the lack of data of humidity levels at high

altitudes; the high speed ALS does not include water separators. The limited optimization

completed, however, resulting in a system producing 15675 lb/min of liquid air given

almost 3000 lb/min of liquid hydrogen. This ALS weighs 5350 lbm and has an overall

system efficiency of 5.225. This does not quite reach the goals set forth for the SLS

system, but is nevertheless an encouraging result.

Despite some discrepancies in the validation of the weights and sizing parts of the

ALS components, the performance aspects of all ALS components work admirably at

low atmospheric conditions. Despite the issue of weight error, the weights and sizing

variables do behave in a logical manner (rising and falling when they should), which

allows the system to be optimized, and for that optimization to make sense. Furthermore,

despite the complex nature of the design problem (15 design variables and 13 constraints)

an optimum was reached in a fairly quick amount of time.

The ALS model is therefore a useful tool for evaluating the performance of an air

liquefaction engine cycle at low atmospheric conditions. Its applicability to high speed

flight at higher altitudes is yet undetermined due to lack of concrete data. Given the

inputs behind the inlet of an engine, it will determine the mass flow of hydrogen,

component weights, and water fouling measures necessary to produce liquid air for use in

the combustion chamber. Given its modularity, it could easily be incorporated to a more

complex system model within Model Engineer or ModelCenter to model an entire engine

or even the whole spacecraft of which that engine is a part.

 57

References

1. E., Mark “Weather Programs & Algorithms: Calculating Humidity Properties”,

http://snowball.frogspace.net/js/wxalgs2.html, May 02, 1999.

2. Escher, William J.D., “Cryogenic Hyrdogen-Indcued Air Liquefaction

Technologies For Combined-Cycle Propulsion Applications,” European RBCC
Workshop, Delft, The Netherlands, November 6-9, 1995

3. Escher, W.J.D., Doughty, D.L., “Assessment of Cryogenic Hydrogen-Induced Air

Liquefaction Technologies,” Astronautics Technology Center, Astronautics
Corporation of America, September 1986.

4. Hodge, E. “Model Engineer User’s Guide,” Modelogics, Inc.

5. “Raoult’s Law,” http://en.wikipedia.org/wiki/Raoult's_law, June, 2003.

6. Sherif, S.A., Sullivan, N., Ihas, G., Zhou, D., “UF Low Temperature/Hydrogen

Group Task #3 Hydrogen Storage,” http://www.fsec.ucf.edu/hydrogen/pdf-slides-
01-2003/uf-t3b.pdf.

7. “Technical FAQs”

http://www.ashchem.com/adc/chemicals/faq_answer.asp?typeID=3&is_header=N,
2004.

8. “This file contains my notes on psychrometrics,”

http://courses.ncsu.edu/classes/wps203001/online/psychrometrics.htm.

9. Whitney, A.E., Whitman, C.E., Li, K.C., “Development of Integrated

Environmental Control System Designs for Aircraft,” Vol. III., McDonnell
Aircraft Company, McDonnel Douglas Corporation, St. Loius, MO, May, 1972.

10. Harada, K., Yamauchi, H., Tanatsugu, N., Sato, T., Okabe, Y., Hamabe, K.,

Tomike, J., Kazari, M., “Development Study on Precooler for Atrex Engine,”
1997.

11. Issacci, F., Farr, J.L., Jr., Wassel, A.T., Griethuysen, V.V., “An Integrated

Thermal Management Analysis Tool,” 1996 JANNAF Propulsion Meeting,
Colombia, MD, December, 1996.

 58

Appendix A--ALS Model User Guide

 The Air Liquefaction System model is designed to allow the user to simulate the
operation of the front end of an air liquefaction engine cycle. It consists of two types of
components; heat exchangers and water separators. Although the model by default
simulates a system with four heat exchangers and two water separators, the components
can be used in any combination to model different air liquefaction schemes, or even
simpler air/hydrogen heat exchange systems.
 The model is available for execution in two operating environments; Modelogics
Inc.’s Model Engineer, and Phoenix Integration’s ModelCenter. Additionally, the
components that comprise the model may be executed as stand alone C++ compiled
executables.
 The purpose of this guide is to educate new users in the use of this model and its
components. It discusses in detail the input and output for both types of execution (Visual
Basic and C++), and the process of combining components into a system. Therefore this
guide is separated into three primary sections: Heat Exchanger Component, Water
Separator Component, and ALS Model.

Heat Exchanger Components in C++

 The simplest way to use the heat exchanger component is to run its executable.
The component HX.exe was written in C++ and relies on simple file based input and
output, and can be executed on any Windows operating system. Source code is available
for compiling for different operating systems; it has been successfully compiled with
Borland’s BCC55 for Windows execution and the Unix compiler g++.
 Shown below is the notional input file for the ALSHEX component. The first five
lines are merely a header; these headers can be changed as desired as long as the number
of lines before the actual data begins remains constant. Both the executable and the
ModelCenter fileWrapper depend on knowing where the data are. The input file is fairly
self-explanatory, but the entries in it will be delineated here.

Notional Input File

Header1

Header2

TH
PH
MH
HH
STATEH
EH
VH

 59

TC
PC
MC
HC
STATEC

EG
TUBED
MAT

 Table A1 lists all of the variables along with their properties. The first seven input
variables describe the hot side (air) inputs. While the lower bounds of most of these
variables is 0, entering a value of zero for any of these variables will likely cause a
system crash; having a temperature of absolute zero, putting no mass flow through the
system, or specifying a 0 effectiveness can cause difficulty. The three integer variables
(STATEH, STATEC, and MAT) reflect user choices, not literal numbers. For the state
variables, 0 represents that the fluid is a gas, and 1 represents a liquid. For material
choices, there are currently only two choices, aluminum (1) and stainless steel (2). A
sample input file can be found at the end of this section.

Table A1: ALSHEX System Inputs
Variable

Name Group Description Units Type
Lower
Bound

Upper
Bound

TH Hot Side Temperature in deg R Double 0 --
PH Hot Side Pressure in psia Double 0 --
MH Hot Side Mass Flow in lb/min Double 0 --
HH Hot Side Enthalpy in Btu/lb Double -- --
STATEH Hot Side State in Gas, Liquid Integer 0 1
EH Hot Side Heat Exchanger Effectiveness -- Double 0 1
VH Hot Side Flow Velocity In ft/sec Double 0 --
TC Cold Side Temperature in deg R Double 0 --
PC Cold Side Pressure in psia Double 0 --
MC Cold Side Mass Flow in lb/min Double 0 --
HC Cold Side Enthalpy in Btu/lb Double -- --
STATEC Cold Side State in Gas, Liquid Integer 0 1
EG Sizing Mass Flow of Ethylene Glycol lb/min Double 0 --
TUBED Sizing Tube Diameter ft Double 0 --
MAT Sizing Material Choice Aluminum, Stainless Steel Integer 1 2

 The executable is run using the command HX.exe (or ALSHEX if it has been
compiled using the g++ command line g++ hx.cpp –o ALSHEX). This will produce the
output file. If using the ModelCenter version of the ALSHEX component, the program
will be executed automatically by running the component. The output file has the
notional format below:

 60

Notional Output File

Heat Exchanger Output File

Property Hot Side Cold Side

THOUT TCOUT
PHOUT PCOUT
MHOUT MCOUT
HHOUT HCOUT
CPH CPC
RHOH RHOC
STATEH STATEC

EHOUT ECOUT
V
A
L
TUBES
CU
RI
WTCORE
WTHEX
ERRFLAG

 Again, the properties of these variables are listed below in Table A2. Many of the
output variables are similar to the input variables, but there are some differences. The
specific heat and density of the fluids at the exits are output just to provide more
information on the outgoing flow. Additionally, the actual effectiveness of the heat
exchanger is output; these numbers may not be the same as what was indicated in the
input file if hydrogen mass flow is insufficient to achieve that effectiveness. The
variables CU and RI represent cost units and reliability index respectively, but the
relationships providing these values did not provide units; therefore, they should only be
used to gauge relative prices and reliabilities of different heat exchanger designs.
ERRFLAG indicates if the mass flow was insufficient to gain the specified performance
out of the heat exchanger. A value of 0 indicates no error, while a value of 1 indicates a
flow deficiency. A sample output file is shown at the end of the section.

 61

Table A2:ALSHEX System Outputs

Variable
Name Group Description Units Type

THOUT Hot Side Temperature out deg R Double
PHOUT Hot Side Pressure out psia Double
MHOUT Hot Side Mass flow out lbm/min Double
HHOUT Hot Side Enthalpy out Btu/lbm Double
CPH Hot Side Specific Heat out Btu/lbm/R Double
RHOH Hot Side Density out lbm/ft3 Double
STATEH Hot Side State out Gas, Liquid Integer
EHOUT Hot Side Effectiveness out -- Double
TCOUT Cold Side Temperature out deg R Double
PCOUT Cold Side Pressure out psia Double
MCOUT Cold Side Mass flow out lbm/min Double
HCOUT Cold Side Enthalpy out Btu/lbm Double
CPC Cold Side Specific Heat out Btu/lbm/R Double
RHOC Cold Side Density out lbm/ft3 Double
STATEC Cold Side State out Gas, Liquid Integer
ECOUT Cold Side Effectiveness out -- Double
V Sizing Heat Exchanger Volume ft3 Double
A Sizing Cross-sectional Area ft2 Double
L Sizing Length ft Double
TUBES Sizing Number of heat exchanigng tubes -- Integer
CU Sizing Cost Units ? Double
RI Sizing Reliability Index ? Double
WTCORE Sizing Core Weight lbm Double
WTHEX Sizing Overall Heat Exchanger Weight lbm Double
ERRFLAG Sizing Error Flag No error, insufficient mass flow Integer

Heat Exchanger Operation in ModelCenter

 To operate the ALSHEX component in ModelCenter, a fileWrapper was created.
Filewrappers are stored on an Analysis Server and tell ModelCenter where to find input
and output variables. The fileWrapper at the end of this section details the input,
execution, and output of the heat exchanger component. The variables are indexed by
row and field number in the input and output files. For more information on the operation
of fileWrappers, please consult the ModelCenter documentation.
 To load the HX component, simply connect to an Analysis Server that hosts the
HX fileWrapper, executables, and input/output files. Drag the component into the project
window, and the component will automatically load. Input variables are displayed by
icons with green arrows heading into a box, while output variables are displayed by icons
with blue arrows heading out of the box. The input and output variables are grouped by
the fileWrapper to help organize them. Input groups include the following variables:
 HotSideIN: Contains all input applying to hot (air) side inputs

 62

 ColdSideIN: Contains all input applying to cold (hydrogen) side inputs
 SizingIN: Contains all input applying to sizing inputs
Output groups include the following variables:
 HotSideOUT: Contains all outputs pertaining to the hot (air) stream
 ColdSideOUT: Contains all outputs pertaining to the cold (hydrogen) stream
 SizingOUT: Contains all weight, sizing, cost, reliability, and error outputs

To execute the model, either right click on the component and select Run, or click on the
arrow in the upper left hand corner of the component in the Project Window.

Heat Exchanger Operation in Model Engineer

 To operate the ALSHX component in Model Engineer, you must have Visual
Basic, the Model Engineer libraries, and the ALSHX component installed and registered
on your system. Open Visual Basic, and start a new project (Standard EXE). A form will
be created. Hit Alt-P or click on “Project” in the Visual Basic Toolbar and hit Ctrl-T or
select “Components…” to open the Components window. Scroll through the available
components until you find ALSHXProj. Check the box next to the component (see Figure
A1) and press OK. A new component will appear on the toolbar to the left. By clicking
and dragging this icon to the form, the ALSHX component can be added to the form.

Figure A1: Visual Basic Component Window

 There are two ways to edit the inputs and view the outputs of the ALSHX
component. First, you may use the Properties window and select the ALSHX component

 63

from the drop down menu. The variables of the component will be listed below, and may
be edited by clicking in the appropriate box and typing in a new number. Secondly, you
can right click on the component itself and select “Edit”. Then right click again and select
“Properties” to open the component. There are four property pages; the first simply
contains information for Model Engineer. The next three pages contain hot side, cold side,
and sizing properties respectively. Any variable boxes colored blue are read only, but any
other variable boxes may be edited. To see the results of an input change, simply press
the Apply button and the output values will update automatically.

Sample Heat Exchanger Input/Output/FileWrapper Files:

Sample Input File (hx.in)

Heat Exchanger Input File

Hot Side/ColdSide

492.893 Hot Side Temperature
11.9699 Hot Side Pressure
5924.34 Hot Side Mass Flow
-24.0676 Hot Side Enthalpy
0 Hot Side State
0.8 Hot Side Effectiveness
100.0 Hot Side Velocity

180.879 Cold Side Temperature
798.0 Cold Side Pressure
1500.0 Cold Side Mass Flow
459.33 Cold Side Enthalpy
0 Cold Side State

0.0 EG Mass flow in Air
0.08 Tube Diameter
1 Material

Sample Output File (hx.out)

Heat Exchanger Output File

Property Hot Side Cold Side

Temperature (R) 243.282 251.565
Pressure (psia) 11.3714 796
Mass Flow (lb/min) 5924.34 1500
Enthalpy (R) -84.1652 694.435
Specific Heat (Btu/lb/R) 0.240765 3.32604
Density (lb/ft3) 0.0655553 0.822179
State (0=gas,1=liquid) 0 0

Effectiveness 0.8 0.0331857

 64

Volume (ft3) 124.599
Area (ft2) 15.0619
Length (ft) 8.27245
Number of tubes 470
Cost Units 81888.6
Reliability Index 0.00328
Core weight (lbs) 21530.7
HEX Weight (lbs) 39369.5
Error flag 0

HX.fileWrapper
@author: John Crowley
@version: 3
@description: ALS HEX wrapper

RunCommands
{
 generate HXin
 run "HX.exe"
 parse HXout
}

RowFieldInputFile HXin
{
 templateFile: hx.inp.template
 fileToGenerate: hx.inp

 setGroup HotSideIN
 variable: T double 6 1 description="Incoming air temperature"

lowerBound=0.00 units="deg R"
variable: P double 7 1 description="Incoming air pressure" units="psia"

lowerBound=0.00
variable: Mdot double 8 1 description="Incoming air Mass flow"

lowerBound=0.00 units="lb/min"
variable: H double 9 1 description="Incoming air Enthalpy"

units="Btu/lb/R"
variable: State integer 10 1 description="Incoming air state" enumValues="0,1"

enumAliases="Gas,Liquid"
variable: e double 11 1 description="Air side effectiveness"

lowerBound=0.00 upperBound=1.00
variable: v double 12 1 description="Incoming air velocity" units="ft/s"

lowerBound=0.0
variable: EGmdot double 20 1 description="Mass flow of ethylene glycol"

units="lb/min" lowerBound=0
 setGroup ColdSideIN
 variable: T double 14 1 description="Incoming LH2 temperature"

lowerBound=0.00 units="deg R"
variable: P double 15 1 description="Incoming LH2 pressure" units="psia"

lowerBound=0.00
variable: Mdot double 16 1 description="Incoming LH2 Mass flow"

lowerBound=0.00 units="lb/min"
variable: H double 17 1 description="Incoming LH2 Enthalpy"

units="Btu/lb/R"
variable: State integer 18 1 description="Incoming LH2 State" enumValues="0,1"

enumAliases="Gas,Liquid"
 setGroup SizingIN
 variable: tube_diameter double 21 1 description="HEX Tube Diameter" units="ft"

lowerBound=0.00
variable: Material int 22 1 description="Material" enumValues="1,2"

enumAliases="Aluminum,Stainless Steel"
}

RowFieldOutputFile HXout
{
 fileToParse: hx.out
 setDelimiters

 65

 setGroup HotSideOUT
 variable: T double 6 3 description="Outgoing air temperature" units="deg R"
 variable: P double 7 3 description="Outgoing air pressure" units="psia"
 variable: mdot double 8 4 description="Outgoing air mass flow" units="lb/min"
 variable: H double 9 3 description="Outgoing air enthalpy"

units="Btu/lb/R"
 variable: Cp double 10 4 description="Air specific heat" units="Btu/lb"
 variable: rho double 11 3 description="Air density" units="lb/ft3"
 variable: State integer 12 3 description="Outgoing air state" enumValues="0,1"

enumAliases="Gas,Liquid"
 variable: e double 15 2 description="Actual hot Side effectiveness"
 setGroup ColdSideOUT
 variable: T double 6 4 description="Outgoing LH2 temperature" units="deg R"
 variable: P double 7 4 description="Outgoing LH2 pressure" units="psia"
 variable: mdot double 8 5 description="Outgoing LH2 mass flow" units="lb/min"
 variable: H double 9 4 description="Outgoing LH2 enthalpy"

units="Btu/lb/R"
 variable: Cp double 10 5 description="LH2 specific heat" units="Btu/lb"
 variable: rho double 11 4 description="LH2 density" units="lb/ft3"
 variable: e double 15 3 description="Cold side effectiveness"
 variable: State integer 12 4 description="Outgoing LH2 state" enumValues="0,1"

enumAliases="Gas,Liquid"
 setGroup SizingOUT
 variable: V double 16 3 description="HEX Volume" units="ft3"
 variable: A double 17 3 description="Cross-sectional area" units="ft2"
 variable: Length double 18 3 description="HEX length" units="ft"
 variable: Tubes int 19 4 description="Number of tubes"
 variable: CU double 20 3 description="Cost units" units="?"
 variable: RI double 21 3 description="Reliability Index" units="?"
 variable: wt_core double 22 4 description="Core weight" units="lbs"
 variable: wt_hex double 23 4 description="Overall HEX weight" units="lbs"
 variable: error_flag int 24 3 description="Error flag" enumValues="0,1"

enumAliases="No error,Insufficient Mass Flow"

}

Water Separator Component in C++

 As with the heat exchangers, the simplest way to use the water separator
component is to run its executable. The component WS.exe was written in C++ and relies
on simple file based input and output, and can be executed on any Windows operating
system. Source code is available for compiling for different operating systems; it has
been successfully compiled with Borland’s BCC55 for Windows execution and the Unix
compiler g++.
 Shown below is the notional input file for the ALSWS component. The first five
lines are merely a header; these headers can be changed as desired as long as the number
of lines before the actual data begins remains constant. Both the executable and the
ModelCenter fileWrapper depend on knowing where the data are. The input file is fairly
self-explanatory, but the entries in it will be delineated here.

Notional Input File

Header1

Header2

TI
T

 66

PI
P
MDOT
EGMDOT
H
RHI
ETA
STATE

 Table A3 lists all of the variables along with their properties. The three variables
ending with “I” are reference variables; TI, PI, and RHI describe air properties at which
the relative humidity of the air stream is known. This applies to the air entering the inlet
in most cases. STATE is an integer variable that describes the state of the air entering the
separator. It is mostly used as a flow variable to be passed to heat exchanger components,
but will return an error if the air is a liquid (STATE=1). A sample input file can be found
at the end of this section.

Table A3: ALSWS System Inputs

Variable
Name Description Units Type

Lower
Bound

Upper
Bound

TI Reference Temperature of Air deg R Double 0 --
T Incoming Air Temperature deg R Double 0 --
PI Reference Pressure of Air psia Double 0 --
P Incoming Air Pressure psia Double 0 --
MDOT Mass Flow of Incoming Air lbm/min Double 0 --
EGMDOT Mass Flow of Ethylene Glycol Added to Air lbm/min Double 0 --
H Incoming Air Enthalpy Btu/lbm Double -- --
RHI Reference Relative Humidity of Air -- Double 0 1
ETA Water Separator Efficiency -- Double 0 1
STATE Incoming Air State Liquid, Gas Integer 0 1

 The executable is run using the command WS.exe (or WS if it has been compiled
using the g++ command line g++ ws.cpp –o WS). This will produce the output file. If
using the ModelCenter version of the WS component, the program will be executed
automatically by running the component. The output file has the notional format below:

Notional Output File

Water Separator Output File

Property Value

TOUT

 67

TDEW
POUT
MOUT
HOUT
PVDEW
PVDRY
HRIN
HROUT
RHOUT
DELTAHR
HRSAT
WDRAIN
CU
DR
RI
V
WT
WTERROR
WTI
STATE
ERRFLAG

 Again, the properties of these variables are listed below in Table A4. A number of
the output variables are the outflow of input variables. However, it also outputs several
variables describing the humidity of the air stream before and after separation. PVDEW
and PVDRY are the vapor pressures at the dew point and the incoming air temperature.
HRIN and HROUT are absolute humidities in lbm water/lbm air. If they are the same, no
water is removed and DELTAHR and WDRAIN will be zero. HRSAT is the saturation
humidity of the air stream at its specified temperature. The variables CU and RI represent
cost units and reliability index respectively, but the relationships providing these values
did not provide units; therefore, they should only be used to gauge relative prices of
different water separator designs. ERRFLAG indicates if there was an error in the
component; a value of 0 indicates no errors, a value of 1 indicates that the air was already
liquid when it entered the separator, and a value of 2 indicates that the water has frozen.
A sample output file is shown at the end of the section.

 68

Table A4: ALSWS System Outputs

Variable
Name Group Description Units Type

TOUT Performance Outgoing Air Temperature deg R Double
TDEW Performance Dew Point of Incoming Air deg R Double
POUT Performance Outgoing Air Pressure psia Double
MOUT Performance Outgoing Mass Flow lbm/min Double
HOUT Performance Outgoing Enthalpy Btu/lbm Double
PVDEW Performance Vapor Pressure at Dew Point psia Double
PVDRY Performance Vapor Pressure at Incoming Air Temperature psia Double
HRIN Performance Absolute Humidity of Incoming Air Stream lbm water/lbm air Double
HROUT Performance Absolute Humidity of Outgoing Air Stream lbm water/lbm air Double
RHOUT Performance Outgoing Relative Humidity -- Double
DELTAHR Performance Change in Absolute Humidity lbm water/lbm air Double
HRSAT Performance Absolute Humidity of Saturated Air lbm water/lbm air Double
WDRAIN Performance Water Removed From Air Stream lbm/min Double
CU Sizing Cost Units ? Double
DR Sizing Development Risk ? Double
RI Sizing Reliability Index ? Double
V Sizing Volume ft3 Double
WT Sizing Weight lbm Double
WTERROR Sizing Weight Error lbm Double
WTI Sizing Installed Weight Factor lbm Double
STATE Sizing State Liquid,Gas Integer

ERRFLAG Sizing Error flag
No error,Air

Liquefied,Water
Frozen

Integer

Water Separator Operation in ModelCenter

To operate the ALSWS component in ModelCenter, a fileWrapper was created.
Filewrappers are stored on an Analysis Server and tell ModelCenter where to find input
and output variables. The fileWrapper, seen at the end of this section, details the input,
execution, and output of the heat exchanger component. The variables are indexed by
row and field number in the input and output files. For more information on the operation
of fileWrappers, please consult the ModelCenter documentation.

To load the ALSWS component, simply connect to an Analysis Server that hosts
the ALSWS fileWrapper, executables, and input/output files. Drag the component into
the project window, and the component will automatically load. Input variables are
displayed by icons with green arrows heading into a box, while output variables are
displayed by icons with blue arrows heading out of the box. The output variables are
grouped by the fileWrapper to help organize them. Output groups include the following
variables:

 69

Performance: Contains all outputs applying to air properties such as temperature,
pressure, and humidity properties

Sizing: All weights, dimensions, and the error flag are found in this group

To execute the model, either right click on the component and select Run, or click on the
arrow in the upper left hand corner of the component in the Project Window.

Water Separator Operation in Model Engineer

 To operate the ALSWS component in Model Engineer, Visual Basic, the Model
Engineer libraries, and the ALSWS component must be installed and registered on your
system. Open Visual Basic, and start a new project (Standard EXE). A form will be
created. Hit Alt-P or click on “Project” in the Visual Basic Toolbar and hit Ctrl-T or
select “Components…” to open the Components window. Scroll through the available
components until you find ALSWS. See the Model Engineer Heat Exchanger section for
figures displaying these steps. By clicking and dragging this icon to the form, the
ALSWS component can be added to the form.
 As before, there are two ways to edit the inputs and view the outputs of the
ALSWS component. First, you may use the Properties window and select the ALSWS
component from the drop down menu. The variables of the component will be listed
below, and may be edited by clicking in the appropriate box and typing in a new number.
Secondly, you can right click on the component itself and select “Edit”. Then right click
again and select “Properties” to open the component. There are three property pages; the
first simply contains information for Model Engineer. The next two pages contain
performance and sizing properties respectively. Any variable boxes colored blue are read
only, but any other variable boxes may be edited. To see the results of an input change,
simply press the Apply button and the output values will update automatically.

Sample Water Separator Input/Output/FileWrapper Files:

Sample Input File (ws.inp)

Water Separator Input File

Value

498.21 Ti
449.919 T
13.2668 Pi
13.2668 P
6000.0 Air stream mass flow
12.0 EG mass flow
-21.7276 H
1.0 RHi
0.85 Efficiency
0 State (0=gas, 1=liquid)

Sample Output File (ws.out)

 70

Water Separator Output File

Property Value

Temperature (R) 449.919
Dew Point Temperature (R) 449.914
Pressure (psia) 12.6035
Mass Flow (lb/min) 5974.83
Enthalpy (Btu/lb) -21.7276
Vapor Pressure Tdew (psia) 0.01375
Vapor Pressure Tdry (psia) 0.01375
Humidity IN (lb H2O/lb air) 0.00543516
Humidity OUT (lb H2O/lb air) 0.00121765
Relative Humidity OUT 1
delta Humidity (lb H2O/lb air) 0.0042175
Saturated Humidity (lb H2O/lb air) 0.000473388
Water Removed (lb/min) 25.1682
Cost Units (?) 1186.95
Development Risk (?) 1
Reliability Index 0.00285
Volume (ft3) 980639
Water Separator Weight (lbs) 561.6
Weight error (lbs) 97.1568
Installed Weight Factor 115.128
State 0
Error Flag 0

WS.fileWrapper

@author: John Crowley
@version: 3
@description: ALS Water Separator wrapper

RunCommands
{
 generate WSin
 run "WS3.exe"
 parse WSout
}

RowFieldInputFile WSin
{
 templateFile: ws2.inp.template
 fileToGenerate: ws.inp

variable: Ti double 6 1 description="Reference air temperature"
lowerBound=0.00 units="deg R"

variable: T double 7 1 description="Incoming Air temperature"
lowerBound=0.00 units="deg R"

variable: Pi double 8 1 description="Reference air pressure" units="psia"
lowerBound=0.00

variable: P double 9 1 description="Incoming air pressure" units="psia"
lowerBound=0.00

variable: Mdot double 10 1 description="Incoming air Mass flow"
lowerBound=0.00 units="lb/min"

variable: EGmdot double 11 1 description="Ethyelene glycol mass flow"
lowerBound=0.00 units="lb/min"

variable: H double 12 1 description="Incoming air Enthalpy"
units="Btu/lb/R"

 71

variable: RHi double 13 1 description="Reference Relative Humidity"
lowerBound=0.00 upperBound=1.00

variable: e double 14 1 description="Separator Efficiency" lowerBound=0.00
upperBound=1.00

variable: State integer 15 1 description="State of fluid" lowerBound=0
upperBound=1 enumValues="0,1" enumAliases="Gas,Liquid"

}

RowFieldOutputFile WSout
{
 fileToParse: ws.out
 setGroup Performance
 variable: T double 6 3 description="Outgoing air temperature" units="deg R"
 variable: Tdew double 7 5 description="Dew Point Temperature" units="deg R"
 variable: P double 8 3 description="Outgoing air pressure" units="psia"
 variable: PvTdew double 11 5 description="Vapor Pressure at Tdew" units="psia"
 variable: PvTdry double 12 5 description="Vapor Pressure at Tdry" units="psia"
 variable: mdot double 9 4 description="Outgoing air mass flow" units="lb/min"
 variable: Wdrain double 18 4 description="Water removed" units="lb/min"

variable: H double 10 3 description="Outgoing air enthalpy"
units="Btu/lb/R"

variable: HRin double 13 6 description="Absolute incoming Humidity" units="lb
water/lb air"

variable: HRout double 14 6 description="Absolute outgoing humidity" units="lb
water/lb air"

 variable: RH double 15 4 description="Relative outgoing humidity"
 variable: deltaHR double 16 6 description="Change in absolute humidity" units="lb

water/lb air"
variable: HRsat double 17 6 description="Saturated Humidity" units="lb

water/lb air"

 setGroup Sizing
 variable: V double 22 3 description="Separator Volume" units="ft3"
 variable: CU double 19 4 description="Cost units" units="?"
 variable: DR double 20 4 description="Development Risk" units="?"
 variable: RI double 21 3 description="Reliability Index" units="?"
 variable: wt_ws double 23 5 description="Overall Separator weight" units="lbs"
 variable: wt_d double 24 4 description="Separator weight error" units="lbs"
 variable: wt_i double 25 4 description="Installed Weight Factor"
 variable: State integer 26 2 description="State of outgoing fluid"

enumValues="0,1" enumAliases="Gas,Liquid"
variable: errorFlag integer 27 3 description="Error flag" enumValues="0,1,2"

enumAliases="No errors,air liquefied,waterfrozen"
}

Creating System Models in ModelCenter

 Creating models comprised of the heat exchanger and water separator components
is a simple matter of loading each individual component and then linking them together.
For each component in a system, a separate component should be added to the Project
Window. The Link Editor should then be opened in ModelCenter and links created.
There are two approaches that may be used to create system models: Brute-Force, and
Optimizer Based Decomposition (OBD). OBD is desirable from a Multidisciplinary
Design Optimization standpoint, but takes longer to set up and it is suggested that the
user has a good understanding of the system and components involved when trying to
create an OBD model.
 The Brute-Force method involves linking every flow variable possible, which will
in effect cause feedback loops to occur. As the properties of the fluids running through
the heat exchangers change, the components will have to be reexecuted to account for
changes to the air and hydrogen properties. But once the components are executed again,

 72

the properties will have changed. This process iterates until there is no longer a
significant change between executions and the model stops at the solution.
 To create a system model that employs feedback, all temperature, pressure,
enthalpy, state, velocities, and mass flow variables should be linked. However, the mass
flow inputs for the cold (hydrogen) side may be left unlinked if you wish to remove some
hydrogen mass flow as it moves through the system. It is generally not advisable to do
this, as the mass of hydrogen entering a component should always be equal to or less than
the preceding component; removing hydrogen and then adding it back again later will not
be modeled properly as the two hydrogen streams will have different properties. Links
are created in ModelCenter’s Link Editor; simply drag an output variable from the left on
top of the appropriate input variable on the right. Once the links are created, the option to
manually enter the values for linked input variables will no longer exist.
 With the links fully defined, it simply remains to enter all the input values. This
includes tube sizes, heat exchanger effectiveness values, material selections, ethylene
glycol mass flow, separator efficiencies, and reference humidity values. If reference
temperatures and pressures in the water separator components are not linked, these must
also be specified. Once all inputs have been specified, click on the Run Scheduler to
automatically iterate the model until it has converged.
 The OBD method will require fewer runs of the components on the whole,
although the quick execution of the ALS components mitigates this issue somewhat. To
create an OBD scheme, an optimizer will have to be employed to maintain compatibility
constraints between the cold side heat exchangers. There are no longer any feedbacks, so
the only links are those between the hot side inputs and outputs. Links should be created
between the temperature, pressure, mass flow, enthalpy, and state variables of all hot side
inputs.
 Now constraints must be defined. Blank script components are found in
ModelCenter’s Common/Functions directory. Between every heat exchanger, there must
be compatibility constraints for temperature and pressure. For a number N heat
exchangers, there will 2*(N-1) compatibility constraints. To calculate these constraints,
the output and input cold side temperatures and pressures should be input into the script.
For a simple two heat exchanger system consisting of a precooler and condenser, for
example, there would be two compatibility constraints calculated by:

Tconstraint = Precooler.ColdSideIN.Temperature-Condenser.ColdSideOUT.Temperature
Pconstraint = Precooler.ColdSideIN.Pressure-Condenser.ColdSideOUT.Pressure

It is advisable that these constraints be normalized and then squared; in this manner, the
compatibility constraint can be reflected as inequality constraints rather than equality
constraints. When fed to an optimizer, the only way for this constraint to be satisfied is
for Tin to be equal to Tout. By normalizing the magnitude of one constraint cannot
dominate over another.
 Other constraints may be necessary depending on the system being analyzed. If
there are conditions at the exits of either the hot or cold sides that must be met these
should be represented as inequality constraints as well. Additionally, if cold side mass
flows are allowed to be different between heat exchangers, the constraints should be

 73

added that mass flow can only decrease as the hydrogen moves through the system, never
increase.
 With the constraints defined, the optimizer that will drive the OBD can be added.
ModelCenter includes a default optimizer in its Common/Drivers directory. Any variable
or combination of variables can be optimized as long as an appropriate objective function
is defined. To optimize total system weight, for example, create a script that adds all the
individual component weights together, and use the output as the objective function. The
constraints defined in the constraint script should all be dragged in to the constraint
window. Finally, the design variables must be chosen.
 All of the input variables that defined the compatibility constraints must be used
as design variables to allow those constraints to be met. Any other design variables
should be added as appropriate; generally, the mass flows of hydrogen and the heat
exchanger effectiveness values should be design variables, as they are major drivers of
the system.

Creating System Models in Model Engineer

 Creating a system model in Model Engineer can be a more difficult proposition if
the Fixed Point Iteration approach is to be taken. The Brute-Force method is easily
achievable, however. To create a Model Engineer ALS model, a new Visual Basic
Standard EXE project should be started as normal. The components must be added to the
form as described in the heat exchanger and water separator sections of this document.
Additionally, the Modelogics Data Flow and Modelogics Data Viewing libraries should
be added.
 To connect the components in the model, the Connector Arrow is dragged from
component to the other. Model Engineer should automatically identify those variables
which are to be connected, but within the connector window the link direction and
individual links may be changed. Direct links from one component to another should be
made only between hot side variables; this includes links to any water separators. To
create the feedback links for the cold side variables, the Splice component from the Data
Flow library should be added in between each heat exchanger. The cold side outputs can
be routed through this component and to the cold side inputs of the next component.
 To execute the model, a DataGenerator component from the Data Viewing library
must be added. By right clicking on it and selecting “Properties”, the execution order of
the component can be set. The system should execute in the order that the hot air goes
through the system. Make sure to check the box next to each component to ensure that it
runs.

If desired, a schematic viewer can be added that allows the user to see the system
variables changing as the model executes. To create a schematic viewer, the S-Viewer
component should be added from the Data Viewing Library. Next, a drawing of the
system can be created in Microsoft Power Point, although this is optional. The Power
Point drawing should be saved as a Windows Metafile (*.wmf). By right clicking on the
S-Viewer component and selecting “Properties”, the *.wmf file can be added to the
component and will be displayed when the S-Viewer is clicked during execution. In the
S-Viewer property pages, the variables to be displayed on the picture are selected. These

 74

variables can be arranged on the drawing (or white space if no *.wmf file is uploaded) by
right clicking on the S-Viewer component and selecting “Show Viewer”.

To execute this model, it should either be compiled into an executable, or run
directly from Visual Basic by going to the Run menu and clicking Start (or hitting the
Start button on the toolbar). The model should iterate continuously until the inputs and
outputs between the components all match. This process executes very rapidly, but does
involve a lot of extra computations.

To use the FPI method of bringing a closed solution, the hot side Connector
Arrows are still used, but the cold side links are removed. Instead, an Excel file is used
along with the Model Engineer components ReadXCells and WriteXCells to
continuously update the cold side properties based on the results of the previous run.
Essentially, each run takes up a column in the Excel file. Initial conditions for all
variables are specified in the first column. When the model is executed, it will write the
cold side outputs between each heat exchanger in the same column in the outputs section.
These values are written in the next column’s input section via logic in the worksheet
itself. By employing a Do Loop component, the Data Generator can be told to execute a
set number of times, indexed by the current column. Each iteration reads from and writes
to the next column for however many iterations are specified. At the end of the process,
the closeness of the cold side guesses to the actual values can be verified. If there is
sufficiently small error between the two, the system has been closed. Otherwise, the
model should be executed again with the most recent inputs in the first column until it has
satisfied an appropriate maximum error condition.

Please note that the Model Engineer models cannot truly be optimized, they can
only be closed for certain inputs. The optimization capability of Model Engineer is too
simple to accommodate the complex optimization strategy necessary to tackle an ALS of
any size.

 75

