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Flight data from an entry, descent, and landing (EDL) sequence can be used to reconstruct the vehicle’s tra-
jectory as well as compute the associated uncertainty. The atmospheric profile encountered by the vehicle can
similarly be estimated from the flight data. Past Mars missions have contained instruments, such as accelerom-
eters, gyroscopes, and radar altimeters that do not provide direct measurement of the free-stream atmospheric
conditions. Thus, uncertainties in the atmospheric reconstruction and the aerodynamic database knowledge
cannot be separated. However, the upcoming Mars Science Laboratory (MSL) will take measurements of the
pressure on the aeroshell forebody during entry. These measurements will provide means to determine the
free-stream conditions and to separate the atmospheric and aerodynamic uncertainties. In this paper, analyt-
ical methods to statistically estimate trajectories and free-stream conditions from flight data and to quantify
uncertainties in these parameters are discussed. A sample data set from a ballistic range test of an Orion Crew
Exploration Vehicle (CEV) model is then used to demonstrate results from applying these procedures. This
approach utilizes the same techniques and toolset planned for subsequent application for the reconstruction of
MSL’s EDL sequence in 2012.
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Nomenclature

Vehicle center of mass acceleration
Equation of motion Jacobian matrix
State noise Jacobian matrix
Axial force coefficient

Pressure coefficient
Quaternions

State error vector

Gravitation acceleration
Altitude

Observation sensitivity matrix
Moment of inertia

Identity matrix

Kalman gain

Vehicle mass

Mach number

Inertial vehicle angular velocity
Pressure

State covariance matrix
Dynamic pressure

State noise covariance matrix
Position

Ideal gas constant

Observation covariance matrix
Vehicle reference area
Temperature

Inertial velocity

Inertial velocity components
State noise vector

State deviation vector
State vector

Observation residual vector
Angle of attack

Sideslip angle

Flight path angle
Observation error

Clock angle

Cone angle

Pitch angle

Longitude

Density

Standard deviation

Roll angle

Planet-centric latitude
State transition matrix
Yaw angle

Angular velocity of planet

DE KBS AD OTDI NN 22 TR MK

Subscript and superscripts

Backward pass
Forward pass

Pressure port condition
Time index

Total condition
Free-stream condition
Nominal value

Best estimate
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I. Introduction

Post-flight reconstruction of the entry, descent, and landing (EDL) sequence has been conducted for every success-
ful Mars mission to provide insight into the vehicle’s trajectory and atmospheric conditions it encountered during the
descent. '™ Previous Mars missions have provided flight data from on-board accelerometers, gyroscopes and radar al-
timeters, which have allowed estimation of the position, velocity and attitude of the vehicles during the EDL timeline.
Moreover, based on the sensed decelerations on the vehicle, the atmospheric profiles encountered by the vehicles have
also been estimated.

However, the estimated trajectories and atmosphere from flight data have not reduced the uncertainties in the
engineering models used during the design of Martian probes. Particularly, the aerodynamic coefficients of the vehicles
have large uncertainties associated with them and that can affect the predicted trajectory. The coefficients in the vehicle
aerodynamic database are largely a product of wind-tunnel testing, computational fluid dynamics (CFD) analysis and
some Earth-based flight testing. Thus, when the results of the different methods are combined in a database, there exist
uncertainties that are inherent in an amalgam of data. Moreover, when the reconstructed aerodynamic coefficients
from flight data are compared with the coefficients from the database, discrepancies between the two values can be
noticed.’ In addition, the knowledge Martian atmosphere also contains large uncertainties, which in turn propagate
into the uncertainties in the EDL performance of the vehicle. For example, atmospheric models used by NASA during
pre-flight trajectory analysis can have 30 uncertainties as large as +40% from the nominal value.® Thus, Martian
EDL reconstructions from flight data can significantly benefit from methods that can estimate and in turn reduce the
uncertainties in the design parameters.

Many previous reconstructions ' have used a deterministic process in which the uncertainties of the measurements
have not been included directly in the estimation process. If statistical estimation methods are used to reconstruct
the trajectory from flight data, the uncertainties in the observations can be incorporated into the estimation process,
yielding the associated uncertainty in the reconstructed data.” Moreover, in the past, when the reconstructed trajectory
has been used to estimate the atmospheric profile, uncertainties in the atmospheric conditions and in the knowledge
of the aerodynamic coefficients of the vehicle have not been separable. Primarily, this has been due to a lack of an
independent atmospheric measurement source, since most Mars missions have lacked direct atmospheric sensors and
have relied largely on inertial measurements; thus, one could not estimate the free-stream conditions of the atmosphere
without assuming perfect knowledge of the vehicle aerodynamic database.

Fortunately, the upcoming Mars Science Laboratory (MSL) mission will contain on board pressure transducers
that will measure the pressure along the vehicle forebody.® Seven pressure transducers located at known locations on
the forebody will capture the pressure distribution on the vehicle through the hypersonic phase of entry. The pressure
transducers are part of the MSL Entry, Descent, and Landing Instrumentation (MEDLI) project. One of the project’s
goals under the Mars Entry Atmospheric Data System (MEADS) program is to determine free-stream conditions such
as dynamic pressure (qo) and Mach number (M), and vehicle orientation parameters, such as angle of attack («)
and sideslip angle (/). The pressure transducer measurements will provide surface pressure measurements indepen-
dent of the inertial measurements and radar altimeter data, thus allowing a reconstruction of atmospheric parameters
independent of the aerodynamic uncertainties.

This paper will present a framework on how to use surface pressure measurements in a trajectory and atmosphere
reconstruction that integrates the uncertainties in the data within the estimation process. Past work done in trajectory
reconstructions using pressure measurements will be presented, and traditional methods of atmospheric estimation
will be analyzed. Subsequently, a reconstruction procedure using an extended Kalman filter (EKF) algorithm will be
presented to statistically estimate the trajectory. Modifications necessary to incorporate pressure measurements in the
process will also be discussed. Finally, data sets from ballistic range test of the Orion Crew Exploration vehicle (CEV)
will be used as a test case for the methodology.

II. Background

Since the landing of Vikings 1 and 2 in 1976, the United States has successfully sent four other spacecrafts to
the Martian surface. However, failures have also accompanied the human exploration of Mars, such as the lost 1999
Mars Polar lander mission that lost contact during EDL. Mitigating large uncertainties that exist in engineering models
used during Mars EDL design may help avoid some the problems of previous missions. Trajectory and atmospheric
reconstruction of flight data allows quantification of the uncertainties in the vehicle performance and the Martian
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environment. The following sections will describe the goals behind trajectory and atmospheric estimation from flight
data and consider past works done in the field of Mars EDL reconstruction.

A. Motivation

The objective for the trajectory and atmosphere reconstruction of missions is to verify the performance of the vehicle
and quantify any off-nominal behavior. However, this paper’s primary focus is to consider methods that can quantify
the uncertainties in the estimated trajectory and atmosphere. The effects of these uncertainties in trajectory and at-
mospheric parameters have to be considered during the design process. Due to a lack of Mars-like testing facilities
on Earth, the best substitute is Monte Carlo simulation analysis of the primary design variables. Almost every Mars
mission has been simulated using Monte Carlo technique, and results of the analysis can be found in the literature for
missions such as the Mars Exploration Rovers (MER)? and the Phoenix lander. '°

Looking at the work of Striepe et al.'! who conducted a Monte Carlo simulation of the MSL mission, one sees
a long list of design parameters with uncertainties to consider. Uncertainties exist in the entry conditions (such as
flight path angle), center of mass location of the vehicle and sensor biases that will effect the deployment of a stage
in the mission. However, two major sources of uncertainties comes from the lack of certainty in the knowledge of the
aerodynamic coefficients of the vehicle and the atmospheric profile it will encounter.

The uncertainties in the aerodynamic coefficients exist due to the various methods used to generate the aerodynamic
database for a vehicle. As the work of Edquist et al. !> shows, the data is compiled from methods such as CFD tools that
solve the Navier-Stokes equations, Direct Simulation Monte Carlo Analysis codes that compute aerodynamic effects
in the free-molecular regime, bridging models between free-molecular and continuum regimes and ballistic range and
wind tunnel data. A sample of the uncertainties in the acrodynamic database for Phoenix is summarized in Table 1.

Due to the various sources that account for the data, the uncertainties are often based on past experience and
engineering judgment of the designers. Additionally, aerodynamic data from past missions that are similar to the
vehicle being studied are used to complete the aerodynamic database. Since all U.S. Mars missions have used the
70-degree sphere-cone for entry and then used a Disk-gap-band (DGB) parachute, past aerodynamic data is often
relevant for future missions. However, despite having flight data from the past missions, the uncertainties have not
been significantly reduced.

Table 1. Mars Phoenix aerodynamic uncertainties. 12

Statics/Dynamics Flight Regime Coefficients 30 Uncertainty Distribution
Statics Transitional/Free-Molecular Ca +5% Normal
Cn, Cy +0.01
Cm, Cp, +0.005 x [1.2,0.8]
Statics Hypersonic Ca +3% Normal
Cn,Cy +0.01
Cm, Cp, +0.002 x [1.2,0.8]
Ci 1.24x 1076
Statics Supersonic Ca +10% Normal
Cn,Cy +0.01
Cm, Cp, +0.005 x [1.2,0.8]
C 1.24x 1076
Statics Transonic Ca +10% Normal

Cn, Cy 1.25 x Supersonic
Cm, Ch, 4+0.005 x [1.2,0.8]

C 1.24 x 10~
Dynamics Hypersonic Cmg Cnr +0.15 Normal
Dynamics Supersonic Cmg> Cnr +0.5x[2.5,0.5] Uniform
-0.5+10.1,0.0]
Dynamics Transonic Cmg» Cnr 1.25 x Supersonic Uniform

Flight data from the two Viking landers provided in-situ atmospheric pressure measurements over the vehicle
forebody during EDL. Although the data was not statistically analyzed and uncertainties in the aerodynamic and at-
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mospheric properties were not separated, reconstructed angle of attack and lift and drag coefficients histories provided
a good benchmark to compare predictions from the aerodynamic database. Edquist’s® work compares the predictions
from LAURA, a CFD tool used to create the aerodynamic databases of several Mars vehicles and the reconstructed
flight data. Figure 1 shows the total angle of attack («;), lift coefficient, drag coefficient and lift-to-drag ratio for
Viking Lander 1 based on CFD tools and flight data. As can be seen in the figure, there are some significant discrep-
ancies between the flight data and the predicted results. These figures underscore the need for using flight data and
their reconstructed uncertainties to aid in model verification.
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Figure 1. Viking lander 1 aerodynamic coefficients based on flight data and LAURA.

The other significant component of uncertainties in simulations come from atmospheric models. Large variations
in the atmosphere due to the seasons, the amount of dust particles and other weather-related events make the prediction
of density, pressure and temperature very uncertain. For example, looking at Fig. 2, one can see large variations in
density from the nominal prediction.® This nominal case is based on the Kass-Schofield model, which was used by
Desai et al. to predict atmospheric properties for MER trajectories. Reconstruction of atmosphere from flight data and
then quantifying the uncertainties can significantly improve the atmospheric modeling for Mars.

B. Historical Perspective

As mentioned earlier, the United States has successfully landed six spacecrafts on the Martian surface. In addition,
MSL is expected to reach Mars in 2012. The past missions have collected various measurements types during EDL that
have allowed engineers to reconstruct the trajectory taken and the atmosphere encountered by the spacecrafts. Table 2
summarizes the measurements taken during the EDL phase by the U.S. missions. Table 2 shows that many of the
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Figure 2. Sample density variation on Mars for MER trajectories. 6

Table 2. EDL-related measurements taken by U.S. Martian missions.

Measurements Viking 1 and 2% Pathfinder "™ MERZ'"  Phoenix>'”  MSL?
Accelerometer X X X X X
Thee-axis gyroscope X X X X
Radar altimeter X X X X X
Radiometric tracking (pre-EDL) X X X X X
Pressure (during EDL) X X X
Pressure (from surface) X X X X X
Temperature (during EDL) X X X
Temperature (from surface) X X X X X
TPS Recession X

past missions have only taken inertial measurement unit and radar altimeter data during the EDL sequence. Thus, the
reconstruction techniques for the most part have been limited to deterministic estimation methods. These estimation
techniques are similar to methods used to reconstruct data from strap-down guidance systems. '8 The procedure is
simply to use the inertial measurements to integrate non-linear equations of motion. Section III. will describe the
procedure in greater detail. Results from the deterministic trajectory reconstructions can be found in the literature for
Vikings 1 and 24 Mars Pathfinder!, Mars Exploration Rovers (MER)? and the Phoenix lander™!”.

Moreover, there have been some EDL trajectory reconstruction efforts in the past that have utilized statistical
estimation techniques. The method of choice has been the Kalman-Schmidt filter, which is a variant of the more
famous Kalman filter. Kalman filtering is a method of estimating parameters when measurements are sequentially
processed. This is different from another common estimation technique known as the batch filtering method, which
processes all of the data together. Kalman filtering has been applied to flight reconstruction problems as early as the
1970’s.19 Section IV. will describe the algorithm behind a basic Kalman filter, its non-linear variant, the extended
Kalman filter, and also describe the modifications needed for a Kalman-Schmidt filter.

In the case of Mars EDL trajectory reconstruction, Kalman filtering was utilized by Euler et al.'* in 1978 to
estimate the trajectories for Viking 1 and 2. Euler integrated the equations of motion using the inertial data, and
the used the radar altimeter and the terminal landing Doppler data to correct the estimate of the trajectory parameters
through a stochastic filter. Yet, although the Viking probes sampled the atmosphere during EDL using pressure probes,
Euler’s work did not include the pressure measurements within the trajectory estimation procedure; thus, a statistical
estimation of both the trajectory and the atmosphere was not conducted at that point.

Kalman filtering was also used by Spencer et al.! in the reconstruction of the Mars Pathfinder data. The tool in
this case was a linearized Kalman filter that corrected a nominal trajectory based on the integration of the inertial
measurement data. Altimeter and Doppler data were used as measurement types for the Kalman filter. Spencer et
al. also utilized a smoothing algorithm to combine trajectory reconstruction from forward and backward runs of the
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data. See Section IV. for details regarding the rationale and methodology behind a smoother. However, it is important
to note that the Pathfinder reconstruction was conducted using only three degree-of-freedom equations of motion and
did not report body-fixed angular rates of the vehicle. The Spencer et al. work also used a least-squares estimator
for reconstruction effort in addition to the Kalman filtering reconstruction; thus, that paper has also been cited as an
example of deterministic trajectory reconstruction.

Another objective for the Mars flight reconstruction projects through the years has been to determine the atmo-
spheric profile encountered by the vehicles during EDL. Without pressure measurements during EDL, density and
other atmospheric properties have been estimated using the knowledge of aerodynamic coefficients and the recon-
structed velocity of the vehicle. See Section III. for the deterministic procedure used in the past for atmospheric
reconstruction. Deterministic atmospheric reconstruction procedures similar to what is discussed later were proposed
as early as 1965 by Seiff and Reese.?’. Atmospheric reconstructions of Mars missions using deterministic techniques
exist in the literature for the Viking missions2!, Mars Pathfinder!, MER '® and Phoenix>.

As noted in Table 2, observations from on-board pressure transducers to estimate the free-stream conditions have
been collected previously. Specifically, the two Viking missions and Mars Pathfinder have taken in-situ pressure
measurements during the EDL sequence. However, Pathfinder only took the pressure measurements after parachute
deployment'* and thus that data cannot be used to reconstruct the atmosphere during the hypersonic EDL phase.
Additionally, Schofield et al.’s work in reconstructing the atmosphere for the Pathfinder mission used the deterministic
atmospheric technique described later in this paper.

Viking 1 and 2, on the other hand, did take pressure measurements even in the hypersonic phase of EDL.?' Nev-
ertheless, the Viking reconstruction also used another deterministic approach in atmospheric reconstruction. Density
was calculated using the definition of axial force coefficient (see Eq. (2)) and knowledge of the coefficients from the
vehicle aerodynamic database. Then the measurements of the stagnation pressure values during EDL were used to
reconstruct the axial force coefficient and an iterative scheme was used to converge on the density values.?? Thus,
the pressure measurements were not directly used in the trajectory estimation and the uncertainties in the pressure
measurements were not included in the estimation algorithm.

Nevertheless, flight reconstructions for non-Mars EDL sequences have utilized pressure data in stochastic esti-
mation procedures. The Shuttle Entry Air Data System (SEADS) program of the 1980’s used a flush-mounted air
data system to estimate the pressure distribution across the Space Shuttle forebody during entry. The MEDLI pro-
gram’s pressure data system is in large part based on the SEADS concept. The SEADS project was able reconstruct
the free-stream conditions during shuttle entry successfully, and verified its results with simulation and wind tunnel
data.Z> However, reconstructions based on SEADS data did not blend the inertial measurements with the pressure
distribution data. Instead, a sequential batch-filter was used together with a database of pressure distributions on the
vehicle forebody for different flight conditions to estimate the aerodynamic parameters that would create the pressure
measurements at the transducers during an EDL sequence. As such, potential coupling between uncertainties in the
trajectory estimate and uncertainties in the atmosphere estimate were not considered in the SEADS analysis.

Fortunately, MSL will become the first mission to collect a large volume of Mars pressure data during the hyper-
sonic descent phase. Due to the large uncertainty in our knowledge of the Martian atmosphere, a trajectory reconstruc-
tion of a Mars EDL sequence that can also estimate the atmospheric profile with a high degree of certainty would be a
significant scientific and engineering resource.

C. Mars Science Laboratory

The Mars Science Laboratory is going to be a revolutionary spacecraft in many
ways. The payload mass, the altitude of the landing site and the landing accu-
racy will stretch the limits of planetary entry design.? In regards to trajectory
and atmospheric reconstruction, MSL will carry a set of instruments that will
be able to take in-situ measurements of the pressure and temperature distribu-
tion on the aeroshell. The instrumentation is known as MEDLI and will consist
of two components: MEADS to take atmospheric measurements and MEDLI
Integrated Sensor Plug (MISP) to take aerothermodyamic data.®

Particularly, MEADS will provide a data set that will allow the estimation of
atmospheric properties without confounding the uncertainties in the knowledge
of the aerodynamic coefficients. One of the science objectives of MEADS is to
reconstruct atmospheric properties to within certain bounds. Specifically, it is to

Y (m)
Figure 3. MEDLI sensor locations. 24
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estimate dynamic pressure to within +2%, free-stream Mach number to within +0.2%, and angle of attack and sideslip
angle to within +0.5%. In order to achieve these targets, MEADS will collect pressure data from seven pressure
transducers located around the forebody of the aeroshell. Figure 3 shows the locations of the pressure transducers as
well as the thermocouples that are part of MISP.

The locations of the transducers are based on predicted pressure distributions on the forebody so that there is
enough redundancy to reconstruct all of the targeted atmospheric properties. Note that the stagnation pressure is
expected to be around transducers P1 and P2 while P6 and P7 serve as the transducers which will help reconstruct
the sideslip angle. Although the transducers that will be used for MEADS can sample at high rates, due to memory
constraints, both pressure and temperature data will be saved at an effective sampling rate of 8 Hz. However, this
will still be higher sampling rate of Martian atmospheric data than any previous mission. This paper will consider the
effect of MEADS data on trajectory and atmospheric reconstructions. The reader is referred to the work of Edquist et
al.?* to learn about the effect of MISP data on aerothermodynamic modeling.

III. Deterministic Estimation Procedure

Traditional reconstruction techniques ' have used deterministic methods to estimate a vehicle’s trajectory and
atmospheric profile. Data sets have contained the acceleration of the center of mass and the Euler angle rates of the
vehicle with respect to an inertial reference frame. These acceleration measurements are sensed accelerations (ag .,
ag,y, and ag ) in the planet-centric coordinate system and the attitude measurements are inertial angular rates (p, g, )
in the vehicle-fixed coordinate system, where x, y, and z-axis refer to North, East, and down directions. To begin
the reconstruction, the initial state vector of the vehicle has to also be known. The trajectory state vector consists of
position, velocity and attitude of the vehicle. Vehicle position is usually given in terms of the radius to the vehicle
from the center of the planet (r) and the vehicle’s planet-centric latitude (®), and longitude (©). Planet-detic latitude
can replace planet-centric latitude in the state vector, but proper conversion between the two reference frames should
be made.® Velocity states (u, v, w) are expressed in the vehicle-fixed reference frame and give the spacecraft’s inertial
velocity. Attitude is usually described in terms of the aerodynamic Euler angles, namely yaw (v), pitch (6) and
roll angles (¢). However, the equations of motions involving these Euler angles contain trigonometric functions that
approach singularities at certain angle values. In order to avoid this situation, the angles are usually converted into
quaternions or Euler parameters (e) that represent the attitude of the body using four normalized parameters. The
conversion from Euler angles to Euler parameters is given by Kuipers et al.?’

After expressing the initial states in terms of the state elements discussed above, the equations of motion can be
used to propagate the trajectory from initial time to final time. Equation (1) displays the set of equations of motion
expressed in the planet-centric reference frame.”® The gravitation component of acceleration (g) is dependent on the
gravitational model and is usually problem-specific. Normally, a second zonal harmonic model is sufficient for EDL
trajectory reconstruction purposes, although higher-fidelity models can be used. {2 is the planet angular velocity.

7= —w (1a)
d=u/r (Ib)
O =uv/rcos®—Q (Ic)
0= ag . + (1/7)(uw — v tan ®) + g, (1d)
0 =ag,y + (1/r)(uvtan ® + vw) + gy (le)
W =ao. — (1/r)(u® +v%) +g. (1f)

e:o 1 —e1 —ey —eg »
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Once the trajectory has been reconstructed, atmospheric parameters can be estimated using the inertial acceleration
measurements, knowledge of the aerodynamic coefficients of the vehicle and the velocity history during the descent.
Equation (2), which is based on the definition of the axial force coefficient (C'4), shows how the free-stream density
(poc) can be estimated from the sensed axial acceleration (ag ;) and the reconstructed velocity (V7). Mass (m) of the
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vehicle and reference area (S) are also present in the equation.

- mag, o )
Poe = 05V2 50, @
From the density, pressure and temperature profiles can be reconstructed using the hydrostatic equation and the ideal
gas equation of state. Both of these equations, however, are only valid within certain assumptions, such as that the
atmosphere is in hydrostatic equilibrium and that the atmosphere adheres to the ideal gas law, which neglects the
molecular size of the atmospheric components and ignores intermolecular interactions. Equation (3) lists both the
hydrostatic equation and the ideal gas equation, where % is altitude (down positive), R is the gas constant for the
atmosphere being reconstructed and 7 is the temperature. The hydrostatic equation is integrated from an initial pres-
sure, which introduces another source of uncertainty that must be accounted for when using deterministic estimation
methods.

dP
=P (3a)
P

The atmospheric reconstruction procedure described above does not include the uncertainties in the axial force mea-
surements or the aerodynamic coefficients as weighting factors in the estimate of the density. Thus, atmospheric
uncertainty and aerodynamic uncertainties are not separable. The uncertainty in the density trickles down to the es-
timate of the pressure and temperature. However, if additional sensors, such as pressure transducers, can be used to
measure pressure distribution around the vehicle during an EDL sequence, the uncertainties in the atmospheric param-
eters can be quantified independently of the vehicle aerodynamics. This is the motivation behind the inclusion of the
MEADS sensors in the upcoming MSL mission. As mentioned earlier, pressure transducer data has been collected
during the Viking missions as well as the Shuttle entry air data experiments. However, in both cases, the pressure data
is applied in a deterministic procedure to calculate atmospheric properties. The uncertainty in the pressure measure-
ments or the uncertainty in the aerodynamic coefficients are not considered in the estimation procedure. On the other
hand, if a statistical estimation method is used to reconstruct the trajectory and atmospheric parameters concurrently,
the measurement uncertainties could easily be used as weighting factors in the estimation procedure.

IV. Statistical Estimation Procedure

Accurate estimation for both the trajectory and atmosphere hinges on a procedure to combine information from
the various measurement types into a single estimate of the state. Moreover, the estimate should be biased towards
measurement types that are more certain; thus, a weighting factor dependent on the data uncertainty needs to be
part of the estimation procedure. There are several estimation algorithms available that allow the use of weighting
factors to update an estimate based on the measurements collected. The most common type used in navigation and
reconstruction-type applications is the extended Kalman filter. A Kalman filter is based on the idea of creating a
nominal trajectory and then predicting values of different types of measurements, such as acceleration, throughout
the trajectory. The difference between the actual measurements and the predicted measurements is used to update the
nominal trajectory. This statistical estimation procedure is composed of two parts:

i Measurement equations: A method to predict the measurements at a given state
ii Statistical filter: An algorithm to combine information from various measurement types

A. Measurement Equations

A key requirement for statistical estimation tools such as the Kalman filter is a representation of what the measurements
should be at a given state. The actual measurements can then be compared with the predicted measurements, and the
state can be appropriately updated. A Kalman filter is based on linear filter theory, so it assumes the measurements are
a linear function of the state vector plus a measurement error. If one considers pressure measurements at n different
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transducers, the pressure can be expressed as shown in Eq. (4).

P = fi(X) + e (42)
P1 f1 (X) €1
. — . . (4b)

Here, P; is the pressure at the i-th orifice, f represents some function of the state vector (X) and e represents the
measurement error. The Kalman filter, like many Bayesian statistical estimators, assumes that the measurement error
distribution is normal, and the error is an unbiased estimator, i.e. the expectation of the error, E[¢] = 0. For most
measurement types, f is a non-linear function, but using a first-order Taylor series expansion, Eq. (4) can be linearized
about a point (the nominal estimate of the state) as shown in Eq. (5), where x is the deviation in state from X.

A measurement sensitivity (Jacobian) matrix (H), as seen in Eq. (6), can now be defined.

df1/9X
H = . 6)

0f./0X

X=X

The measurement sensitivity equations have to be developed for every measurement type included in the estimation
process. Christian et al. discusses the development of the sensitivity matrix for accelerometer and radar altimeter
measurements.’ More detailed expressions for the measurement sensitivity equations pertaining to accelerometer and
radar measurements can be found in the works of Karlgaard et al.?® and Jaswinski et al.?? In the present analysis, only
pressure data measurement equations and their sensitivity matrices are discussed.

Moreover, a special modification of the Kalman filter, known as the Kalman-Schmidt filter, will actually estimate
the errors in the measurement types. In a Kalman-Schmidt filter, measurement uncertainties such as bias error, scaling
factor error etc. become additional parameters that are estimated in the reconstruction process. Jaswinski et al.?’
discusses on this concept. As mentioned earlier, past Mars EDL reconstructions have utilized the Kalman-Schmidt
filter methodology. Yet, all of the past works also used the linear Kalman filter equations for the estimating process.
So uncertainty propagation in the highly non-linear dynamics of the trajectory and the atmosphere might have been
ignored. Thus, in the current analysis, only an extended Kalman filter tool that uses the non-linear equations of motion
for state propagation has been used. Kalman-Schmidt filter’s capability of measurement error estimation has been
reserved for possible future work.

Measurement sensitivity expressions for pressure data are developed by numerical differentiation due to the com-
plexity of the expressions relating the trajectory states with the aerodynamic states. The measurement prediction
expressions are functions of the state vector that normally consists of the position, velocity, and attitude of the vehicle.
However, for the pressure measurement case, free-stream pressure (po,) and free-stream density (p,) are added to the
state vector. Their equations of motion are derived from the hydrostatic equation and an atmospheric equation of state,
respectively (Eq. (7)). For this study, the isothermal gas equation of state was used, but any other state equation that
takes advantage of a model of the gas dynamics can be substituted.

Py = poogw (7a)
Poo = Progw/ Po (7b)

During the hypersonic phase, the velocity of the vehicle is large with respect to the wind velocity. So the planet-relative
velocity can be used to calculate the angle of attack and angle of sideslip (Eq. (8)). The relative velocity to the wind
should be used for more precision. In those cases, the wind speed is included as a part of the state vector, but an
equation of motion for the wind speed must then be included. For simplicity, winds are not modeled in this study. The
two orientation angles can then be combined into a total angle of attack, oy (also Eq. (8)).

o = tan™* (w/u) (8a)
B =sin""(v/V) (8b)
a; = cos™ ' (cos a cos 3) (8c)
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The velocity magnitude can be used to calculate the local Mach number. The speed of sound needed for Mach number
calculation is a strong function of altitude and can be calculated from the state vector. Finally, the pressure port
locations have to be stated. Normally, the locations of these orifices are known in terms of clock (¢) and cone (1)
angles. The cone angle describes the orifice’s location with respect to the maximum diameter of the aeroshell. The
clock angle describes the port’s location on the aeroshell from the y-axis in the y-z plane. Since the pressure ports’
orientation with respect to the forebody does not change during the flight, the cone and clock angles are constant
throughout the trajectory. Once the total angle of attack, Mach number and the clock and cone angles of the ports are
known, the pressure coefficient (C},) at each orifice can be found from tables created from the vehicle aerodynamic
database. An example of such a table is shown in section V. as Table 3. After the pressure coefficient is found, the
pressure at each surface location can be calculated using the vehicle velocity and free-stream pressure and density
which are state elements. The sensitivity matrix can be calculated by perturbing each of the state elements by a small
amount and calculating the change in the predicted port pressure. This numerical method of calculating the sensitivity
matrix is necessary since a closed form solution is not possible due to the fact that the pressure coefficient values
are being computed from tables. Numerical ill-conditioning issues can arise based on what tolerance value is used to
perturb the pressure prediction equations.

B. Extended Kalman Filter

The next step in the reconstruction process is to use a statistical filter to combine the measurement information with
the nominal estimate of the state. For this study, this process was achieved using an extended Kalman filter. A Kalman
filter is based on linear filter theory and uses the difference between predicted and measured data to update the estimate
of the state. An extended Kalman filter is a modification of the original Kalman filter to express the nonlinearity in the
system dynamics that is lost in the linearization needed for the original Kalman filter. Consider the linearization of the
state vector at time increment k as a function of the state at time k-1 and a random state noise vector (w) as seen in
Eq. (9). Recall that x is the deviation in state and X is the state vector.

X (tk)

Xk = Xg— —_—
k k 1+[8X(tk_1)

} Xk—1 + W =X+ Prxp_1+W )
The state transition matrix (®) is the function that propagates the state from k-1 to k. The linear Kalman filter needs a
nominal trajectory from the initial state to the end state, and the filter estimates the deviation in the state around this
nominal trajectory. The extended Kalman filter does not need a nominal trajectory from the start to the end of the
trajectory. Instead, the propagation from k-1 to k is done using the nonlinear equations of state. Then, when the state
estimate is updated at time k using the measurements, this new estimate is used to propagate to time k+1. Thus, the
nonlinearity inherent in the system dynamics can be better handled using the extended Kalman filter algorithm rather
than the linearized Kalman filter.

In addition to the equation that defines the state vector, relationships are also needed to define the uncertainty in the
state and how these values propagate over time. In Eq. 4, € was introduced as the measurement error. The state vector
also has a similar error term known as the state error vector (eyx) which contains the error in each element of the state
vector at time k. The EKF assumes that the state error is also normally distributed and thus a state covariance matrix
(P) can be introduced which is defined as E[ekeE]. A measurement covariance matrix (Ry) can also be defined at
time k where Ry = E[ee”].As is the case with the state vector, the state covariance vector must be propagated from
time k-1 to k. The state transition matrix can be used to accomplish this operation as seen in Eq. (10), where Qy is the
state noise covariance (i.e. Qx = E[wwT]).%

Py =& 1P 1@ + Qu 1 (10

A Riccatti-type differential equation can also be used to update the covariance vector as seen in Eq. (11).3! Here A is
the Jacobian of the equations of motion with respect to the state vector and produces a matrix similar to what is found
in Eq. (6) for the measurement expressions. B is the partial derivatives of the equations of state with respect to the
state noise vector. All of these matrices are evaluated at the current time k-1 and are used to propagate P to time k.

P=AP +PTAT + BQBT (11)

In order to begin the EKF process, a nominal estimate at the current time must be found. If the current time is k, then
the nominal state estimate (X},) can be found from the final estimate at k-1 as described before. The covariance matrix
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can be similarly estimated at time k (P},).Then, the best state estimate at time k (Xk) is found by Eq. (12a), where Ky
is the Kalman gain (Eq. (12b)) and yy is the measurement residual vector. The measurement residual vector (y) is
defined as the difference between all of the actual measurements at the current time and the corresponding predicted
measurements at the nominal state. Within the expression for the Kalman gain, Hj, is the measurement sensitivity
matrix and evaluated at time k. Finally, the state covariance for the best estimate (f’ &) is found using Eq. (12c), where
I is the identity matrix.

X = Xy + Kiyk (12a)
Ky, = PR HT (HPHT + Ry) (12b)
Pu = (I - KHk)Pu(I — KiHy)" + Ky R Ky (12¢)

The algorithm for this filter can be summarized as follows:

1. Initialize the state vector and the state covariance matrix at time ¢;-1 = ¢y and let k = 1, where k is an index of
the epoch when measurement was taken.

2. Read in measurement at time ¢;,.

3. Calculate a nominal state at ¢;, (X;,) by integrating the non-linear equations of motions (Eqgs. (1) and (7)) with
Xk_l as the initial condition.

4. Calculate the nominal state covariance matrix (Pj) using the state transition matrix (Eq. (10)) or the Riccati
equations (Eq. (11)).

5. Calculate the measurement residual vector (yy), the measurement sensitivity matrix (H}), and the Kalman gain
(K}) using the nominal state and state covariance (Eq. (12b)).

6. Calculate the best estimate of the state (Xk) and state covariance (f’k) using Egs. (12a) and (12c).

7. Increment counter k and go back to step 2 until measurements at all times have been read.

A difference between the extended Kalman filter and the standard Kalman filter is highlighted in step 3 of the algorithm
where the nominal state is calculated by integrating the non-linear equations and the last best estimate is used as the
initial condition. In a highly non-linear problem, large deviations could be propagated through a linear approximation
of the equations of motion. The extended Kalman filter effectively re-linearizes the state estimate at the last best
estimate found whenever a new measurement is processed, thus reducing deviations that can result from linearizing a
non-linear problem.

An advantage of the extended Kalman filter is that it provides an efficient way to incorporate more than one type
of measurement. Each measurement type has a unique measurement sensitivity matrix and observation covariance.
Thus, when the filter is processing measurement type A, the appropriate H and R matrices are used with the nominal
state error covariance. If measurement type B has to be processed at the next time step, only the H and R matrices
will change in the algorithm.

Moreover, one can see that the state is affected by three factors by looking at Eq. (12b) for the Kalman gain and
Eq. (12a) for the state update. The Kalman gain is a function of the current state uncertainty (Py), the measurement
uncertainty (Ry) and the residual between the predicted and actual measurements (y). If the state estimate is more
certain than the measurements being processed, the filter will be minimally affected by the data.

In addition, the filter can blend the information from the various data types, and the state estimate will be weighted
towards the measurement with the smallest observation error, which can be gleaned from its observation covariance
matrix. When two or more data types are being processed sequentially, the state estimate initially may oscillate
between the measurements from the differing sources, but the filter quickly uses the weighting information from the
R matrices to calculate the blended estimate.

Finally, the residual of the measurements can scale the update of the state. If the predicted measurements were
very close to the actual measurements, then the state update will be minimal. To demonstrate this concept, Mars
Pathfinder reconstruction data is used below. Details about this trajectory reconstruction can be found in the work
of Christian et al,” with additional background information in Spencer et al.! Figure 4 demonstrates the effect of
data blending by showing the estimate of altitude for Mars Pathfinder when the radar altimeter measurements are
included with the accelerometer measurements. One way to compare the effect of uncertainty in the estimate is to
vary the weighting factor for the measurements being used. As one can see, the altitude estimate initially oscillates
between the accelerometer and radar altimeter observations, but finally the EKF moves the estimate towards the less
uncertain measurements, which in this case comes from the radar altimeter. Another advantage of the extended Kalman
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Figure 4. Effect of blending different data types on the estimate of altitude for Mars Pathfinder. The altitude shown is above Mars mean
radius.

filter is that it can be used to sequentially reconstruct the trajectory in either a forward or backwards manner. The
reconstruction can be conducted starting from the atmospheric entry all the way down to the ground (forward pass) or
using a projected landing location to estimate the trajectory up to the entry conditions (backwards pass). The forward
pass starts its estimate from an initial state and covariance that is found independent of the trajectory reconstruction
process. Also, the reconstruction is conducted in a chronological manner. The backwards pass has the advantage of
starting at a smaller uncertainty value as it begins from the end of the forward estimate. The forward (f) and backward
(b) pass estimates can be combined using the Fraser-Potter smoothing solution?, which is shown in Egs. (13).

R N N -1
Py = [Prt+ Pri] (13a)
Xy = Py {f’f]l(xf,k + f’f,_}(xb,k (13b)

An advantage of combining both the forward and backward estimates is to find an optimal estimate of the trajectory.
The forward pass estimate at time k uses the measurement data from entry to k, while the backward pass uses the
measurement data from landing time to k. The combined smoothed estimate can use measurement data at all times
to create the estimate at k. Figure 5 shows the forward, backward, and smoothed estimate of the altitude of Mars
Pathfinder, which is used to demonstrate the advantage of the smoothing algorithm. The one-sigma uncertainties
associated with the three estimates are also shown.

V. Test Case

Results from a sample case are presented in this section to test the methodology. As MSL will not provide a data
set until 2012, measurements from a ballistic range test of two Crew Exploration Vehicle (CEV) models are used to
apply the trajectory and atmospheric reconstruction procedures.®* The ballistic range test was conducted on July 15,
2008 at the Aberdeen Army Proving Ground (APG) in Aberdeen, MD. As shown in Figure 6, the test utilized two
titanium models of the CEV. The models were referred to as the pressure-telemetry modules (PTM). The PTMs were
launched from a ballistics range gun and data was collected for approximately 20 seconds after they exited the muzzle.
Although data sets for both models were available, since both models followed similar trajectories, only the results
for the second model (labeled PTM2) are analyzed below. Some key parameters for PTM2 are also summarized in
Figure 6. The center of gravity (CG) locations are with respect to U.S. Army Research Laboratory coordinate system
convention.

As can be surmised from the name of the experiment, the models collected pressure data along with telemetry
data during their flight. The telemetry information consisted of sensed accelerations, angular rates and magnetometer
measurements. Additionally, a tracking radar calculated the range and range rate of the models with respect to a fixed
station. Also, the on-site meteorological station provided temperature, pressure and wind speed information.
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Figure 6. CEV model (PTM2)used in the pressure-telemetry tests.33

There are fundamental differences between MSL and this ballistic range test. The ballistic range model achieves a
maximum Mach number of 3.5 during its flight, while MSL is going to achieve speeds several times greater. The PTM
only climbs up to 800 meters; thus, the data set will not contain measurements from the upper atmosphere, which can
compare well with the thin atmosphere of Mars. Finally, since the PTM is shot out of a gun, it is acted upon by very
high accelerations and angular rates at the beginning of the flight. These accelerations are illustrated in Figure 7.

As one can see from the figure, the vehicle undergoes almost 7000 g’s of acceleration and several hundred degrees
per second of angular velocity. MSL will not face this type of flight regime. However, despite these differences,
the EKF algorithm should be insensitive to the magnitude of data that it handles. Regardless of the actual values of
the data, if the measurement equations and the algorithm are simulated correctly and proper values are used for the
observation errors, the filter should be able to reconstruct the trajectory and atmosphere that the PTM encounters.
Furthermore, since the types of observations that the PTMs obtained are comparable to the types of data MSL is
planning to obtain, a successful reconstruction of the PTM’s trajectory bodes well for similar success with MSL’s data
set.

As mentioned in section IV.B., the pressure measurement prediction equations are dependent on tabulated values
of the pressure coefficient as function of total angle of attack, Mach number, and the orifice cone and clock angle. An
example of such a table for PTM2 is given in Table 3.

To match data types with MSL, this analysis only considered the acceleration, angular rates, radar measurements
and pressure observations from the PTM2 data set. As was shown in Eq. (1), accelerations and angular rate information
are used in the equations of motion to propagate the state from one time increment to another. So these measurement
types are not explicitly used in the EKF tool using Eq. (12). However, the state noise vector (w) is defined based on
the measurement error of the accelerometer and gyroscopes, thus the uncertainty in these data appears implicitly in
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Figure 7. Example of inertial measurement unit observations for PTM2.

Table 3. Pressure coefficient values for PTM2 at M = 0.6 and 7 = 14 degrees.

Angle of Clock Angle, ¢ (degrees)
attack, o (deg.) 0 5 10 15 20 25

0 1.096745 1.096747 1.096749  1.09675 1.096752 1.096754
5 1.096761 1.096763 1.096764 1.096766 1.096768 1.096770
10 1.096772  1.096774 1.096776 1.096778 1.096779 1.096781
15 1.096780 1.096781 1.096783 1.096785 1.096786 1.096788
20 1.096783 1.096784 1.096786 1.096788 1.096789 1.096791
25 1.096781 1.096783 1.096784 1.096786 1.096788 1.096789
30 1.096775 1.096777 1.096778 1.096780 1.096782 1.096783
35 1.096765 1.096767 1.096768 1.096770 1.096771 1.096773
40 1.096750 1.096752 1.096753 1.096755 1.096756 1.096758
45 1.096731 1.096733 1.096734 1.096736 1.096737 1.096739

the EKF through the state noise covariance matrix, Q. The pressure measurements were taken at five port locations on
the forebody of the vehicle. Figure 8 shows the locations of the ports on the forebody of the vehicle and pressure data
from those ports during the trajectory. Figure 9 displays the range data from the tracking radar. The instruments and

Pressure at port (Pa)

I i i 1
1} 5 10 15 20

Time from muzzle exit (s)

(a) Pressure port observations (b) Pressure port locations on vehicle fore-
body 33

Figure 8. Pressure port locations and observations for PTM2.
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Figure 9. Tracking radar observations for PTM2.

their measurement errors are summarized in Table 4. The measurements errors reported in the table are the 1o values
and the errors are assumed to be normally distributed with an expectation of zero.

Table 4. Measurement uncertainties of sensors on PTM2.

Observation Sensor Model 1o uncertainty
Accelerometers ADXL-78 0.0686 m/s
Angular rates ADXRS300 0.025 deg/s
Pressure transducers  XCEL-100-500A 5 psi

Radar position APG tracking radar

Distance 1 m

Angles 0.1146 deg.
Radar rate APG tracking radar

Rate 1 m/s

Angular rate 0.1 deg/s

As can be surmised from Fig. 7, the initial state of the vehicle at the muzzle exit was hard to assess due to the high
acceleration and angular rates encountered by model in the gun. The initial state inside the gun was known, but since
the pressure and radar measurements are only taken once the vehicle exits the gun, the initial state for the EKF had to
be that point. Thus, using only the accelerometer and angular rate measurements, the state vector at 0.001 seconds past
the muzzle exit is determined. This data serves as the initial state for the EKF and is summarized in Table 5. However,
since the accelerations and angular rates are so high and the sensors reach saturation at several points, very high values
are assigned for the initial state uncertainties. As a result, the forward run of the EKF will be initially more sensitive
towards the measurements in updating the states. Note that this aspect of analyzing the PTM data is quite different
from what would occur with a Mars data set. The initial state for Mars EDL systems are found from the end state of
the navigation orbital determination (OD) solutions, which provide the state vector with high accuracy. Thus, for a
Mars reconstruction, the EKF will start from a relatively certain initial state. The smoothed best estimate for PTM2’s
trajectory and the atmosphere it encountered is given below. The altitude and Mach number history of the model is
seen in Figure 10.

The altitude and Mach number history compare well with simulated results for the test. The figures above also
show that the uncertainty in the estimate is small. Although the initial state uncertainties were set to be large numbers,
after the forward and backward run and the smoothing procedure, the uncertainty in the state estimates decrease
dramatically. Additionally, as was discussed before, the goal of an atmospheric reconstruction is to determine the
free-stream pressure and density profile seen by the vehicle during its trajectory. However, since this vehicle only
reached about 800 meters, the change in pressure and density was not large. Nevertheless, the reconstructed values for
pressure are compared with the data collected by the ballistic range’s meteorological station in Fig. 11. Density data
was not given by the meteorological station, and thus it is not shown here. However, the change in density was also
just as small as the change in pressure.
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Recall that the meteorological data was not included in the EKF process. The free-stream conditions shown in
the figure are a result of only inertial measurements, radar measurements and the on-board pressure observations.
The fact that it agrees very well with an independent source of pressure observations demonstrates the strength of
the reconstruction methodology. Besides free-stream conditions, another objective of MSL’s MEDLI program is to
determine the orientation angles of the vehicle during entry, descent and landing. As has been shown before, angle
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Figure 11. Reconstructed pressure estimate for PTM2.
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of attack and sideslip angle affect the pressure distribution on the vehicle forebody, and thus if these values can be
reconstructed, then there will be additional insight towards the vehicle’s interaction with the atmosphere. The estimated
angle of attack and sideslip angle history for PTM2 are shown in Fig. 12.

Angle of attack g (deg)
Sideslip angle p (deg)

0 ; ; . | ‘
1)
Time {sec) Time (sec)

(a) Angle of attack (b) Sideslip angle
Figure 12. Reconstructed angle of attack and sideslip angle of PTM2.

Unlike the free-stream pressure estimate there were not any independent observations to compare with the recon-
struction of the orientation angles. However, the reconstructed values compared favorably with what was predicted
pre-flight. The high accelerations and angular rates experienced by the model (Figure 7) when launched from the
gun still have an effect on the reconstruction estimate. The angle of attack and sideslip angles experience significant
oscillation in the first one second of flight and this is apparent from looking at the above figures. However, when
the high accelerations dissipate with time, the orientation angles are reconstructed without significant noise. This last
observation bodes well for MSL reconstruction as that vehicle will not face the high accelerations and rates seen by
PTM2.

Since the ballistic range data does not have any truth data with which the reconstructed parameters can be com-
pared, simulated data was created to additionally verify the methodology. The tool was tested with a data set created
from a simulated trajectory that the ballistic range models were expected to take during their flights. The measurement
equations for accelerometer, gyro, radar altimeter and pressure transducers described in Section IV. A. were used to
construct the data. Then noise was applied on the data based on a Gaussian distribution with a mean of zero and vari-
ance determined from the sensor uncertainties (Table 4). Figure 13 shows the reconstructed altitude and Mach number
which demonstrates the capability of the tool to reconstruct trajectory parameters (such as altitude) and atmospheric
values (such as Mach number). As can be seen in the figure, the actual data and the reconstructed parameters fall very
close to each other and are within the 1o uncertainty bounds.
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Figure 13. Actual and reconstructed trajectory and atmospheric parameters based on a simulated ballistic range data set.
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VI. Conclusion

This paper provides a framework on how to use flight data from an entry, descent, and landing sequence to recon-
struct the vehicle’s trajectory and atmosphere as well as compute the associated uncertainties in these estimates. Past
Mars missions have flown limited instrumentation, such as accelerometers, gyroscopes, and radar altimeters that do
not provide measurements directly related to the free-stream conditions. Thus, uncertainties in the atmospheric con-
ditions and aerodynamic database knowledge could not be separated. These previous reconstructions have also relied
on a deterministic process where the uncertainties of the measurements were not included directly in the estimation
and potential coupling between uncertainties in the trajectory and uncertainties in the atmosphere were not estimated.
As the upcoming MSL mission will provide forebody pressure measurements during entry together with accelerome-
ter, gyroscope, and radar altimeter data, the Mars EDL reconstruction process can be significantly improved. In this
investigation, a statistical reconstruction procedure based on extended Kalman filter theory was developed to take ad-
vantage of this new data type. A sample data set from ballistic range tests of a Crew Exploration Vehicle model was
used to show results from applying the methodology. The reconstruction method was able to estimate the states of
the CEV model well during its twenty second flight. Moreover, the atmospheric conditions that were reconstructed
matched well with the meteorological information and pre-flight predictions. The success of the using the reconstruc-
tion methodology on this CEV ground-based test data set demonstrates that the trajectory and atmospheric estimation
procedure can be successful in the reconstruction effort for MSL.

VII. Future Work

The results from the test case showed that the proposed method in this paper can be used to estimate trajectory and
atmospheric conditions from a data set that contains measurements from an inertial measurement unit, radar altimeter
and pressure transducers. However, future work must be done to verify this method using sources other than the data
from CEV ballistic range test. Specifically, a MSL simulated trajectory can be used to generate pressure and IMU
measurements, and noise can be added to simulate the uncertainty in the measurement values. Then the filter can
reconstruct the necessary parameters from this simulated data set. Although this technique is similar to the simulated
data of the ballistic range test used to initially verify the reconstruction tool (as seen in Section V.), the MSL simulated
data will be similar in its chronology of events to the data expected from MEDLI, and thus the tool could be tested
to see if it can meet the science objectives of MEADS. Additionally, the tool and technique can also be modified to
include a Kalman-Schmidt filter-like capability to estimate the uncertainties in measurements. As explained earlier, a
Kalman-Schmidst filter is able to estimate the different biases and errors in the measurements itself, and with a similar
technique one may also estimate the uncertainties in the aerodynamic coefficients while reconstructing the atmosphere
and the trajectory. However, this is not simple since the form or model used to describe the aecrodynamic coefficient
uncertainty still has to be determined. Finally, another addition to the reconstruction work will be to use the estimated
uncertainties in trajectory parameters and quantify the margins required in the design of a Mars EDL vehicle. Such a
technique will drastically reduce the uncertainties in design as well as increase the capabilities of current EDL vehicles.
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