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The Attitude and Determination Control Subsystem (ADCS) for the 

Tethering and Ranging Mission of the Georgia Institute of 

Technology (TARGIT) 

by Abhijit Harathi 

TARGIT Overview 

The Tethering And Ranging mission of the Georgia Institute of Technology (TARGIT) is 

a CubeSat mission that aims to demonstrate target detection and tracking via LiDAR and other 

sensors. A 3U CubeSat will be deployed from the ISS. After going through system checkouts and 

other procedures, it will deploy and inflate a tetrahedron-shaped target. The CubeSat will image 

and track the target with sensors in order to keep it within its primary imager’s field of view. Once 

it is a certain distance away, the CubeSat will use laser ranging technology to detect the target. 

Throughout all this, the CubeSat will be going through other mission modes to charge up, 

occasionally reduce its angular rates and stabilize itself, and keep a certain pointing configuration. 

In order to achieve and transition between the different mission modes, TARGIT has an 

attitude determination and control subsystem (ADCS) that maneuvers the spacecraft to and 

maintains different pointing configurations based on the mission mode required. It uses sensors to 

determine its orientation and it uses actuators to change or maintain its orientation as needed. 

TARGIT ADCS Overview and Configuration 

 TARGIT’s ADCS can be broken down into hardware and software. As mentioned earlier, 

the hardware that the ADCS uses consists of sensors and actuators. The flight unit’s sensors and 

actuators are listed in Table 1, along with the manufacturers, names, and quantities. Note that the 

Epson M-G364 Inertial Measurement Unit (IMU) has both a gyroscope and accelerometer. Also, 

the coarse sun sensor (CSS) and magnetic torque rods were developed in-house, so there are no 

associated manufacturers and names for them. 

Table 1. Hardware components for ADCS. 

Hardware Type Unit Type Manufacturer and Name Quantity 

Sensors 

Magnetometer Honeywell HMC1053 1 

Inertial Measurement Unit (IMU) Epson M-G364 1 

Horizon Sensor FLIR Lepton 2.5 2 

Pixycam Pixycam Pixy2 1 

Fine Sun Sensor (FSS) 
SolarMEMS nanoSSOC-

D60 
2 

Coarse Sun Sensor (CSS) N/A 3 

GPS NovAtel OEM719  

Actuators 

Magnetic Torque Rods N/A 3 

Reaction Wheels 
Maryland Aerospace MAI-

400 
3 

  



 

Figure 1. TARGIT spacecraft with body axes. 

Figure 1 shows the TARGIT spacecraft with body axes X, Y, and Z. The 3U CubeSat has 

a set of fold-out deployable solar panels. The X-axis is aligned with the laser ranging payload that 

will be used for science operations, while the Y and Z axes are normal to the faces on which the 

solar panels are attached. The spacecraft will be in a “flying-wing” configuration in nominal 

operations, with the x-axis aligned with the direction of the velocity vector and the solar panels 

pointing zenith. This results in the laser ranging payload facing in the direction of the anti-velocity 

vector, which is also the direction in which the inflatable target will be deployed. 

The ADCS components that are mounted internally are the magnetometer, the IMU, the 

magnetic torque rods, and the reaction wheels. The sensing done by the magnetometer, GPS, and 

IMU does not require any external vision, while the actuators create internal torques, negating the 

need for external placement. Meanwhile, the horizon sensors, Pixycam, the fine sun sensors, and 

coarse sun sensors are mounted externally. The horizon sensors are mounted normal to the two 

zenith facing body panels such that they can detect the Earth’s curvature in the flying-wing 

configuration. The Pixycam is mounted facing the anti-velocity direction because, like the laser, it 

also needs to be able to see the target. The fine sun sensors are mounted on the zenith-facing sides 

of the body to provide the best sun-pointing control to charge the solar panels. Two of the course 

sun sensors are on the nadir-facing sides of the body, while one is mounted facing the direction of 

the velocity vector. If the sun is not seen by the fine sun sensors but is picked up by the coarse sun 

sensors during sun-pointing, the spacecraft’s orientation will be adjusted accordingly until the fine 

sun sensors can pick up the direction of the sun in order to maximize charging. 

The ADCS software uses the information gathered from the sensors above for calibration 

to be done before launch and for algorithms for different mission modes on-orbit. There is 

calibration done beforehand for the magnetometer and coarse sun sensor. ADCS control 

algorithms will be used for detumble, sun pointing, local vertical local horizontal (LVLH) 

pointing, target tracking, and momentum management. A Kalman filter algorithm will also be used 



to assist with the control algorithms and for general attitude estimation. In addition, a least squares 

algorithm will be used for detecting the direction of the sun based on the different sun sensor 

measurements. All these algorithms are explained in detail in the Algorithms section.  

TARGIT ADCS Hardware 

 The following sections describe the ADCS hardware’s functionality. Note, any application 

program interface (API) referenced can be found on the targit-flight repository, in 

hardware_apis/src/hardware_apis. 

Magnetometer 

The ADCS uses the three-axis Honeywell HMC1053 magnetometer to detect the Earth’s 

magnetic field on orbit. It will be used in the detumble and Kalman filter algorithms. It is an analog 

sensor that outputs to an analog-to-digital converter (ADC), which interfaces with the on-board 

computer (OBC) through I2C communication protocol. There is also a GPIO connection to a 

set/reset circuit on the magnetometer, which is used to send a pulse to the circuit before each 

reading. This allows internal magnetic components to be reset such that a previous reading does 

not affect the next reading. The ADC outputs voltage values corresponding to the x, y, and z axis 

in the magnetometer’s reference frame in units of volts, These values range from 0 to the reference 

voltage of the ADC, which is set to 3.3V. These measurements are converted to the spacecraft’s 

body frame in the flight code. 

Before being put on the flight unit that is sent up to orbit, this magnetometer must be 

calibrated beforehand. The Engineering Sciences and Mechanics (ESM) building on campus has 

a Helmholtz cage through which an artificial magnetic field can be created. Using another 

magnetometer, the magnetic field inside the cage can be read, and a field will be created such that 

the magnetometer reads zero across all three axes. The other magnetometer will then be replaced 

with the Honeywell magnetometer and the output from the Honeywell magnetometer is taken. 

Because the field should be zero, if the magnetometer does not read values of zero, the output it 

reads is used as a calibration offset that is subtracted from future measurements.  

The magnetometer reads Earth’s magnetic field in Gauss, so a conversion must be done 

from the ADC voltage values to the magnetometer values in Gauss. The following equation is used 

for the conversion for the value for the x, y, and z-axis outputs from the magnetometer and is 

handled in the honeywell_mag.py API: 

𝑏𝐺𝑎𝑢𝑠𝑠 =
𝑏𝑣𝑜𝑙𝑡𝑠 − 𝑉𝑟𝑒𝑓

𝑆𝑉𝑐𝑐𝐺
 

 bGauss is the magnetic field sensed by the magnetometer in units of Gauss and bvolts is the 

magnetic field sensed by the magnetometer in units of volts. The magnetometer circuit contains 3 

MAX4208 inverted amplifiers through which the magnetometer outputs are sent to amplify their 

voltage. Vref is this reference voltage, while G refers to the gain by which the magnetometer outputs 

are amplified. S refers to the sensitivity of the magnetometer measurements, provided in the 

datasheet, while Vcc is the power supplied to the magnetometer. Note that Vref is exactly half of 



Vcc. This allows us to discern between positive and negative outputs from the magnetometer. The 

values for Vref, S, Vcc, and G are provided in the table below. 

 

Table 2. Variable Values for magnetometer output conversion. 

Variable Value 

Vref (V) 1.65 

S (1/Gauss) 1 x 10-3 

Vcc (V) 3.3 

G 413 

 

 The honeywell_mag.py API can be referenced for more information.  

IMU 

The gyroscope and accelerometer used by the ADCS are part of the Epson M-G364 inertial 

measurement unit (IMU). This six-axis IMU interfaces with the OBC through SPI communication 

protocol for the flight unit, but it can also use UART if needed. The gyroscope measures the 

angular velocity of the spacecraft, with a range of -100 to 100 degrees per second, while the 

accelerometer measures linear acceleration of the spacecraft, with a range of -3 G to 3 G. 1 G here 

is as reference value, determined by the manufacturer, of 9.80665 m/s2. The IMU outputs values 

for its gyro and accelerometer in terms of degrees per second and mG (1e-3 G) in 16-bit words. 

The conversion from bits to the proper values is handled in the epson.py API, and this API can be 

referenced for more information. 

Horizon Sensor 

 The horizon sensor suite used by the ADCS contains two infrared radiation (IR)-imaging 

sensors. Earth emits radiation and the sensors will be placed such that the sensors see Earth’s 

horizon in their field-of-view (FOV). Calculations are done to curve-fit the horizon seen by the 

sensors to determine how much the spacecraft needs to rotate about its pitch and roll axes such 

that the flying-wing configuration can be maintained. From this, a nadir-pointing vector can be 

calculated. Consequently, the horizon sensor will be vital to the LVLH pointing mode and will be 

used in the Kalman filter algorithm, discussed more in the Algorithms section. 

 To get the nadir-pointing vector, first the image taken by the horizon sensor must be 

processed for edge detection. A mask is applied to the image to make pixels greater than a defined 

threshold white, while the others below the threshold are black. From this, the Earth will be very 

clearly defined compared to the rest of the image. The Prewitt edge detection method is then used 

to isolate Earth’s horizon edge. 

 Using the points corresponding to the horizon, a best fit radius and center of Earth in the 

image coordinate system is calculated using a least squares optimization method. The following 

link can be referred to for more information on the Python module and methods used: https://scipy-

cookbook.readthedocs.io/items/Least_Squares_Circle.html. 

https://scipy-cookbook.readthedocs.io/items/Least_Squares_Circle.html
https://scipy-cookbook.readthedocs.io/items/Least_Squares_Circle.html


 Pitch is calculated between the image boresight and the horizon via the following equation: 

𝑝 = 0.6375(√𝑥𝑐
2 + 𝑦𝑐

2 − 𝑅𝑒) 

 Re refers to the calculated radius of the Earth from the least squares method mentioned 

earlier, while xc and yc are the center coordinates of the circle. 0.6375 comes from the vertical field 

of view in degrees divided by the vertical dimensions of the edge in pixels. 

 Roll is calculated from the horizon sensor’s image as the following: 

𝑟 = arctan⁡(
𝑦𝑐

𝑥𝑐
) 

 A nadir vector can be produced using the previously calculated pitch and roll angles from 

the image plane. Since the horizon sensors are mounted at fixed angles with respect to the 

spacecraft body, the altitude of the spacecraft needs to be added to the equations to correct the 

nadir vector. The equations below show how to get the nadir-pointing unit vector in the image 

frame, later translated to the spacecraft body frame: 

𝜃 = arccos (
𝑅

𝑅 + 400
) 

𝑝𝑐𝑜𝑟𝑟 = 𝑝 + θ − arccos⁡(
𝑅

𝑅 + ℎ
) 

𝜂 = 90 − 𝜃 + 𝑝𝑐𝑜𝑟𝑟 

𝑢𝑛𝑎𝑑𝑖𝑟 = 𝑅𝑧(𝑟)𝑅𝑥(η) ∗ [0⁡0⁡1]′ 

 𝑢𝑛𝑎𝑑𝑖𝑟 is the unit vector pointing in the nadir direction, while 𝑅𝑧 and 𝑅𝑥 are rotation 

matrices used to rotate the [0⁡0⁡1]′ vector first by 𝜂 about the x-axis and then by 𝑟 degrees about 

the z-axis in the image frame. More information on this can be found in the ImageTestScript.py 

API and HSP.py API. 

Pixycam 

 The Pixycam used by the ADCS, the Pixy 2, is an imaging system that can be trained to 

detect different colors. It interfaces with the BeagleBone Black flight computer through I2C 

communication protocol. It will be used to detect and track the target during science operations, 

out to a certain distance. the target is one color, but because of the different shades that it might 

appear as at different points in the orbit, due to lighting effects, it must be trained to detect these 

different shades as well. This will be done prior to launch by training the Pixycam to detect the 

target in conditions from dimly lit to completely lit. When the Pixycam finds the target in its field 

of view, it generates a bounding box around the target and gives an x and y-coordinate of the center 

of that bounding box with respect to the x-y origin of the field of view, which is defined at the top 

left frame of the field of view. More information, as well as a diagram of what the field of view 

would look like, is shown in the “Target Tracking” section later on when ADCS algorithms are 

discussed. For more information on how the Pixycam interacts with the flight computer, check the 

pixy_i2c.py API. 



FSS 

The FSS uses 4 photodiodes and an internal processor that calculates the azimuth and 

elevation incidence angles of an incoming sun ray. The following diagram shows how the angles 

are defined with respect to the sun sensor’s body frame. The incoming sun ray is used to form a 

rectangular prism, with lines tracing out to the opposite edges of the two shorter faces from the 

point of origin, along the x and y axes. From there, angles α and β are defined from those lines 

with respect to the z-axis, respectively, in the xz and yz planes. 

 

Figure 2. Definitions of the sun ray incidence angles in the FSS body axes. 

The equations below use those two angles to produce a three-axis unit vector, also in the 

sun sensor’s body frame, in the direction of the sun. This sun vector will be used for the sun 

pointing, target tracking, and Kalman filter algorithms.  

𝒔 = [
tan(𝛼)

√tan(𝛼)2 + tan(𝛽)2 + 1

tan(𝛽)

√tan(𝛼)2 + tan(𝛽)2 + 1

1

√tan(𝛼)2 + tan(𝛽)2 + 1
]′ 

α and β refer to the incidence angles shown in Figure 3. These equations are handled in the 

fss.py API, and this API should be referenced for more information on how communication with 

the FSS is handled. 



 

CSS 

The CSS consists of a photodiode on a circuit board developed in-house that communicates 

through I2C protocol. This diode uses a machine learning algorithm to provide a set of lookup 

tables that are used to determine the location of the Sun. Based on this table, the CSS can give a 

rough angle of the direction of the sun. It is not as accurate at determining a sun vector as the FSS 

is, which is why the CSS boards are not placed on the sides on which the solar panels are also 

facing. Both the FSS and CSS boards will be necessary for sun pointing, but a weighted least 

squares algorithm, discussed later, will be used to determine the sun vector from all the information 

gathered from the different sensors. More information on the CSS communication can be found in 

the css.py API. 

GPS 

 The GPS is used for orbit determination purposes as it gets externally determined position 

updates. These will be useful for the Sun, Earth, and magnetic field models that will be used by 

the Kalman filter. These models need a reference position for which the sun vector, Earth nadir 

vector, and magnetic field vectors can be used as reference in the Kalman filter algorithm described 

later on. For more information, the oem719.py API can be referenced.  

Magnetic Torque Rods 

 The magnetic torque rods built in-house for the flight unit are three separate metal rods that 

have insulated copper wire wrapped around them, with one torque rod per axis. Electricity is sent 

through the copper wires using pulse-width modulation (PWM), and as the electricity goes around 

through the coils, a magnetic dipole is created that interacts with the magnetic field, creating a 

torque on the spacecraft system. Voltage sent through the torque rods via PWM channels goes 

through high frequency changes between an on and off state, essentially allowing for control of 

the average voltage depending on the duration of the on state compared to the off state. This allows 

for control of the torque acting on the spacecraft from the dipole moment. The torque rods are used 

in the detumble and momentum management algorithms, but they can also be used as backups for 

the other algorithms. The specific methods for sending commands can be seen in the pwm.py API. 

Reaction Wheels 

 The reaction wheels used by the ADCS are the Maryland Aerospace MAI-400 reaction 

wheels. There are three reaction wheels on the flight unit, one to provide a torque about each 

spacecraft body axis. Each one is controlled independently with its own printed circuit board 

attached to the unit. Interacting with the reaction wheels via the OBC can be achieved through I2C 

and UART communication protocol. To control the reaction wheels, each wheel can be 

individually set to be commanded to a certain speed or torque. Each reaction wheel unit has a 

tachometer as well to determine the wheel speed in RPM. Check the maryland.py API for more 

information. The reaction wheels are used in all the control algorithms, with the exception being 

detumble since that relies on the magnetic torque rods. If needed, however, they can be used as a 

backup for detumble. 



TARGIT ADCS Software 

 The software used by TARGIT ADCS can be found on the adac_kit repository on GitHub. 

In addition, software is tested in simulation or on the engineering unit. Results for some of these 

tests will be presented in the individual algorithm sections below. Future testing will be conducted 

for the more complicated algorithm tests and should be updated in this document post-testing. 

Algorithms 

The algorithms utilized by the ADCS consist of estimation and control algorithms. 

Although we have a method for calculating the sun sensor vector, because we have multiple 

sensors employed, a weighted least squares method is employed to determine the best-fit vector. 

The Kalman filter is used to estimate attitude, and it requires as many available sensors as possible 

to determine the best estimate.  

The first control algorithm discussed is detumble, which is used for angular rate damping 

during initial deployment, and other events in which the satellite is spinning at unexpected rates 

and needs to be de-spun before transitioning into other modes. The second algorithm, sun pointing, 

is used to point the solar panels normal to the sun to maximize charging. This will be vital 

especially when the battery level reaches a threshold below which charging is necessary in order 

to be able to operate the satellite.  

For nominal operations, LVLH pointing will be used to keep the spacecraft in its flying-

wing configuration to keep the solar panels pointed zenith and the payload section facing the anti-

ram direction. This is vital to keep the target behind the spacecraft such that as it inflates, as this 

minimizes the risk of the tether (that is attached to the target) getting caught on some part of the 

spacecraft. This LVLH pointing will have heavy usage of the ADCS sensor and actuator suite 

since it will need to use Kalman filtering and potentially momentum management.  

During the science operations mode, the spacecraft will be pointing its Pixycam imaging 

system and laser ranging system at the target. The target tracking algorithm will be utilized, and it 

is a special case of the LVLH pointing mode. Again, a Kalman filter will be used to estimate 

attitude while keeping the Pixycam centered on the target as best as possible. Once the Pixycam is 

centered, an optimal roll angle will be calculated to attempt to keep the solar panels pointed at the 

Sun while still tracking the target. The last main algorithm that will be discussed is momentum 

management, which consists of using the magnetic torque rods to desaturate the momentum in the 

reaction wheels. 

  Further information on these algorithms can be found in the sections below, while the 

code can be found on the adac-kit and adcs-proto repositories on GitHub, in adac-kit/src/adac_kit 

or adcs-proto/apps. 

Sun Sensor Vector Calculation 

 Because there are multiple sun sensors used to calculate the sun vector, a recursive 

weighted least squares algorithm is used to determine the Sun’s position. An apriori estimate, xo, 



and a covariance estimate, P0, are taken from the previous time step. Pre-defined estimates are 

used at the start of the estimation period as there is no previous time steps.  

A measurement covariance matrix at each time step, Rk is used to provide weights based 

on the amount of trust that the algorithm has in each measurement. For example, if an FSS and 

CSS can both see the sun, the FSS’s measurement would be given a higher weightage because it 

is supposed to have better resolution. If one sensor cannot see the sun, it would be removed from 

the calculation and essentially given 0 weightage. Similarly, if it is clear that a sun sensor is 

providing very poor data, that measurement should not be affecting data, and it would be weighted 

down accordingly. To estimate the sun vector measurement, the following equation is used to get 

the updated “best fit” sun sensor measurement, 𝒙𝒌̂, similar to getting a line of best fit: 

𝒙𝒌̂ = 𝒙𝟎⃑⃑⃑⃑ + 𝑲𝒌(𝒚𝒌⃑⃑ ⃑⃑ − 𝑯𝒙𝟎⃑⃑⃑⃑ ) 

 In this case, Kk is equal to: 

     𝑲𝒌 = 𝑷𝟎𝑯
𝑻(𝑯 ∗ 𝑷𝟎𝑯

𝑻 + 𝑹𝒌)
−1 

 H is a state to measurement matrix, while 𝒚𝒌⃑⃑ ⃑⃑  is the sun sensor measurement at each time 

epoch. To get the a posteriori estimation error covariance, Pk, the equation below is used: 

𝑷𝒌 = (𝑰𝟑𝒙𝟑 − 𝑲𝒌𝑯)𝑷𝟎(𝑰𝟑𝒙𝟑 − 𝑲𝒌𝑯)′ + 𝑲𝒌𝑯(𝑰𝟑𝒙𝟑 − 𝑲𝒌𝑯)′ 

 The updated xk and Pk can be used as the a priori update in the next sun vector estimate. 

The estimation.py file should be referenced for more code-specific information. 

Kalman Filter 

 Attitude determination or estimation for LVLH pointing and for other 3-axis control 

modes, such as target tracking, is achieved through using an extended Kalman filter. It estimates 

the spacecraft body quaternion in the inertial frame and the gyroscope bias using two or more 

reference vectors. This will consist of the magnetometer and sun vector in sunlight, and the 

magnetometer and horizon sensor nadir vector in eclipse. The description of the Kalman filter will 

be broken into multiple steps for clarity. 

Dynamic and Kinematic Models 

 The dynamic equation for the satellite can be expressed using Euler’s equation: 

𝛚̇𝑖𝑏
𝑏 = 𝑱−𝟏[𝑻𝑏 − [𝝎𝑖𝑏

𝑏 ×]⁡𝑱⁡𝝎𝑖𝑏
𝑏 ] 

J is the inertia matrix, 𝝎𝑖𝑏
𝑏  represents the angular velocity of the body frame with respect 

to the inertial frame, and 𝑻𝑏 is the sum of torques acting on the spacecraft in the body frame. 

[𝝎𝑖𝑏
𝑏 ×] represents a skew symmetric matrix that performs the cross product shown below. 

[𝝎𝑖𝑏
𝑏 ×] = [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
] 

 The quaternion attitude kinematics are represented by: 



𝒒̇ =
𝟏

𝟐
𝛀(𝝎)𝒒 

 q is the orientation of the spacecraft body frame with respect to the inertial frame, ω is the 

angular velocity of the body frame with respect to the inertial frame, and 𝛀(𝝎) is defined by: 

𝛀(𝝎) = [
−[𝝎 ×]⁡ 𝝎⁡

−𝝎𝑇⁡ 0
] 

Measurement Model 

 Vector measurements from sensors are used to determine attitude and gyroscope bias. 

These will come from the magnetometer, sun sensors, and horizon sensors, which will output 

magnetic field vectors, sun vectors, and earth nadir vectors. Given an estimate of a reference 

direction in the inertial frame, the estimated body frame measurement is: 

𝒓̂𝑏 = 𝐴(𝐪𝑖
𝑏)𝒓̂𝑖 

 𝒓̂𝒊 is the reference vector in the inertial frame, and 𝒓̂𝒃 is the corresponding reference 

direction in the body frame. 𝑨(𝒒𝒊
𝒃) represents the transformation matrix from inertial to body 

frame given the quaternion. 𝒓̂𝒊 is found based on the measurement used. For example, if a magnetic 

field measurement was being used, then 𝒓̂𝒊 would be the magnetic field direction at the spacecraft’s 

location in the inertial frame, which can be found using the IGRF model for Earth’s magnetic field. 

This is why having a GPS is crucial for Kalman filtering. 

 The gyroscope measurement model assumes that the measured angular velocity has a 

bias and zero mean Gaussian white noise. The bias also contains zero mean white noise. The bias 

dynamic model is therefore: 

𝛃̇ = 0 

 Subtracting the bias from the measured angular velocity gives us: 

𝛚̂ = 𝛚𝑚 − 𝛃̂ 

 In this case, 𝛚𝑚 is the measured angular rate and 𝛃̂ is the estimated gyroscope bias, and 

𝛚̂ would be the estimated angular velocity. 

State Propagation 

 The filter must propagate its current state to the next time step. This state propagation 

occurs between a set of set of sensors reading, and it uses discrete time propagation. Note that the 

subscript 𝑘 + 1 in the equations below is used to denote the propagated quantity at the next 

timestep, superscript – denotes a value before a sensor update and superscript + denotes a value 

after a sensor update. 

𝐪̂𝒌+𝟏
− = 𝚯(𝛚̂𝑘

+)𝐪̂𝑘
+ 

𝛃𝑘+1
− = 𝛃𝑘

+ 

 The discrete time quaternion propagation matrix 𝚯 is given by: 

 



𝚯(𝛚̂𝑘
+) = [

cos (
1

2
‖𝛚̂𝑘

+‖∆𝑡) 𝐈𝟑𝒙𝟑 ⁡− ⁡ [𝜓̂𝑘
+ ×] 𝜓̂𝑘

+

−𝜓̂𝑘
+𝑇

cos (
1

2
‖𝛚̂𝑘

+‖∆𝑡)

] 

𝜓̂𝑘
+ =

sin (
1
2
‖𝛚̂𝑘

+‖∆𝑡) ‖𝛚̂𝑘
+‖

‖𝛚̂𝑘
+‖

 

𝛚̂𝑘
+ = 𝝎𝑚 ⁡− ⁡𝛃𝑘

+ 

 ∆𝑡 represents the discrete time step in seconds. The propagated state covariance matrix, 

𝐏𝑘+1
− , is propagated accordingly: 

𝐏𝑘+1
− = 𝑘𝐏𝑘

+𝑘
𝑇 + 𝐆𝑘𝐐𝑘𝐆𝑘

𝑇 

 Here, the covariance transition matrix  is given by: 

𝑘 = [
11 12

𝟎3𝑥3 𝐈3𝑥3
] 

11 = 𝐈𝟑𝒙𝟑 − [𝛚̂𝑘
+ ×]

sin (
1
2
‖𝛚̂𝑘

+‖∆𝑡)

‖𝛚̂𝑘
+‖

+⁡[𝛚̂𝑘
+ ×]2

(1⁡ − ⁡cos(‖𝛚̂𝑘
+‖∆𝑡))

‖𝛚̂𝑘
+‖

2  

12 = [𝛚̂𝑘
+ ×]

(1⁡ − ⁡cos(‖𝛚̂𝑘
+‖∆𝑡))

‖𝛚̂𝑘
+‖

𝑤 −⁡𝐈𝟑𝒙𝟑∆𝑡 −⁡[𝛚̂𝑘
+ ×]2

(‖𝛚̂𝑘
+‖∆𝑡⁡ − ⁡sin(‖𝛚̂𝑘

+‖∆𝑡))

‖𝛚̂𝑘
+‖

3  

 The process noise matrices, 𝐐𝑘 and 𝐆𝑘, are given by: 

 

𝐐𝑘 = [
(𝜎𝜔

2∆𝑡 +
1

3
𝜎𝛽

2∆𝑡3) 𝐈𝟑𝒙𝟑 (−
𝟏

𝟐
𝜎𝛽

2∆𝑡2) 𝐈𝟑𝒙𝟑

(−
1

2
𝜎𝛽

2∆𝑡2) 𝐈𝟑𝒙𝟑 (𝜎𝛽
2∆𝑡)𝐈𝟑𝒙𝟑

] 

𝐆𝑘 = [
−𝐈𝟑𝒙𝟑 𝟎3𝑥3

𝟎3𝑥3 𝐈𝟑𝒙𝟑
] 

 𝜎𝜔
2  is the variance of the gyroscope angular rate measurement and 𝜎𝛽

2 is the variance of 

the gyro bias. These values can be taken from the Epson-MG364 datasheet or determined 

experimentally. 

Measurement Update 

 After state propagation, measurement updates for the filter’s estimate of the state can be 

determined. Equations to find the Kalman gain matrix, Kk, estimated error in the 3x1 vector part 

of the error quaternion, 𝛿𝑞, and error in gyro bias, 𝛿𝛃, are shown and used to update the new 

estimate of the attitude quaternion and bias, as well as the new covariance matrix estimate. 

𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇(𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑𝑘)
−1 

[
𝛿𝑞
𝛿𝛃

] = 𝐊𝑘(𝐳𝑘 − 𝐡(𝐪̂𝒌
−)) 



𝐪̂𝑘
+ = [𝛿𝑞 √1 − 𝛿𝑞𝑇𝛿𝑞⁡]𝐪̂𝑘

− 

𝛃𝑘
+ = 𝛃𝑘

− + 𝛿𝛃 

𝐏𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘

− 

 Note that the scalar component of the error quaternion is recovered using √1 − 𝛿𝑞𝑇𝛿𝑞. 

This new error quaternion is added multiplicatively to the current estimate by quaternion 

multiplication, denoted by . The bias is updated by adding the bias error to the previous estimate. 

 The matrix 𝐇𝑘 is the measurement sensitivity matrix, found from using each of the N 

reference measurement vectors 𝐫𝑖 in the inertial frame: 

 

𝐇𝑘 = [
2[𝐴(𝐪̂𝑘

−)𝐫1 ×] 𝟎3𝑥3

⋮ ⋮
2[𝐴(𝐪̂𝑘

−)𝐫𝑁 ×] 𝟎3𝑥3

] 

 Again, the inertial reference directions come from the different models that rely on GPS 

position outputs. 

 𝐑𝑘 is the sensor noise matrix, which is shown below: 

𝐑𝑘 = [
𝜎1

2⁡𝐈𝟑𝒙𝟑 0 0
0 ⋱ 0
0 0 𝜎𝑁

2 ⁡⁡𝐈𝟑𝒙𝟑

] 

 𝜎𝑖
2 is the measurement variance for the ith sensor used. This concept is also used in the 

weighting matrix for the sun sensor estimate: a lower 𝜎𝑖
2 indicates more trust. As with the sun 

sensor estimation technique, if a sensor estimate is missing, the variance for the unavailable sensor 

may be set to an arbitrarily large number, such as 1010. This will cause the filter to ignore the 

invalid measurement and just “trust” the other measurements as specified. 

 The Kalman gain matrix is multiplied by the difference between the real sensor 

measurements and the estimated sensor measurements⁡𝐡(𝐪̂k
−) to find the estimated state error for 

the attitude quaternion and gyro bias. With N measurement vectors 𝐛𝑖 and their corresponding 

reference vectors in the inertial frame 𝐫𝑖, zk, and h(𝐪̂𝑘
−) are defined: 

𝐳𝑘 = [
𝐛1

⋮
𝐛𝑁

] 

𝐡(𝐪̂𝑘
−).= [

𝐴(𝐪̂𝑘
−)𝐫1
⋮

𝐴(𝐪̂𝑘
−)𝐫𝑁

] 

Detumble 

 Because of the docking and unloading mechanisms for CubeSats, there will be some initial 

tumbling when the CubeSat is deployed for its mission. A detumble algorithm must be utilized to 

gradually eliminate this spin with the use of the magnetic torque rods and magnetometer. There 

may be other times where the spacecraft is tumbling due to science operations, and if necessary, 



the detumble algorithm can be used in those circumstances as well. For this mode, the only torques 

that the ADCS supplies to the spacecraft are through the magnetic torque rods. Two methods of 

control laws can be used here, but only the first one will be used on-orbit. 

The first control law that can be used relies on only magnetometer estimates and uses a 

common B-dot algorithm. Angular velocity is determined by the time rate of change in the 

magnetic field vector in the body frame. The control law and the equation for calculating the time 

rate of change of the magnetic field vector are presented below: 

𝐦 = −𝑘𝐛̇ 

𝐛̇ =
𝒃𝑘+1 − 𝒃𝑘

∆𝑡
 

 m is the commanded dipole moment, k is the control gain, and 𝐛̇ is the time rate of change 

of the magnetic field vector. This rate is calculated by taking the difference of two consecutive 

magnetometer outputs divided by the time interval between the samples. Using a moving average 

filter or some other type of low-pass filter will help reduce noise in the magnetic field vector 

outputs. 

 The second control law presented uses a magnetometer estimate and angular velocity 

estimate,⁡𝝎,  to determine the commanded dipole moment. The law is presented below: 

𝐦 =
𝑘

𝐛𝑇𝐛
(𝝎 × 𝐛) 

 This controller is more efficient in theory as the moment is applied perpendicular to the 

angular velocity of the spacecraft, so this maximizes the rate damping. However, this method is 

more complicated as it requires more sensors. In addition to the gyro on the IMU, getting an 

angular velocity estimate requires a Kalman filter, which requires additional sensor output (from 

the sun sensor or horizon sensor), and they might not be available at the time. Using a Kalman 

filter would also be more complex computationally and since there could be convergence issues, 

it would be a lot simpler to use the first control law. The tradeoff here would be that it takes more 

time for detumble to reduce and eliminate the angular rates, but if the chance of success is higher, 

the first control law should be used. The control.py file in adac-kit and the detumble.py file in 

adcs-proto can be referenced for more information. 

 The detumble algorithm with the first control law was tested on the TARGIT engineering 

unit. For this case, the spacecraft was placed on the air-bearing in the Helmholtz cage and was 

given some initial spin about its z-axis. Data was recorded from various sensors, and a graph 

showing the angular rates of the CubeSat over time is shown below: 



 

Figure 3. Angular velocity plotted over time during detumble algorithm implementation. 

 Because of the nature of the setup, it is hard to isolate the initial spin to just the z-axis as it 

was done by hand. Consequently, it is seen that there is some initial wobble, resulting in a spin, 

but a much smaller one, about the other axes. Regardless, the detumble algorithm reduces spin 

across all axes to essentially zero over time. It takes roughly 2200 seconds, or about 37 minutes, 

which is expected considering this controller is not as efficient as a controller that also takes 

angular velocity estimates. 

Sun Pointing 

 In order to maximize the charging efficiency of TARGIT’s solar panels, a sun-pointing 

mode is used to orient the spacecraft such that the incidence angle of the solar panels to the sun is 

normal (90º) and maintain this pointing configuration. The ADCS sun pointing mode uses 

feedback from the fine and coarse sun sensors to actuate the reaction wheels to minimize any error 

in pointing. The control method uses a proportional derivative (PD) feedback controller to regulate 

the angle between a reference vector and the observed sun vector. The reference vector is defined 

in the body frame to align the solar panels to the sun. 

 As with the detumble algorithm, two control laws can be used: one that does not use angular 

velocity estimates, and one that does. First, some initial definitions must be made. Given the 

reference vector in the body frame, e, the measured sun vector,⁡s, the error signal, θ, can be 

calculated as: 

𝜽 = cos−1(𝐞𝑇𝐬)
𝜺

‖𝜺‖
 

𝜺 = [𝐞 ×]𝐬 

ε represents the axis of rotation from e to s. Using this error signal, a PD controller can be 

used to calculate the torque that must be exerted by the spacecraft: 
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𝝉 = 𝑘𝑝𝜽 + 𝑘𝑑𝜽̇ 

 kp and kd represent the proportional and derivative gain of the controller. Because an 

angular velocity estimate is not used, a slight spin may be induced about the sun vector in a steady 

state condition, (less than 1 deg/s). If angular velocity can be estimated, a more robust control law 

can be used. Again, to estimate angular velocity, a Kalman filter must be utilized and can be more 

computationally and power hungry because of all the software and hardware that must be 

employed. The control law is shown below: 

𝝉 = 𝑘𝑝𝒏sin(𝜽) + 𝑘𝑑𝝎 + [𝝎 ×](𝐉𝝎 + 𝐡) 

𝒏 =
[𝐞 ×]𝐬

sin⁡(𝜽)
 

 Here, n is the unit vector along the axis of rotation from e to s, ω is the angular velocity 

estimate determined by the Kalman filter, and h is the reaction wheels’ internally stored angular 

momentum. Because h affects the gyroscope’s reading, it is included as a correction term. To 

improve the accuracy of these controllers and reduce jitter, simple signal processing methods such 

as a moving average filter or low-pass filter can be implemented to filter the measured sun angle 

after the weighted least squares method is used. 

 Shown below are the results of using the sun-pointing algorithm with the engineering unit 

and a strong lamp to act as the sun. The sun vector components are plotted over time as a unit 

vector. The spacecraft spins about the sun sensor’s y-axis axis, which is why the y-component is 

essentially fixed over time near 0. It is not exactly 0 since there was some height difference 

between the CubeSat and the lamp. To align the sun vector with the “sun”, the unit vector must be 

almost all in the z-axis, which occurs here over time, as the x-component drops to 0. This means 

that the sun sensor was facing normal to the “sun”. At the end, there is some very interesting 

information plotted. At this point, the light was turned off to see what the data would record, and 

it is shown to be very spread out and unusable. Care must be taken to not include sun vector data 

when it cannot see the sun or else it will cause a lot of bad data to be passed into the algorithms 

used. 



 

 

More information can be found in sun_point.py and sun_point_alt.py in adcs-proto. 

LVLH Pointing 

 The LVLH pointing algorithm, as described earlier, is used to maintain the spacecraft in a 

flying wing configuration for nominal operations. This consists of the deployable solar panels 

pointed zenith and the laser payload pointed anti-ram. The full suite of sensors and actuators will 

be used, although the Kalman filter will switch between using sun sensor data and horizon sensor 

data, depending on whether the spacecraft is in sunlight or in eclipse. The flow diagram below 

shows the relationships between the sensor outputs and software inputs, and the relationships 

between the software outputs and actuator inputs. 

 

Figure 4. Information flow for the LVLH Pointing Algorithm. 
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 As mentioned earlier, the Kalman filter will be used to provide an estimate of the vehicle’s 

current orientation in the inertial frame as well as gyro bias. The attitude control algorithm for 

LVLH pointing uses the attitude estimate and gyro bias to get torques to maintain LVLH, which 

are then applied to the reaction wheels. Momentum management software, described more later, 

is then used to actuate the magnetic torque rods. 

 The control law for LVLH uses a quaternion PD feedback controller. A reference 

quaternion in the inertial frame, 𝐪𝑟𝑒𝑓 , and reference angular rate, 𝛚𝑟𝑒𝑓 , is specified for the 

controller beforehand. The error quaternion is calculated by 𝜹𝐪 = 𝐪𝐪𝑟𝑒𝑓
−1 , where 𝐪 is the current 

quaternion in the inertial frame. The angular rate error is 𝝎𝑒, = 𝝎 − 𝝎𝑟𝑒𝑓 where 𝝎 is the 

spacecraft angular velocity. The desired torque in the body frame is: 

𝝉 = −𝒌𝑝sign(𝛿𝑞4)𝜹𝐪1:3 − 𝒌𝑑𝝎𝑒 − [𝝎 ×](𝐉𝝎 + 𝐡) 

 𝒌𝑝 is the proportional gain vector, 𝒌𝑑 is the derivative gain vector, and 𝐡 is the internal 

momentum vector from the reaction wheels. J is the inertia tensor for the spacecraft. The sign 

function for 𝛿𝑞4 helps to ensure that the shortest path to the desired orientation is taken, rather 

than rotating about the opposite direction to achieve the same orientation if it is longer. The gains 

𝒌𝑝 and 𝒌𝑑 can be designed by selecting a controller bandwidth 𝜔𝑛 and damping ratio 𝜁: 

𝒌𝑝 = 𝜔𝑛
2𝐉 

𝒌𝑑 = 2𝜁𝜔𝑛𝐉 

 𝜔𝑛 should be at least 10 times smaller than the controller update frequency, while 𝜁 can be 

tuned to achieve the desired response. 

 𝐪𝑟𝑒𝑓⁡for LVLH pointing can be calculated by using a transformation from the inertial frame 

to the local frame at the spacecraft’s current position. The estimate of the spacecraft’s inertial 

position and velocity, rI and vI, respectively, are used to the LVLH frame to the inertial frame 

through the following calculations: 

𝐴𝐿
𝐼 = [𝒐1 𝒐2 𝒐3] 

𝒐1 = 𝒐2 × 𝒐3⁡⁡⁡⁡⁡𝒐2 =
−(𝒓𝐼 × 𝒗𝐼)

‖𝒓𝐼 × 𝒗𝐼‖
⁡⁡⁡⁡𝒐3 =

−𝒓𝑰

‖𝒓𝑰‖
 

The orientation relative to the local frame in the inertial frame can be defined by chaining 

together rotations with 𝐴𝐼
𝐿, which also is equal to 𝐴𝐿

𝐼 𝑇
. 

Target Tracking 

 As mentioned earlier, target tracking consists of using the Pixycam to track the target with 

the Pixycam such that the laser ranging system can also detect the target, and this algorithm is a 

subcase of the LVLH pointing algorithm. This mode will use the same attitude estimation methods 

as LVLH, with target pointing being the main control algorithm used. This will be achieved 

through a boresight control law that uses visual feedback from the Pixycam as it tries to center the 

target in its field of view. The Pixycam outputs the x and y distances of the bounding box of the 



target, which will then be used as errors that need to be minimized through control law. The image 

below shows the target in the Pixycam’s field of view and shows the axes used to calculate error.  

 

Figure 5. Pixycam's field of view with camera axes, optical axes, and target position. 

 The position error of the target is found by getting 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 = [𝑥𝑡𝑎𝑟𝑔𝑒𝑡 𝑦𝑡𝑎𝑟𝑔𝑒𝑡], which is 

the target’s position in pixels relative to the optical center of the field of view. The angle errors in 

the camera frame are: 

𝜃𝑥 = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝐹𝑂𝑉𝑦

𝑃𝑦
 

𝜃𝑦 = −𝑥𝑡𝑎𝑟𝑔𝑒𝑡

𝐹𝑂𝑉𝑥
𝑃𝑥

 

 θx and θy correspond to the angle errors about the x and y axes, respectively. The FOV is 

the camera’s field of views in radians, and P represents the number of pixels in the x and y 

directions. The following table can be used as an example, but may differ for the actual Pixycam 

unit: 

Table 3. Example information for the field of view and resolution of the Pixycam. 

Field X Y 

Field of View (deg) 60 40 

Resolution (Pixels) 315 207 

 The error vector in the camera’s optical frame, 𝜽𝒐𝒑𝒕𝒊𝒄𝒂𝒍 = [𝜃𝑥 𝜃𝑦 0], is used in a PD 

feedback controller to drive the error vector to 0. From hardware-in-the-loop (HWIL) testing, it 

was found that the best way to form the error vector was to use a moving average of the position 



of the target. A sample of 12 measurements are taken and the average is taken to get the position 

of the control sample. The rate of change in position is calculating by taking the difference between 

the averages of the first six measurements and the averages of the last six measurements. In 

equation form, the rate of change for x and y would be: 

𝑥̇ =
𝑚𝑒𝑎𝑛(𝑥7:12) − 𝑚𝑒𝑎𝑛(𝑥1:6)

6∆𝑡
 

𝑦̇ =
𝑚𝑒𝑎𝑛(𝑦7:12) − 𝑚𝑒𝑎𝑛(𝑦1:6)

6∆𝑡
 

 Using these average values, 𝜽𝒐𝒑𝒕𝒊𝒄𝒂𝒍 and 𝜽̇𝒐𝒑𝒕𝒊𝒄𝒂𝒍 are calculated and then rotated to the body 

frame using: 

𝜽𝒃𝒐𝒅𝒚 = 𝑹𝒐𝒑𝒕𝒊𝒄𝒂𝒍
𝒃𝒐𝒅𝒚

𝜽𝒐𝒑𝒕𝒊𝒄𝒂𝒍 

𝜽̇𝒃𝒐𝒅𝒚 = 𝑹𝒐𝒑𝒕𝒊𝒄𝒂𝒍
𝒃𝒐𝒅𝒚

𝜽̇𝒐𝒑𝒕𝒊𝒄𝒂𝒍 

The body frame error vectors then can be fed into the PD controller to calculated the desired 

torque on the body frame, to be actuated by the reaction wheels: 

𝝉 = 𝑘𝑝𝜽 + 𝑘𝑑𝜽̇ + [𝝎 ×](𝐉𝝎 + 𝐡) 

 The proportional and derivative gains are kp and kd, respectively, the angular velocity 

estimate is ω, the inertia tensor is J, and angular momentum stored in the reaction wheels is h. 

Once the controller has gotten the CubeSat to stay on the target, it will then try to roll such that the 

sun incidence angle to the solar panels is optimized for charging. This event will only be allowed 

when ‖𝜽𝒐𝒑𝒕𝒊𝒄𝒂𝒍‖ < 0.03⁡𝑟𝑎𝑑, to make sure that the target tracking portion of this mode is not 

affected. The optimal roll angle, 𝜃𝑟𝑜𝑙𝑙, is calculated by: 

𝜃𝑟𝑜𝑙𝑙 = atan2(
‖𝐧 × 𝐬𝑝𝑟𝑜𝑗‖

𝐧𝑇𝐬𝑝𝑟𝑜𝑗
)⁡ 

 n is the vector normal to the solar panels, while 𝐬𝑝𝑟𝑜𝑗 is the project sun unit vector in the 

plane perpendicular to the direction of the Pixycam and laser. The time rate change of 𝜃𝑟𝑜𝑙𝑙 can be 

calculated using a finite difference method similar to the equation for 𝐛̇ for detumble. 𝜃𝑟𝑜𝑙𝑙 and 

𝜃̇𝑟𝑜𝑙𝑙 can be added to 𝜽𝒐𝒑𝒕𝒊𝒄𝒂𝒍 and 𝜽̇𝒐𝒑𝒕𝒊𝒄𝒂𝒍 in the body frame, respectively. 

 The target_track.py file in adcs-proto/apps can be referenced for more information. 

Momentum Management 

 Momentum management is required because the reaction wheels have a maximum value 

for the amount of momentum that can be “stored” in the wheels. In this algorithm, the magnetic 

torque rods are used to desaturate the amount of momentum in the reaction wheel. A proportional 

controller is used to drive down the reaction wheel momentum vector to the desisred quantity. The 

error in reaction wheel momentum and magnetic field vector is calculated in the body frame and 

used to command the torque rods by creating the magnetic dipole moment, m: 



𝒎 =
𝑘𝑚

𝐛𝑇𝐛
[𝐡𝑒𝑟𝑟 ×]𝐛 

 km is the proportional gain, 𝐡𝑒𝑟𝑟 = 𝐡 − 𝐡𝑟𝑒𝑓 (the reaction wheel angular momentum 

vector subtracted by the desired reaction wheel angular momentum vector), and 𝐛 is the magnetic 

field vector. The resulting torque is calculated below, where 𝐈𝟑𝒙𝟑 is the identity matrix: 

  

𝝉𝑚 = −𝑘𝑚(𝐈𝟑𝒙𝟑 − 𝐛𝐛𝑇)𝐡 

The control.py can be referenced for more information. 
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