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The implementation and evaluation of a high fidelity material model for dry fabrics is the 

main objective of this paper.  Inflatable Aerodynamic Decelerators (IADs) and other air-

inflated structures quite often utilize woven fabrics due to their lightweight and high loading 

carrying capabilities.  Design optimization of these inflated structures relies on a detailed 

understanding of the woven fabric mechanics.  Woven fabrics are composite orthotropic 

materials that respond differently under load from traditional solid mechanics.  While low-

fidelity fabric materials usually assume a continuous medium, a higher fidelity model needs 

to account for the reorientation of yarns and weave geometry.  An existing mesomechanical 

material model within the LS-DYNA


 commercial non-linear finite element software 

package is utilized.  In this paper, experimental stress-strain data for Kevlar 129 samples are 

validated against numerical simulations of models with matching geometry and loading 

conditions. 

Nomenclature 

E = Elastic Modulus 

G = Shear Modulus 

ρ = Mass Density 

ν = Poisson’s Ratio 

 = Undulation Angle 

θ = Braid Angle 

θlock = Locking Angle of Yarns 

Δθ = Angle Tolerance for Locking 

 = Shear Resistance Discount Factor 

q = Yarn Unit Direction Vector 

F = Deformation Gradient 

Subscripts 

1 = Yarn Longitudinal Direction 

2 = Yarn Lateral Direction 

12 = Plane Defined by 1, 2 axes 

23 = Plane Defined by 2, 3 axes 

f = Fill 

w = Warp 

Acronyms 

IAD = Inflatable Aerodynamic Decelerator 

EDL = Entry, Descent, and Landing 

IRVE = Inflatable ReEntry Vehicle Experiment 
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I. Introduction 

LANS for future Mars missions involve placing larger and heavier payloads on the surface.  Currently, 

supersonic parachutes place difficult constraints on the available payload mass.  In the late 1960’s and early 

1970’s NASA began initiating technology programs aimed at maturing Inflatable Aerodynamic Decelerators 

(IADs).  Compared to supersonic parachutes, Supersonic and Hypersonic IADs represent a decelerator option that 

provides a large drag area capable of operating at higher Mach numbers and dynamic pressures.  This characteristic 

translates to being able to deploy earlier in the Entry Decent Landing (EDL) timeline and opens the design space to 

higher elevation landing sites
1
.  After a couple decades of little to no acknowledgement, IADs saw resurgence in 

interest from the EDL community in the early 2000’s
2
.  Technology investments in the last decade have significantly 

progressed three IAD configurations: the attached isotensoid, tension cone, and stacked toroid
3,4,5

.  An example 

illustration of the stacked toroid configuration is provided in Figure 1. 

 
In a historical look at IAD development, Smith et al mentions aerodynamics, static and dynamic stability, 

aerothermodynamic loading, structural analysis and testing, inflation, and materials as essential areas for IAD 

maturation
6
.  Both computational and experimental research advancements are still needed before IADs can be 

employed in future missions. Subscale or ground based experimental testing is difficult and expensive to carry out.  

It will likely be that computational analysis will fill the gap and extend the analysis beyond experimental testing 

limitations.  The Fluid Structure Interaction (FSI) associated with IADs is of particular importance because it is an 

analysis that addresses the coupling aerodynamic and structural behavior.  Tanner’s work with FSI dealt with, in a 

broad sense, the framework necessary to couple fluid and structural solvers
7
.  His framework has the advantage of 

being adaptable to virtually any suite of CFD and FEM solvers.  Having said that, this architecture is limited by the 

numerical tools it employs.  In Tanner’s FSI analysis, it was shown that the finite element model was overly stiff 

when compared to deflections seen in the wind tunnel
7
.  Because FEA will only be as accurate as the inputs, two 

areas in need of advancement are the modeling of IAD materials, as well as, the determination of the mechanical 

properties that serve as inputs to the models.  IADs and other air-inflated structures quite often utilize woven fabrics 

due to their lightweight and high loading carrying capabilities.  Design optimization of these inflated structures 

relies on a detailed understanding of the woven fabric mechanics. 

 

As a secondary motivation, the influence of material properties on IAD mass was explored.  Samareh presents a 

technique for estimating the mass of IADs using a set of dimensionless parameters relating to the inflation gas mass, 

inflation pressure, and flexible material mass
8
.  The methodology is applicable for trailing IADs, tension cones, and 

stacked toroids.  For this study, the stacked toroid with coated fabric (Case 4) was chosen for consideration.  The 

equations derived in the literature were implemented in MATLAB.  It was observed that material properties were 

included in several equations, but the largest contributor to mass was the estimate for minimum inflation pressure.  

Samareh uses an approach for estimating the minimum inflation based on the principle of virtual work.  

Fundamentally, the external work from the aerodynamic forces must be balanced by the internal work of the gas.  

The resulting equation is a function of the drag load on the decelerator and geometry.  From this, one could look at 

P 

 
Figure 1: IRVE Stacked Toroid
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how changing minimum inflation pressure affects IAD mass.  The analysis showed that for case 4, minimum 

inflation pressure was close to 5 psi.  The next step was to obtain a realistic estimate for how material properties 

affect minimum inflation pressure in stacked toroids.  To simplify this effort, the buckling load of single toroid was 

examined.  Kyser presents a study that looks at some basic questions associated with the use of inflated toroids 

within IADs
9
.  The paper examines the load carrying capabilities and failure modes of a toroid during and after 

deployment.  Kyser provides relations for the critical buckling load of a slender thin-walled pressurized toroidal 

shell subjected to a uniform radial compressive load. Both the equations for in and out of plane buckling are 

functions of the elastic and shear modulus of the wall.  While these equations are for a single toroid and assume an 

isotropic material, the general trends can be utilized.  Now that the material properties of the fabric can be related to 

the minimum inflation pressure to resist buckling, perturbations to the elastic and shear modulus were applied to 

observe how critical buckling load varies.  Examples of uncertainty in moduli were taken from Hutchings, in which 

uniaxial and estimated biaxial moduli are presented
10

.  The estimated biaxial modulus is almost 2/3 of the uniaxial 

modulus.  With this, all the necessary information to complete this secondary study was obtained.  On the left side of 

Figure 2, the variation of critical buckling load with scaled modulus values is shown.  In addition, the impact of 

changes in the minimum inflation pressure on inflatable mass, for this example, is shown on the right in Figure 2. 

Keeping in mind that minimum inflation pressure for the stacked toroid was approximately 5 psi, the inflation 

pressure was varied from 5 to 10 psi.  It is seen in the above plot on the left, that in order to maintain the same 

buckling load, the reduced moduli toroid must increase inflation pressure from 5 to 8.7 psi.  So, the toroid would 

need to be inflated to nearly double the internal pressure to resist the same uniform radial load.  Applying a factor of 

2 increase in minimum inflation pressure to the mass estimate, it can be seen on the right of Figure 2, that the mass 

of the inflatable increases by approximately 59%.  This further emphasizes the point that a detailed understanding of 

the woven fabric mechanics is necessary for the design of inflated structures. 

II. Textile Modeling 

A great deal of work has been done to better determine the mechanical properties of fabrics experimentally.  Basset 

et al. reviews several experimental methods for determining fabric elastic and shear moduli.  Biaxial tension, Shear, 

and Bias extension testers measure one of the mechanical properties while keeping the others constant or zero.  

Combined testers like the inflated cylinder test utilize hydrostatic pressure, axial force, and torsion to simultaneously 

vary the state of stress
11

.  Hutchings utilized several of these experimental test methods to obtain experimental data 

for candidate IAD orthotropic materials
10

.  The material data that was obtained from this testing was utilized in the 

FSI work of Tanner.  Similar test methods were used in a combined effort between NASA and ILC Dover to carry 

out an experimental program to better characterize the stiffness of coated woven fabrics
12

.  The results of which are 

intended to support a ground test campaign for inflatable decelerators.  Tanner and Hutchings both acknowledge the 

benefit of a more detailed characterization of woven fabric material properties as the limitations of the experimental 

studies only provide an incomplete picture.  In addition to the experimental work, a great deal of work has been 

done to better model the behavior of fabrics.  Most models treat the fabric as a homogeneous material.  To date, IAD 

 
 

Figure 2: Critical Buckling Load (Left) and Total Inflatable Mass (Right)
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structural modeling has treated the fabric as a continuum.  Even making the assumption of a continuous medium, the 

material has been modeled with isotropic and orthotropic material properties.  In reality, a fabric is a complex 

structure of individual fibers that have been collected into yarns and interlaced together.  More appropriate models 

exist that are dependent on variables such as individual fiber thickness, undulation angles, and fiber strengths, but 

determination of meso and micro mechanical properties can be difficult.  Murman et al addresses several modeling 

techniques that can be used to capture some of the complex fabric responses
13

.  Murman and Hutchings both allude 

to the use of advanced material models for IAD fabrics.  However, they also note that detailed modeling of fabrics at 

the yarn or fiber level is computational intensive and not currently feasible for full-scale modeling. 

 

As the purpose of this paper is to utilize a material model that accounts for the reorientation of the yarns and the 

fabric architecture, an overview of some fabric terminology is beneficial.  Basically, fabrics are flexible materials 

that are constructed by interlacing yarns together.  The yarns are composed of thousands of fibers or filaments that 

are combined together in some fashion (with or without twist) to form a textile fabric.  A fiber is a strand of matter 

that is either organic or synthetic.  It is the most fundamental element of a fabric.  A filament is a single long fiber.  

Synthetic fibers are typically produced as a single filament.  Textile fabrics represent a vast amount of unique 

constructions of materials ranging from individual fibers that are not woven to groups of fibers that are interlaced 

(weaved or braided) or interloped (knitted) together.  Fabrics can be constructed using various methods and take on 

many patterns
14

.  This paper focuses primarily on woven 

fabrics.  A woven fabric is produced by interlacing two 

sets of yarns perpendicular to each other.  The yarns 

running in the length direction of the fabric are called the 

warp yarns.  Those running in the width direction of the 

fabric are called the weft or fill yarns.  Fabrics can be 

constructed all from the same material or by organizing 

different materials to meet structural requirements.  

From this it can be seen that, for a given type of material, 

the physical properties and mechanical performance of 

the textile fabric are strongly dependent on the how it is 

structured.  There are many ways of interlacing the warp 

and fill yarns into a fabric; the resulting layout is called 

the weave.  When woven fabrics have considerable 

thickness due to multiple sets of yarns in the warp and 

fill directions, they are termed 3D fabrics.  The detailed 

modeling of mechanical properties of woven fabrics has 

been the primary focus of some researchers for many decades; in areas ranging from the clothing industry to many 

engineering applications.  Historically, models for woven fabrics have lagged behind other materials due to their 

complex nature
15

.  Woven fabrics are composite orthotropic materials that respond differently from traditional solid 

mechanics.  Terms like friction, crimp interchange, slip, and locking are used to describe the behavior of the fabrics 

under loading.  Friction refers to the contact friction that exists between overlapping yarns.  Crimp interchange is the 

shifting of undulation from the warp to the fill yarns or vice versa as a result from applied loading.  These are 

important and are also affected by the type and manner of loading.  Slip occurs as the yarns rotate due to shearing 

and locking occurs when the yarns jam together and can no longer rotate.  The interactions that occur at the yarn and 

fiber level require a high level of detail at the expense of increased computational difficulty. 

 

A woven fabric can be explored at three levels:  Macroscopic, Mesoscopic, and Microscopic.  Illustrations of the 

three levels of modeling are provided in Figure 4.  The macroscopic level refers to the entire structure level, with 

dimensions on the order of meters.  At this level, the fabric is seen as a continuum with orthotropic material 

properties and low shearing and bending stiffness.  This is the level at which current IAD modeling efforts reside 

due to the ability to model large complex geometries.  While there has been much work done in this area, there is no 

universally accepted model that accurately captures all aspects of the fabric’s mechanical behavior.  Some authors 

have proposed different macroscopic techniques for replicating the unique behavior of woven fabrics.  Currently, 

most studies on inflated structures involve the testing of an inflated beam under various loading conditions and 

making observations about the structures response.  Kabche et al experimentally tested inflated beams with applied 

tension and torsion loads
16

.  In addition, the fabric moduli that were found experimentally were used in a finite 

element model to predict the response of the beam in bending.  It was shown that the elastic and shear moduli of the 

 
Figure 3: Examples of Woven, Braided, and Knitted 

Textile Patterns
14
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fabric varied as a function of inflation pressure, material properties of the fibers, and the structure of the weave.  

These are very useful observations, but require large amounts of testing and quantitative results are only applicable 

to the fabric under consideration.  Cavallaro experimentally and analytically tested the bending response of an 

inflated beam.  In addition, the micro and meso mechanical effects were studied through finite element modeling.  It 

was observed that a model which included each warp and weft tow, as well as, their interactions was not possible 

computationally.  A small unit cell was analyzed and the determined material properties were used in a global model 

of the inflated air beam.  The results showed that the finite element model was stiffer than the experimental results.  

This was due to finite element model employing constant elastic and shear moduli, while the experimental material 

properties varied during loading
17

. 

 
At the mesoscopic level, the fabric is viewed as a series of interlacing tows called the warp and fill yarns and is 

usually on the order of several millimeters.  This level of modeling usually considers the smallest repeating pattern 

that can properly represent the fabric under loading conditions.  This area is usually termed the representative unit 

cell (RUC).  Peng utilizes a novel approach for predicting the effective nonlinear elastic moduli of a textile fabric.  

A RUC was built and various numerical tests, like uniaxial tension testing and shear testing were carried out.  Force 

vs. Displacement curves are obtained and the results are imposed on a four node shell element that can be applied to 

large scale model
19

.  In most literature, each yarn is modeled as a continuum with its own constitutive law.  In reality 

an IAD fabric can be composed of several thousands of yarns which are then composed of several thousands of 

continuous fibers that, at some extent, interact with each other.  These interactions can be analyzed at the 

microscopic scale; with the working scale being on the order several micrometers.  From a modeling standpoint, the 

fibers can be represented as beam elements that come into contact with their neighbors.  This approach has been 

used to model small unit cells
17

.  However, due to computational limitations, the numbers of fibers that can be 

modeled are limited and as a result so are the conclusions that can be drawn. 

 

LS-DYNA


 is the commercial non-linear finite element software package used extensively by the IAD community.  

Because of this, it is used for the work herein.  Most structural analysis of IADs utilize LS-DYNA


’s standard fabric 

model (MAT_FABRIC).  This planar orthotropic material model utilizes a 3 or 4 node shell element formulation.  

This macroscopic level model uses Hooke’s law as the constitutive equation.  The degree of homogenization utilized 

in this model makes it computationally desirable.  However, it ignores many of the meso and microscopic 

interactions between yarns and fibers that can significantly influence the response of a fabric.  A few of the literature 

sources interchange the terms meso and micro in their work, but are consistent in their approach of modeling at the 

yarn level.  There are already existing material models within LS-DYNA


 that model the mesomechanical behavior 

of fabric.  Tabiei and Ivanov present such a material model that is later implemented in LS-DYNA


.  The material 

Macroscopic Level

Fabric

~100 m
Mesoscopic Level

Yarns

~10-3 m

Microscopic Level

Fibers

~10-6 m

 
Figure 4: Fabric (Left), Yarns (Middle)

18
, and Fibers (Right)

18 
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model (MAT_MICROMECHANICS_DRY_FABRIC) models the fabric on the yarn level.  The model accounts for 

the reorientation of yarns and weave geometry
20

.  It incorporates a homogenization technique; making it viable for 

large scale analyses.  Prior IAD studies use the lack of published material data and unusual input parameters as 

reasons for not utilizing such material models. 

III. Modeling Parameters 

A. Candidate Material 

In order to validate the material model, experimental data was sought that could be compared against the 

numerical solution.  The goal was to simulate the same loading conditions used to obtain the experimental data.  The 

stress vs. strain response from the simulation is then compared directly to the experimental data to observe whether 

or not the dual behavior of the fabric is represented.  The dual behavior comes from the fact that initially the fabric is 

similar to a trellis mechanism; with large rotations of the yarns until some locking angle when then fabric begins to 

behave similar to a continuum.  Because textile fabrics come in many forms, experimental data was sought that 

matched the assumptions of the material model.  The model is derived for a plain weave fabric absent of any matrix 

or coating.  Several literature sources were found that contained fabrics and their material properties that matched 

these assumptions.  Difficulty arises when searching for yarn material properties and fabric architectures that go 

along with experimental fabric data.  It is unlikely to find a data source that includes fabric test data, as well as, the 

required yarn data.  Along with their development of 

the material model explored in this study, Tabiei and 

Ivanov also provide numerical results from a ballistic 

impact simulation.  They provide the necessary inputs 

associated with a Kevlar 129 fabric.  This made 

Kevlar 129 a desired material for this study.  With the 

yarn elastic properties and fabric architecture obtain, 

the search was turned to the test data for validation 

purposes.  The material testing done by Lin et al 

provided data necessary for comparison.  The fabrics 

included in their experimental study were Nylon, 

Nomex, and Kevlar.  These fabrics were selected 

because their relevancy to NASA ground test program 

for inflatable decelerator material technology.  Both 

Kevlar 29 and 129 were included in the study.  Kevlar 

29 was used in the bladder of the IRVE-II flight test 

article, while Kevlar 129 was used in the structural 

spars.  It was observed, however, that both of these 

materials were tested with a silicone coating.  This 

could pose a problem as this material model is for a 

dry fabric.  If the experimental data was to be used for 

validation purposes, it would need to be shown that 

the coating did not significantly affect the reorientation of the yarns.  To do this, the two Kevlar materials were 

compared to each other.  Figure 5 provides the axial stress vs. axial strain curves for both Kevlar 29 (200 Denier) 

and Kevlar 129 (840 Denier).  The data corresponds to the 1
st
 ramp up loading cycle in the warp direction.  Ignoring 

that the 840 denier material was tested to higher stress, an interesting trend can be observed at the lower strain 

values.  It has already been explained that in the early phases of loading, fabrics undergo crimp interchange and yarn 

reorientation that effectively results in a lower stiffness until locking occurs.  The 200 denier material appears to 

transition quickly to having a linear elastic modulus, while the 840 denier material clearly has a bilinear elastic 

modulus.  The applied coating will to varying degrees inhibit the movement of the yarns.  It can be seen, in Table 1, 

that the fraction of coated fabric thickness taken by the coating is greater for the 200 denier material.  In addition, 

the areal density of the coating is less for the 840 denier material.  From the responses shown in Figure 5 and data in 

Table 1, it was reasoned that the effect of the coating on the yarn rotation for the 840 denier material can be 

neglected for the purposes of this study. 

 
 

Figure 5: Axial Stress vs. Axial Strain 
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Now that the fabric material data was in place for later validation, attention was turned to the yarn data.  A 

discussion on the elastic properties of the yarn, as well as, the fabric architecture will be presented after some 

fundamental information about the material model is provided. 

B. Material Model 

The following section provides a brief overview of the material model developed by Tabiei and Ivanov.  The 

model uses a meso-mechanical approach in that it models the yarn interactions.  The foundation of the model is the 

Representative Volume Cell (RVC) shown in Figure 6 on the left.  The RVC, at the meso level, is constructed to 

represent the periodic structure of the fabric.  While most other meso scale models use cell with its sides parallel to 

fiber directions, this model aligns its diagonals with the fiber directions.  A zoomed in view of the RVC is shown in 

Figure 6 on the right.  It is divided into 4 sub cells to take advantage of symmetry. 

 

 
There are two angles shown in the figure above.  These define the 

orientation of the yarns and will change as a result of deformation.  The 

braid angle, θ, is assumed to be the same for both the warp and the fill 

yarns.  This is not always true in reality, but rather is an approximation.  

The undulation angle, β, is defined independently for the warp and fill 

yarns.  Do to the assumptions with this models geometry, the undulation 

angle is the only means for differentiating between the warp and fill yarns. 

 

As discussed earlier, the yarns will rotate in a similar manner to that of a 

trellis mechanism until some locking angle is reached and the yarns begin to 

behave as an elastic continuum.  This locking angle is an input to the model 

and is seen, in the context of the RVC, in Figure 7.  The implementation of 

the pre and post locking phases is implemented through the yarn stiffness 

matrix; which is provided in Equation 1.  It is assumed that the yarn is 

modeled as an anisotropic continuum.  The subscripts in Equation 1 

represent material coordinate system components of the yarns; with the “1” direction running axial with the length 

of the yarn and “2” and “3” fulfilling the requirements for an orthogonal basis.  A transformation matrix is used to 

rotate vectors in material coordinate system to the RVC coordinate system shown in Figure 6.  The shear moduli are 

augmented by the discount factor, μ.  Before locking, μ is a small number so that the yarns have low stiffness or low 

resistance to shear deformation.  This allows the large rotations of the yarns.  This term can be thought of as the 

amount friction between the yarns.  After locking, μ is equal to 1 and the yarns regain their shear stiffness.  A 

Representative
 Volume Cell

x

y
z





fill yarn

warp yarn

"f"-sub-cell
"w"-sub-cell

"F"-sub-cell

"W"-sub-cell

 
 

Figure 6: RVC (Left)
20

, Sub-Cells (Right)
20 

 

 

Table 1. Fabric Properties. 

Denier 

(w x f) 

Thread 

Count 

(yards/in) 

Uncoated 

Fabric 

Thickness (in) 

Coated Fabric 

Thickness (in) 

Uncoated 

Areal Density 

(oz/yd
2
) 

Coated Areal 

Density 

(oz/yd
2
) 

Coating 

Add-On 

(oz/yd
2
) 

200 40 x 40 0.005 0.008 2.1 8.0 5.9 

840 26 x 26 0.010 0.014 5.8 10.2 4.4 

 





qw

qf

x

y

fill yarn

warp yarn

RVC

dn

lock

lock
45

o

up

locking area

 
 

Figure 7: Yarn Locking Schematic
20
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tolerance,  Δθ, is defined to eliminate instantaneous changes in μ as θ approaches θlock.  The discount factor is a 

function of θ, which in turn is a function of the unit direction vectors, qf and qw, that define the yarns orientation.  

The method by which the unit direction vectors are updated at each time step is now discussed. 
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 (1) 

To understand how the yarn unit direction vectors are rotated as the element is deformed, the derivation of the 

deformation gradient in Tabiei’s model is stepped through in more detail.  First, it is beneficial to provide a physical 

understanding to the deformation gradient prior to defining it mathematically.  The deformation gradient is a tensor 

that quantifies the shape change and 

material rotation.  This property makes 

it better than strain as a more 

comprehensive measure of deformation 

in material elements.  Consider the  

simple example provided in Figure 8.  

Let the shape on the left represent an 

undeformed material element and on 

the right, the deformed shape.  By 

introducing horizontal and vertical 

axes, the undeformed element can be 

said to have unit length in both axes.  It 

can be seen that the deformed element 

is stretched in both principal directions.  

The resulting direction vectors are expressed in terms of the initial unit direction vectors.  Reading from the plot on 

the right, the components of the direction vectors can expressed in vector form as in Equation 2. 

    TT
gandg 5.13.104.1 21   (2) 

Assembling these components into a 2 x 2 matrix results in a 2D deformation gradient tensor for this element. 

 









5.10

3.14.1
F   (3) 

Working from the derivation in Crisfield
21

, consider an element dX that has original coordinates X.  Let the 

element be moved to new coordinates x resulting from displacement u as shown in Figure 9.  This can be written in 

vector form and differentiated to give the later part of Equation 4. 

Ε1

Ε2

Undeformed Deformed

g2 = 1.3Ε1 + 1.5Ε2

g1 = 1.4Ε1

 
 

Figure 8:  Determination of Deformation Gradient Graphically 
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 

dX
X

uX
dXFdX

X

x
dxuXx




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


  (4) 

Expanding upon this, Equation 5 introduces the mathematical representation 

of the deformation gradient (F) which can be expressed, as is shown in the 

middle matrix below, as the identity matrix plus the displacement derivative 

matrix.  In the case of infinitesimal strains, the deformation gradient can be 

expressed in the final form of Equation 5.  This form works well with the 

explicit finite element method because of the inherently small time steps 

used in this method. 

As stated earlier, the directions of both the warp and fill yarns are 

determined buy the unit direction vectors, qw and qf, respectfully.  At the 

beginning of the simulation, the unit direction vectors are defined based on 

Equation 6.  After computing the deformation gradient matrix, using the 

strains at each time step, the updated direction vectors of each yarn are 

computed and normalized, as in Equation 7, to remain unit vectors. 
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   wfiforq iiii ,sinsincoscoscos
T

   (6) 

 wfiforqqqqFq iiii ,  (7) 

New values defining the orientation of the yarns are then calculated, as is shown in Equations 8 and 9, from the 

components of the unit direction vectors. 

   wfiforqii ,sin 3

1    (8) 

 
   

2

tantan 12

1

12

1

wwff qqqq  
  (9) 

A homogenization method is used to obtain the effective elastic and shear moduli of the fabric based on the 

properties of the yarns.  The details of this procedure are deferred and the reader is referred to the paper by Tabiei 

and Ivanov for a more detailed presentation of the model development.  Numerical simulation results are now 

offered and compared to the experimental data described earlier in this paper. 

IV. Numerical Examples 

The experimental data used to validate this material model was obtained from a series of tests, by ILC Dover, to 

measure and characterize the normal and shear stress-strain behavior of textile fabrics relevant to IADs.  To that end, 

four different test methods were used in that program: 1 for normal stress-strain and 3 for shear stress-strain.   The 

uniaxial test method, used in the ILC testing, allows for the normal stress strain relationship of a sample to be 

obtained.  Trellis Frame, Bias Extension, and Cylinder Biaxial testing were carried out for purposes of shear stress-

strain characterization.  While only one test for shear properties was necessary, all three were done for comparison 
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Figure 9: Position Vectors 
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purposes.  Simulations of these tests were replicated within LS-DYNA


 and the results were compared to the 

experimental data. 

Bias Extension Testing 

The Bias Extension test is well suited for this material model.  In preparation for actual testing, a simple 

rectangular sample is cut so that the yarn orientation is +/- 45° from an axis aligned with the loading direction.  Due 

to the orientation of the RVC, a standard rectangular mesh aligns the yarns in this manner.  Thus, the Bias Extension 

testing is perhaps a natural starting point for numerical simulations. 

 

As described earlier in this paper, a fabrics shear behavior consist of several phases, such as deformation when 

the shearing forces at yarn intersections is too small to overcome friction, slippage of the yarns once that friction is 

overcome, and elastic deformation after yarn locking.  While the shear modulus, G, is usually much less than the 

elastic modulus, E, in the warp and fill directions, it has a significant effect on the effective moduli on orientations 

not align with the warp and fill directions.  The Bias Extension test method can be combined with uniaxial stress 

tests in the warp and fill directions to calculate shear modulus Equation 10
22

.  
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 (10) 

While the previous equation is a linear approximation, a 

nonlinear solution can be obtained using theory from large 

deformation continuum mechanics.  Using the deformation 

gradient for two line elements, one originally aligned with 

the warp yarns and the other with the fill yarns, the Green-

Lagrange strain tensor can be derived.  In practice, line 

markings are made on the sample and tracked over time 

using photogrammetry.  For each photo, the length of each 

line element is used to determine the stretch and 

orientation. 

 

 As load is applied to the sample, three distinct zones 

occur that contain different deformation modes as shown 

in Figure 10
22

.  At the top and bottom in zone A, near the 

grips, little to no deformation occurs.  In zone B, which 

surrounds the center region, is a transition zone where a 

mixture of shearing and extension occurs.  Zone C, 

contains mainly shear deformation.  This is the zone from 

which the measurements are taken. 

1. Model Setup 

 

The sample size used for the Bias Extension simulation is consistent with the dimensions used during testing.  

The height is 8.6 inches and the width is 3.5 inches.  One of the assumptions made early on, was that the coating did 

not significantly the stiffness of the material.  Thus, the uncoated fabric thickness of 0.010 inches was applied to the 

section of the model.  The data reported for the Bias Extension test was load and crosshead extension rather than 

shear stress and strain.  The cross head is converted to shear strain by taking advantage of the pure shear that occurs 

in the sample shown in Figure 10.  The shear angle, θ, is defined in Equation 11. 
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In the above equation, H = sample height, W = sample width, δ = displacement, and ϕ0 is the initial half angle 

that the top corner Zone C makes with the vertical.  ϕ0 is assumed to equal 45° for this example. 
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The sample of Kevlar 129 was simulated with the elastic material properties 

and fabric architecture shown in Table 2.   These values are taken as estimates 

from Tabiei and Ivanov.  The model was composed of 3705 reduced integration, 

4-node membrane elements.  At the base of the model, all degrees of freedom 

are fixed to apply a clamped boundary condition.  The top nodes allow for 

displacement in the vertical direction.  An axial load was applied to the sample 

by prescribing a 0.25 inch displacement at the top nodes.  This displacement is 

derived from Equation 11 and attempting to match the maximum shears strains 

in the experimental data.  The displacement was applied incrementally in a 

linear manner over the length of the simulation.  The resulting load was 

calculated by summing all the nodal reaction forces in the vertical direction at 

the top nodes.  Locally orthotropic material axes can be defined within this 

material model by rotating the material axes about the element normal.  This 

option was not necessary for the Bias Extension test, as the RVC already aligns 

the yarns in the desired orientation.  This option will be discussed for the uni-

axial simulation. 

2. Results 

The following section presents the results of the bias extension simulations.  The nominal model inputs provided 

in Table 2 are suggested values and should be varied from the nominal to assess the sensitivity of the model.  Two of 

the input parameters, μ and θlock, were observed to effect the simulation results to a large degree. These parameters 

were varied from the nominal values and plotted along with the experimental data. 

 

The discount factor, μ, scales down the shear moduli of the yarn before the yarns lock.  An initial value for this 

parameter should be set to provide negligible shear resistance and tension in the yarns when loaded in the bias 

direction and before locking.  On the right, Figure 11 shows three values of the discount factor plotted against an 

experimental data sample (Item B).  Figure 11 also shows contour plots of the Green-Lagrange strain in the vertical 

direction.  The contours show the same behavior shown earlier in Figure 10.  The central zone appears to elongate as 

the initial discount factor is increased.  This is caused by the shear moduli providing a higher resistance to rotation 

and thus the distinction between the transition zones and the shear dominated zone is blurred.  The suggested value 

does not fit well with the experimental data, suggesting that there is more friction between the yarns for which the 

lowest value of the discount factor accounts.  Increasing the discount factor by 1 and 2 orders of magnitude brings 

the simulation results closer to the experimental data.  This simulation provides a means for selecting an appropriate 

value for the discount factor by choosing multiple values until the best fit of the force-strain curve is obtained.  It is 

observed, however, that the simulation results are more non-linear than the experimental data. A better fit could 

possibly be arrived at by varying other input parameters, such as the Δθ, to provide a wide transition from the free to 

the locked state.  

Table 2. Model Inputs 

Parameter Value 

ρ 1.44 g/cm
3
 

E1 99.1 GPa 

E2 7.4 GPa 

G12 2.5 GPa 

G23 5.0 GPa 

ν12 0.2 

ν23 0.2 

βf 1° 

βw 1° 

θlock 5° 

Δθ 0.5° 

μ0 1e-5 

θ0 45° 

 

 
 

Figure 11: μ = 1e-3 (left), μ = 1e-5 (middle), Load vs. Engineering Shear Strain (right)
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The locking angle was also varied from the nominal.  Once the locking angle is reached, the shear stiffness is no 

longer scaled down and the samples stiffness increases.  On the right, Figure 12 shows two values of the locking 

angle plotted.  The experimental data is not plotted because the nominal value of the discount factor was utilized and 

thus, the experimental data would not fit on the plot.  Figure 12 also shows contour plots of the Green-Lagrange 

strain in the vertical direction.  The contours show the same behavior shown earlier in Figure 10.  The contours 

represent the strain distribution at the final time step of the simulation.  It can be seen that the zones are much more 

clearly defined for lower locking angle case.  This is consistent with the expected continuum behavior of the 

material model after locking occurs.  The plot on the right shows the materials shear stiffness increasing drastically 

toward the later end of the simulation.  Similar to the discount factor, the bias extension simulation could serve as a 

method of tuning the parameters to fit the experimental data. 

C. Uni-Axial 

The uni-axial test is one of the simplest test methods for characterizing the normal stress-strain behavior of 

woven fabrics.  In preparation for actual testing, a simple rectangular sample is cut so that the yarn orientation is 

0/90° from an axis aligned with the loading direction.  In contrast to the bias extension sample, the orientation of the 

RVC is not properly aligned for a standard rectangular.  Thus, the uni-axial testing requires a rotation of the material 

axes for numerical simulations. 

 

1. Model Setup 

The sample size used for the uni-axial simulation is also consistent with the dimensions used during testing.  The 

height is 6 inches and the width is 3 inches.  Again, the uncoated fabric thickness of 0.010 inches was applied to the 

section of the model.  The data reported for the uni-axial test was axial stress in units of lbf/in and axial strain in 

dimensionless units. 

The same material was used for this simulation.  The model was composed of 3705 reduced integration, 4-node 

membrane elements.  At the base of the model, all degrees of freedom are fixed to apply a clamped boundary 

condition.  The top nodes allow for displacement in the vertical direction.  An axial load was applied to the sample 

by prescribing a 0.1575 inch displacement at the top nodes.  This displacement is 

derived by attempting to match the maximum axial strains in the experimental data.  

The displacement was applied incrementally in a linear manner over the length of 

the simulation.  A locally orthotropic material axis was defined by rotating the 

material axis about the element normal by an angle from a line in the plane of the 

element.  It is defined by the cross product of a vector, v, with the element normal, 

n and is illustrated in Figure 13.  This option was necessary for the uni-axial 

simulation because of the orientation of the RVC.  The yarns are aligned with the 

diagonals of the RVC.  The material axis must be rotated by the initial angle 

between the warp and fill yarns for the yarns to be aligned with the loading axis. 

v x n

n

v

4

3

1

2

 
Figure 13: Locally 

Orthotropic Material Axis
 

 

 

 
 

Figure 12: θlock = 2.5° (left), θlock = 5.0° (middle), Load vs. Engineering Shear Strain (right)
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Results 

In defining the section properties of the material during model pre-processing, it is necessary to define a material 

thickness.  It is common, however, to present stress data of fabrics in units of force per unit length.  This is due to 

the large uncertainty the can come with measuring the fabric thickness.  Thus, in the post processing of the results, 

the thickness was removed.  The simulation data is plotted along with the experimental data in the warp and fill 

directions in Figure 14.  A simulation time of 0.3 seconds was used, as it provides a relevant strain rate. 

 

 The first characteristic that is observed from the above results, is that the bilinear nature of the fabric.  This 

indicates that the model is capable of capturing the low stiffness as the yarns rotate and the behavior after locking 

occurs.  It was observed that the magnitude of the stress was not accurately represented.  Because displacements are 

imposed at the top nodes, the resulting stress (force/unit area) is not a function of the material thickness.  The nodal 

forces required to achieve this displacement will change with material thickness, however.  Keeping that in mind, 

the material thickness was increased in the post processing to attempt to match the experimental data.  Applying a 

thickness of 1mm (0.0393 in) resulted in the simulation data following the experimental data quite well.  While in 

the reality the warp and fill yarns will behave differently under load, this material model, with the inputs chosen, 

cannot differentiate between them.  Thus, it makes sense that the simulation data would fall in between the 

experimental data sets.  It is unlikely that the adjusted material thickness of 4x the nominal thickness is a realistic 

number and rather serves as an additional tuning parameter to this model. 

 

 Using the same variables, the sensitivity of the material model in this loading condition was assessed.  Figure 15 

shows the results of that analysis.  The results show a high sensitivity to these inputs.  On the left, the discount factor 

is increased such that the shear modulus in is small but not negligible in the pre-locking phase.  By increasing the 

initial value of the discount factor to 0.01 from 0.00001, the material never overcomes the simulated friction 

between the yarns and the trellising behavior is removed from the model.  The locking angle is also very sensitive to 

variations from the nominal.  The plot on the right of Figure 15, shows that material response follows the same 

stress-strain behavior until the locking angle is reached.  Then the material transitions right into the region of higher 

stiffness.  Comparing these results to the experimental warp and fill data, it is seen that both the discount factor and 

locking angle can be varied to align the simulated data with the experimental data.  Furthermore, the locking angle 

can be used to distinguish between the warp and fill directions. 

 
 

Figure 14: Axial Stress vs. Axial Strain for t = 0.01 inches (left) and for t = 0.0393 inches (right)
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Summary and Future Work 

The explored mesomechanical material of a flexible woven fabric was shown to be capable of capturing the dual 

behavior corresponding to that of actual fabrics.  Simulations replicating actual tests for the normal and shear 

properties of fabrics show the trellising behavior before yarn locking followed by the elastic behavior of the fabric 

after locking.  The model shows the ability to obtain  good agreement with experimental test data by varying the 

input parameters.  In addition, the model was most sensitive to yarn locking angle and discount factor.  While the 

model is capable of matching experimental data, the number of tuning parameters make the obtaining the necessary 

information to utilize this model prohibitive.  The increased computational cost of this model, over the lower fidelity 

MAT_FABRIC material model is also an issue for large scale use.  The source of experimental data for this study 

also includes data from trellis frame and cylinder biaxial testing.  FE models similar to the ones shown in Figure 13 

can be utilized to further explore this material model. 

 

Alternative methodologies can be explored that involves homogenizing the unit cell in a loosely couple manner.  

In order to make the material model explored in this paper more computationally efficient for larger models while 

still accounting for important fabric behavior, some detail is sacrificed.  By modeling a small, but highly detailed, 

unit cell of fabric at the meso level and then applying a stand alone homogenization method to produce the material 

properties that can be applied to typical membrane element,  the nonlinear and stress state dependent behavior of the 

   
 

Figure 16: Trellis Frame (Left) and Cylinder Biaxial (Right) Meshes
 

 

 

 
 

Figure 15: Axial Stress vs. Axial Strain for varying μ (left) and varying θlock (right)
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fabric can be captured without sacrificing computational cost in a macro level simulation.  Following the diagram 

shown in Figure 17, a preliminary strategy could proceed as follows.  After selecting a particular fabric, yarns can be 

extracted and subjected to experimental testing to obtain the constitutive properties.  Next, the fabric architecture is 

replicated at the meso scale within a detailed unit cell model.  Loads are applied to this model and the constitutive 

properties of the fabric are extracted from the numerical testing.  The properties are then applied to a more 

computationally efficient  material model.  The homogenized element can then be applied to a large scale model.  

This methodology would require some knowledge of the expected state of stress over the large scale structure, but 

has the benefit of reducing the amount of experimental testing required to characterize the fabric at several states of 

stress and could eventually bring higher fidelity structural models for IADs forward in the design process. 
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