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Abstract 

This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. 
The proposed model is independent of the pitch damping sum term which is present in the standard 
equations of motion, instead using the principle of a time-lagged aftbody moment as the forcing function for 
oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define 
the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical 
to blunt bodies can be produced using hysteresis of the aftbody moment alone. The approach used in this 
investigation is shown to be useful in understanding the governing physical mechanisms for blunt body 
dynamic stability and in guiding vehicle and mission design requirements. A case study using simulated 
ballistic range test data is conducted. From this, parameter identification is carried out through the use of a 
least squares optimizing routine. Results show good agreement with the limited existing literature for the 
parameters identified. The model parameters were found to be accurate for a wide array of initial conditions 
and can be identified with a reasonable number of ballistic range shots and computational effort.  

Nomenclature 

A  = Euler-Cauchy angle of attack coefficient 
CA  = axial force coefficient 
CD  = drag coefficient 
CL  = lift coefficient 
Cm  = pitching moment coefficient 
C!!  = aerodynamic pitching-moment slope coefficient 
C!! + C!!

 = aerodynamic pitch-damping sum 
C!!  = aerodynamic pitch-damping coefficient 
𝐶!"  = effective pitch damping  
d  = aerodynamic reference diameter 
g  = acceleration due to gravity 
h  = altitude 
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Iyy = pitch axis mass moment of inertia 
𝑙      = characteristic length 
m  = mass 
M  = Mach number 
Rp  = planet radius 
S  = cross sectional area 
t  = time 
tlag  = lag time 
t -  = time referenced by aftbody, t - = t-tlag 
V  = vehicle velocity 
𝑣      = characteristic velocity  
W  = work over one oscillation cycle 
Greek 
α = angle of attack 
β = parameter of aftbody moment Mach number dependence 
γ = flight-path angle 
δ = phase shift constant 
ε = residual 
θ  = pitch angle 
µ =  Euler-Cauchy oscillation growth exponent 
ν = Euler-Cauchy frequency coefficient 
ρ  = atmospheric density 
τ  = lag time factor 
Subscripts 
eq  = equivalent  
∞  = freestream 
0  = initial quantity 
Superscripts 
AB  = aftbody contribution 
FB  = forebody contribution  
*  = reference value for aftbody moment curve  
   

I. Introduction 

TMOSPHERIC entry is a critical phase for missions which seek to return astronauts or scientific payloads back 
to Earth or explore the surface of a body with an appreciable atmosphere. As a blunt vehicle enters a planetary 

atmosphere, the aerodynamic moments acting upon it can result in unstable pitching motions and divergence of 
oscillation amplitude. These instabilities typically just prior to maximum dynamic pressure and peak in the low or 
mid supersonic regime of the trajectory just prior to parachute deployment.1 Characterizing the dynamic stability 
performance of an entry configuration is an area of research that has been plagued with experimental difficulties, 
contradictory observations, and large uncertainties. Accompanying uncertainties in the expected dynamic response 
is a general lack of understanding regarding the flow physics that govern this complex phenomenon.  As the 
paradigm for aerodynamic decelerators shifts from the aeroshells used over the past half-century to more unfamiliar 
configurations which are being developed for utilization on future missions seeking to improve landed mass 
capability, there is added importance to understanding the mechanism by which dynamic instabilities arise and 
finding a means to rapidly and reliably quantify them.  
 Throughout the experimental history of dynamic stability investigations, it has been observed that the pitching 
moment often tends to exhibit a dependence on the direction of the pitching motion.2-5 This type of hysteresis has 
been attributed to a phase lag between the aftbody and forebody pressure fields (and therefore pitching moment 
contributions).  In the past decade, work has been conducted to investigate the possible means by which flow 
structures surrounding the blunt body can manifest into unsteady aftbody moments and, subsequently, oscillation 

A 
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divergence. Studies by Teramoto et al, 3 Abe et al,4 and Schoenenberger6 have shed light on and given credibility to 
this theory.  
 In order to further investigate the possible implications of a hysteresis effect on the aftbody contribution to the 
pitching moment and subsequent oscillation behavior, this study develops a governing model of the pitch dynamics 
through implementation of a time-lagged of the aftbody pitching moment. After developing this model, a parametric 
sweep is conducted on the variables relating to the time delay, amplitude, angle of attack dependence, and Mach 
number dependence of the aftbody pitching moment to determine the combinations of these that parameters result in 
favorable damping or cause oscillation divergence. These findings are then related to an equivalent pitch damping 
sum for comparison with the current formulation of the problem. The model is then used to reconstruct simulated 
ballistic range data when coupled with parameter estimation techniques, thereby demonstrating that certain 
combinations of the parameters governing the time-lagged pitching moment behavior reproduce observed pitching 
behaviors without use of the pitch damping sum. The possibility of finding a set of governing principles regarding 
the dynamic stability of blunt bodies that is not reliant on the pitch damping sum also leads to questions regarding 
the physical relevance of the coefficients which produce the pitch damping effect. If an equivalent response can be 
attained by instead using the formulation postulated here, perhaps the notion of the pitch damping sum is 
unnecessary and has instead served as a placeholder for the hysteresis in the aftbody pitching moment. 
 Although the standard description of pitch dynamics for entry vehicles does an adequate job of modeling a blunt 
body system, no reliable computational techniques exist to predict the key parameter for this model (the pitch 
damping sum) and the experimental methods for identifying this parameter are complex, expensive, and carry large 
uncertainties. Furthermore, the physical significance of the pitch damping sum is convoluted and non-intuitive.  By 
developing a model which is independent of the pitch damping sum and instead relies on quantities which are both 
easier to measure or calculate computationally and have physical significance, the potential benefits of the model 
identified in this study are far-reaching for entry vehicle dynamics.  As such, this work represents a first step 
towards development of an improved understanding of the governing physics of dynamic instability, and provides a 
more cost effective and intuitive means of characterizing the dynamic behavior of entry vehicles.  
 

II. Pitching Moment Hysteresis of a Blunt Body 

Experimental observations citing the importance of unsteady 
aftbody pressure fields on the pitch dynamics of blunt bodies are 
the driving motivation behind this work. As a body is pitching 
during its deceleration through the atmosphere, pressure changes 
on the forebody result in changes in the pitching moment 
contribution from the forebody. Similarly, the aftbody pressure 
field changes in time as the attitude of the vehicle changes. 
However, changes in the aftbody pressure field, and thus the 
pitching moment contribution of the aftbody, are delayed by 
some finite time relative to the forebody. This time lagged 
response of the aftbody pressure field has been observed both 
experimentally and numerically.3, 5  

The length of this delay is dependent on the physical 
mechanism by which pressure information in the flow is 
transmitted to the aftbody. One possible means by which this 
transmission occurs is shown in Fig. 1.  Teramoto et al3  tracked 
the position of the recompression shockwave and its time delay 
relative to the pitching motions. It was determined that the base 
pressure fluctuations within the recirculation region were 
associated with the behavior of the recompression shockwave. Wang et al suggested a similar connection between 
the oscillation of a body and the motion of the rear stagnation point.7 The behavior of the recompression shockwave 
seemed to be dictated by the behavior of the wake downstream following the convection of disturbances due to pitch 
oscillations. The mechanism proposed by Teramoto et al is depicted in Fig. 1 and can be broken down into four 

Fig. 1  Proposed sequence of events as the 
mechanism governing dynamic stability.3 
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steps: propagation of upstream disturbances due to pitching motions, modification of the wake downstream, motion 
of the recompression shock, and changes in the flow structure and base pressure within the recirculation region.3 
Each of the steps within this sequence has some finite time delay associated with it due to finite convection speeds 
within the flow. Combined, these time delays are responsible for the time lag seen in the base pressure and result in 
the observed hysteresis in the pitching moment. Computational pressure calculations from the work of Teramoto et 
al show the time delay of the aftbody pressure relative to changes in angle of attack and forebody pressure as well as 
the resulting pitching moment hysteresis of the Muses-C capsule (Fig. 2). 3 
 

 
Teramoto’s results show that the front pressure adjusts almost instantaneously as the angle of attack oscillates, 

however, oscillations in the pressure field on the back of the vehicle lag by approximately 2 ms. The corresponding 
hysteresis loop in the pitching moment results in a net input of work to the system over each oscillation cycle and 
this influx of energy may be responsible for dynamic instabilities:2,4 

 𝑊 =
1
2
𝜌𝑉!!𝐴𝑑 𝐶!

!!

!!
𝑑𝜃 (1)    

 

III. Methodology 

A. Baseline Equations of Motion 

 The equations of motion which govern atmospheric entry trajectory of a blunt body are discussed thoroughly in 
the literature and the derivations typically assume planar motion, and aerodynamic derivatives which are 
independent of Mach number and vary linearly with angle of attack.8-12 These simplified equations of motion neglect 
rotational and gravitational effects and are only valid for low L/D vehicles flying at small angles of attack (α < 30o).8 
The governing equations for the altitude, velocity, flight path angle, and pitch angle are given below: 

 
dh
dt
= h =   V sin γ (2)    

 
 

dV
dt

= V =
−ρV!

2
C!𝑆
m

  −   g sin γ (3)   

 
dγ
dt
= γ =

ρVSC!
2m

−
g
V
−

V
R! + ℎ

cos γ (4)   

Fig. 2  Pressure variation with pitching motion (left, adapted) and corresponding hysteresis in pitching 
moment (right).3 
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d!θ
dt!

= θ =
ρV!Sd
2I!!

C!!
θd
2V

+ C!!
αd
2V

+ C!!α  (5)   

 
 Applying a few additional simplifying assumptions to Eq. 5, a closed form second order differential equation 
describing the time dependent behavior of the angle of attack oscillations can be attained:8 

 𝛼 −
𝜌𝑉𝐴
2𝑚

−𝐶!! +
𝑚𝑑!

2𝐼
𝐶!! + 𝐶!! 𝛼 −

𝜌𝑉!𝐴𝑑
2𝐼

𝐶!!𝛼 = 0 (6)   

Eq. 6 represents the traditional description of the dynamic pitching motion and will serve as the baseline description 
to which the results in this study will be compared. When of all the parameters of the baseline equations of motion 
are known, it does an excellent job of predicting the resulting dynamics of a vehicle. However, the pitch damping 
sum 𝐶!! + 𝐶!!  is difficult to quantify and non-intuitive in nature. The resulting uncertainty in the pitch damping 
sum is detrimental to vehicle and mission design, as it is responsible for growth rate of the pitch oscillations. The 
time-lagged aftbody pitching moment model developed in the following section seeks to describe the dynamics, but 
with more intuitive and tangible parameters than the pitch damping sum, thus allowing for more accurate prediction 
of the pitch dynamics of a vehicle while providing some insight into the driving mechanisms behind dynamic 
stability of blunt entry vehicles.       
 

B. Time-Lagged Aftbody Pitching Moment Model 

1. Form of the Aftbody Pitching Moment Curve 

 To investigate dynamic stability implications of an unsteady aftbody pitching moment experiencing hysteresis 
with respect to the pitching motion, a numerical model was. This model is applicable to simulating forced-
oscillation wind tunnel tests, ballistic range tests, and actual entry trajectories.  As in the studies of Abe et al4 and 
Schoenenberger6, the approach is based on separating the forebody and aftbody contributions to the total pitching 
moment of the body: 

 𝐶!!"#$% =    𝐶!"
! + 𝐶!"

! (7)  

 The total pitching moment coefficient can be obtained via experimental data, CFD tools, or approximated with 
Modified Newtownian impact methods and is typically linear with angle of attack. A negative slope of the total 
pitching moment coefficient versus angle of attack corresponds to a statically stable configuration which will 
generate restoring moments following a perturbation. As the contribution to the pitching moment from the aftbody is 
generated by the unsteady pressure field of the recirculation region beyond the shoulder of a blunt vehicle, it can be 
periodic both temporally and with respect to angle of attack3,5  This behavior was noted in the investigations of the 
hysteresis effects on dynamic stability by Beam and Hedstrom2. Fig. 3 displays both experimental (extracted from 
rear pressure measurements) and computational data for the MUSES-C capsule from Abe4 and computational data 
generated with the CFD tool LAURA for the MER and Viking configurations by Schoenenberger.6 These data sets 
show an angle of attack dependence of the aftbody pitching moment. Key features of these curves are: zero moment 
contribution at an angle of attack of zero, a global peak in the pitching moment between 5-10o followed by a small 
local minimum, and a second smaller peak at a high angle of attack.  Sensitivity studies show that the response of 
the vehicle was relatively insensitive to the amplitude and location of the second peak. Additionally, the angle of 
attack where the second peak is located approaches the limit where the small angle assumption inherent to equations 
of motion and the theory of the aftbody recirculation being the primary mechanism causing the aftbody moments 
begins to break down. Thus, the peak amplitude of the aftbody moment (ABCm

*) and the angle of attack 
corresponding to this peak (α*) were identified as the two key parameters by which the shape of the aftbody 
moment curve would be defined. The location and amplitude of the second peak were held constant to reference 
values from the MER curve from Schonenberger6 (equal to 1.25x10-3 at M=2 and 20o, respectively). The local 
minimum was set to a value of 0.625x10-3 and occurred at an angle of attack equidistant from the value of α* and 
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the location of the second peak, 20o. Finally, the model was restricted to be symmetric for negative and positive 
angles of attack about an angle of attack of zero.  
 Further, the MER data from Schonenberger shows a significant Mach number dependence with approximately 
the same angle of attack dependence.6 This observation is consistent with literature which suggests that the pitching 
moment coefficient has a derivative with respect to velocity.13 To account for the Mach number dependence, an 
additional parameter was introduced to fully define the aftbody moment contribution at all angles of attack and 
Mach numbers. This parameter (β) is a constant which scales the amplitude at each angle of attack by the Mach 
number via a power law relation: 

 𝐶!"
! = 𝛽!   𝐶!"

!
∗
 (8)   

 The parameter β incorporates the Mach number dependence of the pitching moment. Values less than one 
indicate that the amplitude of the pitching moment curve decrease with increasing Mach number. Similarly, if β is 

Fig. 4  Aftbody moment curve as defined by the three parameters: α*, ABCm
* , and β<1  

Fig. 3  Aftbody pitching moment vs. angle of attack for from Abe4 (left) and Schonenberger6 (right) 
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greater than one, the amplitude grows with Mach number. A value of unity corresponds to an aftbody pitching 
moment curve which is independent of Mach number.  Using this definition of β, the value of ABCm

* corresponds to 
a reference ABCm at a Mach number of zero. A representative set of the aftbody pitching moment data using this 
parameterization is shown in Fig. 4. 
 

2. Time Lag 

 Differentiating the forebody and aftbody pitching moment contributions with respect to angle of attack yields: 

 𝐶!"
!! =

𝜕 𝐶!"
!

𝜕𝛼
 (9)   

 𝐶!"
!! =

𝜕 𝐶!"
!

𝜕𝛼
=    𝐶!"#$%

!! − 𝐶!"
!! (10)   

 Notice in Eq. (10) that the forebody moment slope is not explicitly defined as a constant, but is set equal to the 
difference of the total pitching moment coefficient slope and the aftbody contribution to maintain a constant total 
pitching moment coefficient slope. With a pitching moment slope coefficient defined as a function of Mach number 
for a wide range of angles of attack, the equations of motion can be integrated from the initial flight conditions of 
the vehicle to some terminal state. An ordinary differential equation solver (such as ode45 in MATLAB) is 
insufficient for propagating this formulation of the equations of motion, as the pitch dynamics rely on not only the 
current state of the vehicle, but also some previous state at an earlier time (t - = t-tlag). Therefore, to implement the 
time lag of the aftbody response with respect to changes of the forebody pitching motion, a delay differential 
equation solver should be utilized (within MATLAB, ddesd). The value of tlag can be constant, or defined by some 
function which is problem and state dependent.  From Teramoto et al, it is clear that there exists some characteristic 
parameters within the system that govern the resulting lag of the aftbody moment contribution.3  For this study, the 
value of tlag was defined by the ratio of a characteristic length and a characteristic velocity multiplied by a lag time 
factor, τ: 

 𝑡!"# = 𝜏
𝑙
𝑣

 (11)   

 This is akin to the reduced frequency parameter defined in many studies of dynamic stability7,14-16, but the value 
of τ scales this parameter to account for a possible increase in the length scale or decrease in the characteristic 
velocity. The hysteresis of the pitching motion and the subsequent oscillation growth of the vehicle are dependent on 
the factor τ and its influence is discussed in following sections. Historically, the characteristic length and time scales 
used to describe this phase lag and the dynamic behavior of a blunt body were the maximum diameter (or radius) of 
the vehicle and the freestream velocity.17 Abe et al suggested that the characteristic length and velocity scales which 
govern the hysteresis effects be related to the flow in the wake region.4 Specifically, Abe et al proposed that the 
characteristic length should be twice the maximum diameter of the vehicle and the characteristic velocity equal to 
half of the freestream value. Teramoto et al concluded from their study that the length scale was governed by the 
distance to the recompression shockwave (4d) and the characteristic velocity was the approximate convective 
velocity within the shear layer of the wake (0.5  𝑉!).3 Large values of τ indicate that the length scale which governs 
the lag time are larger than the diameter of the vehicle, the propagation velocity of the forebody pressure changes to 
the aftbody is less than the freestream velocity, or some combination of these two effects. For example, using 
Teramoto’s proposed characteristic length and velocity of 4d and 0.5  𝑉!, respectively, the lag time factor, τ = 8.  
 Using this time lag concept combined with separation of the contributions of the forebody and aftbody to the 
total pitching moment coefficient, a new formulation of the pitching dynamics is postulated: 

 𝛼 𝑡 − 𝐶!𝛼 𝑡 + 𝐶! 𝐶!"
!!   𝛼 𝑡   + 𝐶!  !!"

!   𝛼 𝑡! = 0 (12)   
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where: 

 𝐶!  !!"
! = 𝐶!"

!∝ 𝑡! =    𝐶!"
!! 𝑀 𝑡 ,𝛼(𝑡!)  (13)   

and: 

 𝐶! =
𝜌𝑉𝐴
2𝑚

𝐶!                                  𝑎𝑛𝑑                                    𝐶! =
𝜌𝑉!𝐴𝑑
2𝐼

 (14)   

 This formulation is a function of the environmental conditions, the mass properties of the vehicle, the axial force 
coefficient, the forebody pitching moment slope at the current time step, and the aftbody moment at time t = t -. Note 
the absence of the pitch damping sum coefficient from this formulation. Instead, it is the time-shifted sampling of 
the angle of attack by the aftbody which creates a hysteresis in the pitching moment (Cm) and pitching moment slope 
(Cmα) curves which governs pitch oscillation growth. At each time step within the ddesd integration of the equations 
of motion, an interpolation is done to determine the appropriate 𝐶!"

!∝ for the current state of the vehicle, based on 
the state at t=t -. 
 Fig. 5 displays the time history of the angle of attack of the vehicle as well as the shifted angle of attack sampled 
by the aftbody (due to the time lag). Notice that the lag time grows almost exactly linearly with time. This is because 
the velocity drops approximately inversely proportionally to time (i.e. V(t) ∝ 1/t) and the time lag is proportional to 
the inverse of the velocity. Also plotted are both the static and lagged curves for the total pitching moment 
coefficient with respect to angle of attack. The static curve has a constant slope and a typical result of the total 
pitching moment slope throughout the trajectory from the pitch damping coefficient model would lie on this line due 
to the lack of the hysteresis effect. The lagged response exhibits both nonlinearities (due to the contribution of the 
non-linear aftbody moment coefficient) and significant hysteresis during each pitch cycle. As τ increases, the area 
enclosed within the pitching moment coefficient curve due to hysteresis increases, causing increased energy addition 
to the pitching motion.  

 

IV. Results 

A. Dynamic Excitation Analysis 

 With the model described in the previous section, the effect of the aftbody pitching moment and the hysteresis 
associated with it were investigated to examine the resulting oscillatory behavior for various combinations of the 
four governing parameters.  From this, insight is gained about which combinations excited or impeded the dynamic 
response relative to a baseline case having the same mass properties and static aerodynamic characteristics, but 
using the traditional pitch damping description of dynamic stability. These results provide insight can pertaining to 

Fig. 5  True and lagged responses of pitching motion for the associated lag time (left) and the resulting 
hysteresis in the total pitching moment coefficient versus angle of attack (right) 
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the governing physics of dynamic stability, such as the flow structures (characteristic size and velocity of the flow) 
which are most closely coupled to observed dynamic behaviors.  Fig. 6 illustrates example cases with reduced and 
increased oscillation growth found using the model proposed in this study relative to the baseline dynamics. 
 

 
 The expected baseline response can be found numerically by propagating the baseline equations of motion and 
looking at either the maximum angle of attack reached during the trajectory or the growth rate of the oscillation 
peaks. The growth rate can also be predicted analytically for a given vehicle using the relation derived by 
Schonenberger as the solution to the Euler-Cauchy equation:8 

 𝛼 = 𝐴𝑡! cos 𝜈 ln 𝑡 + 𝛿  (15)   

where: 

 𝜇 =
𝑚𝑑! 𝐶!! + 𝐶!!

4𝐼!!𝐶!
 (16)   

The growth rate for the response generated by the time-lagged aftbody moment model for dynamic stability 
proposed in this study was found by the fitting the observed peaks and their corresponding times with a power law: 

 𝛼!"#$% = 𝐴𝑡!!"# (17)   

From this fit, an “equivalent effective Cmq response” was determined by rearranging Eq. 16 and using the value of 
the growth exponent determined by the fit, µfit : 

 𝐶!"!" =
𝜇!"#4𝐼!!𝐶!

𝑚𝑑! 𝐶!! + 𝐶!!

 (18)   

This is the response generated by the time lagged aftbody pitching moment model which produces an equivalent 
oscillation growth rate as the standard pitch dynamics model with a given value of  𝐶!".   

 
 

Fig. 6  Examples of reduced and increased oscillation divergence relative to a baseline trajectory 



10 
 

1. Case Study: Mars Exploration Rover (MER) Ballistic Range Model 

For a vehicle with given static aerodynamics and mass properties, 
the four parameter design space for generating dynamic responses 
using the model proposed in this study can be explored. In this 
visualization, one parameter is fixed at various discrete values for 
which the other three can be continuously varied to generate a 
response. These responses can be viewed in either 2D contour slices 
of the space or through isosurfaces. There are various approaches to 
choosing the fixed parameter, but the most efficient scenario is to 
isolate the one for which there is some predetermined knowledge 
 The design space exploration process will be demonstrated 
through with a case study for a simulated ballistic range test for 
which the initial Mach number is 3.0, the terminal Mach number is 
2.0, and the initial angle of attack is 3 degrees. The vehicle has the 
mass properties and static aerodynamic characteristics of the MER 
ballistic range model which was used by Schonenberger et al for the 
dynamic stability testing of the MER aeroshell design (see Table 1).17  
 The parameter which was discretized and fixed in this example case is the time lag factor, τ. The time lag factor 
was set equal to 8.0, which is the value proposed by Teramoto et al.3 Thus, by examining the rest of the design 
space, the validity of τ=8.0 can be 
assessed by subjectively 
determining if realistic responses 
can be produced with values of the 
other three parameters. Fig. 7 and 
Fig. 8 show the dynamic response 
in terms of maximum angle of 
attack and equivalent effective 
pitch damping sum, respectively, 
with contour slices in all three of 
the remaining parameter 
dimensions as well as isosurfaces 
at four discrete values of the two 
respective response measures 
(indicated by the arrows on the 
colorbar). 
 There exists a vast amount of 
information in Fig. 7 and Fig. 8 
which can be useful for 
understanding dynamic instability 
and guiding vehicle development. 
In general, it can be seen that 
oscillation divergence increases 
strongly with the magnitude of the 
reference peak amplitude of the 
aftbody moment coefficient 
(ABCm

*) and the Mach number 
dependence of the aftbody 
moment (β) and weakly with 
increasing angle of attack of peak 

Fig. 7  Selected contour slices (a-c) and isosurfaces (d, indicated by 
arrows on the colorbar) for the maximum angle of attack reached of the 

MER ballistic range model with τ=8.0 

a) b) 

c) d) 

Table 1.  MER Case Study Properties 
Parameter Value 
M0 3.0 
Mf 2.0 
α0 3o 
Diameter, d .07  m 
Mass, m  .584  kg 
Iyy 1.55 x 10-4  kg-m2 
CA 1.492 
Total 𝐶!! -0.09 
𝐶!"!!!!! 0.38 
τ 8.0 
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Fig. 9 Maximum angle of attack and equivalent Cmq 
responses of the MER ballistic range model with τ=8.0 

and ABCm
* = 0.09. 

aftbody moment, α*, with a 
possible maximum occurring 
between 6 o and 10o.  If one can 
find a means of controlling the 
amplitude of ABCm

*
 (say, for 

example, through geometry 
modifications to alter the 
flowfield) then an upper bound on 
the angle of attack divergence may 
be possible, even without 
additional knowledge about α* or 
β. 

Another key observation 
regarding the data in Fig. 7 and 
Fig. 8 is that, within the three free 
parameters, there exists a three-
dimensional surface of values of 
which can produce a given 
response. Taking into account the 
fact that a three-dimensional 
surface exists for each possible 
value of the isolated parameter (in 
this case, τ), it is clear that the 
design space within this 
parameterization is multi-modal, 
having numerous non-unique 
solutions.  The process of isolating 
individual parameters can be 

carried out in parallel, based on the information at hand, or sequentially where the design space is reduced with 
knowledge about additional parameters. If knowledge about a second parameter can be estimated experimentally or 
computationally, the possible values that the remaining two parameters can take to produce a particular response are 
reduced to lie on a line.  This can be seen in Fig. 9 where the space is reduced to values of α* and β for a given 
reference peak amplitude (ABCm

*). The more that is known about the possible values that the parameters can take, 
the further the design space for the dynamic response 
can be reduced.  
 The ability to visualize and understand the design 
space can be used not only for parameter identification 
purposes, but also to bound the parameters for a given 
response requirement. For example, consider a 
parachute staging scenario for an entry vehicle where 
parachute deployment is triggered by a specified 
velocity condition which should occur somewhere 
between Mach 3 and 2, depending on the atmospheric 
conditions. For a given upper bound on the possible  
angle of attack just prior to Mach 3 and some 
additional information about the vehicle (say τ and 
ABCm

*,  as in the previous examples), the remaining 
design space can be used to inform aeroshell design. 
For example, if the maximum allowable angle of 

Fig. 8  Selected contour slices (a-c) and isosurfaces (d, indicated by 
arrows on the colorbar) for the equivalent pitch damping sum 

responses of the MER ballistic range model with τ=8.0 

a) b) 

c) d) 



12 
 

attack which can be tolerated between Mach 3 and 2 is restricted to 9o (denoted by the white band in the left contour 
plot of Fig. 9), one could refer to information such as that presented in Fig. 9 to learn about the allowable values of 
α* and β, which may be connected to the aeroshell geometry and make design choices appropriately. In this 
example, it can be seen that for these conditions the response is not strongly dependent on α* and β must be 
approximately < 0.75 for all α* > 3o for the maximum angle of attack to not exceed 9o. 
 This exercise can be performed in terms of a desired (or maximum allowable) equivalent Cmq response as well, 
as shown on the right of Fig. 9 where the highlighted band of Cmq=0.35 traces a line through α* and β space 
showing values which result in the specified response. 
 Knowledge about the parameters governing the dynamic model defined in this study can be useful in vehicle 
design in addition to providing further understanding of dynamic stability. However, a means to attain the 
information required to reduce the parameter space to a manageable size is not specified. The next section will 
examine the use of trajectory reconstruction techniques to estimate these parameters with a series ballistic range 
shots. 
 

B. Trajectory Reconstruction Analysis 

 A set of ballistic range trajectories were simulated using the baseline equations of motion with a fixed set of 
parameters. The data (angle of attack versus time) from these simulations is known to match the true dynamics well 
when perfect knowledge of the dynamic derivatives exists.‡  Because ballistic range data is not a continuous data set, 
but instead comes from discrete observations using schlieren photography, the data from these simulation was 
discretized into 50 evenly spaced observations in time.  
 Using the generated data set of 50 angles of attack observed at 50 corresponding times along the simulated 
ballistic range shot as a “truth”, a genetic algorithm (GA) was wrapped around the time lagged aftbody pitching 
moment model to explore the parameter space and find a set of parameters which result in a trajectory that best 
matches the experimental data. A genetic algorithm was utilized over gradient based methods because of the multi-
modal nature of the parameter space.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                             
‡ Recall that one of the primary motivations for the development of the model proposed in this study is the fact that 
quantifying these derivatives is incredibly difficult and has large uncertainties. 

εi
2 = (αReconstruction, i – αSim, i )2 

Fig. 10. Representative simulated and reconstructed trajectories with residuals 
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 The reconstruction was optimized in a least squares sense, with the sum of the square of the residuals at each of 
the 50 observation points in time as the objective function (see Fig. 10 and Eq. 19): 
 

 𝐽 = 𝜀!!
!"

!!!

=    𝛼!"#$%&'()#'*$%,!   𝑡! − 𝛼!"#$%&'(),!   𝑡!
!

!"

!!!

 (19)  

 
 The GA was used to identify the four parameters which best fit the simulated ballistic range data using the same 
MER ballistic range vehicle specified in Table 1 with different initial conditions (angle of attack and Mach number). 
The ranges of initial conditions which were explored represented those typical of ballistic range test campaigns and 
therefore focused on initial Mach numbers in the low to mid supersonic regime with low to moderate initial angles 
of attack. The terminal Mach number for all cases was 2.0. Four different scenarios with different initial conditions 
were considered with an increasing number of cases that filled in the initial condition space to different degrees (see 
Fig. 11). The two trajectory case (N=2) utilized only the two extremes of initial condition combinations to use for 
the parameter estimation. Points were added to the two remaining corners of the space for N=4 and at the midpoint 
of each edge as well as the center for the N=9 case. Finally, points were added within the interior of the space, 
equidistant from all other neighboring points in the fourth scenario (see Fig. 11). 
 
 
 
 
 
 
 
 
 
 
 
 In an attempt to ensure that the best fitting set of parameters was found for each case, the GA was run until 
convergence 32 times for each scenario, thus producing a statistically significant sample from which a mean could 
be taken. The means of all four parameters for each case are shown in Table 2. 
 

Table 2. Mean parameter values with 32 GA runs for each case 
Parameter Number of Trajectories 

 N = 2 N = 4 N = 9 N = 13 

τ 8.365 8.016 7.976 7.321 
β 0.763 0.746 0.727 0.736 

α* (o) 6.931 7.281 7.278 7.281 
ABCm

* x 103 6.137 5.759 5.592 5.704 

 
 The estimated parameters seem to match up well with the limited literature which is available to anchor this 
analysis. The estimates for the time lag factor are very near to the value proposed by Teramoto et al of τ = 8.3 This 
adds credibility to their theory of the dominating length scale being the approximate distance to the recompression 
shock and the characteristic velocity being approximately half of the freestream value. Additionally, it can be seen in 
Fig. 12 that although the magnitudes are larger, the shape of the aftbody moment coefficient curves defined by the 
N=13 case closely match the LAURA estimates found by Schoneneberger.6 It also can be seen from Table 2 that for 
the MER vehicle in the range of conditions examined, the four parameters converge to quite similar values in all 
four scenarios. This poses the following question: how many trajectories within the given initial condition space are 

Fig. 11  Initial Mach numbers and angles of attack used for the four different test cases  
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Fig. 13 Average error versus number of trajectories used to estimate the parameters at various initial 
condition combinations 

required to accurately identify the parameters which 
can represent trajectories for the entire space? To test 
this, the average error for each of the 50 observed data 
points was calculated using the parameters found using 
with N=2 to N=13. This was tested at all of the exterior 
points as well as the center point of the initial condition 
combinations and the results are shown in Fig. 13. In 
general, the model can reconstruct the original 
trajectories very well, with an average error of less than 
0.4o for almost all scenarios.  Fig. 13 demonstrates that 
the average error is reduced as the number of ballistic 
range shots increases, with a majority of the error 
removed when N>4.  
Some sets of initial conditions produce higher average 
errors than others. This is expected as the trajectories 
with higher average error are those which grow to 
larger oscillation amplitudes so the absolute error also 
grows. The two exceptions are for the cases with an 
initial angle of attack of 5o and initial Mach numbers of 
3.0 and 3.5. With α0 = 5o and M0 = 3.0, the error reduces significantly from N=2 to N=4, but then plateaus as N 
increases. For the most extreme case of the initial condition combinations (α0 = 5o, M0 = 3.5), the  error actually 
grows with the number of trajectories. This is a result of the GA seeking to reduce the least square error for the 
entire array of cases. As the number of shots increases, the GA begins to favor solutions which are most applicable 
to the entire space. As such, the influence of the most extreme case diminishes and thus the final solution performs 
poorly at that condition.  
 Results like those shown in Fig. 13 can be used to inform the design of a future experimental campaign. Fig. 13 
shows that a modest number of ballistic range shots are required to obtain reasonable parameter estimates. A 
ballistic range test campaign to identify these parameters would also anchor the model proposed in this study and  
add fidelity to its  definition of the problem. With this added confidence, this model could then be used in future 

Fig. 12 MER aftbody moment coefficient versus 
angle of attack as estimated using N=13 and 

calculated using LAURA. 6 
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vehicle development efforts to provide engineers with insight into the vehicle and flowfield characteristics which 
dominate dynamic stability.   
 Eventually, derivatives of the model proposed in this study should be capable of replacing the need for the use of 
the pitch damping sum in the description of blunt body dynamics entirely.  Once fully developed, this approach of 
characterizing the stability of entry vehicle has the advantage of being based on intuitive and physical quantities, 
such as the characteristic size and velocity of the wake flow and the pitching moment curve for the aftbody. All of 
these parameters could possibly be directly measured or estimated computationally. This would be a significant step 
forward from the techniques used today which require the functional form of the pitch damping sum be assumed. 

V.  Summary 

 For the blunt vehicles utilized for atmospheric entry applications, the phenomenon of dynamic stability remains 
among the least understood. The current description of the pitch dynamics relies on quantification of the pitch 
damping sum coefficient which is time-intensive, non-intuitive, and uncertain. As an alternative, a new model is 
proposed in this study building on earlier work 4,6 to describe the pitching motions of a blunt vehicle without 
reliance on this coefficient. The driving forces for oscillation growth in this new model are the aftbody moments 
which lag behind flowfield changes at forebody due to the finite convection of pressure information in the wake and 
boundary layer. 
 The new model introduces four parameters which fully describe the magnitude, angle of attack dependence, and 
Mach number dependence of the aftbody moment coefficient, as well as the time delay of their application relative 
to changes at the forebody. With this model, parametric sweeps were conducted across the four dimensional space to 
assess whether the magnitude of oscillation growth seen in real entry vehicles could be attained with physically 
realistic values of the parameters. It was found that the model can indeed replicate the types of oscillation 
divergence which are common to blunt body vehicles in supersonic flow.  
 Isolating one parameter at discretized values by assuming some a priori knowledge, isosurfaces containing 
values of three remaining parameters were identified. These surfaces represent non-unique solutions producing the 
same dynamic response. Isosurfaces and contour slices through the design space yield significant insight into the 
interactions of the parameters established here and the governing physics which are responsible for dynamic 
stability. This insight was shown to be useful in not only understanding the physics of dynamic stability, but as a 
design and analysis tool which can aid in scenarios such as parachute staging requirements and the design of future 
experimental test campaigns. 
 There is little existing literature investigating any of the parameters which are critical to the model proposed in 
this study.  As such, a ballistic range test campaign was simulated to help quantify the scale of such a test and the 
expected accuracy of the parameters which would be subsequently identified from the data. Parameter identification 
found evidence which supported the value for the lime lag factor proposed by Teramoto et al3 and matched the 
predicted aftbody moment curve estimated computationally by Schonenberger.6 If such a test were conducted and 
means of identifying these parameters were established (that were more accurate and less exhaustive than those 
currently required for quantifying the pitch damping sum), the model proposed in this study may form he basis for 
replacing the baseline equations of motion entirely. This description of the pitch dynamics has the advantages of 
being more intuitive, physically grounded, and less demanding experimentally (or computationally.  
 The results of this study have shed light onto the governing time scales of dynamic stability and the favorable 
and unfavorable aftbody pitching moment coefficients and then connected these observations to vehicle and mission 
design considerations. Further work comparing the results across a variety of vehicles with different known stability 
characteristics would better inform the model, eventually leading to an experimental campaign to quantify the 
parameters proposed in this study and unveil additional details behind the phenomenon of dynamic stability.  



16 
 

VI. Acknowledgements 

 The author is incredibly grateful for the invaluable advice and support from Milad Mahzari, Soumyo Dutta, 
Chris Cordell, and the rest of the Georgia Tech Space Systems Design Lab. This work was supported by a NASA 
Office of the Chief Technologist’s Space Technology Research Fellowship. 

VII. References 

1 G. T. Chapman and L. A. Yates, “Dynamics of Planetary Probes  : Design and Testing Issues,” AIAA 1998-0797, 
1998. 

2 B. H. Beam and E. C. Hedstrom, “Damping in Pitch of Bluff Bodies of Revolution at Mach Numbers from 2.5 to 
3.5,” NASA TM X-90, Nov. 1959. 

3 S. Teramoto, K. Fujii, and K. Hiraki, “Numerical Analysis of Dynamic Stability of a Reentry Capsule at 
Transonic Speeds,” AIAA 98-4451 and AIAA Journal, vol. 39, no. 4, pp. 646-653, Apr. 2001. 

4 T. Abe, S. Sato, Y. Matsukawa, K. Yamamoto, and K. Hiraoka, “Study for Dynamically Unstable Motion of 
Reentry Capsule,” AIAA-2000-2589, 2000. 

5 K. Hiraki, Y. Inatani, N. Ishii, T. Nakajima, and M. Hinada, “Dynamic Stability of Muses-C Capsule,” 21st 
International Symposium on Space Technology, ISTS 98-d-33, 1998. 

6 M. Schoenenberger, “Supersonic Pitch Damping Preditions of Blunt Entry Vehicles from Static CFD Solutions”, 
Unpublished, 2003. 

7 F. Y. Wang, J. M. Charbonnier, and O. Karatekin, “Low-Speed Aerodynamics of a Planetary Entry Capsule,” 
Journal of Spacecraft and Rockets, vol. 36, no. 5, pp. 659-667, Sep. 1999. 

8 M. Schoenenberger and E. M. Queen, “Limit Cycle Analysis Applied to the Oscillations of Decelerating Blunt-
Body Entry Vehicles,” RTO-MP-AVT-152, 2008. 

9 J. H. Allen, “Motion of a Ballistic Missile Angularly Misaligned With The Flight Path Upon Entering The 
Atmosphere and Its Effect Upon Aerodynamic Heating, Aerodynamic Loads, And Miss Distance,” NACA TN-
4048, 1957. 

10 M. Tobak and J. H. Allen, “Dynamic Stability of Vehicles Traversing Ascending or Descending Paths Through 
The Atmosphere,” NACA TN-4275, 1958 

11 M. Baillion, “Blunt Bodies Dynamic Derivatives,” AGARD-R-808 – Capsule Aerothermodynamics, 1995. 
12  B. Dayman Jr., J. M. Brayshaw Jr., D. A. Nelson, P. Jaffe, and T. L. Babineaux, “The Influence of Shape on 

Aerodynamic Damping of Oscillatory Motion During Mars Atmosphere Entry and Measurement of Pitch 
Damping at Large Oscillation Amplitudes,” JPL TR 32-380, 1963. 

13 B. Etkin, Dynamics of Atmospheric Flight, John Wiley, New York (1972) 
14 F. Y. Wang, J. M. Charbonnier, O. Karatekin, and S. Paris, “The Utilization of Low Speed Facilities in Transonic 

Stability of Reentry Vehicles Research - An Evaluation,” AIAA 98-2636, 1998. 
15  F. Y. Wang, J. M. Charbonnier, and O. Karatekin, “Low-Speed Aerodynamics of a Planetary Entry Capsule,” 

Journal of Spacecraft and Rockets, vol. 36, no. 5, pp. 659-667, Sep. 1999. 
16 S. M. Murman, “Reduced-Frequency Approach for Calculating Dynamic Derivatives,” AIAA Journal, vol. 45, no. 

6, pp. 1161-1168, Jun. 2007. 
17 C. H. Whitlock and P. M. Siemers, “Parameters Influencing Dynamic Stability Characteristics of Viking-Type 

Entry Configurations at Mach 1.76,” Journal of Spacecraft and Rockets, vol. 9, no. 7, pp. 558-560, Jul. 1972. 
18 M. Schoenenberger, W. Hathaway, L. Yates, and P. Desai, “Ballistic Range Testing of the Mars Exploration 

Rover Entry Capsule,” 43rd AIAA Aerospace Sciences Meeting, AIAA-2005-55, 2005.  
 

 


