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Abstract— Unexpected spacecraft failures and anomalies may
prompt autonomous on-board systems to change a spacecraft’s
state to a ‘safe mode’ in order to isolate and resolve the problem.
Future interplanetary missions such as Psyche and the proposed
Next Mars Orbiter mission concept, plan to use solar electric
propulsion on-board. Continuous operation of the thrusters is
necessary in order to achieve their mission objectives. The mo-
tivation for this paper stems from a need to better predict safing
events based on various mission factors such as mission class,
destination, duration, etc. Modeling spacecraft inoperability
due to a spacecraft entering safe mode is imperative in order
to appropriately allocate spacecraft margins and shape design
& operations requirements. This paper contributes to the area
of safing events by further analyzing trends and dependencies
within the available data subsets, and develops predictive models
of frequency and recovery times of safing events for interplane-
tary spacecraft missions.

First, the full safing event dataset is split into multiple subsets
based on various mission classifiers. By employing the Chi-
Squared hypothesis test, the degree of dependency between
classifiers is assessed. A parametric analysis is conducted using
a single and mixture of two Weibull distributions. The optimal
parameters that would best fit the full dataset and subsets
are computed by a maximization likelihood algorithm. The
mean square error and Akaike Information Criteria represent
goodness-of-fit criteria for the computed distributions; insight
into any inherent bi-modal behavior is identified through these
criteria. A supervised learning algorithm is utilized in captur-
ing and understanding relationships between input and output
variables, and utilizing these to predict unknown outcomes.
For the safing event database, two Gaussian process models
are trained, tested, and deployed: one for time-between-events
and the other for recovery durations. By incorporating these
Gaussian Process models into a mission simulation framework,
a Monte Carlo simulation of the likelihood of inoperability
rates is conducted to robustly predict safing events. A greater
understanding of the safing event dataset through statistical &
parametric analyses, and the development of a Gaussian Process
model for predictions enables interplanetary mission planners to
make more informed decisions during spacecraft development.
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1. INTRODUCTION & MOTIVATION

Advances in on-board computing in the last few decades have
enabled robotic spacecraft missions to take control of tasking
and autonomous responsibilities with less interactions from
the ground. Although engineers thoroughly design and test
a variety of conditions faced by the spacecraft, unexpected
failures and anomalies may still arise during the mission
lifetime. Rather than letting the spacecraft operate in such
a state, a ‘safe’ mode can be implemented which is when
the spacecraft’s systems are preserved until the ground can
diagnose and recover from the situation. Safe mode is
typically defined as the state in which non-essential compo-
nents and subsystems are powered off, while the spacecraft
maintains an attitude such that it is power positive, thermally
stable, and commandable by ground operators [1]. As more
complex missions are developed, the need for greater on-
board autonomy increases.

The proposed Next Mars Orbiter (NeMO) mission concept
is one such example and a case study for this paper. NeMO
may support relay & telecommunications in the Martian relay
network, perform remote sensing of Mars, and partake in the
Mars Sample Return campaign [2]. It may include high-
power, high-Isp solar electric propulsion (SEP) to increase
the overall capability of the mission. The advantage of SEP
is that a relatively small propellant mass is needed for AV
maneuvers compared to chemical propulsion systems. NeMO
is not the first SEP interplanetary mission; JPL has flown
SEP on Deep Space 1 (DS1) and Dawn. Furthermore, JPL
has baselined SEP technology on the Pysche mission that is
planned to launch in 2022.

During NeMO'’s interplanetary transfer to Mars, the SEP
engines will need to operate continuously to achieve the nec-
essary AV since they produce significantly lower thrust than
chemical engines. Multiple thrusting segments lasting weeks
to months may be necessary during the interplanetary cruise
phase of the mission. This requires the spacecraft to remain
fully operational during this extended maneuver, placing
requirements on the spacecraft to operate in an autonomous
manner such that it does not interrupt these thrusting arcs.
If the spacecraft enters safe mode, those safing events have
the effect of reducing overall operability. The frequency and
recovery time of safing events may lengthen the mission and
increase risk in the ability to fulfill its full mission success
criteria. A characteristic typical to all SEP, inoperability is a
metric that significantly shapes the design and margins of a
spacecraft. Typical inoperability values have been estimated
using best engineering practices; however, developing a more



rigorous analysis and predictive methodology allows to accu-
rately quantify the likelihood and effects of safing events on
spacecraft operability.

An interplanetary spacecraft safe mode analysis was first
done by Imken et al. [3]. A database of 240 safe mode en-
tries from 21 interplanetary spacecraft was collected through
a variety of sources including the Jet Propulsion Labora-
tory (JPL), NASA’s Goddard Space Flight Center (GSFC),
NASA’s Ames Research Center (Ames), and Johns Hop-
kins University Applied Physics Laboratory (JHUAPL). This
database contains missions starting with the Galileo mission,
launched in 1989, and continues to present day with active
missions. It not only includes when the safing event occurred
but also mission statistics, root cause of the event, event
recovery timeline, and other relevant data. The definitions
of time between events, recovery duration, and inoperability
period developed by Imken et al. are used in this paper in the
same manner. Imken et al. also developed a Monte Carlo
simulation to predict the likelihood of realizing an inoper-
ability rate for future missions using the interplanetary safing
event dataset [3]. A majority of the simulation framework is
used in this paper, but is modified to include the developed
model to generate alternate frequency and recovery duration
predictions.

The modeling and distribution fitting work done by Imken et
al. indicates that the Weibull distribution is a good candidate
for the time-between-events and recovery duration datasets
[3]. Due to its flexibility in describing a dataset with just
two parameters, a Weibull distribution is commonly used in
reliability models. Castet and Saleh modeled satellite relia-
bility for approximately 1600 Earth-orbiting satellites using
both nonparametric and parametric models [4]. A Weibull
parametric model was shown to best fit the nonparametric
satellite failure data. Mixed Weibull distributions, a linear
combination of two Weibull distributions, can also provide
modeling nonparametric satellite reliability with greater ac-
curacy, as was done by Dubos et al. [5].

Predictive analytics is an area of statistics that deals with
obtaining data about a system and using it to predict future
trends for a particular application. Predictive analytics can be
defined as, “Technology that learns from experience (data) to
predict the future behavior of individuals in order to drive
better decisions” [6]. Although no formal process exists,
there are several general steps when applying predicting
analytics for a certain dataset [7].

(1) Project Definition: Define the objectives, outcomes,
scope of effort, and data sets needed to translate into tasks;

(2) Data Collection: Mine and collect all relevant data from
as many sources as needed;

(3) Data Preparation: Inspect, simplify, and clean the data
upon which to analyze and create models;

(4) Statistical Analysis: Using standard statistical method-
ologies, validate the assumptions using hypothesis tests to
understand the dataset;

(5) Predictive Modeling: Choose, create, implement, test,
and validate a model to generate results for prediction pur-
poses;

(6) Model Deployment: Apply the model to the the particu-
lar outcome or case study; and

(7) Model Monitoring: Manage the model and repeat any
steps necessary to improve performance.

In the scheme of predictive analytics for interplanetary safing

events, Imken et al. has successfully completed the first
three steps by defining the scope, collecting and preparing the
dataset, and statistically determining that a Weibull distribu-
tion models the time-between-events and recovery duration.
The foundation for the work done in this paper starts with the
dataset collection, data modeling, and simulation efforts done
by Imken et al. [3].

This paper contributes to the study of interplanetary space-
craft safing events by exploring the statistical properties of
the dataset and developing predictive models as defined by
steps 4, 5, and 6 in the context of predictive analytics. First,
the dataset and subsets from all mission inputs is created,
and a statistical independence test is performed between each
input. A parametric analysis is conducted by creating single
and mixed Weibull distributions and evaluating the goodness-
of-fit using multiple criteria. Then, a generalized predictive
model using Gaussian Process models with varying mission
inputs is trained and tested by selecting an appropriate co-
variance function, inference method, training data ratio, and
noise parameter. Using the simulation framework developed
by Imken, the trained Gaussian Process model is utilized to
predict safing events and recovery durations for NeMO and
compared with the existing prediction methodologies. Thus,
based on the frequency and outage time of a safing event
predicted for a mission, it enables mission designers to make
more informed decisions on tracking, safing recovery, and
missed thrust requirements.

2. THEORY

The following section includes the statistical hypothesis tests
utilized, parametric analyses, and goodness-of-fit criteria
conducted with Weibull distributions, and predictive analytics
using Gaussian process models. Note that in the discussion of
the theory, the dataset referenced includes the time-between-
events and the recovery durations for all missions. Based on
certain mission classifiers that are defined in the next section,
subsets of each of the full datasets are also considered.

2.1. Weibull Distribution

A Weibull distribution is commonly used in reliability analy-
ses due to its flexibility in being able to model a dataset with
just two parameters: the shape, /3, and scale, . The shape
parameter is a dimensionless, positive parameter and the scale
parameter is in the units of time and also positive. Equation 1
shows the reliability function, Equation 2 shows the Weibull
probability density function (PDF), and Equation 3 shows the
cumulative distribution function (CDF) [8].

- (;ﬂ (1)
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A single Weibull distribution can only show a single trend
from the dataset and may inaccurately model the time-
between-events and recovery durations. A finite mixture
distribution, which is a linear combination of multiple dis-
tributions, can be used to correct and better represent the data
in some cases.

R(t) = exp

In this analysis, a combination of two Weibull distributions
with weights for each distribution are considered. This is



done to understand if the data exhibited bi-modal behavior
and is a better fit than a single Weibull distribution. This paper
will henceforth reference the single Weibull distribution as
the ‘1-Weibull’ and the two Weibull mixture distribution as
“2-Weibull’. Equation 4 shows the reliability function for
the 2-Weibull distribution; the CDF remains the same as in

Equation 3.
¢ B1 ¢ B2
R(t) = (a)exp | — () +(1—a)exp |— ()
01 92
C))
where: 0<a<1, 6;>0, B; >0, al t>0.

2.2. Weibull Parameters using Maximum Likelihood Estima-
tion

There are multiple ways to determine whether a certain scale
and shape parameter of a Weibull distribution fits the data
as best as possible. A Weibull plot is one that linearizes the
axes such that the data fits the estimated Weibull reliability

R(t), in a linear manner. Data aligned along the R(t) line
in the [In(t); In(-In(R(t)))] space is considered an appropriate
fit for a Weibull distribution using this graphical estimation
technique.

However, a more rigorous test that is able to deduce optimal
parameters is the maximum likelihood estimation (MLE)
methodology. The basic concept involves formulating a like-
lihood function and then finding parameter(s) that maximizes
that likelihood function. Saleh and Castet define the likeli-
hood function as,“the probability of obtaining or generating
the observed data from the chosen parametric distribution”
[8]. Equations 5 to 9 show the MLE setup for computing
optimal scale and shape parameters for a 1 and 2 Weibull
distribution. The full derivation is detailed in Chapter 3 of
[8]. An abbreviated version is shown below.

Let 8 be the column vector of all parameters that need to
be estimated using MLE; two parameters for 1-Weibull and
five parameters for 2-Weibull. The likelihood function, L(8),
for a single Weibull distribution is formulated in Equation 5:
where f is the PDF, R is the reliability function, ¢; is the ith
safing event, d; is the ith censoring value, and n is the number
of safing events. In this analysis, although no censoring of the
data is done, the aforementioned equations with censoring are
still implemented; thus, J is a column vector filled with ones.

n

L(0) = [ ] f(t::0)° R(ti; 6)' ©)

i=1

By transforming f and R into equivalent extreme value dis-
tributions, new PDFs and reliability functions can be formu-
lated. For convenience, the natural logarithm of the likelihood
function is taken to yield the log-likelihood equation, seen in
6.

1(6) = I(u,b) = In L(O) = — (Z 5,-) In b+§n:(5izre%)

(6)
b=p8"1 2z =(y; —u)/b

For the 2-Weibull distribution, a similar log-likelihood func-
tion can be developed. The PDF and reliability functions are
transformed into extreme value distributions as seen in Equa-
tions 7 and 8 respectively where 8 = [uy, by, ug, by, %

f(i,0) = () fi(yi, u1,b1) + (1 — @) fa(yi, uz, b2)  (7)

where:y; = Int;, u=1n0,

R(yia 0) = (Q)Rl(yi; Ui, bl) + (1 - a)RQ(yi7U27 b2) (8)

where: Y = lnt,;, U; = 1119]', bj = 6;1, Z; = (yz—u)/b The
log-likelihood equation is then defined as seen in Equation 9.

n

16) = [(6:)In f(y, 0) + (1 — 6;) In R(y;,0)]  (9)

=1

The optimal parameters, 8, can be computed using traditional
optimization methods. Maximizing {(6), or equivalently
minimizing —(0), is done using a quasi-Newtonian op-
timization algorithm — Broyden-Fletcher-Goldfarb-Shanno
(BFGS), which does not require explicit gradient formulation.
The built-in MATLAB function fininunc is able to perform
this unconstrained minimization of the log-likelihood func-
tion. Certain convergence issues can arise such as finding
local minima or not converging if the initial guess is in an
unstable region. The initial parameters used in the optimizer
are found using trial-and-error and best-judgment. Future
methodologies could include more robust ways of computing
initial parameters to improve upon convergence properties
and finding global optimal solutions.

2.3. Goodness-of-Fit (GOF)

Once the optimal parameters are found for both the 1-Weibull
and 2-Weibull distributions as described above, a criteria is
necessary in order to evaluate whether either distribution is a
good fit both in an absolute and relative manner. Two criteria
are used to determine the goodness of the fit to the empirical
data: Mean Square Error and Akaike Information Criteria. A
goodness-of-fit metric is important to perform a parametric
analysis because it describes how well that model fits the set
of data in a statistically rigorous manner.

2.3.1. Mean Squared Error (MSE)—The MSE of a predictor

Y is defined as the average of the square of errors/deviations.
MSE is the second moment of an error and thus it captures
the variance of that predictor plus the square of its bias [9].
In certain cases, even if the variance of a certain predictor
is higher, the overall MSE may be lower due to a lower
bias. Therefore, the MSE is chosen as a way to compare the
goodness-of-fit rather than just the variance for the 1-Weibull
and 2-Weibull distributions compared with the safing event
database.

If Y is the estimated predictions from a Weibull distribution,
and Y is the empirical safing event time between events and
recovery times, then the MSE of the predictor or Weibull

distribution is defined in Equation 10. The difference of Y
and Y is commonly called the residual as it compares the
predicted values and empirical values.

N
MSE(Y) = % > (¥ -Yi)? (10)
i=1

In a relative sense, if the 1-Weibull and 2-Weibull need to be
compared against the dataset, a ratio of the two MSE values
computed could provide insight into the relative strength of
each regression. Thus the relative efficiency can be computed
as shown in Equation 11.

MSE(Y1_we)

MSE, o ofr = .
T MSE(Ye )

(1)

If this relative efficiency is greater than 1, then the de-
nominator has a lower MSE value, and thus the 2-Weibull



distribution is a better predictor than the 1-Weibull. However,
this methodology has a flaw in it. If a distribution is overfitted
to the data, the MSE would falsely report that an over-fitted
distribution is relatively better than one that is not. This
motivated the search of another criteria for goodness-of-fit
between the Weibull distributions.

2.3.2. Akaike Information Criteria (AIC)—In order to ac-
curately judge the level of overfitting the model, a different
criteria than MSE is needed. Initially, the Kolmogorov-
Smirnov (KS) Test is considered. The one-sample KS test
showed promise because it is a nonparametric test where the
null hypothesis of the population CDF is equal to the hy-
pothesized CDF. However, such nonparametric tests require
independence between the empirical CDF and hypothesized
CDE. If the hypothesized CDF is derived from the dataset, as
the optimal Weibull parameters are derived using MLE, then
there is no independence and thus the KS test would not be
applied correctly [10]. Next, the Lilliefors test is considered;
it is a two-sided goodness-of-fit test where the parameters
of the null distribution are unknown and must be estimated.
However, the test’s formulation assumes either normal or
exponential distributions. Developing this function for the
Weibull distribution is nontrivial, and thus it is necessary to
find other criteria. This analysis led to selecting the Akaike
Information Criteria as a suitable criteria to compare the 1-
Weibull and 2-Weibull distributions.

When estimating finite Weibull mixture distributions for reli-
ability purposes, Elmahdy and Aboutahoun used the Akaikes
Information Criteria (AIC) as a goodness-of-fit criterion [11].
AIC, founded on information theory, estimates the relative
information lost in a given model that is derived from the data
and trades off fit versus simplicity. AIC also only reports
the relative quality of one model to another but gives no
warning of absolute fit. AIC can be computed by Equation

12, where L(0) is the likelihood function and [(8) is the log-
likelihood function, and % is the number of independently
adjusted parameters that are being estimated or equivalently

the number of entries in 6 [12].
AIC = —2In L(0) + 2k = —21(0) + 2k (12)

Since the minimum log-likelihood value is already deter-
mined when computing the optimal Weibull parameters for
the model, it is trivial to use the maximum value for both
distributions in order to compute AIC. For the 1-Weibull
model, k& = 2 and for the 2-Weibull model, & = 5. Note
that the AIC values are always positive since the negative of
the log-likelihood value is used. When the sample size of
the data, n, is small relative to the number of parameters, a
corrected form of the AIC, seen in Equation 13, that adds the
bias-correction term. The rule of thumb to use this corrected
AIC (AICc) is when n/k < 40; in this paper, all AIC
numbers reported are the AICc since the bias-correction term
helps with the low sample size present in many of the subsets
of the full data [11].

2%(k + 1)

AICc = Al
Ce C+n—k—1

13)

Recall that AIC is best at comparing relative models and
not absolute if the PDF fits the data. The better model

selected is the one with the lower AIC. Thus, the difference
in AIC between the 1-Weibull and 2-Weibull distributions is
computed, as seen in Equation 14.

Agrce = AICciwiy — AICcown (14)

The relative strength of one model over the other is based on
how large the difference is. The criteria for which model is
better is shown in 15.

> (0 — 2-Weibull distribution is a better fit

Aarce =
< 0 — 1-Weibull distribution is a better fit

(15)
This methodology is better suited to compute goodness-of-fit
since it can accurately gauge the significance of increasing
the number of parameters and thus likelihood when fitting
a model. By increasing the number of parameters used to
fit data, the cost of overfitting is reflected in the AIC. The
Bayesian Information Criterion (BIC) is also considered since
the penalty on overfitting is larger, but determined not to be
necessary since the difference in BICs computed give the
same quantitative result as the difference in AICs.

2.4. Chi-Squares Hypothesis Test

Based on the mission classifier categories that the safing
event database is split into, it is of interest to know whether
two classifiers are statistically independent. The data is
first divided up into rzc contingency tables such that the
observed frequencies O;; are quantified for two classifiers
being compared. By taking the expected frequencies Fj;
and observed frequencies, the Chi-Square statistic can be
computed as seen in Equation 16. The crosstab MATLAB
function helps automate this process by returning the table
generated, associated labels, Chi-Square value, and the p-

value.
row col
O.. — E.)?

gy Qo Fu) o i) (16)
i=1j=1 &
A hypothesis test can then be constructed for which a certain
chi-squared threshold determines whether two classifiers are
statistically independent based on the computed x3. Assum-
ing a particular mission classifier A; and B; where A; is not
equal to B;, the null and alternate hypothesis of independence
can be stated as in Equation 17.

{HO : Classifier A; is independent of B; a7

H; : Classifier A; is dependent of B;

Combining the hypothesis test and 2 test statistic, a p-
value can be computed for the mission classifiers between
A; and B;. A smaller p-value indicates a lower probability
of the null hypothesis being true. Thus, the smaller p-value
means greater probability you reject the null hypothesis and
a stronger conclusion that holds.

2.5. Gaussian Process Models for Regressions

Predictive modeling is the next natural step after analyzing
a dataset in order to extract information and predict trends
or patterns. Machine learning, evolved from computation
learning theory in artificial intelligence, enables computers
to automate learning and making predictions from data. Su-
pervised learning algorithms, a specific class of machine
learning, infer a mapping function based on user-provided
input/output training data to predict new outputs given a
certain input. Gaussian process models (GP model) is one
type of supervised learning that uses nonparametric kernel-
based probabilistic models to take a prior distribution for
a given training dataset and obtain a posterior distribution
for a set of new inputs [13] [14]. The total inoperability
of a spacecraft due to safing events can be broken up into

=0 — 1 & 2 Weibull distributions have same GOF



two metrics; time-between-safing-events which acts as a
frequency for the number of events possible, and the recovery
duration for each safing event which acts as the amount of
time the spacecraft is inoperable. Combining the two metrics
will enable to quantify the total outage time or inoperability
period of a spacecraft from safing events. In this paper, a GP
model is used to predict new time between events (TBE) and
recovery durations (RD) of safing events for a hypothetical
new mission such as NeMO.

A few supervised learning algorithms are considered before
settling upon the use of a Gaussian process model. These
algorithms are typically divided into classification, clustering,
or regression problems; predicting new TBEs and RDs is a
classic regression problem. Thus, the algorithms considered
include artificial neural networks, Gaussian process models,
and regression trees. Since the regression tree and artificial
neural network are eventually not considered the best algo-
rithms for this type of problem (detailed in a future section),
this section outlines the theory related to GP models.

One key assumption is that the arbitrary set of inputs, either
TBEs or RDs, evaluated over a function is one sample from
a multi-variate Gaussian distribution. In mathematical terms,
this is defined using Bayes Theorem as seen in Equation 18
where tr refers to the training data [14].

P(Y‘Xv Xtmyir) ~ N(}/trK(XtraXt7’)71K(XtraX)7

K(X,X) - K(X,X;)K (X, X)) 'K (X4, X))
(18)

where K(x,x*) is the kernel function that maps an input
from x to x*. Noise is also added on the observed target
values based on the confidence of the ‘measurements’ for
safing event TBEs and RDs. Thus, another assumption made
is that the noise processes have a Gaussian distribution for
each observation n, seen in Equations 19 and 20, where £ is
a hyperparameter representing the precision of the noise. .

th = Yn + €n (19)

P(tulyn) ~ N (tn|yn, B (20)

When training a GP model in order to find the optimal hyper-
parameters, the maximum likelihood function is computed to
find the correlation length-scale parameter [13]. Rasmussen
and Williams [14] extended this by incorporating a sepa-
rate length-scale parameter for each input variable. While
computing the optimal parameters, the relative importance
of different inputs can be inferred from the data based on
the value of the length-scale parameter. This methodology
is called automatic relevance detection (ARD). Thus, it is
possible to detect whether certain input variables will have a
large or small effect on the predictive distribution because the
‘weight’ parameter is correlated with the normalized relative
importance. The ARD framework is easily incorporated into
various kernel functions. For safing events, this framework
mathematically helps identify whether certain mission clas-
sifiers have a greater importance on predicting future safing
event TBEs and RDs.

Rasmussen and Nickisch developed a MATLAB toolbox that
enables users to train, predict, and deploy Gaussian process
models [15]. A library of various covariance functions,
mean functions, inference methods, and likelihood functions
are available enabling easier implementation of a GP model
[16]. There are two main functions that enable the use of

Gaussian processes. One is the main gp.m function that is
the main interface to the user for predicting data. The other
is the minimize function that learns the hyperparameters by
maximizing the log-marginal likelihood function. This is
typically called the training portion. The implementation of
a GP for the safing event database is done using the GPML
toolbox.

3. DATA PREPARATION & STATISTICAL
ANALYSIS

3.1. Safing Event Dataset

The safe mode event database containing Time-Between-
Events and Recovery Durations collected by Imken et al. is
utilized in the same manner with the same set of assumptions:
no cascading safing events, recovery durations from Galileo
discarded, all events from the same population, etc. [3].
One important assumption is that the time-between-events
and recovery durations for each safing event are assumed
to be independent and identically distributed (iid). The
rationale for this assumption is that it simplifies the analysis,
although this may not be completely realistic if cascading
safes are included. Generally, this assumption enables the
use of classical statistical methods to analyze the dataset and
subsets. Additionally, no data is assumed to be censored, in
the context for parametric analyses.

Each mission and its associated safing events are categorized
by four mission classifiers: Mission Class/Category, Mission
Destination, Mission Duration, and SEP as seen in Table 6 in
the Appendix. Each safing event is further classified by the
safing event cause and by the location of the safing event in
mission phase. The following list (including abbreviations)
shows all the possibilities that a safing event can be classified
under, and Figure 1 shows a histogram of the number of
safing events for each classifier. The reason the number
of valid safing events differ for time between events and
recovery duration is due to the fact that certain events are
omitted in one but not the other; the assumptions for omission
are given by Imken et al. [3].

(1) Mission Class: Discovery, New Frontiers, Flagship;

(2) Mission Destination: Asteroid / Comet, Heliophysics /
Exoplanet, Kuiper Belt Object, Moon, Mars, Saturn, Jupiter;

(3) Mission Duration [years]: 0-5, 5-10, 10-15, 15-20;
(4) Solar Electric Propulsion: Yes, No;

(5) Safing Event Cause: Environmental, Hardware, Opera-
tions, Software, Unknown; and

(6) Safing Event Mission Phase: Cruise-Primary, Cruise-
Extended, Orbit-Primary, Orbit-Extended.

The motivation to categorize the data into such subsets is two-
fold; one to enable the statistical and parametric analysis of
these subsets in order to identify trends and independence,
and two to use these as general inputs to the predictive model.
A disadvantage of specializing the data in this manner is that
it reduces the sample size for that mission classifier. By
already having a limited dataset due to few interplanetary
missions, certain analyses and predictions will have greater
uncertainty.

Specific criteria are used to group missions into each clas-
sifier. For mission class, typical mission cost & mass are
factored into categorizing missions. While some missions
do not fall in the Discovery or New Frontier’s program



that NASA currently conducts, certain missions, based on
equivalent costs, are assumed to fall within that category.
For mission destination, seven total destination categories
are created based on the typical mission environment. All
categories except three have more than one mission per des-
tination category; the Moon, Saturn, and Kuiper Belt Object
had only one mission’s safing event for those categories. It
was considered to combine two of those three categories,
Saturn and Jupiter, into a new category such as the ‘outer
planets’; however, due to the different space environment
faced at Jupiter versus Saturn, it was deemed to keep those
separate. Although Heliophysics and Exoplanet missions
seem mis-categorized, typically these mission remain in an
heliocentric orbit. The mission duration is categorized based
on their their launch date until the end-of-life or current date.
They included both primary and extended mission phases.
Three Mars landers and one failed Mars Orbiter only included
the cruise phase of their mission as part of the safing event
database 2. For solar electric propulsion, the category simply
stated whether SEP is part of the mission or not. For safing
event cause and mission phase, the bins are determined based
on the entry logs of safing events as determined by Imken [3].
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Figure 1. Mission Classifier Safing Event Histogram

3.2. Dataset Conversion for GP Model

In order for the mission classifier inputs to be correctly
interpreted by the GPML, they must be converted from the
categorical string inputs to numerical values. There are

2 Cruise phase of mission only

a total of 25 mission classifiers for which the categories
must be encoded into a binary format. First, each mission
classifier category is split up based on the number of mission
classifiers. Since there is no ordinal relationship between
each mission classifier in a category, the one-hot encoding
methodology is applied. This is the case where a new binary
variable is added for each unique value. Integer encoding is
employed when sequential integers are applied to a particular
category. By assuming a natural ordering between classifiers,
poor performance or invalid results such as predictions be-
tween classifiers, resulting in a non-integer value could occur
by utilizing integer encoding. Therefore, one-hot encoding
is applied to each mission classifier category and then those
binary numbers are concatenated together to form a ‘chro-
mosome’ where all inputs are specified in a binary format.
For example, the mission class category is encoded as seen in
Table 1.

Table 1. Mission Class One-Hot Binary Encoding

Mission Class | Binary

Discovery [TOO]
New Frontiers | [0 1 0]
Flagship [001]

A similar encoding scheme is included for all other categories
(mission duration, mission destination, safing event cause,
and safing event mission phase). For the electric propulsion
category, a single number is used to represent whether a mis-
sion had EP on-board or not: 1 or -1, respectively. Prediction
performance may be better handled with a nonzero binary
representation for only two categorical inputs. The mission
elapsed percent (MEP) is also included as the last category
as part of the chromosome for input purposes. This is a
continuous, positive real number valued from 0 to 1 and thus
did not need to be converted to binary. Concatenating each
category’s representation together, a total of 25 numbers (24
binary and 1 real-valued) represented the input space that is
used as inputs to the GP model, shown in Equation 21.

GP input = chromosone
= [Class, Destination, Duration, SEP, Cause, Phase, MEP]

=[1:3,4:10,11: 14,15,16 : 20,21 : 24, 25]
21

3.3. Mission Classifier Independence Hypothesis Test

One way to understand the safing event database is to see if
mission classifiers are statistically independent or dependent
to one another. For prediction purposes, this will highlight
the cross-correlation between two categories if two classifiers
are dependent. Thus, based on the chi-squares hypothesis
test formulation, a contingency table and the associated p-
values for each classifier category are compared with one
another. The hypothesis test is repeated for all permutations
of each classifier, thus creating 30 valid p-values. Due to the
commutative property, since category A; being independent
of category B; is the same as B; being independent of A;,
15 unique and valid p-values are computed between each
classifier as shown in Tables 7 and 8 in the Appendix.

Based on the relative p-values calculated, a confidence level
of @ = 1% = 0.01 is selected as the minimum confidence
needed to make a decision on the hypothesis. Therefore,
all conclusions on independence between two classifiers are
made with a 99% confidence level. Recall that the null
hypothesis is that two mission classifiers are assumed to be



independent; the alternate is that they are dependent of each
other. If the p-value reported is greater than 0.01 then the
test fails to reject the null hypothesis that two classifiers are
independent; if the p-value is less than 0.01, then the null
hypothesis that two classifier are independent is rejected.
A rejection of a null hypothesis is statistically regarded as
a strong conclusion; whereas, a failure to reject the null
hypothesis is regarded as a weak conclusion. It is formulated
as a failure to reject the null rather than as an acceptance
of the alternate hypothesis, since no statistically significant
conclusion can be made.

For the time between events dataset, the conclusions on the
hypothesis are enumerated as follows:

(1) Fail to reject the null hypothesis: SEP & Duration, SEP
& Cause, SEP & Phase, Cause & Phase

(2) Reject the null hypothesis: All other classifiers

A few interesting observations can be made from Table 7
and the hypothesis conclusions. First, mission destination is
highly dependent with the mission class and mission duration
categories since the p-values are very small (on the order
of 1072° and even smaller). This result suggests that the
mission’s destination is highly coupled with the class of
spacecraft and how long it will operate. Those classifications
combined could significantly dictate the time between safing
events. The solar electric propulsion category concludes
that with Duration, Cause, and Phase, there is not enough
statistical significance that those categories are dependent.
It is wrong to advance that conclusion for those categories
being independent since it is a weak conclusion. However,
between SEP and mission destination, there is a far stronger
conclusion that those two classifier categories are dependent
due to the small p-value. These results with SEP show an
interesting trend that the destination plays the largest role in
safing events compared with other categories. Another trend
identified is that regardless of the safing event cause or what
mission phase it is in, a SEP mission’s predicted time between
safing events will not be impacted by cause, duration, and
phase.

For the recovery durations dataset, the results are enumerated
as follows:

(1) Fail to Reject the null hypothesis: Cause & Class,
Cause & Duration, Cause & Destination, Cause & SEP, Phase
& Class, Phase & SEP

(2) Reject the null hypothesis: All other classifiers

Similar to TBE, for the recovery durations, the mission des-
tination is highly dependent with mission class and mission
duration. Mission destination is also coupled with SEP and
mission phase, but association with the two is not as strong
for recovery durations as evidence from larger p-values as
compared with class and duration. The safing event cause
category is dependent only with mission phase. SEC and
destination have a p-value near 0.01, which border the con-
clusions made at the 99% confidence level. With a lower con-
fidence, one could conclude those categories are dependent.
This would align with the intuition since the recovery of SEP
missions depends on location due to inherent complexity as
well as round-trip-light-time which is not differentiated in this
analysis. Finally, the mission phase and whether a mission
has SEP and its class is agnostic to the recovery duration since
failure times would not be coupled together.

4. PARAMETRIC ANALYSIS

On a reliability dataset, typically nonparametric and paramet-
ric analyses are performed to better understand the implica-
tions of the data. In the case for safing events, a parametric
approach is taken due to the flexibility and convenience of
modeling such events. A parametric model enables mission
designers to easily implement safing event models in other
studies as well as identify trends and patterns in the data.

4.1. Weibull Distributions

A parametric analysis of Time-Between-Safing-Events
(TBE) and Recovery Duration (RD) for safing events is
performed by modeling the data using the 1-Weibull and 2-
Weibull mixture distributions. As used in Equations 1 to 4,
each t value corresponds to either TBE or RD. Thus, there
are four reliability functions formulated: two for when ¢t =
TBE and two for when ¢ = RD.

Figures 2 and 3 show the CDF, Weibull probability plots,
and optimal parameters for the 1-Weibull & 2-Weibull dis-
tributions for TBE and RD, respectively. The first and third
subplot of each figure show the CDF; that is the cumulative
probability that either a safing event will occur or if a safing
event is completed. The maximum likelihood estimation
(MLE) methodology outlined in the theory section is utilized
to compute the optimal model parameters for each CDF. The
TBE CDFs show that 400 days after the previous safing
event or start of mission, there is a 80% probability using
the 1-Weibull and a 78% probability using the 2-Weibull
that the next safing will occur. Similarly, the RD CDFs
show that after 72 hours of a spacecraft entering safe mode,
that there is a 71.5% probability using the 1-Weibull and
a 74.5% probability using the 2-Weibull that the recovery
duration period will end. Since the 1-Weibull and 2-Weibull
CDFs generally have similar predictions, certain criteria are
explored in later sections to evaluate a preference between
these CDFs.

The second and fourth subplots show probability plots for
a 1-Weibull and 2-Weibull distribution respectively. Proba-
bility plots are used to graphically highlight how well data
fits against each model. Since the Weibull distribution is
linearized across its axes, if the data also is linear with the
same slope, then the Weibull distribution is a good match. If
there is curvature in the data away from the Weibull model
line, then the probability plot indicates either a different
distribution may fit better or a mixed distribution may be
more ideal. Thus, for both 2-Weibull probability plots, the
mixed distribution is better able to capture the curvature in
the data from the first and second half due to the added
degree of freedom. By looking at corresponding CDFs, from
a graphical perspective, the 2-Weibull distributions fits the
empirical CDF better.

Since implementation of the MLE methodology is done in
MATLAB, validation is required to see if the optimal param-
eters outputed are truly optimal. Validation of the 1-Weibull
and 2-Weibull MLE is conducted by using the Weibull++
software by Reliasoft Corporation. This software specializes
in the analysis of reliability data; thus, it is chosen to val-
idate the implemented MLE methodology with an industry
standard software package. For the computed 1-Weibull
distribution, the developed MATLAB implementation gave
the same results compared to Weibull++ and to MATLAB’s
built-in function whblfit. For the 2-Weibull distribution, Table
2 shows the optimal parameters from the developed MAT-
LAB implementation and the Weibull++ software using MLE



Cumulative Probability that
next Safing Event will Occur

Cumulative Probability that
next Safing Event will Occur

Figure 2.

Cumulative Probability that safe
mode exit has been completed

Cumulative Probability that safe
mode exit has been completed

1()OLYMLE 1-Weibull Fit: Elapsed Time Between Safing Events
0 T T T T —

— T e
Empirical Data
80% | / =
60% / 1
B(shape) = 0.86737
O(scale) = 227.8951
40% 1
20% |/ 1
0% . . . . . . .
200 400 600 800 1000 1200 1400
Elapsed Safing Event Time [Days]
100% MLE 2-Weibull: Elapsed Time Between Safing Events
(] T T
——— 2-Weibull Fit
—— Empirical Data
80% t 1
60% + 1
B1(shape) = 1.3579
01(scale) = 436.657
10% | Ba(shape) = 1.0724 |
05(scale) = 75.9815
a(weighting) = 0.52497
20% + 1
0% . . .
0 500 1000 1500

Elapsed Safing Event Time [Days]

1—V\27eibull Probability Plot: Elapsed Time Between Safing Events

In(~In(R(1)))

2 4
In(t)

1-Weibull & 2-Weibull Optimized Parameters, CDFs, and Probability Plots for Time-Between-Events

100%

80%

60%

40%

20%

0%

10OC/MLE 2-Weibull: Elapsed Time to Recover from Safe Mode
© T T T T —

80%

60%

40%

20%

0%

l\@/LE 1-Weibull Fit: Elapsed Time to Recover from Safe Mode

— Weibull Fit - s e
Empirical Data |
J{ B(shape) = 1.144
/’ 0O(scale) = 59.0168
/
50 100 150 200

Recovery Time [Hours|

) B1(shape) = 15.5662
’ 601 (scale) = 220.7258
Ba(shape) = 1.2923 |
/ 0s(scale) = 51.5517
a(weighting) = 0.051273

50 100 150 200 250
Recovery Time [Hours|

1-\’Vci})ull Probability Plot: Elapsed Time to Recover from Safe Mode

In(—In(R(£)))

- Weibull Fit
Empirical Data

2—\’\701})

ot
=Y

In(—In(R(£))

s i

1 2 3
In(t)

ot
=Y

Figure 3. 1-Weibull & 2-Weibull Optimized Parameters, CDFs, and Probability Plots for Recovery Duration



methodology for both TBEs and RDs. The percent difference
between each parameter is no greater than 5% for all except
one parameter (f; for TBE). Thus, the optimal Weibull
distribution parameters for both the 1-Weibull and 2-Weibull
are validated from the Weibull++ software which gives con-
fidence in the results that the MATLAB implementation of
maximizing a log-likelihood function is correct.

Table 2. 2-Weibull Optimization and Weibull++ Optimal
Parameters using MLE

Model ﬂl 01 ,32 92 o
TBE Matlab MLE | 1.35240 434.03770  1.08370  79.79530  0.52820
Weibull++ 1.23565 391.07633 1.10943 67.36752  0.59849
RD Matlab MLE | 1.15460 148.00450 1.52820 47.54130 0.40869
Weibull++ 1.13074  142.80304 1.54750 47.33653  0.42769

In reliability engineering, the shape parameter S affects the
failure rate as predicted from the reliability function R(t) .
A 0 < B < 1 implies a decreasing failure rate, allowing
the function to model infant mortality, and a § > 1 implies
an increasing failure rate, thus modeling wearout [4]. For
the 1-Weibull TBE CDF, the shape parameter is less than
1 indicating that on a day-to-day basis, there is a lesser
likelihood that a safing event will happen. For the 1-Weibull
RD CDF, the shape parameter is greater than 1 indicating
that the likelihood of recovering from safe mode after a
given elapsed time increases with each passing day. While a
mixed-Weibull fits the data better, insight into the behavior of
the data becomes less transparent since the shape parameter
seems to provide no such simple conclusions. The 2-Weibull
distribution for TBE has shape parameters implying wearout
for both modes of the dataset. The infant mortality found
from the 1-Weibull is not captured in the 2-Weibull and thus
such verdicts are inconclusive. The 2-Weibull distribution for
RD implies that the larger shape parameter dominates the
distribution such that there is an increasing convex failure
rate. However, each of these preliminary conclusions is based
off the assumption that by analyzing a mixture distribution,
the shape parameter is able to provide conclusions regarding
wareout or infant mortality.

Figures 2 and 3 only show the Weibull distributions applied
to the entire TBE and RD datasets. One way to model
certain categories of data better as well as analyze the trends
is to take the subsets of data for both TBE and RD from
the mission classifier categories and apply the same MLE
methodology. For each mission classifier, 1-Weibull and 2-
Weibull optimal parameters using MLE, CDF distributions,
and probability plots are created. Although each associated
figure is not shown in this paper for brevity, discussion about
certain trends and a summary of the goodness-of-fit is shown
in the following section.

4.2. Goodness-of-Fit

While the 1-Weibull and 2-Weibull distribution MLE method-
ology is validated to obtain optimal distribution parameters,
the question whether a 2-Weibull mixture distribution truly
models the data better requires further analysis. Thus, the
motivation to calculate the mean square error (MSE) comes
from wanting to quantify how well the Weibull fit estimated
the empirical CDF. The residuals are computed from the
difference of the each Weibull model (single or mixture) and
nonparametric empirical CDF. The MSE helps determine the
overall variance and bias of the Weibull distribution and the
MSE,.;; illustrates the ratio of the 1-Weibull MSE to the 2-
Weibull MSE.

One major drawback of the MSE relates to over-fitted mixture
models, which increase the number of parameters, a smaller
MSE and a greater MSE ratio is computed as compared with
a 1-Weibull’s MSE. Thus, the Akaike Information Criteria
(AIC) is better suited to compute goodness-of-fit criteria
because the AIC value is penalized if more parameters are
added to increase the maximum likelihood. A slight modifi-
cation to the AIC that includes a bias-correction term (AIC,)
for small sample sizes is computed. The 1-Weibull and 2-
Weibull CDF plot, probability plot, residual histogram, and
MSE/AIC, values are reported on three datasets of interest.
The CDF plots also include the 95% confidence intervals for
the empirical CDFs. This is important because if the Weibull
distributions go outside of those bounds, then the confidence
of the model decreases.
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Figure 4. 1-Weibull & 2-Weibull Distributions
Comparison for Time Between Events

From Figure 4 for the time-between-events, both the 1-
Weibull and 2-Weibull CDFs stay within the upper confidence
bound (UCB) and lower confidence bound (LCB). Although
harder to tell from the CDF plots, the probability plots show
how the slope of the 2-Weibull is lower initially than that
of the 1-Weibull, but also curves upwards near the end of
the dataset to better approximate it. The dispersion of the
residual around the empirical CDF shows that the 2-Weibull
distribution is a better fit than the 1-Weibull since the 2-
Weibull MSE is 3.6 times better than that of the 1-Weibull.
However, computation of the relative AIC shows that the
2-Weibull distribution overfits the TBE data. Even though
the MSE and AIC values produce opposing conclusions, the
the drawbacks of MSE hinder it from prevailing over the
conclusion from AIC. Furthermore, this indicates that while
the data may have some, bi-modal behavior in the data, it
comes at a cost of overfitting the model and thus loses validity
when choosing the 2-Weibull distribution for representing the
TBE dataset.
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Figure 5. 1-Weibull & 2-Weibull Distributions
Comparison for recovery durations

From Figure 5 for the recovery duration dataset, both CDFs
also stay within the 95% confidence bounds of the empirical
dataset. The probability plot shows how the 2-Weibull is able
to capture the bi-modal behavior in the data since it contains
varying slopes to better fit the data. The residual subplot
shows how the 2-Weibull has a more symmetric distribution
of the residuals and smaller variance around O versus the 1-
Weibull which has multiple peaks. From the goodness-of-fit
computation, both the MSE ratio is greater than 1 and the
AIC difference is positive, indicating that the 2-Weibull is a
better representation of the recovery duration data and that it
does not overfit the data. Thus, for future prediction purposes,
mixed 2-Weibull distribution to predict recovery durations
should yield more accurate results.

Specific trends about the data can be obtained from finding
positive A 47¢c.. In the Safing Event Cause subset for TBEs,
the unknown cause shown in Figure 6 shows a high degree of
bi-modality in the data. This is evident from the high MSE
ratio as well as positive AIC; furthermore, from inspection
of the CDF, the slope in the probability plot is larger for the
2-Weibull than it is for the 1-Weibull. The reason for the bi-
modal distribution may stem from two categories within the
data. The first would increase the cumulative probability until
the first 100 elapsed days are elapsed, and the cumulative
probability would continue to increase, at a slower “rate”
until 700 elapsed days due to the second category within
the unknown safing event cause mission classifier. Further
research within the dataset is needed to understand what
contributes to the unknown cause classifier. It is clear from
the AIC and probability plot that this mission classifier is
better modeled by the 2-Weibull distribution.
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Although all computed plots are not shown in this paper,
the MSE and AIC for each mission classifier are tabulated
in Table 3. For certain cases, the optimizer is not able
to converge on the optimal parameters for the 2-Weibull
distribution (highlighted as red). The limited subset of data
for each mission classifier, shown in Figure 1 and used during
optimization, is one major reason for convergence issues.
The maximization of the log-likelihood is very sensitive to
the initial guess; convergence problems typical with any
optimization problem are encountered for some mission clas-
sifiers. For classifiers when the optimizer did converge for
the 2-Weibull, the calculated MSE ratio and AIC difference
values are reported. In most cases, the MSE ratio shows that
the 2-Weibull distribution does a better job representing each
data subset; however, only a select few mission classifiers
show that for TBE and RD, the AIC favors the 2-Weibull.
Since the AIC penalizes for overfitting the data, it makes
sense that only for very large MSE values, that the A4jc.
is positive. Furthermore, this result indicates that only a
few of the mission classifiers should truly be represented by
the 2-Weibull distribution and that their bi-modal behavior is
inherent in their datasets. Overall, 26 total mission classifiers
are analyzed for both TBE and RD. For the time-between-
events data subsets, 20 successfully converged and gave
results, 2 did not have enough data to converge, and 4 did
not converge due to sensitivity to the initial guess. For the
recovery duration data subsets, 14 are successful, 6 did not
have enough data to converge, and 6 did not converge due to
sensitivity to the initial guess.



Table 3. Weibull Convergence, MSE, and AIC Values for all Mission Classifiers. Red boxes indicate convergence for

the 2-Weibull is unsuccessful.

indicates that the 1-Weibull is a better fit and green boxes indicate the 2-Weibull

is a better fit.
Mission Classifier Category 2-Weibull TBE| TBE | TBE | 2-Weibull RT | RT RT
Convergence | MSE | AIC | Convergence | MSE | AIC
Time Between Safing Events / Recovery Time Yes 3.63 | -1.30 Yes 2.03 | 5.50
Discovery Yes 3.25 | -1.34 Yes 3.93 | -3.45
Mission Class New Frontiers No Yes 0.56 | -1.82
Flagship Yes 3.75 | -3.94 No (not enough data)
0to5 Yes 1.62 | -5.90 Yes | 2.00 | -6.55
. . 5to0 10 No No
Mission Duration 101015 Yes 9.78 | 5.23 Yes | 516 | 3.2
15 to 20 Yes 0.62 | -7.23 No
Moon No (not enough data) No (not enough data)
Mars Yes 1.96 | -5.22 Yes | 131 | -6.56
Jupiter Yes 3.31 | -1.94 No (not enough data)
Mission Destination Saturn No (not enough data) No (not enough data)
Kuiper Belt Objects Yes 0.31 |-13.16 No
Asteriods/Comets Yes 449 | 3.42 Yes 3.22 | -5.96
Heliocentric/Exoplanet Yes 1.63 | -8.13 Yes 1.43 | -8.40
Electric Propulsion Yes Yes 6.26 | 2.42 Yes 5.27 | -3.82
No Yes 2.04 | -3.38 No
Hardware Yes 259 | -2.39 No (not enough data)
Software No Yes [ 093 | -5.12
Safing Event Cause Operations Yes 1.76 | -3.02 No
Environment Yes 3.73 | -2.55 Yes 1.85 | -6.94
Unknown Yes 8.55 | 2.46 Yes 1.62 | -8.13
Cruise (Primary) No Yes 0.85 | 2.43
Safing Event Cruise (Extended) Yes 1.53 |-10.71 No (not enough data)
Location Orbit (Primary) Yes 2.84 | -5.08 Yes | 344 | -412
Orbit (Extended) Yes 1.62 | -5.16 No

5. PREDICTIVE MODELING

Analyzing the dataset through statistical and parametric tech-
niques such as probability plots and chi-square hypothesis
tests give a greater understanding of safing events and how
various mission classifiers are correlated together. However,
in the broad context of predictive analytics, one of the most
crucial steps is modeling this dataset given multiple inputs
that are specific to the problem. This enables a user to then
predict time-between-events and recovery duration for a saf-
ing event and leverage those results for simulating operability.

Recall that various supervised learning models exist, each
with its own advantages and limitations. For the application
towards safing events, three regression algorithms are eval-
vated: artificial neural networks, Gaussian process models,
and regression trees. Due to the number of mission classifiers
and possible permutations of each category’s classifier, a
regression tree is too expansive to fully capture all possible
scenarios. An artificial neural network (ANN) also showed
promise since a variable number of neurons and hidden layers
can be added to “learn” the system. By employing backwards
propagation on the errors, the neural network’s weights can
be learned, thus allowing the network to weight each input
accordingly based on training data. Many layers of neurons
constitute a deep network, which would require a greater
number of weights to be learned. In instances of data poverty,
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backpropagation techniques may miscalculate the neuron’s
weights. Neural networks typically succeed in situations
where an abundant amount of data is present. This is not
the case with approximately 180 and 120 valid safing events
for time-between-events and recovery durations, respectively.
A 16 node fully-connected neural network is implemented,
but later disregarded due to the large mean error from the
predicted testing data set. Thus, the validity and confidence
of the predictions remained low even after employing tech-
niques to improve performance including shuffling the data
and using different activation functions. A Gaussian Process
(GP) model showed promise as a regression algorithm due to
its Bayesian framework rather than ‘black-box’ approach of
neural networks.

A GP model can perform better with lower amounts of data
because of the flexibility in adopting various functions in its
computation. Rather than a deterministic output that an ANN
produces, a GP model gives a mean and variance based on
the confidence the model has for a new prediction. Therefore,
by modeling time-between-events and recovery durations as
a stochastic process that gives a posterior probability distribu-
tion, a GP model is chosen to learn and predict data for future
safing events.

The GP model is first trained by taking the full data set and
randomly dividing it up into training and testing data. Then,



it is initialized by setting the maximum number of conjugate
gradient steps, the mean function, the covariance function,
the likelihood and inference functions, and the initial values
for the hyperparameters (covariance, mean, and likelihood).
Selection of each of these values is very important, as it dic-
tates how the GP model will learn the safing event data. The
optimized hyperparameters are computed by minimizing the
negative log-marginal-likelihood based off the training data.
Using those hyperparameters, the testing data is provided
into the GP model in order to compute the regression loss
between the testing data and the predicted outputs. Through
iteration and mathematical intuition, appropriate functions
are selected, training data extracted, and hyperparameters
initialized as to minimize the overall regression loss. Two
separate GP models are developed: one for the time-between-
events and another for recovery durations.

5.1. Training Gaussian Process Models

The training portion, which involves the selection of various
parameters, data, and functions, of a GP model is the most
important step to creating a successful predictive model. The
criteria used to evaluate differences between models during
training are the mean square regression losses. Two main
figures of merit are computed: mean regression loss and
variance regression loss. Minimizing the distance between
the predicted mean value and the actual testing data is denoted
as the mean regression error, as shown in Equation 22.

ETTmean = YTEST — UTEST (22)
Obtaining the smallest variance away from the predicted
mean is denoted as the variance regression error, as shown
in Equation 23.

erryar = (rest + 0 X V/Varrgsr) — Yresr

Then, the mean square error is computed for both mean and
variance errors as shown in Equation 24 where j is either the
mean or variance, ¢ is the testing data number, and Ny is
the total number of testing data points evaluated.

(23)

Ntest
(errj)?
i=1

(24)

Having a low mean regression loss indicates that the center of
the predicted posterior distribution matches with the supplied
testing output. A low variance regression loss indicates that
the confidence of the GP model for a particular set of inputs
is high.

During training there are a few fixed inputs and assumptions
made to keep training computationally manageable. The
maximum number of conjugate gradient steps during each
minimization is limited to 10,000. For all cases, a standard
deviation of two is observed because it encompasses 95.5%
of all possible values in a normal distribution. A 20 value
is deemed sufficient for most scenarios for safing event pre-
dictions. Although certain training methodologies include a
validation step to further tune the model while performing
the minimization, no such validation is done. Since there
is a limited dataset, having another chunk of the total data
go towards validation, including testing and training, would
reduce the amount of training data needed to sufficiently and
accurately train the GP model.

5.1.1. Selection of Noise Parameter—In many instances,
the data collected may not be perfectly captured and there-
fore have some uncertainty associated with its values. By
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including noise on the observed target values as seen in
Equation 19, the uncertainty can be accounted for each time
the spacecraft enters safe mode and how long it stays in
safe mode. The noise processes are assumed to be normally
distributed, from Equation 20. Models equivalent to the GP
include the Kalman filter, which has extensively been used in
guidance, navigation, and control applications. Kalman filters
also capture noise through the use of a covariance matrix that
accounts for the measurement uncertainty that sensors and
actuators may give to the filter. Thus, the stochastic noise
process in a GP can be thought of as a signal-to-noise param-
eter of the observations for the safing event data collected;
if greater uncertainty existed for a particular measurement, a
smaller SN ratio is used. In a GP model, the noise standard
deviation parameter (SN) is incorporated into the likelihood
function as a hyperparameter.

For the time-between-events GP model, SN values sampled
ranged from 0.01 to 100 days. As the SN value reached
towards 0.01, the GP model took the observations for when
safing event happened as the ‘truth’ for the training points and
thus, the model’s mean connected all of the testing points.
However on the opposite spectrum with a SN of 100, the
testing points barely perturbed the prediction because the
training values are assumed to be very unreliable. Since there
is a good amount of confidence with the data collected and its
sources, it is deemed that a noise standard deviation value for
time-between-events would be 0.1 days.

For the recovery duration GP model, the same range of SN
values are tested; however, the recovery durations is in units
of hours. However, the confidence in the observations for
when a spacecraft entered and exited is lower than for time-
between-events. This is due to the fact that recovery periods
documented include both subjective and objective values.
Furthermore, exact durations down to the minute are typically
not well documented and thus, the recovery durations usually
are overestimates. Therefore, a noise standard deviation value
of 1 hour is deemed appropriate for the level of confidence in
the duration values collected.

5.1.2.  Selection of Training Ratio— Next, selecting the
amount of training data used versus the testing data needs
to be determined. Using MATLAB’s dividerand function,
the dataset is randomly divided into three sets (training,
testing, and validation) based on user-supplied ratios. For
the GP model, it is assumed no validation dataset would
be used; therefore, a training ratio is selected, and the
remaining percentage would be used for testing. Possible
training ratios considered are: 50%, 60%, 70%, 80%, 90%.
Since dividerand randomly split the full dataset, 16 iterations
per training ratio are computed as to determine what ratio
would yield the lowest average and minimum M SFE,,cqn,
MSE,q,, and negative log-marginal-likelihood (nlml) val-
ues. This is a brute-force methodology to remove the ran-
domness associated with assigning different training data per
iteration. 16 iterations are assumed to be sufficient enough for
computational tractability purposes; however, more iterations
could be included for future training purposes. Finding the
smallest average values is more important because it showed
greater consistency for that training ratio run across the 16
runs.

Thus, for the time-between-events GP model, a 70% training
ratio is selected as the average M SFE,,cqn and an average
MSE,,, are the lowest across different percentages. For
the recovery duration GP model, an 80% training ratio is
selected that had the lowest average M SFE,,¢q, and an av-



erage M SFE,,,. Since there are fewer valid data entries for
the recovery duration dataset, it makes sense that a greater
percentage of data is needed to accurately train the model.

5.1.3. Selection of Covariance Function—A covariance func-
tion is one of the core ways a prior distribution is determined.
It describes the relationship between the function values of
two points based on coordinate locations in an N-dimensional
space. Since the training data are randomly selected, 16
iterations are again computed for each covariance function
evaluated and the average and minimum MSE for the mean
and variance are computed. Five possibilities are considered
as viable covariance functions: squared exponential, Matern
with v = 1/2,3/2,5/2, and the rational quadratic. Note that
automatic relevance detection (ARD) is assumed for all co-
variance functions since it provided a means to understand the
cross-correlation in the input space and appropriately weight
each input (mission classifier) while training the model.

For the time-between-events GP model, the Matern covari-
ance function with v = 3/2 with ARD distance measure
is selected. Although the computed MSE for the mean
had a median value compared to other covariance functions,
the M SE,,, is the second lowest. Other covariance func-
tions had their strengths in either a minimal MSE,,cqn
or MSE,,,, but the Matern 3/2 gave the greatest balance
between minimizing mean and variance MSE errors. For the
recovery duration GP model, the Matern covariance function
with v = 3/2 with ARD distance measure is also selected.
The computed M SE,,cqn had a median value compared to
other covariance functions, but the M SE,,, is the lowest
and thus selected. One reason why the Matern function
also may be the optimal choice is because it contains the
absolute exponential kernel, which may be able to better
capture physical processes due to its finite differentiability
[14].

5.1.4. Selection of Mean Function—A mean function typi-
cally helps specify where the expected posterior distribution’s
mean would lie. For both GP models, initially a mean
function is not added as to not constrain the hyperparameters
during minimization. However, constant and linear mean
functions are also tested with varying initial condition. The
results show that having a mean function gives lower mean
squared errors. Thus, a constant mean function with an initial
value of 200 days is set before the minimization for time-
between-events. For recovery duration, the initial value for a
constant mean function is set to 35 hours. A positive mean
function created a non-symmetrical distribution around zero
such that the probability of predicting a negative value would
be far lower; essentially the posterior distribution is skewed
towards positive values.

5.1.5. Selection of Likelihood & Inference Method— As
stated by Rasmussen et al., “The likelihood function spec-
ifies the probability of the observations given the GP and
hyperparameters. The inference methods specify how to
compute with the model, i.e. how to infer the (approximate)
posterior process, how to find hyperparameters, evaluate the
log marginal likelihood, and how to make predictions” [15].
While all covariance and mean functions can be used without
limitations, certain likelihood functions may only be used
with particular inference methods. For a Gaussian likeli-
hood function, an exact Gaussian inference method is used;
however, for other likelihoods (e.g. Gamma, Weibull, etc.),
a Laplace approximation to the posterior Gaussian process
must be used. The likelihood functions that are evaluated
included: Gaussian, Gamma, and Weibull. The Gamma
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and Weibull also has two possible inverse link functions,
exponential and logistic, that are used to map from the GP to
the mean intensity for a generalized linear model. Those two
likelihoods are chosen over others to be evaluated because
they apply to only strictly positive data, as is the case with
the given time data.

For the time-between-events GP model, the Gaussian like-
lihood function had the second lowest MSFE,,cq, and a
median M SE,,,. For the recovery duration GP model, the
Gaussian likelihood function had the median M SF, 4, and
alow MSFE,,.. While the Weibull likelihood function had
alower M SE,,¢qn, convergence for the algorithm is limited
since the Gram matrix often became singular. The predictions
from a Weibull likelihood would be invalid and thus the
Gaussian likelihood and inference method is selected. Future
work is necessary to adapt a Weibull likelihood function
to properly converge; it may enable better predictions for
positive values.

5.2. Fully Trained Gaussian Process Model

After the appropriate selection of each of the parameters and
functions as discussed, a summary is shown for each GP
model in Table 4. This table also includes the performance
metrics that are computed with the particular testing data.
While the lowest errors are chosen when selecting parameters
during training, the performance metrics still illustrate that
there is a significant amount of error in prediction. This is due
to a number of factors such as a limited dataset, refinement
in mission classifier definition, and the various assumptions
made on the dataset. Moreover, these parameters are in
no means the optimal configuration for predicting safing
events; this is a preliminary result to establish the framework
necessary to use GP models for prediction of time-between-
events and recovery durations. Further studies focusing on
training the GP models will be required to further reduce the
mean square errors and negative log-likelihood.

Table 4. GP Model Summary

Parameter / Function Time-Between-Events Recovery Duration

1 hours
80%
Maternard: v = 3/2
Constant: 35 hours (initial)
Gauss

Noise Parameter
Training Ratio
Covariance Function
Mean Function
Likelihood Function

0.1 days
70%
Maternard: v = 3/2
Constant: 200 days (initial)
Gauss

Inference Function Gaussian Gaussian
MSE,can 69365 1261
MSE,qr 202028 12869
nlml 865 514

Once a model is trained, plots are generated to show how
well the testing data is predicted by the GP model. A discrete
number of testing points are evaluated by the GP model,
which represented the 1 — T'rainingRatio of the full dataset.
The x-axis shows those training points numerically ordered
on a linear scale; however, each point is actually a multi-
dimensional representation of the input space (7 categori-
cal/25 binary inputs). The rise and fall to the mean line shows
how the GP model reacts to changes in particular inputs. The
20 boundary shows the tail-end of the normal distribution
centered around the mean; if the boundary is smaller, then the
model has greater confidence in its prediction since it may
have seen such testing data during training. Also, since the
20 boundary predicts 95.5% of all data when it is normally
distributed, it is possible certain TBE or RD testing points
would lie outside of that boundary.

The outputs of GP model at a particular testing data point
are the predicted mean and variance. In order to make a
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prediction, a single random value from a normal distribution
using the computed mean and variance is generated. Since
the testing data y-axis is in units of time, it is not realistic to
predict negative times. If the 20 boundary can be negative
and a prediction made is negative, then new predictions
are made until a positive value is obtained. While this a
methodology may invalidate one sided tail of the distribution,
the likelihood of obtaining a negative value remains low
because the distribution is skewed towards positive values
with a positive mean. Better model training is necessary to
tackle this drawback of the currently trained GP model to
eliminate prediction of negative numbers.

Figure 7 shows a plot of training dataset used for time-
between-safing-events comparing the actual output versus the
predicted. The mean line significantly varies between 150
- 600 days elapsed between events as it is perturbed by the
inputs the testing data contains. For certain test data, the
variance grows and shrinks based on whether or not the GP
model can make an accurate prediction based on its training
data and covariance weights. There are a few points that lie
outside of the 20 boundary, but as mentioned, two standard
deviations only contain 95.5% of all data.

Figure 8 shows a plot of training dataset used for recovery
duration for safing events. The observed mean value ranges
from 40 hours up to 130 hours as the testing data changes
the predictions of the model. Note that for a few testing data
points, the recovery duration is close to zero, and the mean
predictions also shift closer to those values. The RD model
as compared with the TBE model predicts fewer changes to
the mean but with a greater relative variance for each point.

6. MODEL DEPLOYMENT FOR PREDICTIONS
6.1. Deploying the Model for NeMO

The final step in the domain of predictive analytics is to
deploy the model for an actual scenario. Using the Next Mars
Orbiter (NeMO) mission concept as a case study, the trained
GP models are used to predict how long safing events would
occur and how much time would pass between each event.
Using the established mission classifiers, certain inputs are
fixed for NeMO while others are time-varying based on the
mission elapsed percent. This simulation will help quantify
the impacts of safing events through the use of a more sophis-
ticated model that uses various mission inputs in order to best
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predict time-between-safing-events and recovery durations.
Furthermore, the results of the simulation will help better
quantify mission inoperability rates for various prediction
models, and shape requirements and system margins for a
particular mission.

By leveraging the simulation work done by Imken et al., the
trained GP prediction model framework is incorporated into
the existing simulation shown in Figure 9. The same set
of simulation parameters are used to generate new results
and compare with a Weibull-based pseudo-random number
generator. Figure 10 shows the GP model framework devel-
oped such that it would be very easy to incorporate into the
existing simulation. The in Figure 9 show where
the GP model framework is incorporated into the full mission
simulation in a “plug-and-play” manner. From the overall
simulation to the GP model, the current mission elapsed
percent (MEP) for that particular iteration only needs to be
passed as an input. Then, using the MEP and a few other
fixed inputs, the GP model’s categorical inputs are created.
Using the one-hot encoding scheme described earlier, the
conversion from categorical to binary inputs is made. Once
the training of the particular GP model (whether it is is
for TBE or RD) is done, the training data and optimized
hyperparameters are used to generate a prediction with a
certain mean and variance. From that, a time is randomly
generated using the computed mean and variance from a
normal distribution (normrnd in MATLAB). Since the GP
model is not bounded to be strictly positive, it is possible to
obtain negative time values; thus the normal distribution is re-
sampled until a positive value is obtained. Although a portion
of the distribution to obtain a valid sample gets smaller, due
to the skewed distribution computed, the likelihood is smaller
than a traditional Gaussian distribution.

The seven categorical inputs that the GP model requires are
listed in the inputs parallelogram in Figure 10. The first four
inputs are fixed and constant based on the candidate mission
that is be simulated. For the case of NeMO, the inputs are as
follows assuming a total mission length of 6 years:

(1) Mission Class: New Frontiers;
(2) Mission Destination: Mars;
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the mean values as a function of the mission elapsed percent.
It seems that there are really two modes to the mean value
where most values are predicted within: 55 and 101 hours.
Most of the 20 boundaries are also predicted to be positive,
while only certain tail ends are below the threshold. Recall
that any negative values predicted are not considered, and are
re-predicted from a normal distribution with the given mean
and variance.

6.2. Monte Carlo Simulation Results

Once the trained GP models for TBE and RD are imple-
mented into the simulation framework, a safing event Monte
Carlo simulation for NeMO is conducted for 1 million runs.
The same set of assumptions that Imken et al. used in the
simulation such as Deep Space Network DSN) pass cadence,
pass length, time to restore to nominal operations, and time-
of-flight function increase are retained. The time-of-flight
function increase, relative to inoperability period is assumed
to be zero; thus there is no increase with the total mission
length due to additional safing events.

This Monte Carlo simulation is run three separate times, each
with a different predictive model. The first model used is
the 1-Weibull distributions that are discussed by Imken [3].
The next model included the use of the 1-Weibull distribution
for the time-between-events and the 2-Weibull distribution for
the recovery durations. This selection is based on the AICc
analysis that determined for the full RD dataset, a 2-Weibull
is a better predictor without overfitting the data. The final
model is the use of the two Gaussian Process models that are
developed and trained in this paper.

The results from each Monte Carlo simulation on mission
inoperability rates for the three prediction models are listed
in Table 5. Assuming a 99.7% likelihood, the total number
of safing events for the GP model compared to two Weibull
distribution models decreases from 19 to 11 events. Further-
more, the whole distribution predicted half as many safing
events by the GP model than the Weibull models. This result
for the sharp decrease in number of safing events is attributed
to the fact that the time-between-events prediction from the
GP model is larger than a similar result from the inverse
Weibull distribution. Due to the TBE training data utilized as
well as the covariance optimal weights, the mean predictions
for the Weibull distribution models are lower than most of
the mean predictions by the GP model for mission elapsed
percentages. For both Weibull distribution models of a TBE,
the mean is computed as 245 days between each event and the
mean TBE predicted by the GP model ranges from 50 to 700
days as seen in Figure 11. Thus, the differences in the models
lend to the significant difference in the predicted number of
safing events.

The predictions for each recovery duration are larger for the
GP model than predicted by both Weibull distribution models.
Again, in this case for the Weibull distribution models, the
mean recovery duration predicted by the Weibull models is
approximately 56 hours compared with the observed 55 and
101 hours from the GP RD model as seen in Figure 12. Thus,
the average recovery duration for the entire mission duration
predicted by a GP model is higher than what is predicted by
the Weibull distribution models. Since the mixture Weibull
model uses a 2-Weibull for the recovery duration as opposed
to the 1-Weibull for the single Weibull model, the outage
times predicted vary. The mean recovery duration predicted
for the single Weibull of 56.25 hours is slightly larger than
predicted by the mixture model of 56.17 hours. Thus, it
makes sense at the 99.7 percentile, that each outage time
predicted by the mixture model is slightly lower.

Combining the total number of events and each outage time,
the total outage time predicted by each model is around
80 days for the NeMO mission concept. The GP model
predicts a slightly higher total outage time than both Weibull
models, and the mixture Weibull model predicts a day higher
total outage time during the mission than the single Weibull
model. Thus, it makes sense that the mission inoperability
rates (MIR) computed for the three models fall in that order:
the GP model predicts the highest value, the mixture model
predicts the median MIR, and the single Weibull predicts the
lowest. This trend is highlighted in Figure 13 where the
general shape for the likelihood of achieving a maximum in-
operability rate is comparable for all three predictive models.
Each maximum MIR value with a 99.7% probability is within
the same percentage point. The maximum differences in MIR
values corresponds to 0.15%, or equivalently for a 6 year
mission, about 3.2 days of extra inoperability predicted by the
GP model compared with the single Weibull model. This is
corresponds to 12 hours extra per year and from an operations



Table 5. NeMO Mission Inoperability Rates, Outage Times, and Number of Safing Events for a 1 million run Monte

Carlo Simulation for 3 Predictive Models

Metri Unit Single Weibull Mixture Weibull ~ Gaussian Process
etric S | pistribution Model  Distribution Model Model
99.7 Percentile: MIR % 3.74 3.77 3.89
95 Percentile: MIR % 2.78 2.83 2.9
99.7: Total Outage Time days 81.91 82.63 85.15
99.7: Each Outage Time days 12.9 12.57 17.71
99.7: Total Safing Events # 19 19 11
99.7: Max Time of Flight  years 6 6 6
Max: Total Outage Time days 126.86 126.79 128.4
Max: Each Outage Time days 27.27 39.51 33.66
Max: Total Safing Events # 30 29 16
Max: Max Time of Flight  years 6 6 6
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perspective, it could translate to one extra shift during one
safing event.

There are a few implications on the design, margins, and
requirements for the Next Mars Orbiter mission concept that
the safing event predictive models provide in order to reduce
risk. First, the GP model predicts that recovery times for
NeMO would be longer when various mission inputs are
factored in. More time spent recovering the spacecraft out
of safe mode means a longer percentage of time that the
mission is inoperable. This may motivate the development
of greater autonomy on-board NeMO such that the spacecraft
bus may be able to better diagnose certain events and provide
more informative health data to ground operators. It would
shape the requirements on NeMO to include an increased
fault checking capability and/or better data management on-
board. Additionally, the pass cadence assumptions for this
simulation is one DSN pass every 3 days. The maximum
outage time predicted to 3o is predicted to be 17 days; an
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increase in the pass cadence could decrease that outage time.
Moreover, the recovery urgency based on mission risk posture
per safing event could increase such that the recovery period
can shorten. While the cost to the mission, from DSN time,
personnel, and other resources, would increase, the resulting
increased operability of the spacecraft could be worth it for
the mission’s success. Furthermore, new requirements could
be placed on the operations team such that greater confidence
and faster response time dealing with fault scenarios are
implemented.

Another impact from the overall increase in MIR predicted by
the GP model is the missed thrust periods. Currently, there
is no time-of-flight increase implemented in the simulation;
however, a 3.9% mission inoperability would affect when the
mission reaches its destination. Moreover, the consequence
of missing thrust maneuvers during certain segments of the
trajectory may significantly lengthen the mission. Those
missed thrust periods may correspond to correlations greater



than 1:1 for each period. Extensions to the mission due to
missing critical thrusting periods could significantly influence
how margins are computed for a low-thrust mission. An
increase in propellant margin would impact other margins
such as mass and power, which would influence the spacecraft
design considerably. In order to reduce the maximum inoper-
ability predicted, spacecraft and operational capabilities may
need to increase for the Next Mars Orbiter mission concept.

The mission inoperability rates, number of safing events, and
outage times presented are mission specific to NeMO; as the
inputs are changed for new missions, the results would also
vary. Thus, it is up to the user to choose which model based
on the given set of assumptions to predict safing events. To
accommodate multiple mission inputs, the GP model enables
users to factor the predictions made for the frequency and
recovery duration of a safing event. Through the simulation,
mission designers would be able to quantify the likelihood of
realizing the worst-case inoperability rates, and make design
and operational decisions based on the results.

7. RECOMMENDATIONS & FUTURE WORK

The assumptions, analyses, and modeling reported in this
paper provide a methodology for future mission planners
looking to predict safing events for a certain mission archi-
tecture. First, the user must decide what set of assumptions
placed on the dataset and simplifications are acceptable for
prediction purposes. Next, a safing event process model
such as the 1-Weibull distribution model, Mixed Weibull
distribution model, or Gaussian process model for safing
event predictions is selected. When utilizing the GP model,
the user must be aware of its ‘black-box’ nature that occurs
during the training process and that re-training may be neces-
sary. While the GP model developed in this paper created
a safing event prediction model based on various mission
inputs, improvements during training and tackling some of
the assumptions can still be made.

One of the first set of simplifications is that subsets of the
dataset are created using commonly defined mission classi-
fiers. In order to rigorously find how to split the safing time-
between-events and recovery durations based on the inherent
divisions within the data rather than ‘arbitrary’ categories,
more historical mission data statistical analysis is needed.
Methodologies such as classification or hypothesis tests could
be useful in finding these natural boundaries in the dataset.
These new categories may lend to better predictions since
the weights that the GP model learns would have a more
statistically significant backing.

Training the GP model is the most important step to effec-
tively utilizing a GP as a predictive model. The current
method of computing the mean square error for deviations
from the mean and variance estimates for the testing data
is a good preliminary method. However, other metrics
such as mean absolute error, sum absolute error, and others
can be used for evaluation purposes. Furthermore, cross-
validation is another methodology during training that allows
to evaluate performance on a portion of the data that is not
training and testing. Subject matter experts in supervised
learning algorithms could lend guidance on the selection of
the noise parameters and relevant functions (e.g. covariance,
likelihood, etc.) for the GP model. More intuition from
the mathematical theory is needed on the selection of certain
functions.
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Based on the trained GP model from this paper, negative
outputs are possible within predictions for TBE and RD. One
facet of this could be due to the inherent assumption that
given the multi-dimensional input space of mission classi-
fiers, the posterior distribution is a Gaussian distribution. The
implementation of a Weibull likelihood in the GP model is
one possible way to predict non-negative values. Another
possibility is constructing a new optimization problem for a
GP if the Gaussian distribution assumption holds such that a
positive data constraint is applied.

While generating 2-Weibull distributions is successful for the
full dataset and most of the subsets, there are instances where
the optimizer did not converge due to a lack of data. While
implementing the optimization algorithm, it is observed that
the convergence is sensitive to the initial value. Thus, equa-
tions or shifting of the function may be necessary to get
a rough estimate for starting values. Commercial software
packages such as Weibull++ also exist that could be more
robust during optimization.

One way that inference about a population from a dataset can
be accomplished is by employing bootstrapping - sampling
with replacement. Optimal Weibull parameters could be ob-
tained for subsets of data by re-sampling the given subset and
computing average parameters that would yield estimates to
the true probability distribution. Bootstrapping could also be
used in GP model estimation as a means to increase the size
of the training, validation, and testing datasets. Consideration
must be given when employing bootstrapping on the posterior
distribution the model creates.

While only parametric analyses are considered in this paper,
nonparametric analysis techniques such as the Kaplan-Meir
estimator can be considered to understand the true nature of
the data. One key aspect of nonparametric models is the
censoring of data - when failure data is incomplete. When
a mission reaches the end-of-life, one could apply right-
censoring since that time should not be modeled as another
safing event and would be stochastic across many missions.
While initial thoughts were formulated, no sufficient conclu-
sions are made on how best to censor data. The parametric
framework developed to compute 1-Weibull and 2-Weibull
distributions has censoring included in the formulation; thus,
it should be easy to implement and obtain new Weibull
distribution estimates.

Finally, regardless of how accurate a prediction model is
developed, it is still limited by the data by which it is defined.
As more interplanetary mission safing events occur, it is
imperative to continue to collect data and store this additional
information in the database. Then, when a ‘significant’
amount of data is added, re-training of the models may be
useful to incorporate new information and re-weight accord-

ingly.

8. CONCLUSION

Safe mode is an operational state that occurs when a space
mission experiences anomalies and failures prompting the
mission to execute actions that decrease further risk and
operate only essential components. Missions that utilize solar
electric propulsion such as the NeMO concept and Psyche
have a need to more accurately model safing events since
continuous operations are vital for their missions. Building
on the work done by Imken et al., this paper statistically
explores some of the intricacies of the existing interplanetary



safing event dataset, creates different models for prediction,
and uses the NeMO concept as a case study for model
deployment.

With the collection of time-between-safing-events and re-
covery durations for safing events, subsets of the dataset
are created based on common mission classifiers. While
these classifiers are made using categories that would be
reasonable for a mission planner, future work could involve
creating categories based on statistical significance between
the data. A Chi-Squared hypothesis test reveals the degree of
independence between each created mission classifier. Most
classifiers are significantly dependent between each other.
The computed p-values of safing event cause and whether a
mission had solar electric propulsion indicates that those two
classifiers are more independent from the rest of the subsets
than other mission classifiers.

Parametric modeling of the safing event database is accom-
plished through the use of single Weibull distributions and
mixtures of two-Weibull distributions. Using the maximum
likelihood estimation algorithms, optimal Weibull distribu-
tion parameters are computed for the full dataset as well as
each subset. Although the convergence of the implemented
optimization algorithm is not successful all the time, fu-
ture studies could research methods to provide better initial
guesses or use commercial software packages to estimate the
parameters.

To evaluate the goodness-of-fit for each distribution, the mean
square error and Akaike Information criteria are used to
determine the deviations of the model and level of overfitting
to the data. Relative efficiencies are computed between the 1-
Weibull and 2-Weibull distributions; the results indicated that
for most subsets, the 1-Weibull is a better predictor. However,
for a few subsets and the recovery duration full dataset, the
2-Weibull distribution is a better model based on the MSE
and AIC criteria. When selected, the 2-Weibull distribution
also implies potential bimodal behavior in its dataset. The
advantage of employing Weibull distributions for modeling is
the ease of implementation into other simulations with just a
few parameters.

However, in order to generate predictions of safing events
based on many user-defined inputs, a new approach for
predictions is required. A Gaussian process model met this
criteria; it is a type of supervised learning algorithm that is
trained and tested using the existing safing event dataset. Im-
plementation of this model is done using the GPML toolbox.
Training involves the selection of the data’s noise parameter,
training ratio, covariance function, mean function, likelihood
function, and inference method. Based on the mean square
errors for the predicted mean and variance for each testing
dataset, training parameters and functions are selected that
minimized those errors. Other performance metrics and
cross-validation techniques could be utilized in the future to
select optimal training parameters. The usage of other likeli-
hood functions such as a Gamma or Weibull is possible within
the Gaussian Process framework, referenced as generalized
linear models, could help tackle the assumptions made on
the dataset and noise. Furthermore, it is recommended that
a subject matter expert aid in the training process.

To assess mission inoperability, a generalized Monte Carlo
simulation is implemented to quantify the likelihood of re-
alizing the worst-case inoperability rates. Using the Next
Mars Orbiter mission concept as a case study, a framework
is generated for the GP model that can easily ‘plug-and-
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play’ into the main simulation. Using the developed single
Weibull distribution, 2-Weibull mixture distribution, and the
Gaussian Process as the predictive models, the likelihood of
inoperability rates, outage times, and number of safing events
are compared. From highest to lowest mission operability
rates, the GP model predicts the highest, followed by the
mixture distribution, and finally the single Weibull distribu-
tion model. Recommendations are made and implications
analyzed for the NeMO concept for the predicted likelihood
of inoperability rates. This includes increasing spacecraft
margins for missed-thrust periods as well as increases in
operational and on-board fault management capabilities.

In the area of predictive analytics, this paper uses standard
statistical methodologies to understand trends in the dataset,
and develops, trains, and tests predictive models for a sample
mission scenario - the Next Mars Orbiter. This work is a
step towards creating a more complete tool for safing event
analysis and prediction using a historical database of past
interplanetary spacecraft missions. The results from this
paper help influence mission designers to factor in the effects
of safing events on spacecraft margins and requirements in
order to make design and operational decisions.
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APPENDIX

Table 6 shows all of the missions that are contained in the
safing event database. It lists how the missions are classified
for the mission class, destination, duration, and solar electric
propulsion categories.

Tables 7 and 8 show the computed p-values from the Chi-
Squared hypothesis test between each mission classifier for
the time-between-events and recovery duration datasets.

Tables are presented on the next page.



Table 6. Mission Classifier Inputs

Mission Name [ Class [ Destination | Duration [years] | Electric Propulsion |
Dawn Discovery Asteroid/Comet 10-15 Yes
Deep Impact Discovery Asteroid/Comet 5-10 Yes
Deep Space 1 Discovery Asteroid/Comet 0-5 No
Genesis Discovery Heliophysics/Exoplanet 0-5 No
Lunar Reconnaissance Orbiter Discovery Moon 5-10 No
Mars Atmosphere and Volatile Evolution Discovery Mars 0-5 No
Mars Climate Orbiter Discovery Mars 0-5 No
Mars Global Surveyor Discovery Mars 5-10 No
Mars Odyssey Discovery Mars 15-20 No
Mars Polar Lander 2 Discovery Mars 0-5 No
Phoenix Mars Lander 2 Discovery Mars 0-5 No
Stardust Discovery Asteroid/Comet 10-15 No
Juno New Frontiers Jupiter 5-10 No
Kepler New Frontiers | Heliophysics/Exoplanet 5-10 No
Mars Reconnaissance Orbiter New Frontiers Mars 10-15 No
New Horizons New Frontiers Kuiper Belt Object 10-15 No
OSIRIS-REx New Frontiers Asteroid/Comet 0-5 No
Sptizer New Frontiers | Heliophysics/Exoplanet 5-10 No
Cassini Flagship Saturn 15-20 No
Galileo Flagship Jupiter 10-15 No
Mars Science Laboratory 2 Flagship Mars 0-5 No

Table 7. Contingency Table: Chi-Squares p-Values for Time-Between-Events

Mission  Mission Mission Electric Safing Event  Safing Event
Class Duration Destination Propulsion Cause Mission Phase
Class - 1.61E-05 4.89E-46 3.54E-05 4.02E-04 2.57E-04
Duration 1.61E-05 - 6.76E-31 0.010851 1.40E-03 9.08E-05
Destination | 4.89E-46 6.76E-31 - 3.6702E-11 6.03E-05 3.26E-19
SEP 3.54E-05 0.010851 3.67E-11 - 0.409 0.374
Cause 4.02E-04 1.40E-03 6.03E-05 0.409 - 0.0957
Phase 2.57E-04  9.08E-05 3.26E-19 0.374 0.0957 -
Table 8. Contingency Table: Chi-Squares p-Values for Recovery Duration
Mission  Mission Mission Electric Safing Event  Safing Event
Class Duration Destination Propulsion Cause Mission Phase
Class - 1.78E-06 9.85E-29 9.80E-05 0.420 0.0484
Duration 1.78E-06 2.76E-32 1.39E-4 0.114 9.75E-05
Destination | 9.85E-29 2.76E-32 - 8.37E-12 0.0209 2.71E-10
SEP 9.80E-05  1.39E-4 8.37E-12 - 0.484 0.649
Cause 0.420 0.114 0.0209 0.484 - 0.00248
Phase 0.0484  9.75E-05 2.71E-10 0.649 0.00248 -
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