

Discrete Event Simulation of Reusable Launch
Vehicle Ground Operations (RLVSim)

AE8900 MS Special Problems Report
Space Systems Design Lab (SSDL)
School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, GA

Author
John Daniel Reeves Jr.

Advisor

Dr. John R. Olds
Space Systems Design Lab (SSDL)

July 30, 2004

RLVSim Table of Contents

Table of Contents

Table of Contents ... i
List of Figures... ii
List of Tables ... iii
Acronyms ... iv
1.0 Introduction ..1
2.0 Discrete Event Simulation ..5

2.1 DES Background ...5
2.2 Rockwell Software’s Arena...5
2.3 Arena Details ..6
2.4 Discrete Event Simulation Theory..9

3.0 RLVSim Arena Model ...16
3.1 RLVSim Arena Model Logic..16
3.2 Model Input Form and General Usage Guidelines ..19
3.3 Single Run Mode..23
3.4 Monte Carlo Mode ..24
3.5 Single Run with Excel ...26
3.6 Baseline RLVSim Results..28

4.0 RLVSim ModelCenter® Capability...31
4.1 RLVSim ScriptWrapper Details...31
4.2 RLVSim & AATe Integration..32
4.3 Aztec ModelCenter® Trade Study ..34
4.4 STS ModelCenter® Trade Study ..39

5.0 Conclusions ...42
References ...44
Appendix A – Baseline Data Derivations ..45

A.1 Space Transportation System Baseline ..45
A.2 Aztec Baseline ..48

Appendix B – Baseline Excel Outputs ...50
Appendix C – RLVSim ScriptWrapper Code..52

 i

RLVSim List of Figures

List of Figures

Figure 1. 95% Confidence Interval Half-Width on a Normal Distribution.............................12
Figure 2. 95% Confidence Interval Half-Width. ..13
Figure 3. Triangular Distribution Probability Density Function. ..14
Figure 4. Top-Level Process Flow..16
Figure 5. RLVSim Screen Capture – Entire Model. ..17
Figure 6. RLVSim Screen Capture - Integration Phase...18
Figure 7. RLVSim Input Form – Page 1 of 2. ..19
Figure 8. RLVSim Input Form – Page 2 of 2. ..20
Figure 9. RLVSim Report Screenshot (Queue Statistics)..24
Figure 10. RLVSim Report Screenshot (Tally Averages). ...25
Figure 11. STS Average Facility Dwell Time Percentage Pie Chart. ...29
Figure 12. Aztec Orbiter Average Facility Dwell Time Percentage Pie Chart..........................30
Figure 13. AATe and RLVSim in ModelCenter®...33
Figure 14. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 1.......................................34
Figure 15. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 1.35
Figure 16. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 2.......................................36
Figure 17. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 2.37
Figure 18. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 3.......................................38
Figure 19. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 338
Figure 20. STS Flights per Year vs. Fleet Size. ...40
Figure 21. STS Turnaround Time vs. Fleet Size...41
Figure A-1. STS Cost per Day Calculations (from modified AATe).46
Figure A-2. Aztec Cost per Day Calculations (from modified AATe).48

 ii

RLVSim List of Tables

List of Tables

Table 1. Basic Arena Definitions. ...7
Table 2. Commonly Used Arena Modules. ...8
Table 3. User Input Form Fields. ...21
Table 4. STS and Aztec Baseline Settings...22
Table 5. RLVSim Tally Statistic Descriptions...26
Table 6. RLVSim Excel Output - Simulation Results Worksheet. ..27
Table 7. STS Baseline Results. ..28
Table 8. Aztec Baseline Results..29
Table 9. RLVSim Related AATe Output Variables. ..33
Table 10. Aztec Trade Study Results...39
Table 11. RLVSim Related Files and Spreadsheets..42
Table A-1. Depot Maintenance Reference Values14. ...47
Table B-1. STS RLVSim Excel Output Schedule. ...50
Table B-2. STS RLVSim Excel Depot Maintenance Schedule. ...50
Table B-3. Aztec RLVSim Excel Output Schedule. ...51
Table B-4. Aztec RLVSim Excel Depot Maintenance Schedule. ...51

 iii

RLVSim Acronyms

Acronyms

AATe Architecture Assessment Tool – enhanced
BPF Booster Processing Facility
CMRG Combined Multiple Recursive Generator
CPD Cost per Day
DDT&E Design, Development, Testing & Evaluation
DES Discrete Event Simulation
ET External Tank
FEL Future Event List
FIFO First-In, First-Out
ISS International Space Station
LCC Life-Cycle Costs
LOV Loss of Vehicle
MMH Monomethylhydrazine
NASA National Aeronautics and Space Administration
OMB Office of Management and Budget
OMS Orbital Maneuvering System
OPF Orbiter Processing Facility
PDF Probability Density Function
RCS Reaction Control System
RLV Reusable Launch Vehicle
RMAT Reliability and Maintainability Analysis and Estimation Tool
RNG Random-Number Generator
SCAPE Self-Contained Atmospheric Protective Ensemble
SRB Solid Rocket Booster
SSDL Space Systems Design Lab (Georgia Tech)
STS Space Transportation System
TBCC Turbine-Based Combined-Cycle
TPS Thermal Protection System
TSTO Two Stage to Orbit
VBA Visual Basic for Applications

 iv

RLVSim Introduction

1.0 Introduction
One of the most important aspects of any major transportation vehicle, whether it be a

commercial aircraft, reusable launch vehicle (RLV), or any other highly complex design, is
the cost and time associated with readying it for use. Once a design of this sort has been
developed, tested, and declared operational, the life-cycle costs (LCC) become the dominant
metrics of interest and are primarily made up of the costs and times associated with
scheduled maintenance, unscheduled maintenance, part replacement, and refurbishment.
These parameters are usually encapsulated in the “operations” discipline, which focuses on
the operational concepts required to maintain complex vehicles.

Although operations analyses are essential to any complex vehicle, access-to-space
vehicles require more attention in this area than any other type of vehicle since their safety
and performance margins are usually very slim. Re-entry vehicles go through rigorous
thermal environments that require that highly sophisticated thermal protection systems
(TPS) be incorporated into the design. TPS maintenance is always a high operational driver
since the materials used, whether they be tile-like or ablative, have to be carefully inspected
prior to every mission. Because access-to-space vehicles have to operate in the demanding
environment of space for extended periods of time, they require a high number of
sophisticated subsystems to ensure that any payload or crew are accommodated and safely
delivered or returned. A higher subsystem count usually translates into a higher processing
load when the vehicle is on the ground. Because of this, a large work force is generally
required in order to provide the man-hours for the intricate inspections and refurbishment.
Large workforces result in very high labor costs, which is usually one of the biggest drivers
in vehicle’s operational cost. Because of such consequences of operating complex vehicles,
it is imperative that these considerations are taken into account as early as possible in the
design phase.

A lot of time and money has been invested in technology development over the years
to alleviate the ground operations environment of space access vehicles, with RLVs in
particular being the main focus since the Space Transportation System (STS) has been the
dominant design over the past few decades. A highly reusable space access vehicle with low
turnaround requirements would open up an entirely new paradigm in the space industry
since it would lead to routine access to various orbital assets as well as allow the space
tourism market to truly unfold. However, operational considerations are still sometimes
ignored during the conceptual design phase in lieu of focusing attention on the design’s
general performance and capability. A proper design takes operational cost considerations
into account as a secondary objective behind performance requirements, which can lead to a
design that meets mission objectives such as payload performance but does not require

 1

RLVSim Introduction

heavy operational burdens. However, designers often choose to invest less money up front,
usually due to funding constraints, instead of investing heavily in new technologies early on
that can reduce operational complexity. The result is that the design is operationally more
expensive, and sometimes less reliable, than envisioned once the first units begin to enter
service. A prime example of such a scenario is the STS itself. Despite the successes of the
Apollo program in the late 1960s and early 1970s, the Nixon administration began to
downsize NASA’s budget and focus the spending on other non-space related programs
during the mid 1970s. Grand goals of building a space shuttle along with an enormous space
station and other orbital assets were quickly forgotten as the budget was reduced. NASA
designers were eventually allowed to develop just the Space Shuttle system under a
constricting $5.5 billion ceiling1 enforced by the Office of Management and Budget (OMB).
STS was designed and developed into a working system, but many operationally costly
decisions were made during the conceptual design phase in order to keep design,
development, testing & evaluation (DDT&E) costs as low as possible. For example, the
high number of subsystems that were incorporated into STS during its design phase led to a
vehicle that is very difficult to refurbish and maintain. Due to subsystem complexity, the
Space Shuttle Main Engines (SSMEs) have to be completely removed from the orbiters
between each flight and processed separately, which directly leads to longer turnaround
times. Another example is the TPS tiles used to protect the orbiter during re-entry. Almost
every single tile used on the orbiters is unique and has to be individually inspected between
each flight. Because of these types of design decisions, STS currently costs around $300
million dollars2 to launch, which is drastically higher than the $7.7 million per flight2 that was
being predicted by NASA in the early 1970s. This high launch cost is due to the fact that
STS launches only six or seven times a year at best – such a rate being significantly less than
the 50 launches per year2 that NASA originally predicted. From this example, it is apparent
that operational considerations can make a tremendous impact on a concept’s LCC, and so
should always be one of the primary factors during the conceptual design phase. By bringing
operational knowledge and analysis forward (earlier) in the design phases, a much more
efficient system can be developed.

Since the early design phases of access-to-space vehicles take place on a conceptual
level, it is usually difficult to forecast exactly what the concept of operations will consist of
when such systems are operational. For example, the type of general propulsion propellant
is usually decided upon fairly early in the design process, but smaller propulsion elements
such as reaction control systems (RCSs) and orbital maneuvering systems (OMSs) are not
specifically designed until later design phases. These elements can have significant impacts
since they could possibly require the loading and unloading of hazardous
materials/propellants. NASA currently requires that all operations cease during STS

 2

RLVSim Introduction

processing while personal wearing SCAPE suits purge, drain, and load materials such as the
MMH used for OMS and RCS. This leads to a significant delay in operations turnaround
that could have been avoided had the original design used alternate, safer propellants.

Many tools have been developed to assist in analyzing the operational demands on a
vehicle during the conceptual design stage. Two commonly used examples of these types of
tools are NASA Langley’s Reliability and Maintainability Analysis and Estimation Tool3
(RMAT) and NASA Kennedy’s Architectural Assessment Tool – enhanced4 (AATe) that
both parametrically estimate operational parameters based on user inputs. RMAT requires
the user to input various subsystem and top-level system parameters in order to generate
estimates for component reliability and scheduled and unscheduled maintenance
requirements. Likewise AATe requires inputs such as vehicle scaling information, engine
count, processing flow paths, and so forth. RMAT is useful in generating detailed
maintenance information that can be used to plan facility support levels as well as identify
which subsystems are the most operationally problematic. AATe generates the overall fixed
and variable operations costs as well as the general turnaround time per vehicle. AATe is
based on extrapolated STS historical data, while RMAT uses STS data in conjunction with
numerous military aircraft operations data in order to allow the user to design/analyze
vehicles that fall in the middle of the design space bounded by traditional access-to-space
vehicles (STS) and typical military aircraft. Both of these tools are commonly used in
industry to obtain deterministic estimates of operational characteristics of access-to-space
vehicles.

Although the aforementioned tools are useful for conceptually estimating various
operational demands, a new form of analysis will be commonly required for future RLV
studies. Discrete Event Simulation (DES) is a methodology that has evolved rapidly over
the past few years and can be used to dynamically study the operational flow paths of vehicle
operations. Various probabilistic decision points can be introduced into models that lead to
more accurate modeling of real world circumstances such as LOV scenarios. DES models
can also provide confidence intervals based on data samplings from multiple replications
that offer insight into how accurate the estimated values are. Models have already begun to
be developed that focus on the turnaround operations of access-to-space vehicles. One
example of such a tool is GEM-FLO5 (Generic Simulation Environment for Modeling
Future Launch Operations) that was developed by Productivity Apex Inc. in conjunction
with NASA Kennedy. GEM-FLO uses a graphical user interface that allows users that are
not familiar with DES to obtain DES-generated results focusing on ground turnaround
operations (flight rate, facility utilization, etc.). This model is powerful in that it takes a
generic approach to vehicle processing modeling by assuming that almost all access-to-space
vehicles have commonality amongst the types of phases that are required for launch.

 3

RLVSim Introduction

This report will detail the development of a similar DES model tool (RLVSim) that
models ground turnaround operations specifically for reusable launch vehicles. The main
benefit from RLVSim is that it is tailored for use with Arena’s educational mode so that it
can be used by without a professional version of Arena, allowing students and student
researchers a chance to utilize DES in vehicle design studies. The tool is also tailored to be
used in conjunction with specific other design tools, specifically AATe, that are commonly
used in space vehicle design. It should be noted that RLVSim makes the assumption that
there is an unlimited market demand for payload delivery, meaning that it forecasts the
maximum achievable throughput based on the input parameters. The costs that are
accumulated in the model are also tallied in a steady-state fashion, meaning that increasing or
decreasing trends do not occur throughout the simulated years in response to an aging fleet
or a processing learning curve. However, RLVSim allows various trade studies and concept
of operations analyses to be made in addition to providing probabilistic ground operation
estimates that will take into account real world uncertainties. Distributions associated with
the various turnaround facilities mimic the variability associated with such work, and a LOV
probability is incorporated for each vehicle being analyzed that has an impact on the overall
turnaround statistics. This report will document such details pertaining to the development
of RLVSim, as well as provide example studies that demonstrate how the tool can be used to
gain insight on RLV LCC aspects.

 4

RLVSim Discrete Event Simulation

2.0 Discrete Event Simulation
Discrete Event Simulation, like many other computer-aided tools used today, has seen

a rapid evolution in the past few decades due to increased computational power and
advances in DES package capabilities. This section will outline the background and history
of DES as well as provide a discussion of the particular software used for this project. It will
conclude by discussing basic simulation theory along with explaining what takes place when
a DES model is run.

2.1 DES Background
 Discrete event simulation is a numerical computer-based simulation technique that
has been under development for the past few decades. General computer-based simulation
has roots that trace back to the 1950s when computer programming became popular, but
not until the past couple of decades has DES become a viable technique. DES’ most vital
benefit is that it combines the relative ease and flexibility of computer programming with the
crucial results of statistical analysis. The late 1970s and early 1980s saw the emergence of
numerous DES simulation languages such as GPSS, SIMSCRIPT, SLAM, and SIMAN7 that
began to capture the effects of combining statistics with computer programming. These
languages became industry standards due to their applicability to almost any sort of
engineering, manufacturing, or any other queue-based field. DES quickly became associated
with the field of Industrial Engineering due to its inherent statistics foundation, as well as its
popular application to manufacturing, transportation, and other logistics-based activities.
The early simulation languages such as SLAM, SLAM II, and SIMAN were powerful, but
required a heavy amount of programming and a significant learning curve. Due to the boom
in computing power of the early 1990s along with an increase in graphical user interfaces
(GUIs) popularity, advanced simulation products that combined the power of the early
simulation languages such as SIMAN with the ease of use and reduced complexity of a
graphical environment began to hit the market. In addition to having a graphical coding
interface that reduced the learning curve required, some packages began to include
sophisticated animation capabilities that not only assisted users in troubleshooting, but also
gave users a way of demonstrating model logic and dynamics to others.

2.2 Rockwell Software’s Arena
 Rockwell Software’s Arena6 is a powerful package that has consistently been a top
selling product of the DES software industry for the past several years. Its popularity can be
traced to its ability to provide useful results without requiring too significant a learning
curve. One of Arena’s most beneficial traits is that users across the whole spectrum of skill-

 5

RLVSim Discrete Event Simulation

levels can use the product to generate useful results. This robustness is achieved by
expanding upon an evolved version of the SIMAN language, meaning that Arena has been
built upon the shoulders of an already successful product. Arena allows users to choose
from various modules that are presented in various templates ranging from basic logic pieces to
complex items such as conveyers and transporters. Each module represents a combination
of SIMAN code that has been pre-packaged to allow the user to drag and drop pieces of
code into the model without having to work with the code itself. In fact, an entry-level user
can design, develop, and execute somewhat complex Arena models without having to type a
single line of code. Arena also provides generated reports at the end of simulation runs that
can be modified however the user sees fit.
 Despite being straightforward enough for a beginner user to use, Arena allows
experienced users to model at sophisticated levels of detail. Each of the modules is basically
a combination of various pieces of SIMAN code that have been packaged together for the
more popular coding scenarios. Arena also provides a blocks template that contains the
individual pieces of logic that make up the pre-packaged modules. For example, a process
module in the basic process template contains logic to seize and release a resource along with
logic to delay the process for a specified duration in the interim. In the blocks template a user
can find each of these logic pieces, such as seize, as individual pieces that can be added to the
model. This allows a user to combine any of these logic pieces as they see fit in order to
achieve the modeling logic needed.
 In addition to the basic SIMAN blocks that can be used to write the model logic at a
basic level, Arena also allows users to include pieces of code in other languages such as
Microsoft’s Visual Basic for Applications (VBA) or C. For example, every time an entity
passes through a VBA module, a corresponding piece of VBA code can be executed. This
is very useful in that it allows the use of ActiveX object libraries common in most PC
desktop applications so that Arena can interact with other programs and vice versa. Arena
does provide read and write modules in the advanced template that allow models to read and
write to Excel, Access, or regular text files, but the addition of embedded VBA code allows
an unlimited amount of communication between applications. This in turn can lead to the
implementation of Arena into engineering software design suites such as Phoenix
Integration’s ModelCenter®.

2.3 Arena Details
 Arena’s main interface is a working space common among Windows-based
environments along with a template window that allows users to drag and drop modules
onto the working space. Table 1 contains generalized definitions to the most common
simulation terms encountered. A model is basically the simulation scenario itself that

 6

RLVSim Discrete Event Simulation

encapsulates everything going on in the simulation. An entity however is an actual dynamic
piece that proceeds through the model while interacting with various processes. Many
processes require the access of resources, and can be used to model just about any real world
activity. The resources themselves are whatever an entity may need to interact with during a
process. Variables and expressions are model-specific parameters that are independent with
any entity or resource, although they can be accessed for information anywhere in the model.
Again these are just generalized definitions because it is up to the user to model various real-
world events appropriately. For instance strap-on solid propellant stages such as the
shuttle’s SRBs could be modeled as entities or resources. They are entity-like in that they
move from one place to another and access different resources (such as assembly facilities),
but they are also resource-like in that they are seized by the shuttle itself during the
integration, pad preparation, pad, and launch phases. It is the modeler’s responsibility to
appropriately model such situations.

Table 1. Basic Arena Definitions.

Term Definition
Model A combination of processes and process flows that represents a real-world scenario.

A typical model would include many different aspects of various scenarios such as
queues that correspond to various processes along with the various entities that
travel throughout the system.

Entity The fundamental driver of a simulation that represents what is using or accessing the
various processes. Entities travel throughout the simulation model and are generally
the dynamic pieces of the model that change throughout time.

Process A capture-all term that is used to define various stops along an entity’s path that
require the interaction with resources. Processes are used to model activities such as
interacting with a bank teller or using a launch pad.

Resource A resource is any external service or item that an entity needs to interact with during
a process. For example, if an entity goes through the process of interacting with a
bank teller, the actual teller is a resource. A particular manufacturing machine that is
accessed via a process is itself a resource. A resource is seized and released as
needed.

Attribute Attributes are pieces of information that are related to the various entities. A simple
example would be if balls were modeled as being either a red ball or a green ball.
One of the ball’s attributes would be the color.

Variable A variable is a model wide parameter that is not related to any one particular entity or
process. Variables can be updated through a simulation run as needed.

Expression An expression is similar to a variable in that it does not pertain to any one entity or
process, but differs in that it is generally used to model mathematical relationships or
statistical expressions.

 7

RLVSim Discrete Event Simulation

There are many modules that have been included in the basic and advanced process
templates, many of which are used on a constant basis. The Assign module is perhaps the
most commonly used of all, for it allows for manipulation of any attribute or variable. For
example, a cost attribute associated with each entity could be updated via an Assign module
every time an entity passes through. The Batch and Separate modules allow users to combine
and separate various entities either temporarily or permanently while specifying various
attributes of the entities to be included in the resulting entity batch. The Decide module can
be used as a decision point based on either a probability metric or a particular attribute,
variable, or expression value. The Record Module allows a particular metric to be updated
and reported at the end of the simulation run. For example, a Record module could be used
to tally a cost value associated with each entity once they have made it through a particular
process. The report automatically generated at the end of each simulation run can average
tally statistics recorded using the Record module. The Route module can be used for two
different purposes. First, it allows entities to transfer from one place in the logic stream to
another without having the modules directly linked, which can be used to better organize the
various modules. Second, Route modules can be used as animation markers for animated
simulation runs since they designate where various entities are sent in the model logic.

Table 2. Commonly Used Arena Modules.

Module Name Description
Create Used to create entities

Dispose Used to dispose entities
Process Used to seize and release resources as well as delay entities as

needed
Decide Used as a decision point in model logic based on probabilistic

choice or attribute or variable condition
Batch Used to combine entities into a single entity

Separate Used to separate a batched entity into its constituent pieces
Assign Used to manipulate attributes or variables every time an entity

passes through
Record Used to record tallies or counters that can be used to average

statistics at the end of the simulation
Delay Used to delay entities during logic flow
Hold Used to hold an entity in a queue until a specified condition is met

ReadWrite Used to read or write from an external file (i.e. Excel, Access, or
text file)

Release Used to release a seized resource
Seize Used to seize a resource
Route Used to route entities from one section of the model logic to

another

Table 2 contains a short description on many of the aforementioned commonly used Arena
modules. Listed are the modules used by the RLVSim model, in conjunction with several

 8

RLVSim Discrete Event Simulation

Blocks template modules, to simulate RLV turnaround vehicle processes appropriately.
Arena also includes several other templates such as “Factory Elements” and “Packaging”
that contain modules that are specific to logistic or manufacture industries.
 An Arena model is executed by using the “run” or “fast-forward” buttons located in
the top toolbar. Simulation speed can be increased or decreased as needed using buttons on
the toolbar or by using the “<” or “>” keys. The animation speed factor is displayed at the
bottom left-hand corner of the screen while adjustments are being made, and can range from
0.000010 to 100. If the speed factor is set to a low enough speed, the various entities can be
seen progressing through the model logic. If animation stations have been set up in a
separate animation area, the entity pictures can be seen moving from station to station. This
technique can be used to develop elaborate animations to demonstrate the model logic. If
the main purpose of a model is to generate model statistics, then animation should probably
be kept to a minimum since it does require extra time to run. Also, the run setup option
under “run” can be used to modify the simulation parameters such as number of
replications, the base time units to be used, replication length, warm-up period length, or
report generation options. After a model has been run, Arena waits for the “stop”
command to be given before resetting the model.
 Arena version 7.01 was utilized for the purposes of this project in conjunction with
Windows XP professional and a 2.8 GHz. Desktop PC with 512 MB of RAM. The model
was developed using Arena’s educational mode in order to allow any user to work with the
model without having to acquire a professional license. The textbook Simulation with Arena
by Kelton, Sadowski, and Sadowski (2004) contains a CD-ROM copy of educational version
of Arena, which allows any user to develop models, but with a ceiling on the number of
modules or SIMAN objects (attributes, variables, modules, etc.) that can be introduced to a
model. Arena version 7.01 was packaged with the third edition of the book, while the
upcoming edition will be packaged with Arena version 8.007. Version 8.0 will include
improvements such as ActiveX controls that allow dynamic interaction with simulation
runs, rotating symbols that allow for improved resource animation, increased macro-
recording capabilities, in addition to several other improvements8.

2.4 Discrete Event Simulation Theory
 Simulation theory is made up of several statistical techniques such as queuing theory.
The essence of DES according to a popular DES text is that it is “the modeling over time of
a system all of whose state changes occur at discrete points in time”9. State changes are
events that are considered changes in the model such as any time an entity is transferred
from one module to another, any time an attribute/variable is changed, or any time a
resource is seized or released. This is demonstrated by an Arena model’s clock as a

 9

RLVSim Discrete Event Simulation

simulation progresses. Instead of changing from day 1 to day 2 to day 3 and so forth,
assuming the model’s base time unit is set to days, the clock will jump from day 3 to day 52.5
or some other time based on what is happening in the system. This scheduling mechanism
is accomplished by using what can be called a “future event list”, or FEL9, or an “event
calendar”6. An FEL essentially keeps track of what is currently going on in the model during
each step. For example, if an entity enters into a process module and is delayed while seizing a
resource, the FEL will determine and keep track of how long that entity will be tied up in the
delay by predetermining the delay end date as soon as the delay starts. This determination is
achieved by pulling a random value from a specified distribution. Thus this technique is
called “Discrete Event” simulation, for everything that happens in the model does so on a
discrete step-by-step fashion. If two events are scheduled to happen at the exact same time,
they are executed serially based on when they entered in the FEL. This method can be used
to adequately model just about any real-world scenario, for even any event that takes place in
a continuous fashion such as fuel usage, object displacement, or power output, can generally
be modeled discretely.
 Much of DES is built upon queuing theory since entities spend almost all of their
time either using a resource or waiting in a queue of some sort. Arena’s queues usually
operate in a first-in, first-out (FIFO) fashion, meaning that entities are modeled like cars at a
red-light. The first car to the light is the first one that proceeds through when the light turns
green. In an Arena model, entities arrive at a resource and wait in the queue until that
resource is open for use. The entity that arrives at the resource first gets access to the
resource before others. The exceptions to this rule are when resources are seized based on
priorities or when entities of a certain type are batched out of a batching queue based on
some attribute. The time that is spent in various queues can be summarized by the following
equation6:

Average time in queue =
N

WQ
N

i
i∑

=1 (1)

where WQi is the ith entity’s waiting time in a particular queue, and N is the number of
entities that enter the queue during a simulation run. The automatically generated Arena
report contains average waiting times for all queues in the model by using this equation. It is
useful in that it provides a means of identifying where entities are spending their time in the
system. The report also provides a minimum and maximum waiting time experienced by
entities.
 Another beneficial queuing theory calculation6 that is used by the report generator is
the time-average number of parts waiting in the particular queues:

 10

RLVSim Discrete Event Simulation

Time-average number waiting in queue =
L

dttQ
L

∫
0

)(
 (2)

where Q(t) is the number of parts in the particular queue at time t and L is the simulation
length in base time units. This statistic adds visibility to where the bottlenecks are occurring
in any particular simulation, as well as what kind of facility space needs to be allocated to the
resource. For example if a simulation of banking transactions indicates that the time-average
number of people waiting for a teller is 10 people, then adequate space for at least 10 people
should be made in the waiting lines. The automatically generated report also includes the
minimum and maximum values for these statistics.
 Queuing theory, while simple in nature, can provide powerful insight into what is
happening in a particular system or model. The most problematic occurrence in any model
is extensive queue times, since these drive overall throughput and usually capture a majority
of an entity’s life.
 Resource utilization is another area that is vital to simulation studies. If entities are
not waiting in some sort of queue, then they are probably busy interacting with a resource
(assuming transfer times are minimal). Resources are assigned a capacity either on a fixed-
capacity basis or by schedule. A resource’s capacity is a direct modeling translation to how
many entities with which the modeled machine/person/etc. can interact. The capacity of a
teller resource will usually be one, while an automotive repair shop may be able to dual-
process two vehicles at the same time. Long queue lines can usually be related to very high
utilization metrics for queues, while very low utilization numbers can be seen as identifiers
for overly-equipped resources. If a resource's capacity is representative of the number of
employees on-shift, then a low utilization number may indicate that the scheduled shift is
over-manned. The basic resource utilization metric can be calculated as follows6:

Average resource utilization =
L

dttB
L

∫
0

)(
 (3)

where B(t) is equal to 1 if the resource is busy or 0 if the resource is idle at time t and L is the
simulation length in base time units. The Arena report provides this metric along with the
maximum and minimum utilization values for each resource in a particular Arena model.
 The Record module in Arena is commonly used to record user-specified metrics in the
simulation report based on entity-related attributes such as an arrival time, or in some cases a
replication specific value such as a total cost. Every time an entity passes through the Record

 11

RLVSim Discrete Event Simulation

module, the specified metric is recorded and averaged by the numbers of entities that have
passed through. This holds true whether the simulation is replicated one or many times.
The report documents the average, minimum, minimum average, maximum, and maximum
average value of all of the user-specified metrics.
 The Arena simulation report also contains “half-widths” for every metric that is
presented. These half-widths are actually 95% confidence interval half-widths that were
calculated using the following6:

95% confidence interval half-width =
n
s

n 2/1,1 α−−t (4)

where tn-1,α/2 is the upper 1- α/2 t-statistic critical point with n-1 degrees of freedom, s is the
sample standard deviation, and n is the number of samples. Sometimes the report will
present a half-width as “insufficient”, which means that there were not enough data points
for the equation to be accurate. A 95% confidence interval is a normal distribution related
concept, so there is an inherent assumption that the data points are normally distributed.

Upper BoundLower Bound

Sample Average

95% of Samples Contained

Half-Width Upper BoundLower Bound

Sample Average

95% of Samples Contained

Half-Width

Figure 1. 95% Confidence Interval Half-Width on a Normal Distribution.

The Central Limit Theorem in statistics10 stages there has to be a certain minimum of data
points in order for a normally distributed trend to appear in data. If there are not enough
data points for this to happen, then Arena declares the half-width fields as “insufficient”.

 12

RLVSim Discrete Event Simulation

Sample Average
()

n
stn 2/1,1 α−−

Lower Confidence
Interval Bound

Upper Confidence
Interval Bound

Sample Average
()

n
stn 2/1,1 α−−

Lower Confidence
Interval Bound

Upper Confidence
Interval Bound

Figure 2. 95% Confidence Interval Half-Width.

 Arena allows any time-related event to be distributed in just about any type of
distribution the user sees fit. The major choices presented to the user are beta, erlang,
exponential, gamma, johnson, lognormal, normal, poisson, triangular, uniform, and weibull.
If a user wishes to gather random data from a distribution not mentioned above, then the
user can code in the probability density function (PDF) of that distribution. The three major
distributions used in RLVSim model are the exponential, normal, and triangular
distributions. Only the arrival times of the initial set of orbiters and booster stages are
modeled as exponential, which only happens a few times in each simulation run, so this
distribution is not overly important. Exponential is Arena’s default distribution for such
cases since it only requires a nominal mean value. The normal distribution is used only in
the sense that the output data points have to behave normally distributed in order for the
aforementioned half-widths to be calculated. The triangular distribution is what is used to
model all time distributions, and is a good representation of real-world occurrences since the
physics of the problem usually dictate a minimum value that can be achieved. Figure 3
contains the PDF for a triangular distribution. The basic parameters are the minimum value
(a), the most likely value or mode (m), and the maximum value (b).

 13

RLVSim Discrete Event Simulation

f(x)

0
a m b















−−
−

−−
−

=
))((

)(2
))((

)(2

)(
abmb

xb
abam

ax

xf

0

for a = x = m

for m = x = b

otherwise

f(x)

0
a m b















−−
−

−−
−

=
))((

)(2
))((

)(2

)(
abmb

xb
abam

ax

xf

0

for a = x = m

for m = x = b

otherwise0

for a = x = m

for m = x = b

otherwise

Figure 3. Triangular Distribution Probability Density Function.

The triangular distribution is useful in that it bounds the range of possible values, and can be
used to weigh the randomization process towards either bound.
 Although discrete event modeling uses a heavy amount of stochastic data generation,
any computer generated random number is not truly “random” in the sense that it is not
completely a spontaneous occurrence. Computers actually rely on pseudorandom-number
generators that use complex algorithms that create the appearance of random numbers, but
provide quite repeatable results. In fact, these numbers will pass any sort of statistical
distribution test and are no different than a true random number for most intents or
purposes. The benefit from this is that the generations are repeatable, allowing for easier
debugging. If an Arena model is set to only replicate once, and no variables or any other
model specific parameters are changed, every run will result in the same results. A constant
random number seed is used during every run that causes the same “random” numbers to
reoccur. When a simulation is replicated, a different seed stream is chosen each time, which
creates the variability that is essential for the report calculations. Recent versions of Arena
use a complex random number generator (RNG) called a combined multiple recursive
generator6 (CMRG) which uses the following:

)4294967087mod()8107281403580(32 −− −= nnn AAA

)4294944443mod()1370589527612(31 −− −= nnn BBB

 (5a)

 (5b)

 Z (5c) 4294967087mod)(nnn BA −=





=
>

=
0,4294967088/4294967087

0,4294967088/

n

nn
n Z

ZZ
U (5d)

 14

RLVSim Discrete Event Simulation

Where A and B are a six-vector stream of seeds and Un is a random number between 0 and
1. The CMRG is a recently developed technique that generates a random number stream
cycle that has a length of 3.1 * 1057. Arena further breaks this stream down into substreams
that are used uniquely during each replication of a model.

 15

RLVSim RLVSim Arena Model

3.0 RLVSim Arena Model
The RLVSim Arena model uses a variety of Basic Process, Advanced Process,

Advanced Transfer, and Blocks modules to model the turnaround operations of typical
single or two-stage reusable launch vehicles. Many vehicle and model specific parameters
can be changed to parametrically study the output metrics. These metrics consist of average
vehicle turnaround, average vehicle recurring cost per flight, total recurring cost per
simulation, total launches per replication, average launches per year, and the average loss of
vehicle (LOV) rate. The model can be used in either of three different fashions: single
replication run (for use with multidiscipline design suites such as Phoenix Integration’s
ModelCenter® and debugging), a Monte Carlo run (multiple replications), or a single run
with Excel output (to view processing schedules).

3.1 RLVSim Arena Model Logic
The RLVSim model consists of logic modules that provide a high-level modeling of

RLV turnaround operations as well as various mechanisms used to record the cost and
turnaround metrics of interest. The different entities that represent either an orbiter or a
booster proceed through the processing, integration, runway/pad, ascent, and depot
maintenance phases of the operations.

Integration

Processing
(OPF)

Processing
(BPF)

Ascent

Orbiter
Mission

Booster
Mission

Landing

Landing

Integration

Processing
(OPF)

Processing
(BPF)

Ascent

Orbiter
Mission

Booster
Mission

Landing

Landing

Integration

Processing
(OPF)

Processing
(BPF)

Ascent

Orbiter
Mission

Booster
Mission

Landing

Landing

IntegrationIntegration

Processing
(OPF)

Processing
(BPF)

Processing
(OPF)

Processing
(OPF)

Processing
(BPF)

Processing
(BPF)

AscentAscent

Orbiter
Mission

Booster
Mission

Orbiter
Mission
Orbiter
Mission

Booster
Mission
Booster
Mission

Landing

Landing

LandingLanding

LandingLanding

Orbiter Entity

Booster Entity

Figure 4. Top-Level Process Flow.

The three major phases all have a cost per day factor associated with them that is

used to determine the variable cost per flight based on the number of days the orbiters
spend in each of the facilities. Each time an orbiter or booster entity arrives at a particular

 16

RLVSim RLVSim Arena Model

facility, Arena draws a random value from the assigned triangular distributions and places
that entity in a delay for that specified amount of time. If an orbiter or booster arrive at a
facility resource that is already in use (utilization = 1), then they wait in a queue until that
resource becomes available.

Figure 5. RLVSim Screen Capture – Entire Model.

Because the waiting time in the queues can become a significant portion of the orbiter’s time
spent in the process flow, the user has two options regarding how to treat the variable cost
while in queue. The first is straightforward in that waiting times in the queues are
considered part of the times spent at the facilities, which usually becomes the costliest of the
options. For example if an orbiter arrives at the OPF but has to wait for two weeks for
another orbiter to finish processing in the OPF and transfer to the integration facility, those
two weeks of wait are included in the total time the arriving orbiter spends at the OPF.
These two weeks are also included when the total time is used in conjunction with the
processing cost per day factor to generate that launches’ variable cost. This logic does not
accurately reflect real-world operations since the primary cost of using a facility consists of
the payroll of technicians and maintenance workers that operate on the vehicle. If a vehicle
is waiting for a facility, then no work is generally being performed, therefore the cost per day
should not be anywhere near that of when the vehicle is currently being worked on. The
RLVSim model presents users with a trigger that allows them to choose a second option that
reduces the cost associated with waiting for facilities. The “Cost Incurred Outside of

 17

RLVSim RLVSim Arena Model

Facilities” trigger on the user input form, which will be discussed in section 3.2, can be
turned off (“No”) so that facility waiting times are tracked separately than facility times
themselves. There is also an option in the user form that allows users to select what kind of
factor should be used in conjunction with the cost per day factors in order to determine
what kind of cost, if any, should be incurred while vehicles wait for facilities to become
available.

Figure 6. RLVSim Screen Capture - Integration Phase.

In order for the model to be able to track waiting times outside of the facilities and
not have the waiting times included with the total facility time, separate queues were
established using Hold modules to keep vehicles in place until the facility utilizations are less
than one. A utilization of less than one allows a facility to take in another vehicle. This
modeling technique renders the queues that are directly associated with the resources useless,
therefore their statistical information is not contained in the simulation report. For example,
orbiters waiting to use the OPF wait in the Orbiter Processing Hold Queue instead of the Orbiter
Processing Facility Queue. Another reason that the logic is modeled this way is because the
integration batching process that batches the orbiter and booster entities has to ensure that
two incoming entities are one orbiter and one booster instead of two of one type. A Hold
module is used to contain booster entities until an orbiter is actually in the batching module.
 In order to model real-world events associated with RLVs, a loss of vehicle (LOV)
decision was also included in the model that requires a user or baseline provided vehicle
reliability to stochastically model catastrophic failures. This feature can be turned on and off

 18

RLVSim RLVSim Arena Model

by a trigger in the user form and can also be further modified by identifying in the user form
whether or not a replacement vehicle will be introduced in the fleet. If the replacement
vehicle option is activated, a user-specified replacement time will dictate how long the fleet
operates at a diminished size until a new vehicle is introduced into the model. Since
RLVSim is only concerned with vehicle operation costs as opposed to development and
manufacturing costs, the introduction of replacement vehicles into the system does not incur
any extra cost. Replacement vehicles will be introduced into the system only when an LOV
occurs in order to maintain the specified starting vehicle count.
 In addition to the basic process flow in Figure 4, there is a section in the logic that
models the off-ramp depot maintenance periods that typical RLVs go through in order to
maintain vehicle health. The user has the option to turn this feature on and off in the user
input form, which will dictate whether the orbiter entities enters this phase of model logic.
If the trigger is turned on, then a counter is used to determine whether or not a depot
maintenance visit is needed based on a user-provided missions-per-depot-maintenance field.
The user also has the ability to change the cost incurred every time a depot maintenance visit
is called for, as well as specify a statistical distribution (triangular) to be used to determine
the duration of depot visits.

3.2 Model Input Form and General Usage Guidelines
When the model is run, a Visual Basic for Applications (VBA) coded user-form

prompt asks the user which run method is desired. Figure 7 contains the first of two pages
that the user has to populate in order to run the model.

Figure 7. RLVSim Input Form – Page 1 of 2.

 19

RLVSim RLVSim Arena Model

The “Run Control” box contains the three run types that are available. The Single Run
option replicates the model only once and prompts the user as to whether they want to view
the output report or not. The Monte Carlo Run option replicates the model twenty times in
order to generate enough data points so that half-widths can be correctly calculated. The
Single Run with Excel option replicates the model only once, but it exports detailed data on the
first fifty launches to the Excel file specified in the RLVSim Excel Output Filename box. The
Excel file has to be a version of the one developed for use with this model or else an error
will occur.
 The “Baseline” box contains three options pertaining to three different scenarios
that can be used. The first scenario is a blank template where the user has to input all of the
data from scratch (second page contains the vehicle input form). The second option is the
current Space Transportation System (STS) baseline. The values for the inputs were
generated using the STS-baseline setup of NASA’s AATe. The third option pertains to an
unmanned TBCC TSTO concept vehicle called Aztec11 that was developed by Georgia
Tech’s Space Systems Design Lab (SSDL).

Figure 8. RLVSim Input Form – Page 2 of 2.

 20

RLVSim RLVSim Arena Model

Figure 8 contains a screen capture of the second page of the user input form. In this
particular instance the fields are populated since the STS baseline option was chosen on the
prior screen. A short description of each of the fields can be seen in Table 3.

Table 3. User Input Form Fields.

Field Name Units Description
Fleet Size Vehicle Fleet Size

Number of Stages Number of vehicle stages (1 or 2)
Depot Maintenance? Boolean trigger for off-ramp vehicle

maintenance
Missions Per Depot Maintenance Number of missions between off-ramp vehicle

maintenance (if applicable)
Vehicle Reliability Vehicle reliability in 0.xxx format

Vehicle Replacement Boolean trigger for LOV vehicle replacement
Replacement Manufacture Time Days Manufacture time for LOV vehicle replacement
Processing Facility Cost Per Day FY04 $M Cost per day for vehicle in processing facility
Integration Facility Cost Per Day FY04 $M Cost per day for vehicle in integration facility

Runway/Pad Cost Per Day FY04 $M Cost per day for vehicle on runway/pad
Depot Maintenance Cost FY04 $M Off-ramp depot maintenance cost incurrence

Cost Incurred Outside of Facilities? Boolean trigger for full-cost incurrence while
waiting for facility use

Queue Cost Factor Cost factor to cost per day rate while vehicle is
waiting in queue

Orbiter Processing Facility Capacity OPF capacity
Booster Processing Facility Capacity BPF capacity

Integration Facility Capacity Integration facility capacity
Runway/Pad Capacity Runway/pad capacity

Orbiter Processing Facility Time Days OPF time in triangular distribution format
Integration Facility Time Days Integration time in triangular format

Orbiter Mission Time Days Orbiter mission time in triangular format
Booster Processing Facility Time Days BPF time in triangular format

Booster Mission Time Days Booster mission time in triangular format
Runway/Pad Time Days Runway/pad time in triangular format

Depot Maintenance Time Days Depot maintenance time in triangular format
Fixed Cost Minus Facility Costs FY04 $M Fixed per year operational costs for items such

as cargo processing, traffic control, logistics,
etc.

Launch Facility Cost FY04 $M Fixed per year cost of launch facilities
Processing Facility Cost FY04 $M Fixed per year cost of processing facilities
Integration Facility Cost FY04 $M Fixed per year cost of integration facilities

Landing Facility Cost FY04 $M Fixed per year cost of landing facilities

As mentioned before, there are two baselines that can be selected to use as a starting point.
Both the STS and the Aztec are reusable launch vehicles, but they differ in the number of
stages and how they are treated operationally. STS is a legacy-type system that has been used
for over twenty years and was built using late 1970s technology that forces the turnaround to
be approximately 90 days. Aztec on the other hand is a next-generation type vehicle that
generally takes approximately nine days to turnaround and relaunch.

 21

RLVSim RLVSim Arena Model

Table 4. STS and Aztec Baseline Settings.

Field Name STS Baseline Aztec Baseline
Fleet Size 3 2

Number of Stages (Orbiter/Booster Stages) 1 2
Depot Maintenance Yes Yes

Missions Per Depot Maintenance 8 8
Vehicle Reliability 0.998 0.9995

Vehicle Replacement No No
Replacement Manufacture Time (days) 365 100

Processing Facility Cost Per Day (FY04 $M) 1.571859 0.77815
Integration Facility Cost Per Day (FY04 $M) 1.008731 0

Runway/Pad Cost Per Day (FY04 $M) 2.106812 0.54264
Depot Maintenance Cost (FY04 $M) 108 11
Cost Incurred Outside of Facilities No No

Queue Cost Factor 0 0
Orbiter Processing Facility Capacity 2 20
Booster Processing Facility Capacity 0 20

Integration Facility Capacity 2 20
Runway/Pad Capacity 2 2

Orbiter Processing Facility Time (days) TRIA(46.50, 62.00, 77.50) TRIA(5.07, 6.76, 8.45)
Integration Facility Time (days) TRIA(4.20, 5.61, 7.01) 0

Orbiter Mission Time (days) TRIA(7.5, 10, 12.5) TRIA(1.5 ,2, 2.5)
Booster Processing Facility Time (days) 0 TRIA(5.07, 6.76, 8.45)

Booster Mission Time (days) 0 TRIA(0.375, 0.5, 0.625)
Runway/Pad Time (days) TRIA(17.88, 23.83, 29.80) TRIA(1.71 ,2.27, 2.84)

Depot Maintenance Time (days) TRIA(265.5 ,354, 442.5) TRIA(26.23, 34.98, 43.72)
Fixed Cost Minus Facility Costs (FY04 $M) 1882.188 75.051

Launch Facility Cost (FY04 $M) 9.887 0.599
Processing Facility Cost (FY04 $M) 12.998 1.93
Integration Facility Cost (FY04 $M) 4.959 0

Landing Facility Cost (FY04 $M) 6.965 0.455

Table 4 contains the baseline settings for both baseline vehicles that are hard-coded into the
VBA code that generates the user form. A user can choose either of these two options and
change any fields needed, or can start from scratch using the “No Baseline” option.
However, there are some general guidelines that have to be abided by when using the forms
and general version of the model:

1. Facility capacities have to be greater than zero or else entities will queue permanently
in the model (premature simulation termination). If a particular configuration does
not require an integration facility or dedicated processing facility, then the
distribution times for said facilities should be set to zero and the capacity set to a
high value, such as 20, that will prevent the seizing of that particular resource from

 22

RLVSim RLVSim Arena Model

becoming a bottleneck. The exception to this rule is single stage vehicles that negate
the need for a booster processing facility altogether (capacity can be a zero).

2. All fields in the user forms must be populated or else a VBA error will occur that will
terminate accurate data generation.

3. The Excel access mechanism will not perform properly if a copy of Excel is running
in the background or foreground during the “Single Run with Excel” option. To
ensure that the model runs correctly and that data is successfully populated in the
Excel spreadsheet, it is recommended that the model be closed and reopened after
several runs. Almost all problems regarding the model’s failure to access the RLVSim
spreadsheet can be corrected by closing all related programs (Arena and Excel),
terminating any instances of Excel running in the background (Processes tab under
Windows Task Manager – Ctrl-Alt-Delete), and reopening the model. The “Single
Run with Excel” option actually opens the specified Excel spreadsheet before
execution, so there is no need to have the RLVSim spreadsheet already open when
the model is executed.

4. The “RLVSim Excel Output Filename” field has to be correctly populated with the
filename of the RLVSim spreadsheet that should be located in the same folder as the
model. The original filename for this spreadsheet is “RLVSim_ver1.xls”, but can be
changed if needed necessitating that this field be changed to the new name when the
model is run in Excel output mode.

5. Modification of the Arena modules can lead to unpredictable results since many
modules are specially labeled using “tags” in order to be accessed by the VBA code.

3.3 Single Run Mode
 The single run mode is set up to replicate the model only once and prompt the user
as to whether or not to display the report. A single run rarely generates enough data-points
for Arena to be able to compute the 95% confidence intervals, so the data presented in the
report is highly variable. This mode is useful if a user wishes to slow down the animation
factor in order to view the entities proceeding through the model logic, which can be
assisted by checking the “Highlight Active Module” option under the “Run Control”
options under the “Run” option on the toolbar. Even though this mode does not generate
confidence intervals on the statistics due to lack of data points, it is useful in analyses that
focus on trends and sensitivities. Some trade studies that demonstrate how this option can
be useful in this manner will be discussed in a later section.

 23

RLVSim RLVSim Arena Model

3.4 Monte Carlo Mode
 The Monte Carlo mode is similar to the single run mode in every way except that the
model is set-up to be replicated 20 times. By replicating the model 20 times enough data
points are generated for the 95% confidence intervals to be calculated. The average values
that are presented in the report are averaged over each of the occurrences within a single
replication (such as each launches turnaround time) as well as over all 20 replications. When
the simulation is complete, the user is prompted as to whether or not to display the report.

Figure 9. RLVSim Report Screenshot (Queue Statistics).

The report for this simulation is usually five pages long (using Arena version 7.01) and
contains statistics regarding the Queues, the facility resources, as well as the tally averages
that document the costs. Figure 9 contains a screenshot of the second page of the report,
which documents some of the queue statistics. The first section documents the average
waiting times associated with each of the queues. In Figure 9, only the Orbiter Processing Hold
Queue is displayed in the top area because this is the only queue that had any entities in wait
during the entire simulation. This is due to the orbiter processing time being the longest of
any phase. It can be seen in the circle in Figure 9 that the orbiters wait for an average of
12.2065 days to use the OPF. This number would be higher had the fleet size been larger or
smaller if the OPF had a higher capacity rate. The bottom section of the second page of the
report pertains time-average number of entities waiting in the various queues.
 The third, fourth, and fifth pages of the RLVSim report contain data concerning the
facility resources in the model. The third page of the STS report contains an “Instantaneous
Utilization” metric that is the time-weighted average of the utilization (number busy/number
scheduled). There is also a “Scheduled Utilization” metric on the fourth page that is
essentially the same utilization figure but uses the average number scheduled capacity as

 24

RLVSim RLVSim Arena Model

opposed to the instantaneous number scheduled. Since the scheduled capacity never
changes in the RLVSim model, these two metrics are the same. The third page also
documents the average number busy in each of the resources. This pertains to how many
units of the resources’ capacity, such as the number of OPF bays, are in use on average. The
fourth and fifth pages contain further documentation regarding the assigned resource
capacities as well as the average number seized over the 20 replications.
 The essential part of the RLVSim report is the last section, which provides tally
averages for each of the five statistics that are recorded in the model. This section can be
seen in Figure 10.

Figure 10. RLVSim Report Screenshot (Tally Averages).

These five tally averages that are documented in the last section each pertain to a Record
module placed in the model. Every time an entity passes through each of these record
modules the tally is incremented by the designated amount and averaged. The three tallies
that pertain to a global replication variable such as the Total Cost per Replication tally are
recorded by creating a dummy entity at the end of the simulation (day 7300) that is
immediately assigned the three global variables of interest so that the three Record modules
the entity passes through can record the tally averages. Table 5 documents each of the five
tally statistics along with a short description of each.

 25

RLVSim RLVSim Arena Model

Table 5. RLVSim Tally Statistic Descriptions.

Expression Units Description
LOV Count per Replication The average number of vehicles lost during each

replication
Mission Cost per Launch FY04 $M The variable cost associated with each launch
Total Cost per Replication FY04 $M The total variable and fixed cost sum associated with

each simulation run
Total Launches per

Replication
 The total number of launches per replication

Turnaround per Launch Days The average number of days for vehicle
turnaround

The LOV Count per Replication, Total Launches per Replication, and the Turnaround per Launch
averages are self-explanatory. The Mission Cost per Launch is the variable cost value associated
with each launch that is calculated using the number of days in each facility along with the
corresponding CPD values. This value does not take into account any fixed costs nor depot
maintenance costs. The Total Cost per Replication encapsulates every cost associated with each
replication. This is the total cost, both fixed and variable, and depot maintenance costs, of
the entire 20-year simulation span. This value is updated with the variable costs after every
launch, and is updated with the total fixed cost (twenty times the fixed cost per year value) at
the end of each replication. A useful figure of merit is the operations cost per flight, which
can be calculated by dividing the Total Cost per Replication by the Total Launches per Replication
figure. This new figure will be representative of all of the costs incurred for each flight.
Averaging the Total Launches per Replication by the 20-year simulation length also provides the
average number of flights per year, which is also a commonly tracked figure of merit in LCC
studies. The average number of flights per year represents the maximum achievable
throughput for a vehicle for a particular fleet size and facility resource capacity. Since the
Arena report generator is only capable of tallying specified statistics, the operations cost per
flight and the average number of flights per year have to be calculated by hand when using
RLVSim in this mode.

3.5 Single Run with Excel
 The third run option that the user is presented with when running the RLVSim
model is a single run with an Excel output. An Excel output file (“RLVSim_ver1.xls”)
was developed for Arena model to access and write detailed results pertaining to
turnaround and cost metrics for the first 50 flights of the simulation run. Since a
significant number of output variables are being exported from Arena and written to
Excel in real-time with the model’s execution, CPU memory limitations become a factor
dictating that only the first 50 records be written. Any depot maintenance visits during

 26

RLVSim RLVSim Arena Model

the first 50 flights are also recorded on a separate worksheet. Table 6 lists the twenty-two
variables that are output each time an orbiter completes its turnaround operations.

Table 6. RLVSim Excel Output - Simulation Results Worksheet.

Mission Number Processing End Mission Start
Orbiter Number Total Integration Time Mission End

Mission Variable Cost Integration Start OPF Wait Time
Total Turnaround Time Integration End Integration Wait Time

Turnaround Start Total Runway Time Runway Wait Time
Turnaround End Runway Start Total Wait Time

Total Processing Time Runway End
Processing Start Total Mission Time

The Queue Cost Trigger in the user input form dictates how waiting times are treated. If the
trigger is set to a one, then all wait time columns on the Excel output sheet will be zeroes
since the waiting time will be batched with the time spent at each of the resources. If the
trigger is set to a zero, then the waiting times will be populated and the mission variable cost
value will be incremented appropriately based on the Queue Cost Factor setting. If a vehicle is
lost during a mission and the Vehicle Replacement Trigger is set to one, then a new vehicle will
appear in the schedule after the user-specified length of time. The additional vehicle will be
assigned a vehicle number consistent with the number that have already been introduced
into the system. For example, if vehicle two of a four-vehicle fleet is lost then the new
vehicle that is introduced will be vehicle five. The following is a list of the six depot
maintenance-related output variables that are written to the second tab (“Depot
Maintenance Schedule”) of the RLVSim Excel sheet:

• Orbiter Number
• Depot Cost
• Depot Time
• Depot Start
• Depot End
• Mission Number

The mission number that is associated with each visit is the mission immediately following
the maintenance visit. The depot cost value that is populated in the sheet will always be a
constant value since no distribution has been placed on depot maintenance. The Excel
output sheet also has a third worksheet tab (“Average Facility Time Breakdown”) that
contains a pie chart depicting the time percentages of each of the major turnaround facilities

 27

RLVSim RLVSim Arena Model

as well as the time spent in waiting. These percentages are the averages of the fifty flights
that were populated in the Excel sheet.

3.6 Baseline RLVSim Results
Both baselines were evaluated using both the Monte Carlo and single run with Excel

analysis options. The Excel outputs for both configurations can be seen in Appendix B.
The Monte Carlo simulation results for the STS baseline are shown in Table 7.

Table 7. STS Baseline Results.

Tally Statistic Average Value Units
LOV Count per Replication 0.2000

Mission Cost per Launch 111.79 FY04 $M/launch
Total Cost per Replication 58,156.91 FY04 $M

Total Launches per Replication 155.15
Turnaround per Launch 96.9195 Days

Total Ops Cost per Mission 374.843 FY04 $M

Flights per Year 7.7575 Flights/year

The RLVSim model predicted that the total operations cost for the twenty-year simulation
would be $58,157 million. When averaged over the 155.15 predicted flights this value came
out to be approximately $375 million, which encapsulates all variable costs associated with
the mission, the full fixed costs associated with the mission, as well as the any depot
maintenance costs that are averaged into each flight. This value is consistent, but on the low
end of typically quoted values for STS missions (generally $300-600 million). This can be
explained by the slightly high flight rate of 7-8 flights a year. RLVSim predicts what can be
achieved based on the provided fleet size but payload market demands usually dictate lower
launch rate demands. Since the fixed costs are averaged over all of the flights, the total
operations cost per flight figure decreases as flight rates increases. If RLVSim had predicted
that STS could launch only four-five times at most based on the current fleet, then the ops
cost per flight would be slightly higher and into the commonly quoted $400-500 million
range.

 28

RLVSim RLVSim Arena Model

64%6%

24%

6%
Processing Facility
Integration Facility
Runway/Pad Facility
Waiting Time

Figure 11. STS Average Facility Dwell Time Percentage Pie Chart.

Error! Reference source not found. depicts a pie chart that is representative of the
percentages of each of the phases versus the overall turnaround time. It can be seen that the
orbiters spend about 64% of their turnaround time in the OPFs, while only 6% of the time
is spent in the integration facility. This pie chart also demonstrates that the orbiters spend
about 6% of their time waiting for one of the facilities to become available.
 The Aztec baseline resulted in a total ops cost of $8,724.84 million for the entire 20-
year simulation (Table 8). This cost translates to a $9.6370 million cost when divided over
the 905 flights. Aztec certainly achieves a much higher flight rate than STS because it takes
on average 9.6 days to be readied for relaunch. Because of the high flight rate, the average
LOV count for Aztec is higher than that of the STS baseline despite Aztec having a higher
reliability. An Aztec fleet size of two can achieve a maximum of approximately 45 flights per
year based on the baseline assumptions.

Table 8. Aztec Baseline Results.

Tally Statistic Average Value Units
LOV Count per Replication 0.4500

Mission Cost per Launch 6.4963 FY04 $M/launch
Total Cost per Replication 8,724.84 FY04 $M

Total Launches per Replication 905.35
Turnaround per Launch 9.2654 Days

Total Ops Cost per Mission 9.6370 FY04 $M

Flights per Year 45.268 Flights/year

 29

RLVSim RLVSim Arena Model

It can be seen in Figure 12 that the Aztec orbiters spend about 71% of their time in

the processing facility while spending only 24% of their time on the runway/pad. Only 5%
of the time is spent in waiting due to baseline assumptions that Aztec has a three-vehicle fleet
with a dual-processing facility capability. The primary different between the Aztec facility
percentage pie chart and that of STS (Error! Reference source not found.) is that Aztec
spends no time in any sort of integration facility, which is consistent with the model’s
assumption that Aztec is integrated on the runway/pad.

71%
0%

24%
5%

Processing Facility
Integration Facility
Runway/Pad Facility
Waiting Time

Figure 12. Aztec Orbiter Average Facility Dwell Time Percentage Pie Chart.

 30

RLVSim RLVSim ModelCenter® Capability

4.0 RLVSim ModelCenter® Capability
 ModelCenter® is a multidisciplinary design suite that allows users to incorporate
many different types of tools (Excel, Fortran code, etc.) into one framework in order to
parametrically study complex designs. Using VBScript code in a ModelCenter®
ScriptWrapper, Arena models can be integrated into the framework in order to be used
along with other tools. For instance, an Arena model’s variable values, expression values,
process distribution time, etc. can all be updated with results from an Excel-based tool in a
rapid manner that allows various trade studies or even numerical optimizations to be
performed. Such a VBScript ScriptWrapper was written for the RLVSim model in order to
be able to perform trade studies, such as optimizing fleet size based on facility capacities.
The ScriptWrapper utilizes the ActiveX Automation6 technology to allow ModelCenter® to
manipulate not just the various modules inside the RLVSim model but also the Arena run
controls that dictate the running of the simulation. When Arena is installed on a computer,
its object library is added to the list of object libraries registered with the local Windows
system. VBScript codes should then be able to utilize the Visual Basic commands associated
with the object library, and typical Windows applications like Excel can do so through VBA.
In fact, the user input forms that are presented to the user when the simulation model is
executed were built using Excel VBA code that utilizes the Arena object library.

4.1 RLVSim ScriptWrapper Details
 The code for the ModelCenter® ScriptWrapper (“RLVSim_ver1.ScriptWrapper”) can
be fully seen in Appendix C. It is written in similar fashion to the user input form in that the
user has a choice between three options (a new concept, Aztec, or STS). The primary
difference is that if a user selects Aztec or STS, the only ModelCenter® input variables that
can be changed and still influence the model are the fleet size and facility capacity values.
The other model input-specific values become obsolete when a “ConceptChoice” of 2 (STS)
or 3 (Aztec) is chosen. The script is setup this way to allow users to perform trade studies on
either of the two baselines regarding fleet size versus facility capability settings. The first
choice, the new concept choice, is set up by default to have STS values. The user is free to
change any of the inputs to see the impact on the resulting output metrics. The first choice
is also used in conjunction with the RLVSim version for AATe that has been modified from
the original AATe to output RLVSim specific parameters such as the cost per day and fixed
facility cost values. The ScriptWrapper outputs the same tally statistics as the RLVSim
report, as well as an AverageCostPerYear and OpsCostPerFlight metric. The AverageCostPerYear
value is the average of the total cost over the 20-year span. The OpsCostPerFlight is the total

 31

RLVSim RLVSim ModelCenter® Capability

cost incurred, fixed and variable, for each flight that is calculated by dividing the total cost by
the number of flights achieved.
 The ScriptWrapper specifically controls the RLVSim model by opening the RLVSim
model file, updating all of the fields that would normally be updated by the user input form,
and fast-forwarding the simulation. Once the simulation is complete the tally statistics are
retrieved from their SIMAN-related model records and the model is saved and closed. It
should be noted that several changes need to be made to the RLVSim model before the
ScriptWrapper will successfully run the model:

• While open, the model’s report generator has to be set to “never” so that the report
prompt will not interfere with ModelCenter® execution. This can be achieved by
specifying this particular option on the “Reports” tab in the “Run Setup” options
(under “Run” on toolbar). This change does not have to be reset in order for
normal operation of the RLVSim model since the VBA user input form sets it
appropriately.

• The user input form has to be turned off in order for the ModelCenter®
ScriptWrapper to operate correctly. This is achieved by clicking on the “Basic
Process” module template, choosing the “Variable” module, clicking on the “Initial
Value” box on the “User Form Trigger” variable, and setting the value to zero. This
change will have to be reversed before normal operation of the RLVSim model since
it prevents the user input form from being prompted when the simulation is run.

• Likewise, the “Excel Output Trigger” has to be set to a zero to prevent the model
from writing to the RLVSim Excel file during ModelCenter® use. This change will
be reset any time the model is run with the “User Form Trigger” set to a one.

4.2 RLVSim & AATe Integration
 The modified version of AATe (AATe_RLVSim_ver.xls) and the AATe
ModelCenter® ExcelWrapper were modified to allow ModelCenter® to receive the RLVSim
specific values from the output page. The output variables of interest are tabulated in Table
9.

 32

RLVSim RLVSim ModelCenter® Capability

Table 9. RLVSim Related AATe Output Variables.

Output Name Units Description
LaunchfacilityTime_cf Days Curve-fit launch facility time

LandingFacilityTime_cf Days Curve-fit landing facility time
ProcessingFacilityTime_cf Days Curve-fit processing facility time

IntegrationFacilityTime_cf Days Curve-fit integration facility time
BaseFixedOpsCost FY04 $M Fixed cost per year minus fixed facility

maintenance cost
FixedLaunchFacilityCost FY04 $M Fixed launch facility cost per year
FixedLandingFacilityCost FY04 $M Fixed landing facility cost per year

FixedTurnaroundFacilityCost FY04 $M Fixed turnaround facility cost per year
FixedIntegrationFacilityCost FY04 $M Fixed integration facility cost per year

LaunchCPD FY04 $M/Day Launch facility cost per day per year
TurnaroundCPD FY04 $M/Day Turnaround facility cost per day
IntegrationCPD FY04 $M/Day Integration facility cost per day

A user wishing utilize AATe in conjunction with the RLVSim model in ModelCenter® will
have to establish links between the variables in Table 9 with the proper inputs in the
RLVSim ScriptWrapper as well as any other variable that they may wish to have fed from
AATe to RLVSim, such as a fleet size.

Figure 13. AATe and RLVSim in ModelCenter®.

 33

RLVSim RLVSim ModelCenter® Capability

4.3 Aztec ModelCenter® Trade Study
A typical RLV design study would consist of a conceptual level LCC analysis to

determine the economic viability of the vehicle. Based on what missions a particular RLV is
designed for, an analysis of the ability of the architecture to achieve various mission goals for
a reasonable cost is required. One major driver in such a study is the market demand,
whether it is commercial or governmental, of payloads that the RLV is capable of delivering.
From this demand a desired annual launch rate can be estimated for a RLV concept. AATe
provides the general turnaround values for various phases of an RLV’s preparation for flight,
but this does not take into account facility resource constraints and facility queues. How
many orbiter processing facilities are needed? How many launch pads would allow the
desired launch rate to be achieved? These questions can be answered by using RLVSim in
the ModelCenter® environment. It should be noted that each simulation run in
ModelCenter® requires roughly ten seconds to return resulting values, so smaller scale
analyses such as these do not present a problem in terms of run times.

Aztec has a turnaround time of around nine days according to AATe, but how does
that translate to an increased fleet size along with a specified facility resource level? If the
payload delivery market will support 100 launches per year, how large should the Aztec fleet
size be? Trade studies performed using RLVSim shed insight to these questions by
demonstrating the general trends associated with increasing fleet sizes based on various
facility resource designations.

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10

Fleet Size

Fl
ig

ht
s p

er
 Y

ea
r

Figure 14. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 1.

 34

RLVSim RLVSim ModelCenter® Capability

The first phase of the study was performed by sweeping Aztec’s fleet size from one to ten
while holding each of the facility resource levels (OPF, BPF, and runway/pad) at one.
Because Aztec is processed in dedicated processing facilities and integrated on the
runway/pad, only the OPF, BPF, and runway pad resource facilities were taken into account.
It is apparent from Figure 14 that a flight rate of 100 flights per year could never be achieved
if the facility capacity levels were only one, regardless of the number of vehicles in the fleet.
In fact, adding more than three vehicles would not be beneficial since bottlenecks in the
processing flow would prevent any increase in flight rate beyond 53-54 flights per year.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Fleet Size

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(D

ay
s)

Figure 15. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 1.

Figure 15 demonstrates that the average turnaround time for the vehicles increases almost
linearly as more vehicles are added to the fleet. This is expected since additional vehicles
would spend a majority of their time waiting to enter a facility. If the market demands 100
flights per year, then it is apparent that a higher facility resource level is needed.

 35

RLVSim RLVSim ModelCenter® Capability

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Fleet Size

Fl
ig

ht
s p

er
 Y

ea
r

Figure 16. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 2.

Figure 16 was created by sweeping the fleet size from one to ten while holding all of the
facility resource levels at two. A level of two can be considered a “dual-processing”
capability that significantly increases the maximum throughput of the process. Figure 16
indicates that a flight rate of 100 flights per year is achievable if there are at least five vehicles
in the fleet. The desired launch rate is obtained by this fleet size, but only by a small margin.
It is apparent that a dual-processing capability still allows only a maximum of around 110
flights per year, which is not significantly higher than the target of 100 per year. Because of
this, to achieve confidence that the vehicle architecture is capable of always achieving the
desired flight rate, a sixth vehicle may or may not be required.

 36

RLVSim RLVSim ModelCenter® Capability

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Fleet Size

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(D

ay
s)

Figure 17. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 2.

If the fleet size is determined to be five vehicles, an average turnaround time of 12-13 days
should be expected according to Figure 17. The average turnaround curve increases almost
linearly if more than five vehicles are introduced which is consistent with the leveling-out of
the achievable flights per year plot in Figure 16.
 A dual-processing capability along with five vehicles seems to be adequate, but in
order for the architecture to be robust enough to handle fluctuating yearly launch demands,
it may be wise to increase the facility resource capability one step further.

 37

RLVSim RLVSim ModelCenter® Capability

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Fleet Size

Fl
ig

ht
s p

er
 Y

ea
r

Figure 18. Aztec Flight Rate vs. Fleet Size with Facility Capacity at 3.

Figure 18 demonstrates that a facility resource capacity level of three may be a better choice
because the trend levels-out at a much higher flight rate than the dual-capacity scenario. The
five-vehicle fleet should obtain a flight rate of 120 flights per year, while a four-vehicle fleet
would still achieve the 100 flights per year target. If only four vehicles were used, the
average turnaround per vehicle would be just over nine days according to Figure 19.

7

9

11

13

15

17

19

1 2 3 4 5 6 7 8 9 10

Fleet Size

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(D

ay
s)

Figure 19. Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 3

 38

RLVSim RLVSim ModelCenter® Capability

It appears that the target flight rate could be achieved in either of two ways. First, a dual-
processing facility capacity could be used in conjunction with a five-vehicle fleet. An
alternative would be to use only a four-vehicle fleet but with a facility resource capacity level
of three. Table 8 contains the results from each of the scenarios.

Table 10. Aztec Trade Study Results.

Processing
Capability

Level

Fleet Size to
Meet 100

flights/year

Approximate
Achievable

Launch Rate

Average Turnaround
(Days) at Optimal

Fleet Size
1 N/A 54 N/A
2 5 108 12.5
3 4 155 9.5

The two alternative solutions to the problem should be compared in terms of financial
commitment. Generally, the cheaper alternative would be to use the dual-processing
capability with the five vehicles since adding an extra vehicle will usually be cheaper than
adding more facility infrastructure as long as the vehicle is not too complex. Not only would
the expanded infrastructure require a significant cost commitment up front for construction,
but the yearly maintenance costs would be higher as well as the costs associated with the
labor force needed to operate the facilities. However, Figure 16 shows that having five
vehicles with a dual-processing capability barely gets an achievable throughput that is higher
than the target. This is important to keep in mind, because any detriment to the fleet, such
as a LOV scenario or longer than normal vehicle refurbishment, may lead to a flight rate
lower than needed. If the infrastructure is kept at a facility capacity level of two, it may be
wise in include a sixth vehicle. Even with an additional vehicle, the achievable throughput
may not be sufficient if the demand fluctuates. In order to be truly prepared for a market
fluctuation scenario more facilities may be needed. Despite the additional costs, a facility
resource capacity of three would allow a more robust response to any fluctuations, and
would allow a fleet size of four or five ensure that the targeted flight rate of 100 flights per
year be achieved.

4.4 STS ModelCenter® Trade Study
The current STS fleet consists of three vehicles, and the processing and launch

facilities at the Kennedy Space Center can generally process two vehicles in parallel. Using
these baseline assumptions in RLVSim, a maximum launch rate of almost eight flights a year
can be achieved. STS initially was designed to have a much higher flight rate, and
modifications and additions to the International Space Station (ISS) necessitate that STS
achieve as high a flight rate as possible. Because of this, it may be of interest to see what

 39

RLVSim RLVSim ModelCenter® Capability

changes could be made to improve the possible throughput. Basically, how much of a
benefit can be achieved if each of the facilities were improved to handle three vehicles at a
time? In addition, what kind of benefit would a fourth replacement orbiter provide if the
infrastructure were expanded?

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4

Fleet Size

Fl
ig

ht
s

pe
r Y

ea
r

Facility Capacity of 2

Facility Capacity of 3

Figure 20. STS Flights per Year vs. Fleet Size.

Figure 20 was generated using the STS baseline assumptions in RLVSim along with
ModelCenter® in a similar manner as the Aztec trade study in section 4.3. ModelCenter was
used to sweep the fleet size from one to four to see the effects on the flight rate and
turnaround time based on specified facility resource levels. The results show that a slight
improvement in the flight rate can be achieved if the infrastructure is expanded. With three
vehicles this improvement is very slight, going from just under 8 to around 8.5 flights a year.
If a fourth vehicle was added to replace the orbiter Columbia, the modified infrastructure
would have a more significant benefit. Four vehicles operating in the infrastructure as it is
currently configured would achieve just over 9 flights a year. Four vehicles operating in an
expanded infrastructure would achieve almost 11 flights per year. Figure 21 shows that the
average turnaround time decreases from the two-vehicle processing capability to the three-
vehicle processing capability. In this case a four-orbit fleet would see a 118-day turnaround
time reduced to 95 days if the infrastructure were expanded.

 40

RLVSim RLVSim ModelCenter® Capability

40

50

60

70

80

90

100

110

120

130

1 2 3 4

Fleet Size

Av
er

ag
e

T
ur

na
ro

un
d

T
im

e
(D

ay
s)

Facility Capacity of 2

Facility Capacity of 3

Figure 21. STS Turnaround Time vs. Fleet Size.

The STS is a legacy vehicle that is significantly close to retirement. Throughout the years
many proposals have been put forth regarding ways to improve the fleet in order to keep it
flying for many more years, but the recent change of focus in the space industry to Lunar
and Martian exploration has restricted future plans of STS operation to within the current
decade. Because of this, the STS trade study documented in this section is solely provided to
give an example of how RLVSim can be used in conjunction with ModelCenter® to study
the impacts of improvements to existing architectures that are in place today. Even though
the STS fleet may not be used after 2010, a next generation vehicle may take advantage of
the STS processing and launch infrastructure at KSC, just as STS took advantage of what
was left from the Apollo program of the 1960s.

 41

RLVSim Conclusions

5.0 Conclusions
In summery RLVSim is a tool that can be used in several different ways to assist in

LCC analyses of single-stage and two-stage reusable launch vehicles. In its primary role as a
stochastic simulator that can be replicated many times to obtain confidence intervals
associated with each of the output metrics, RLVSim provides a capability to students and
student researchers that is significantly different from traditional deterministic tools.
Statistical support for any forecasted value is beneficial since it captures the variability
associated with such a value. In its secondary role as a tool that can collaborate with other
tools in the ModelCenter® environment, RLVSim can quickly provide results based on
various input settings. These settings allow quick trade studies to be performed using
RLVSim, and allows the tool to act as a contributing analysis to larger scale concept studies.

Section 3.6 documented both the STS and Aztec baseline results which demonstrate
the validity of RLVSim’s outputs. Sections 4.3 and 4.4 each described typical analyses that
can be performed using RLVSim, demonstrating the importance of decisions that can be
made using RLVSim regarding turnaround drivers such as infrastructure processing levels
and fleet sizes. There are various input parameters to RLVSim, any of which could be
identified as trade study subjects to truly discern what factors lead to high operational costs.

Because RLVSim was developed to be used in several different fashions, there are a
number of supporting files other than the model itself that need to be accounted for. Table
11 provides a brief description all of the files that have been developed for this project, all of
which are needed to operate RLVSim along with AATe in the ModelCenter® environment.

Table 11. RLVSim Related Files and Spreadsheets.

File Name Description
RLVSim_ver1.doe RLVSim Arena model
RLVSim_ver1.xls RLVSim Excel output spreadsheet

AATe_RLVSim_ver.xls AATe Excel tool modified for RLVSim use
RLVSim_ver1.ScriptWrapper ModelCenter® ScriptWrapper file for

RLVSim_ver1.doe file
AATe_RLVSim_ver.ExcelWrapper ModelCenter® ExcelWrapper for

RLVSim_ver1.xls file

In the effort to truly bring operational considerations to the forefront of conceptual
vehicle design, RLVSim assists by complementing other tools commonly used such as
RMAT and AATe. It has been developed in order to provide sophisticated results while
keeping in mind that the average operations researcher may not be familiar with the
intricacies of DES. The user forms allow even beginner users to tweak time and cost

 42

RLVSim Conclusions

parameters for each of the major turnaround facilities used in a vehicle’s turnaround flow,
which leads to a high level of control over the concept of operations formulation. Due to
this versatility, RLVSim is a prime example of how discrete event simulation can be brought
into a complex vehicle’s conceptual design, allowing probabilistic and dynamic analyses to be
performed. These analyses offer insight into vehicle turnaround operations that have not
been possible with tools in the past.

 43

RLVSim References

References

1. CAIB, “Columbia Accident Investigation Board: Report I,” August 2003.
2. Isakowitz, S.J., Hopkins, J.P., Hopkins, J.B., International Reference Guide to Space Launch

Systems, Third Edition, AIAA, 1999.
3. Unal, R., Morris, W.D., White, N., Lepsch, R., Brown, R., “Approximation model

building for reliability and maintainability characteristics of reusable launch vehicles,”
AIAA-2000-4712, 8th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Long Beach, California, September 6-8,
2000.

4. KSC Next Gen Site, (science.ksc.nasa.gov/shuttle/nexgen/AATe_main.htm),
Accessed July 26, 2004.

5. GEMFLO, KSC Next Gen Site, (science.ksc.nasa.gov/shuttle/nexgen/GEM-
FLO_main.htm), Accessed July 26, 2004.

6. Kelton, W. D., Sadowski, R., Sturrock, D., Simulation with Arena, Third Edition,
McGraw-Hill, New York, New York, 2004.

7. Rabadi, G., private communication, Old Dominion University, Norfolk, Virginia,
June 6, 2004.

8. Arena Simulation webpage, (www.arenasimulation.com), Accessed July 21, 2004.
9. Banks, J., Carson III, J., Nelson, B., Discrete-Event System Simulation, Second Edition,

Prentice Hall, Upper Saddle River, New Jersey, 1996.
10. Hayter, A., Probability and Statistics for Engineers and Scientists, 2nd Edition, Duxbury,

Pacific Grove, California, 2002.
11. Kokan, T., Olds, J., Hutchinson, V., Reeves, J.D., “Aztec: A TSTO Hypersonic

Vehicle Concept Utilizing TBCC and HEDM Propulsion Technologies,” AIAA-
2004-3728, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, Fort Lauderdale, Florida, July 11-14, 2004.

12. Cost Estimating Web Site, NASA, (www.jsc.nasa.gov/bu2/), Accessed July 15, 2004.
13. Morris, W.D., private communication, “OMDP Strategy_LessonsLeaned.doc”,

NASA Langley, Hampton, Virginia, July 14, 2004.

 44

RLVSim Appendix A – Baseline Data Derivations

Appendix A – Baseline Data Derivations
 Both the STS and Aztec baseline configurations that are in the model are primarily
based on results from NASA’s AATe. A modified version of AATe that automatically
calculates the variable cost per day per each phase of the turnaround operations as well as
the fixed cost values was constructed. Some of the same assumptions used in the AATe
models were utilized in the RLVSim model, such as orbiter time in orbit values, turnaround
flow paths, and nominal fleet sizes.

A.1 Space Transportation System Baseline
 The baseline STS configuration assumes a single-stage orbiter component since the
space shuttle itself is the primary piece of the configuration. In reality, there are two solid
rocket boosters (SRBs) and one external tank (ET) that are integrated into the stack, but
since these components are either expendable or partially reusable, they do not drive the
turnaround time operations. While detailed studies of the current Space Transportation
System derived systems would require detailed DES-type analysis of SRB and ET arrival,
inspection, and transfer, the RLVSim model has been developed to be used for next
generation RLV conceptual studies that will not require expendable boosters or tanks. The
RLVSim model also had to be kept under educational-mode constraints, which prevented
worthwhile modeling of the SRB and ET type components.
 AATe’s output spreadsheet provides a variable cost breakdown that specifies the
values associated with the three phases of interest: processing, integration, and pad/runway.
These are three out of four phases that AATe uses to roll-up overall turnaround time, with
the fourth being the landing phase. Since the landing phase does not contribute significantly
to the overall turnaround time (less that 1%), its AATe generated time and variable cost
contributions were combined into those of the runway/pad phase. In order to quantify a
cost per day factor for each of the modeled phases, the variable cost contribution of each
phase was first translated to a percentage of the sum of the three phases of interest
(processing + integration + launch/landing). For example, AATe calculated that the
variable cost per launch of STS due to the processing phase was $6.37 million, which is
around 56% of the variable cost sum of the three major phases ($3.82 M + $6.37 M + $1.20
M = $11.39 M). The percentages of each of the three phases were then used to spread the
remaining variable cost per flight - traffic control costs, cargo processing costs, logistics
costs, etc. - amongst the launch/landing, processing, and integration phases. For the
processing phase this resulted in a total variable processing cost of $56.80 M. These total
variable costs were then used in conjunction with the curve-fit turnaround times in AATe
(still assuming launch and landing are combined) in order to generate a variable cost per day

 45

RLVSim Appendix A – Baseline Data Derivations

factor (CPD) for each of the phases. These CPD figures were then translated from FY00
dollars to FY04 dollars using an inflation factor (1.101) that was taken from the “NASA
New Start Index Inflation Calculator”12. Figure contains a screen-shot directly from the
modified version of AATe that contains the CPD calculations for the STS baseline.

RLVSim Output Metrics

cost ($M) % time (days) add-on ($M) total cost
($M) per day FY04$M

launch 3.82 0.335054 23.8342 30.21073573 34.03 1.427664 1.571859
turnaround 6.37 0.559322 61.99914 50.43223513 56.80 0.916195 1.008731
integration 1.20 0.105624 5.605769 9.523752551 10.73 1.913544 2.106812

total 11.39 91.4391
remaining 90.167

Launch 23.01129
Landing 0.82291

turnaround 61.99914
integration 5.605769

91.4391

Figure A-1. STS Cost per Day Calculations (from modified AATe).

 The fixed cost values used to populate the STS baseline were also pulled directly
from AATe, this time by separating the fixed “launch”, “landing”, “turnaround”, and
“integration” operations cost values from the total fixed operations cost per year in the
“Detailed Operations Outputs” section. The remaining $1882.188 million ($1,709.526 FY00
M) was then used as the baseline fixed cost per year value, which is populated in the user
input form. AATe predicts that this baseline fixed cost per year value starts to increase
when a launch rate greater than 12 per year is achieved. Such a rate is out of the range of a
three vehicle STS fleet (the RLVSim model predicts that the fleet can achieve a maximum 8
flights per year). When the model is run, the facility costs that were removed from the total
fixed operations cost per year are added back into the TotalFixedCostPerYear model variable
based on the number of facilities designated in the user form. For example, the baseline STS
configuration is established with two processing bays, two integration bays, and two launch
facilities (along with an assumed single runway). The fixed cost per year value that is
populated into the model during execution is calculated by adding: $1882.188 M base value
+ $6.965 M (landing facility) + 2 x $9.887 M (launch facility) + 2 x $12.998 M (processing
facility) + 2 x $4.959 M (integration facility) = $1,944.841 M (all dollar figures FY04). At the
end of each replication 20 times this cost (20 years) is added into the total cost of the twenty-
year simulation run in order to capture the cost associated with facility overhead, logistics
support, and so forth.

 46

RLVSim Appendix A – Baseline Data Derivations

 The curve-fit turnaround times that were used to populate the model were pulled
directly from the AATe curve-fit values. The launch and landing curve-fit time values were
combined into the one value for the model, and a +/- factor of 25% was used to obtain the
minimum, mode, and maximum values of triangular distributions for each of the three
phases. A factor of 25% was chosen since it allows enough variation to impact the
throughput, but is still consistent with the nominal value. The ranges were chosen to be
symmetric since the nominal value itself is an estimation, and it is not known whether the
value is skewed towards the minimum or maximum.

The depot maintenance value used for the STS baseline was derived from a
reference13 that listed the depot maintenance times for three shuttle flights. These times
should be representative of the average range of time spent in depot maintenance. The
three quoted depot maintenance visits (STS-89, 101, 109) are from a six-year time span and
show an increasing trend in both the number of days and the associated cost of the visit.
However, these three depot maintenance visits took place at the Palmdale facility in
California, which has since discontinued such work. The orbiter depot maintenance now
takes place in the third OPF at the Kennedy Space Center, thus requiring a less time and
cost to complete. Since the value used in the RLVSim model is just a basis of a statistical
distribution, it is believed that the average (with inflation taken into account on the cost value)
of the three historical depot maintenance visit values is adequate. An assumption being
made is that the increasing trend in depot maintenance time will be counteracted by having
the maintenance operations transferred back to the Kennedy Space Center. Table A-1
contains the turnaround time in days and the associated cost for the depot maintenance for
each of the three flights.

Table A-1. Depot Maintenance Reference Values14.

Mission Number Depot
Maintenance
Time (days)

Depot
Maintenance

Cost ($M)

Depot
Maintenance

Cost (FY04 $M)
STS-89 235 49 (FY98) 57
STS-101 310 88 (FY00) 97
STS-109 517 162 (FY02) 169
average 354 108

The RLVSim model was populated with a nominal STS depot maintenance time of 354 days,
which is the average calculated in Table . In order to determine the nominal depot
maintenance cost, each of the three cited dollar figures were translated to FY2004 dollars
and averaged. This computation resulted in a value of $108 M. Just as in the case with the
processing, integration, and pad/runway phases, a +/- 25% margin was added to the
nominal turnaround value in order to obtain a triangular distribution where the minimum is

 47

RLVSim Appendix A – Baseline Data Derivations

265.5 days and the maximum is 442.5 days. The nominal value of 354 days itself was used as
the mode in the distribution.

A.2 Aztec Baseline
 The Aztec baseline was computed in similar fashion to that of the STS baseline using
NASA’s AATe. The primary difference is that Aztec’s turnaround flow consists of only the
launch and processing phases since all vehicle integration takes place on the pad. Figure A-2
contains a screen-shot from the modified version of AATe that documents how the variable
cost per day factors were calculated.

RLVSim Output Metrics
cost % time add-on total cost per day FY04

launch 0.22 0.189966 2.273686 0.898741 1.12 0.492861 0.54264
turnaround 0.95 0.810034 6.760915 3.83233 4.78 0.70677 0.778153
integration 0.00 0 0 0 0.00 0 0

total 1.17 9.034601
remaining 4.731

Launch 1.611962
Landing 0.052765

turnaround 6.760915
integration 0.60896

9.034601

Figure A-2. Aztec Cost per Day Calculations (from modified AATe).

As shown in Figure A-2, the integration variable cost per flight figure was zero for Aztec.
Because Aztec is integrated on the pad, AATe assumes that the integration costs are
encapsulated in the variable launch cost per flight. AATe does break the turnaround time
down into the four major phases (launch, landing, processing, and integration), but the
modified version of AATe combines the launch, landing, and integration values into the
launch turnaround time in order to calculate the variable launch cost per day factor. This
factor was calculated as being $0.492861 M/day, but became $0.54264 M/day when the
1.101 inflation factor was applied. The variable processing cost per day factor was calculated
as being $0.70677 M/day, or $0.778153 M/day in FY04 dollars.
 The fixed costs per year values for the Aztec baseline were calculated in the exact
same way as the STS baseline, though the integration related costs were zero since Aztec is
integrated on the runway. A fixed cost minus facility maintenance costs of $75.051 M
($68.166 FY00 M) was derived with the assumption that Aztec will never have a fleet size
more than two vehicles. A fleet of this size translates to a maximum flight rate of 45.3 per
year in the RLVSim model. The fixed cost minus facility cost value in AATe does not start
to increase beyond a constant value of $75.051 M until a flight rate greater than 60 flights per

 48

RLVSim Appendix A – Baseline Data Derivations

year is achieved. At the beginning of an RLVSim Aztec run, the pad/runway capacity
entered by the user is used to add the fixed facility maintenance costs back into the
TotalFixedCostPerYear value that is populated into the model.
 The nominal depot maintenance time and cost for Aztec were calculated using the
ratio of the total AATe turnaround of Aztec to that of STS along with the nominal STS
depot maintenance values derived in section A.1. A nominal maintenance time of 34.9765
days and a nominal maintenance cost of $11 M were derived from the following
relationships:

daysdays
days
days _9765.34_354*)

_44.91
_0346.9(= (A-1)

and

millionmillion
days
days _11$_108$*)

_44.91
_0346.9(= (A-2)

The 34.9765 day nominal depot maintenance time was then used to develop a triangular
distribution to be used in the model by using a +/- 25% range to determine the min and the
max value. The nominal value itself was used as the mode in this distribution.

 49

RLVSim Appendix B – Baseline Excel Outputs

Appendix B – Baseline Excel Outputs

Table B-1. STS RLVSim Excel Output Schedule.

Table B-2. STS RLVSim Excel Depot Maintenance Schedule.

Orbiter Number

Depot Cost
per Visit

(FY04 $M)
Depot Time

(days)
Depot Start

(day)
Depot End

(day) Mission Number
2.00 108.00 309.63 825.48 1135.11 23.00
1.00 108.00 381.92 807.21 1189.12 22.00
3.00 108.00 395.52 855.93 1251.45 24.00
2.00 108.00 368.21 1896.35 2264.57 45.00
1.00 108.00 345.14 1945.24 2290.39 47.00
3.00 108.00 394.17 1997.12 2391.29 48.00

 50

RLVSim

Table B-3. Aztec RLVSim Excel Output Schedule.

Table B-4. Aztec RLVSim Excel Depot Maintenance Schedule.

Orbiter Number

Depot Cost
per Visit

(FY04 $M)
Depot Time

(days)
Depot Start

(day)
Depot End

(day) Mission Number
1.00 11.00 35.91 75.84 111.75 14.00
2.00 11.00 34.26 87.15 121.41 16.00
1.00 11.00 34.84 186.88 221.72 31.00
2.00 11.00 28.41 195.58 223.99 32.00
2.00 11.00 32.32 299.87 332.19 48.00
1.00 11.00 39.35 298.10 337.46 47.00

 51

RLVSim Appendix C – RLVSim ScriptWrapper Code

Appendix C – RLVSim ScriptWrapper Code

This is a ScriptWrapper for the RLVSim Arena Discrete Event Simulation Model

@author: John Daniel Reeves
@description: RLVSim Arena Model Wrapper
@version: 1.00
@date: 7/10/2004

general variables

variable: ConceptChoice double input description="1 - new concept, 2 - STS, 3 - Aztec" lowerbound=1 upperbound=3
variable: ConceptFleetSize double input description="Orbiter and Booster fleet size" lowerbound=1
variable: ConceptStageCount double input description="Number of stages (1 or 2)" lowerbound=1 upperbound=2
variable: ConceptDepotTrigger double input description="Depot maintenance trigger. 0=No 1=Yes" lowerbound=0 upperbound=1
variable: ConceptMissionsPerDepot double input description="Number of missions between depot maintenance"
variable: ConceptReliability double input description="Vehicle reliability in 0.xxx format"
variable: ConceptLOVReplacement double input description="Trigger for LOV Replacement, 0=No 1=Yes" lowerbound=0 upperbound=1
variable: ConceptReplacementTime double input units="days" description="LOV Replacement time in applicable"
variable: ConceptProcessingCPD double input units="$M" description="Cost per day for processing facility"
variable: ConceptIntegrationCPD double input units="$M" description="Cost per day for integration facility"
variable: ConceptRunwayCPD double input units="$M" description="Cost per day for Runway/Pad facility"
variable: ConceptMaintenanceCost double input units="$M" description="Average cost for depot maintenance"
variable: ConceptCostIncurred double input description="Trigger for full cost penalty while in queues, 0=No 1=Yes" lowerbound=0 upperbound=1
variable: ConceptQueueCostFactor double input description="Cost factor for vehicles in queue 0-100%" lowerbound=0
variable: ConceptOPFCapacity double input description="Orbiter Processing Facility capacity"
variable: ConceptBPFCapacity double input description="Booster Processing Facility capacity"
variable: ConceptIntCapacity double input description="Integration facility capacity"
variable: ConceptRunwayCapacity double input description="Launch runway/pad facility capacity"
variable: ConceptOPFTimeMin double input units="days" description="OPF time triangular distribution min"
variable: ConceptOPFTimeMode double input units="days" description="OPF time triangular distribution mode"
variable: ConceptOPFTimeMax double input units="days" description="OPF time triangular distribution max"
variable: ConceptBPFTimeMin double input units="days" description="BPF time triangular distribution min"
variable: ConceptBPFTimeMode double input units="days" description="BPF time triangular distribution mode"
variable: ConceptBPFTimeMax double input units="days" description="BPF time triangular distribution max"
variable: ConceptIntMin double input units="days" description="Integration time triangular distribution min"
variable: ConceptIntMode double input units="days" description="Integration time triangular distribution mode"
variable: ConceptIntMax double input units="days" description="Integration time triangular distribution max"
variable: ConceptOrbiterMissionMin double input units="days" description="Orbiter mission time triangular distribution min"
variable: ConceptOrbiterMissionMode double input units="days" description="Orbiter mission time triangular distribution mode"
variable: ConceptOrbiterMissionMax double input units="days" description="Orbiter mission time triangular distribution max"
variable: ConceptBoosterMissionMin double input units="days" description="Booster mission time triangular distribution min"
variable: ConceptBoosterMissionMode double input units="days" description="Booster mission time triangular distribution mode"
variable: ConceptBoosterMissionMax double input units="days" description="Booster mission time triangular distribution max"
variable: ConceptRunwayMin double input units="days" description="Launch runway/pad time triangular distribution min"
variable: ConceptRunwayMode double input units="days" description="Launch runway/pad time triangular distribution mode"
variable: ConceptRunwayMax double input units="days" description="Launch runway/pad time triangular distribution max"
variable: ConceptDepotMin double input units="days" description="Depot Maintenance time triangular distribution min"
variable: ConceptDepotMode double input units="days" description="Depot Maintenance time triangular distribution mode"
variable: ConceptDepotMax double input units="days" description="Depot Maintenance time triangular distribution max
variable: ConceptBaseFixedCost double input units="$M" description="Fixed cost per year minus facility maintenance costs"
variable: ConceptLaunchFixedCost double input units="$M" description="Launch facility related fixed costs"
variable: ConceptLandingFixedCost double input units="$M" description="Landing facility related fixed costs"
variable: ConceptProcessingFixedCost double input units="$M" description="Processing facility related fixed costs"
variable: ConceptIntegrationFixedCost double input units="$M" description="Integration facility related fixed costs"

variable: LaunchCount double output description="Number of launches during 20 year simulation"
variable: AverageTurnaround double output units="days" description="Average turnaround during 20 year simulation"
variable: AverageLaunchCost double output units="$M" description="Average launch cost during 20 year simulation"
variable: TotalCost double output units="$M" description="Total cost of launches during 20 year simulation"
variable: LOVCount double output description="LOV count during 20 year simulation"
variable: LaunchesPerYear double output units="Launches/yr" description="Average number of launches per year"
variable: AverageCostPerYear double output units="$M" description="Average variable cost per year"
variable: OpsCostPerFlight double output units="$M/flight" description="Total cost per flight (variable + fixed)"

#---
script:

'create application variables
dim AM
dim excel

' set default values to STS
ConceptFleetSize = 3
ConceptStageCount = 1
ConceptDepotTrigger = 1
ConceptMissionsPerDepot = 8
ConceptReliability = 0.998
ConceptLOVReplacement= 0
ConceptReplacementTime = 365
ConceptProcessingCPD = 1.008731
ConceptIntegrationCPD = 2.106812
ConceptRunwayCPD = 1.571859
ConceptMaintenanceCost = 108
ConceptCostIncurred = 0
ConceptQueueCostFactor = 0
ConceptOPFCapacity = 2

 52

RLVSim Appendix C – RLVSim ScriptWrapper Code

ConceptBPFCapacity = 0
ConceptIntCapacity = 2
ConceptRunwayCapacity = 2
ConceptOPFTimeMin = 46.499325
ConceptOPFTimeMode = 61.9991
ConceptOPFTimeMax = 77.498875
ConceptIntMin = 4.20435
ConceptIntMode = 5.6058
ConceptIntMax = 7.00725
ConceptOrbiterMissionMin = 7.5
ConceptOrbiterMissionMode = 10
ConceptOrbiterMissionMax = 12.5
ConceptBPFMin = 0
ConceptBPFMode = 0
ConceptBPFMax = 0
ConceptBoosterMissionTimeMin = 0
ConceptBoosterMissionTimeMode = 0
ConceptBoosterMissionTimeMax = 0
ConceptRunwayMin = 17.87565
ConceptRunwayMode = 23.8342
ConceptRunwayMax = 29.79275
ConceptDepotMin = 265.5
ConceptDepotMode = 354
ConceptDepotMax = 442.5
ConceptBaseFixedCost = 1882.188
ConceptLaunchFixedCost = 9.887
ConceptLandingFixedCost = 6.965
ConceptProcessingFixedCost = 12.998
COnceptIntegrationFixedCost = 4.959

sub run
 Set AM = CreateObject("Arena.Application")
 AM.Visible = True
 AM.Models.Open (wrapper.directory & "\RLVSim_ver1.doe")
 Set Siman = AM.ActiveModel.Siman

 ' Turn off Excel output and userform trigger
 AM.ActiveModel.Modules(129).Data("Initial Value") = 0
 AM.ActiveModel.Modules(73).Data("Initial value") = 0

if ConceptChoice=1 then
 AM.ActiveModel.Modules(126).Data("Max Batches") = ConceptFleetSize
 if ConceptStageCount=2 then
 AM.ActiveModel.Modules(9).Data("Max Batches") = ConceptFleetSize
 AM.ActiveModel.Modules(17).Data("Batch Size") = 2
 else
 AM.ActiveModel.Modules(9).Data("Max Batches") = 0
 AM.ActiveModel.Modules(17).Data("Batch Size") = 1
 end if
 AM.ActiveModel.Modules(106).Data("Initial Value") = ConceptDepotTrigger
 AM.ActiveModel.Modules(90).Data("Value") = ConceptMissionsPerDepot
 AM.ActiveModel.Modules(53).Data("Percent True") = ConceptReliability*100
 AM.ActiveModel.Modules(67).Data("Initial Value") = ConceptLOVReplacement
 AM.ActiveModel.Modules(117).Data("DelayType") = ConceptReplacementTime
 AM.ActiveModel.Modules(68).Data("DelayType") = ConceptReplacementTime
 AM.ActiveModel.Modules(27).Data("Initial Value") = ConceptProcessingCPD
 AM.ActiveModel.Modules(28).Data("Initial Value") = ConceptIntegrationCPD
 AM.ActiveModel.Modules(29).Data("Initial Value") = ConceptRunwayCPD
 AM.ActiveModel.Modules(96).Data("Initial Value") = ConceptMaintenanceCost
 AM.ActiveModel.Modules(78).Data("Initial Value") = ConceptCostIncurred
 AM.ActiveModel.Modules(79).Data("Initial Value") = ConceptQueueCostFactor
 AM.ActiveModel.Modules(20).Data("Capacity") = COnceptOPFCapacity
 AM.ActiveModel.Modules(48).Data("Capacity") = ConceptBPFCapacity
 AM.ActiveModel.Modules(31).Data("Capacity") = ConceptIntCapacity
 AM.ActiveModel.Modules(38).Data("Capacity") = ConceptRunwayCapacity
 AM.ActiveModel.Modules(1).Data("Min") = ConceptOPFTimeMin
 AM.ActiveModel.Modules(1).Data("Value") = ConceptOPFTimeMode
 AM.ActiveModel.Modules(1).Data("Max") = ConceptOPFTimeMax
 AM.ActiveModel.Modules(2).Data("Min") = ConceptIntMin
 AM.ActiveModel.Modules(2).Data("Value") = ConceptIntMode
 AM.ActiveModel.Modules(2).Data("Max") = ConceptIntMax
 AM.ActiveModel.Modules(3).Data("Min") = ConceptOrbiterMissionMin
 AM.ActiveModel.Modules(3).Data("Value") = ConceptOrbiterMissionMode
 AM.ActiveModel.Modules(3).Data("Max") = ConceptOrbiterMissionMax
 AM.ActiveModel.Modules(10).Data("Min") = ConceptBPFTimeMin
 AM.ActiveModel.Modules(10).Data("Value") = ConceptBPFTimeMode
 AM.ActiveModel.Modules(10).Data("Max") = ConceptBPFTimeMax
 AM.ActiveModel.Modules(18).Data("Min") = ConceptBoosterMissionMin
 AM.ActiveModel.Modules(18).Data("Value") = ConceptBoosterMissionMode
 AM.ActiveModel.Modules(18).Data("Max") = ConceptBoosterMissionMax
 AM.ActiveModel.Modules(37).Data("Min") = ConceptRunwayMin
 AM.ActiveModel.Modules(37).Data("Value") = ConceptRunwayMode
 AM.ActiveModel.Modules(37).Data("Max") = ConceptRunwayMax
 AM.ActiveModel.Modules(95).Data("Min") = ConceptDepotMin
 AM.ActiveModel.Modules(95).Data("Value") = ConceptDepotMode
 AM.ActiveModel.Modules(95).Data("Max") = ConceptDepotMax
 AM.ActiveModel.Modules(139).Data("Initial Value") = ConceptBaseFixedCost+ConceptLandingFixedCost+

ConceptLaunchFixedCost*ConceptRunwayCapacity+ConceptProcessingFixedCost*
ConceptOPFCapacity+ConceptIntegrationFixedCost*ConceptIntCapacity

end if

 53

RLVSim Appendix C – RLVSim ScriptWrapper Code

if ConceptChoice=2 then
 AM.ActiveModel.Modules(126).Data("Max Batches") = ConceptFleetSize
 AM.ActiveModel.Modules(9).Data("Max Batches") = 0
 AM.ActiveModel.Modules(17).Data("Batch Size") = 1
 AM.ActiveModel.Modules(106).Data("Initial Value") = 1
 AM.ActiveModel.Modules(90).Data("Value") = 8
 ' AM.ActiveModel.Modules(53).Data("Percent True") = 99.8
 AM.ActiveModel.Modules(53).Data("percent True") = ConceptReliability
 AM.ActiveModel.Modules(67).Data("Initial Value") = 0
 AM.ActiveModel.Modules(117).Data("DelayType") = 365
 AM.ActiveModel.Modules(68).Data("DelayType") = 365
 AM.ActiveModel.Modules(27).Data("Initial Value") = 1.008731
 AM.ActiveModel.Modules(28).Data("Initial Value") = 2.106812
 AM.ActiveModel.Modules(29).Data("Initial Value") = 1.571859
 AM.ActiveModel.Modules(96).Data("Initial Value") = 108
 AM.ActiveModel.Modules(78).Data("Initial Value") = 0
 AM.ActiveModel.Modules(79).Data("Initial Value") = 0
 ' AM.ActiveModel.Modules(20).Data("Capacity") = 2
 ' AM.ActiveModel.Modules(48).Data("Capacity") = 0
 ' AM.ActiveModel.Modules(31).Data("Capacity") = 2
 ' AM.ActiveModel.Modules(38).Data("Capacity") = 2
 AM.ActiveModel.Modules(20).Data("Capacity") = COnceptOPFCapacity
 AM.ActiveModel.Modules(48).Data("Capacity") = ConceptBPFCapacity
 AM.ActiveModel.Modules(31).Data("Capacity") = ConceptIntCapacity
 AM.ActiveModel.Modules(38).Data("Capacity") = ConceptRunwayCapacity
 AM.ActiveModel.Modules(1).Data("Min") = 46.499325
 AM.ActiveModel.Modules(1).Data("Value") = 61.9991
 AM.ActiveModel.Modules(1).Data("Max") = 77.498875
 AM.ActiveModel.Modules(2).Data("Min") = 4.20435
 AM.ActiveModel.Modules(2).Data("Value") = 5.6058
 AM.ActiveModel.Modules(2).Data("Max") = 7.00725
 AM.ActiveModel.Modules(3).Data("Min") = 7.5
 AM.ActiveModel.Modules(3).Data("Value") = 10
 AM.ActiveModel.Modules(3).Data("Max") = 12.5
 AM.ActiveModel.Modules(10).Data("Min") = 0
 AM.ActiveModel.Modules(10).Data("Value") = 0
 AM.ActiveModel.Modules(10).Data("Max") = 0
 AM.ActiveModel.Modules(18).Data("Min") = 0
 AM.ActiveModel.Modules(18).Data("Value") = 0
 AM.ActiveModel.Modules(18).Data("Max") = 0
 AM.ActiveModel.Modules(37).Data("Min") = 17.87565
 AM.ActiveModel.Modules(37).Data("Value") = 23.8342
 AM.ActiveModel.Modules(37).Data("Max") = 29.79275
 AM.ActiveModel.Modules(95).Data("Min") = 265.5
 AM.ActiveModel.Modules(95).Data("Value") = 354
 AM.ActiveModel.Modules(95).Data("Max") = 442.5
 AM.ActiveModel.Modules(139).Data("Initial Value") = 1882.188+6.965+9.887*ConceptRunwayCapacity+12.998*ConceptOPFCapacity

+4.959*ConceptIntCapacity
end if
if ConceptChoice=3 then
 AM.ActiveModel.Modules(126).Data("Max Batches") = ConceptFleetSize
 AM.ActiveModel.Modules(9).Data("Max Batches") = ConceptFleetSize
 AM.ActiveModel.Modules(17).Data("Batch Size") = 2
 AM.ActiveModel.Modules(106).Data("Initial Value") = 1
 AM.ActiveModel.Modules(90).Data("Value") = 8
 AM.ActiveModel.Modules(53).Data("Percent True") = 99.95
 AM.ActiveModel.Modules(67).Data("Initial Value") = 0
 AM.ActiveModel.Modules(117).Data("DelayType") = 180
 AM.ActiveModel.Modules(68).Data("DelayType") = 180
 AM.ActiveModel.Modules(27).Data("Initial Value") = 0.77815
 AM.ActiveModel.Modules(28).Data("Initial Value") = 0
 AM.ActiveModel.Modules(29).Data("Initial Value") = 0.54264
 AM.ActiveModel.Modules(96).Data("Initial Value") = 11
 AM.ActiveModel.Modules(78).Data("Initial Value") = 0
 AM.ActiveModel.Modules(79).Data("Initial Value") = 0
 AM.ActiveModel.Modules(20).Data("Capacity") = ConceptOPFCapacity
 AM.ActiveModel.Modules(48).Data("Capacity") = ConceptBPFCapacity
 AM.ActiveModel.Modules(31).Data("Capacity") = 20
 AM.ActiveModel.Modules(38).Data("Capacity") = ConceptRunwayCapacity
 AM.ActiveModel.Modules(1).Data("Min") = 5.0706825
 AM.ActiveModel.Modules(1).Data("Value") = 6.76091
 AM.ActiveModel.Modules(1).Data("Max") = 8.4511375
 AM.ActiveModel.Modules(2).Data("Min") = 0
 AM.ActiveModel.Modules(2).Data("Value") = 0
 AM.ActiveModel.Modules(2).Data("Max") = 0
 AM.ActiveModel.Modules(3).Data("Min") = 1.5
 AM.ActiveModel.Modules(3).Data("Value") = 2
 AM.ActiveModel.Modules(3).Data("Max") = 2.5
 AM.ActiveModel.Modules(10).Data("Min") = 5.0706825
 AM.ActiveModel.Modules(10).Data("Value") = 6.76091
 AM.ActiveModel.Modules(10).Data("Max") = 8.4511375
 AM.ActiveModel.Modules(18).Data("Min") = 0.375
 AM.ActiveModel.Modules(18).Data("Value") = 0.5
 AM.ActiveModel.Modules(18).Data("Max") = 0.625
 AM.ActiveModel.Modules(37).Data("Min") = 1.7049675
 AM.ActiveModel.Modules(37).Data("Value") = 2.27369
 AM.ActiveModel.Modules(37).Data("Max") = 2.8421125
 AM.ActiveModel.Modules(95).Data("Min") = 26.232375
 AM.ActiveModel.Modules(95).Data("Value") = 34.9765
 AM.ActiveModel.Modules(95).Data("Max") = 43.720625

 54

RLVSim Appendix C – RLVSim ScriptWrapper Code

 AM.ActiveModel.Modules(139).Data("Initial Value") = 75.051+0.455+0.599*ConceptRunwayCapacity+1.930*ConceptOPFCapacity
 end if

 ' Run Model
 AM.ActiveModel.FastForward

 LaunchCOunt = Siman.TallyAverage(3)
 AverageTurnaround = Siman.TallyAverage(4)
 AverageLaunchCost = Siman.TallyAverage(5)
 TotalCost = Siman.TallyAverage(2)
 LOVCount = Siman.TallyAverage(1)
 LaunchesPerYear = LaunchCount/20
 AverageCostPerYear = TotalCost/20
 OpsCostPerFlight = TotalCost/LaunchCount

 AM.ActiveModel.end
 AM.ActiveModel.Save
 AM.ActiveModel.Close
 AM.Quit
end sub

 55

	AE8900 MS Special Problems Report
	Georgia Institute of Technology
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Discrete Event Simulation
	DES Background
	Rockwell Software’s Arena
	Arena Details
	Discrete Event Simulation Theory

	RLVSim Arena Model
	RLVSim Arena Model Logic
	Model Input Form and General Usage Guidelines
	Single Run Mode
	Monte Carlo Mode
	Single Run with Excel
	Baseline RLVSim Results

	RLVSim ModelCenter® Capability
	RLVSim ScriptWrapper Details
	RLVSim & AATe Integration
	Aztec ModelCenter® Trade Study
	STS ModelCenter® Trade Study

	Conclusions
	References
	Appendix A – Baseline Data Derivations
	A.1 Space Transportation System Baseline
	A.2 Aztec Baseline

	Appendix B – Baseline Excel Outputs
	Appendix C – RLVSim ScriptWrapper Code

