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RLVSim  Introduction 

1.0 Introduction 
One of the most important aspects of any major transportation vehicle, whether it be a 

commercial aircraft, reusable launch vehicle (RLV), or any other highly complex design, is 
the cost and time associated with readying it for use.  Once a design of this sort has been 
developed, tested, and declared operational, the life-cycle costs (LCC) become the dominant 
metrics of interest and are primarily made up of the costs and times associated with 
scheduled maintenance, unscheduled maintenance, part replacement, and refurbishment.  
These parameters are usually encapsulated in the “operations” discipline, which focuses on 
the operational concepts required to maintain complex vehicles.   

Although operations analyses are essential to any complex vehicle, access-to-space 
vehicles require more attention in this area than any other type of vehicle since their safety 
and performance margins are usually very slim.  Re-entry vehicles go through rigorous 
thermal environments that require that highly sophisticated thermal protection systems 
(TPS) be incorporated into the design.  TPS maintenance is always a high operational driver 
since the materials used, whether they be tile-like or ablative, have to be carefully inspected 
prior to every mission.  Because access-to-space vehicles have to operate in the demanding 
environment of space for extended periods of time, they require a high number of 
sophisticated subsystems to ensure that any payload or crew are accommodated and safely 
delivered or returned.  A higher subsystem count usually translates into a higher processing 
load when the vehicle is on the ground.  Because of this, a large work force is generally 
required in order to provide the man-hours for the intricate inspections and refurbishment.  
Large workforces result in very high labor costs, which is usually one of the biggest drivers 
in vehicle’s operational cost.  Because of such consequences of operating complex vehicles, 
it is imperative that these considerations are taken into account as early as possible in the 
design phase.   

A lot of time and money has been invested in technology development over the years 
to alleviate the ground operations environment of space access vehicles, with RLVs in 
particular being the main focus since the Space Transportation System (STS) has been the 
dominant design over the past few decades.  A highly reusable space access vehicle with low 
turnaround requirements would open up an entirely new paradigm in the space industry 
since it would lead to routine access to various orbital assets as well as allow the space 
tourism market to truly unfold.  However, operational considerations are still sometimes 
ignored during the conceptual design phase in lieu of focusing attention on the design’s 
general performance and capability.  A proper design takes operational cost considerations 
into account as a secondary objective behind performance requirements, which can lead to a 
design that meets mission objectives such as payload performance but does not require 
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heavy operational burdens.  However, designers often choose to invest less money up front, 
usually due to funding constraints, instead of investing heavily in new technologies early on 
that can reduce operational complexity.  The result is that the design is operationally more 
expensive, and sometimes less reliable, than envisioned once the first units begin to enter 
service.  A prime example of such a scenario is the STS itself.  Despite the successes of the 
Apollo program in the late 1960s and early 1970s, the Nixon administration began to 
downsize NASA’s budget and focus the spending on other non-space related programs 
during the mid 1970s.  Grand goals of building a space shuttle along with an enormous space 
station and other orbital assets were quickly forgotten as the budget was reduced.  NASA 
designers were eventually allowed to develop just the Space Shuttle system under a 
constricting $5.5 billion ceiling1 enforced by the Office of Management and Budget (OMB).  
STS was designed and developed into a working system, but many operationally costly 
decisions were made during the conceptual design phase in order to keep design, 
development, testing & evaluation (DDT&E) costs as low as possible.  For example, the 
high number of subsystems that were incorporated into STS during its design phase led to a 
vehicle that is very difficult to refurbish and maintain. Due to subsystem complexity, the 
Space Shuttle Main Engines (SSMEs) have to be completely removed from the orbiters 
between each flight and processed separately, which directly leads to longer turnaround 
times.  Another example is the TPS tiles used to protect the orbiter during re-entry.  Almost 
every single tile used on the orbiters is unique and has to be individually inspected between 
each flight.  Because of these types of design decisions, STS currently costs around $300 
million dollars2 to launch, which is drastically higher than the $7.7 million per flight2 that was 
being predicted by NASA in the early 1970s.  This high launch cost is due to the fact that 
STS launches only six or seven times a year at best – such a rate being significantly less than 
the 50 launches per year2 that NASA originally predicted.  From this example, it is apparent 
that operational considerations can make a tremendous impact on a concept’s LCC, and so 
should always be one of the primary factors during the conceptual design phase.  By bringing 
operational knowledge and analysis forward (earlier) in the design phases, a much more 
efficient system can be developed.   

Since the early design phases of access-to-space vehicles take place on a conceptual 
level, it is usually difficult to forecast exactly what the concept of operations will consist of 
when such systems are operational.  For example, the type of general propulsion propellant 
is usually decided upon fairly early in the design process, but smaller propulsion elements 
such as reaction control systems (RCSs) and orbital maneuvering systems (OMSs) are not 
specifically designed until later design phases.  These elements can have significant impacts 
since they could possibly require the loading and unloading of hazardous 
materials/propellants.  NASA currently requires that all operations cease during STS 
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processing while personal wearing SCAPE suits purge, drain, and load materials such as the 
MMH used for OMS and RCS.  This leads to a significant delay in operations turnaround 
that could have been avoided had the original design used alternate, safer propellants.   

Many tools have been developed to assist in analyzing the operational demands on a 
vehicle during the conceptual design stage.  Two commonly used examples of these types of 
tools are NASA Langley’s Reliability and Maintainability Analysis and Estimation Tool3 
(RMAT) and NASA Kennedy’s Architectural Assessment Tool – enhanced4 (AATe) that 
both parametrically estimate operational parameters based on user inputs.  RMAT requires 
the user to input various subsystem and top-level system parameters in order to generate 
estimates for component reliability and scheduled and unscheduled maintenance 
requirements.  Likewise AATe requires inputs such as vehicle scaling information, engine 
count, processing flow paths, and so forth.  RMAT is useful in generating detailed 
maintenance information that can be used to plan facility support levels as well as identify 
which subsystems are the most operationally problematic.  AATe generates the overall fixed 
and variable operations costs as well as the general turnaround time per vehicle.  AATe is 
based on extrapolated STS historical data, while RMAT uses STS data in conjunction with 
numerous military aircraft operations data in order to allow the user to design/analyze 
vehicles that fall in the middle of the design space bounded by traditional access-to-space 
vehicles (STS) and typical military aircraft.  Both of these tools are commonly used in 
industry to obtain deterministic estimates of operational characteristics of access-to-space 
vehicles.   

Although the aforementioned tools are useful for conceptually estimating various 
operational demands, a new form of analysis will be commonly required for future RLV 
studies.  Discrete Event Simulation (DES) is a methodology that has evolved rapidly over 
the past few years and can be used to dynamically study the operational flow paths of vehicle 
operations.  Various probabilistic decision points can be introduced into models that lead to 
more accurate modeling of real world circumstances such as LOV scenarios.  DES models 
can also provide confidence intervals based on data samplings from multiple replications 
that offer insight into how accurate the estimated values are.  Models have already begun to 
be developed that focus on the turnaround operations of access-to-space vehicles.  One 
example of such a tool is GEM-FLO5 (Generic Simulation Environment for Modeling 
Future Launch Operations) that was developed by Productivity Apex Inc. in conjunction 
with NASA Kennedy.  GEM-FLO uses a graphical user interface that allows users that are 
not familiar with DES to obtain DES-generated results focusing on ground turnaround 
operations (flight rate, facility utilization, etc.).  This model is powerful in that it takes a 
generic approach to vehicle processing modeling by assuming that almost all access-to-space 
vehicles have commonality amongst the types of phases that are required for launch.     
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This report will detail the development of a similar DES model tool (RLVSim) that 
models ground turnaround operations specifically for reusable launch vehicles.  The main 
benefit from RLVSim is that it is tailored for use with Arena’s educational mode so that it 
can be used by without a professional version of Arena, allowing students and student 
researchers a chance to utilize DES in vehicle design studies.  The tool is also tailored to be 
used in conjunction with specific other design tools, specifically AATe, that are commonly 
used in space vehicle design.  It should be noted that RLVSim makes the assumption that 
there is an unlimited market demand for payload delivery, meaning that it forecasts the 
maximum achievable throughput based on the input parameters.  The costs that are 
accumulated in the model are also tallied in a steady-state fashion, meaning that increasing or 
decreasing trends do not occur throughout the simulated years in response to an aging fleet 
or a processing learning curve.  However, RLVSim allows various trade studies and concept 
of operations analyses to be made in addition to providing probabilistic ground operation 
estimates that will take into account real world uncertainties.  Distributions associated with 
the various turnaround facilities mimic the variability associated with such work, and a LOV 
probability is incorporated for each vehicle being analyzed that has an impact on the overall 
turnaround statistics.  This report will document such details pertaining to the development 
of RLVSim, as well as provide example studies that demonstrate how the tool can be used to 
gain insight on RLV LCC aspects. 
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2.0 Discrete Event Simulation 
Discrete Event Simulation, like many other computer-aided tools used today, has seen 

a rapid evolution in the past few decades due to increased computational power and 
advances in DES package capabilities.  This section will outline the background and history 
of DES as well as provide a discussion of the particular software used for this project.  It will 
conclude by discussing basic simulation theory along with explaining what takes place when 
a DES model is run. 

2.1 DES Background 
 Discrete event simulation is a numerical computer-based simulation technique that 
has been under development for the past few decades.  General computer-based simulation 
has roots that trace back to the 1950s when computer programming became popular, but 
not until the past couple of decades has DES become a viable technique.  DES’ most vital 
benefit is that it combines the relative ease and flexibility of computer programming with the 
crucial results of statistical analysis.  The late 1970s and early 1980s saw the emergence of 
numerous DES simulation languages such as GPSS, SIMSCRIPT, SLAM, and SIMAN7 that 
began to capture the effects of combining statistics with computer programming.  These 
languages became industry standards due to their applicability to almost any sort of 
engineering, manufacturing, or any other queue-based field.  DES quickly became associated 
with the field of Industrial Engineering due to its inherent statistics foundation, as well as its 
popular application to manufacturing, transportation, and other logistics-based activities.  
The early simulation languages such as SLAM, SLAM II, and SIMAN were powerful, but 
required a heavy amount of programming and a significant learning curve.  Due to the boom 
in computing power of the early 1990s along with an increase in graphical user interfaces 
(GUIs) popularity, advanced simulation products that combined the power of the early 
simulation languages such as SIMAN with the ease of use and reduced complexity of a 
graphical environment began to hit the market.  In addition to having a graphical coding 
interface that reduced the learning curve required, some packages began to include 
sophisticated animation capabilities that not only assisted users in troubleshooting, but also 
gave users a way of demonstrating model logic and dynamics to others.  

2.2 Rockwell Software’s Arena 
 Rockwell Software’s Arena6 is a powerful package that has consistently been a top 
selling product of the DES software industry for the past several years.  Its popularity can be 
traced to its ability to provide useful results without requiring too significant a learning 
curve.  One of Arena’s most beneficial traits is that users across the whole spectrum of skill-
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levels can use the product to generate useful results.  This robustness is achieved by 
expanding upon an evolved version of the SIMAN language, meaning that Arena has been 
built upon the shoulders of an already successful product.  Arena allows users to choose 
from various modules that are presented in various templates ranging from basic logic pieces to 
complex items such as conveyers and transporters.  Each module represents a combination 
of SIMAN code that has been pre-packaged to allow the user to drag and drop pieces of 
code into the model without having to work with the code itself.  In fact, an entry-level user 
can design, develop, and execute somewhat complex Arena models without having to type a 
single line of code.  Arena also provides generated reports at the end of simulation runs that 
can be modified however the user sees fit.  
 Despite being straightforward enough for a beginner user to use, Arena allows 
experienced users to model at sophisticated levels of detail.  Each of the modules is basically 
a combination of various pieces of SIMAN code that have been packaged together for the 
more popular coding scenarios.  Arena also provides a blocks template that contains the 
individual pieces of logic that make up the pre-packaged modules.  For example, a process 
module in the basic process template contains logic to seize and release a resource along with 
logic to delay the process for a specified duration in the interim.  In the blocks template a user 
can find each of these logic pieces, such as seize, as individual pieces that can be added to the 
model.  This allows a user to combine any of these logic pieces as they see fit in order to 
achieve the modeling logic needed. 
 In addition to the basic SIMAN blocks that can be used to write the model logic at a 
basic level, Arena also allows users to include pieces of code in other languages such as 
Microsoft’s Visual Basic for Applications (VBA) or C.  For example, every time an entity 
passes through a VBA module, a corresponding piece of VBA code can be executed.  This 
is very useful in that it allows the use of ActiveX object libraries common in most PC 
desktop applications so that Arena can interact with other programs and vice versa.  Arena 
does provide read and write modules in the advanced template that allow models to read and 
write to Excel, Access, or regular text files, but the addition of embedded VBA code allows 
an unlimited amount of communication between applications.  This in turn can lead to the 
implementation of Arena into engineering software design suites such as Phoenix 
Integration’s ModelCenter®. 

2.3 Arena Details 
 Arena’s main interface is a working space common among Windows-based 
environments along with a template window that allows users to drag and drop modules 
onto the working space.  Table 1 contains generalized definitions to the most common 
simulation terms encountered.  A model is basically the simulation scenario itself that 
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encapsulates everything going on in the simulation.  An entity however is an actual dynamic 
piece that proceeds through the model while interacting with various processes.  Many 
processes require the access of resources, and can be used to model just about any real world 
activity.  The resources themselves are whatever an entity may need to interact with during a 
process.  Variables and expressions are model-specific parameters that are independent with 
any entity or resource, although they can be accessed for information anywhere in the model.  
Again these are just generalized definitions because it is up to the user to model various real-
world events appropriately.  For instance strap-on solid propellant stages such as the 
shuttle’s SRBs could be modeled as entities or resources.  They are entity-like in that they 
move from one place to another and access different resources (such as assembly facilities), 
but they are also resource-like in that they are seized by the shuttle itself during the 
integration, pad preparation, pad, and launch phases.  It is the modeler’s responsibility to 
appropriately model such situations. 

Table 1.  Basic Arena Definitions. 

Term Definition 
Model A combination of processes and process flows that represents a real-world scenario.  

A typical model would include many different aspects of various scenarios such as 
queues that correspond to various processes along with the various entities that 
travel throughout the system. 

Entity The fundamental driver of a simulation that represents what is using or accessing the 
various processes.  Entities travel throughout the simulation model and are generally 
the dynamic pieces of the model that change throughout time. 

Process A capture-all term that is used to define various stops along an entity’s path that 
require the interaction with resources.  Processes are used to model activities such as 
interacting with a bank teller or using a launch pad.   

Resource A resource is any external service or item that an entity needs to interact with during 
a process.  For example, if an entity goes through the process of interacting with a 
bank teller, the actual teller is a resource.  A particular manufacturing machine that is 
accessed via a process is itself a resource.  A resource is seized and released as 
needed. 

Attribute Attributes are pieces of information that are related to the various entities.  A simple 
example would be if balls were modeled as being either a red ball or a green ball.  
One of the ball’s attributes would be the color.   

Variable A variable is a model wide parameter that is not related to any one particular entity or 
process.  Variables can be updated through a simulation run as needed. 

Expression An expression is similar to a variable in that it does not pertain to any one entity or 
process, but differs in that it is generally used to model mathematical relationships or 
statistical expressions. 
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There are many modules that have been included in the basic and advanced process 
templates, many of which are used on a constant basis.  The Assign module is perhaps the 
most commonly used of all, for it allows for manipulation of any attribute or variable.  For 
example, a cost attribute associated with each entity could be updated via an Assign module 
every time an entity passes through.  The Batch and Separate modules allow users to combine 
and separate various entities either temporarily or permanently while specifying various 
attributes of the entities to be included in the resulting entity batch.  The Decide module can 
be used as a decision point based on either a probability metric or a particular attribute, 
variable, or expression value.  The Record Module allows a particular metric to be updated 
and reported at the end of the simulation run.  For example, a Record module could be used 
to tally a cost value associated with each entity once they have made it through a particular 
process.  The report automatically generated at the end of each simulation run can average 
tally statistics recorded using the Record module.  The Route module can be used for two 
different purposes.  First, it allows entities to transfer from one place in the logic stream to 
another without having the modules directly linked, which can be used to better organize the 
various modules.  Second, Route modules can be used as animation markers for animated 
simulation runs since they designate where various entities are sent in the model logic.     

Table 2.  Commonly Used Arena Modules. 

Module Name Description 
Create Used to create entities 

Dispose Used to dispose entities 
Process Used to seize and release resources as well as delay entities as 

needed 
Decide Used as a decision point in model logic based on probabilistic 

choice or attribute or variable condition 
Batch Used to combine entities into a single entity 

Separate Used to separate a batched entity into its constituent pieces 
Assign Used to manipulate attributes or variables every time an entity 

passes through 
Record Used to record tallies or counters that can be used to average 

statistics at the end of the simulation 
Delay Used to delay entities during logic flow 
Hold Used to hold an entity in a queue until a specified condition is met 

ReadWrite Used to read or write from an external file (i.e. Excel, Access, or 
text file) 

Release Used to release a seized resource  
Seize Used to seize a resource 
Route Used to route entities from one section of the model logic to 

another 
 
Table 2 contains a short description on many of the aforementioned commonly used Arena 
modules.  Listed are the modules used by the RLVSim model, in conjunction with several 
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Blocks template modules, to simulate RLV turnaround vehicle processes appropriately.  
Arena also includes several other templates such as “Factory Elements” and “Packaging” 
that contain modules that are specific to logistic or manufacture industries.   
 An Arena model is executed by using the “run” or “fast-forward” buttons located in 
the top toolbar.  Simulation speed can be increased or decreased as needed using buttons on 
the toolbar or by using the “<” or “>” keys.  The animation speed factor is displayed at the 
bottom left-hand corner of the screen while adjustments are being made, and can range from 
0.000010 to 100.  If the speed factor is set to a low enough speed, the various entities can be 
seen progressing through the model logic.  If animation stations have been set up in a 
separate animation area, the entity pictures can be seen moving from station to station.  This 
technique can be used to develop elaborate animations to demonstrate the model logic.  If 
the main purpose of a model is to generate model statistics, then animation should probably 
be kept to a minimum since it does require extra time to run.  Also, the run setup option 
under “run” can be used to modify the simulation parameters such as number of 
replications, the base time units to be used, replication length, warm-up period length, or 
report generation options.  After a model has been run, Arena waits for the “stop” 
command to be given before resetting the model.   
 Arena version 7.01 was utilized for the purposes of this project in conjunction with 
Windows XP professional and a 2.8 GHz. Desktop PC with 512 MB of RAM.  The model 
was developed using Arena’s educational mode in order to allow any user to work with the 
model without having to acquire a professional license.  The textbook Simulation with Arena 
by Kelton, Sadowski, and Sadowski (2004) contains a CD-ROM copy of educational version 
of Arena, which allows any user to develop models, but with a ceiling on the number of 
modules or SIMAN objects (attributes, variables, modules, etc.) that can be introduced to a 
model.  Arena version 7.01 was packaged with the third edition of the book, while the 
upcoming edition will be packaged with Arena version 8.007.  Version 8.0 will include 
improvements such as ActiveX controls that allow dynamic interaction with simulation 
runs, rotating symbols that allow for improved resource animation, increased macro-
recording capabilities, in addition to several other improvements8. 

2.4 Discrete Event Simulation Theory 
 Simulation theory is made up of several statistical techniques such as queuing theory.  
The essence of DES according to a popular DES text is that it is “the modeling over time of 
a system all of whose state changes occur at discrete points in time”9.  State changes are 
events that are considered changes in the model such as any time an entity is transferred 
from one module to another, any time an attribute/variable is changed, or any time a 
resource is seized or released.  This is demonstrated by an Arena model’s clock as a 
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simulation progresses.  Instead of changing from day 1 to day 2 to day 3 and so forth, 
assuming the model’s base time unit is set to days, the clock will jump from day 3 to day 52.5 
or some other time based on what is happening in the system.  This scheduling mechanism 
is accomplished by using what can be called a “future event list”, or FEL9, or an “event 
calendar”6.  An FEL essentially keeps track of what is currently going on in the model during 
each step.  For example, if an entity enters into a process module and is delayed while seizing a 
resource, the FEL will determine and keep track of how long that entity will be tied up in the 
delay by predetermining the delay end date as soon as the delay starts.  This determination is 
achieved by pulling a random value from a specified distribution.  Thus this technique is 
called “Discrete Event” simulation, for everything that happens in the model does so on a 
discrete step-by-step fashion.  If two events are scheduled to happen at the exact same time, 
they are executed serially based on when they entered in the FEL.  This method can be used 
to adequately model just about any real-world scenario, for even any event that takes place in 
a continuous fashion such as fuel usage, object displacement, or power output, can generally 
be modeled discretely.   
 Much of DES is built upon queuing theory since entities spend almost all of their 
time either using a resource or waiting in a queue of some sort.  Arena’s queues usually 
operate in a first-in, first-out (FIFO) fashion, meaning that entities are modeled like cars at a 
red-light.  The first car to the light is the first one that proceeds through when the light turns 
green.  In an Arena model, entities arrive at a resource and wait in the queue until that 
resource is open for use.  The entity that arrives at the resource first gets access to the 
resource before others.  The exceptions to this rule are when resources are seized based on 
priorities or when entities of a certain type are batched out of a batching queue based on 
some attribute.  The time that is spent in various queues can be summarized by the following 
equation6: 

Average time in queue = 
N

WQ
N

i
i∑

=1                                           (1) 

 
where WQi is the ith entity’s waiting time in a particular queue, and N is the number of 
entities that enter the queue during a simulation run.  The automatically generated Arena 
report contains average waiting times for all queues in the model by using this equation.  It is 
useful in that it provides a means of identifying where entities are spending their time in the 
system.  The report also provides a minimum and maximum waiting time experienced by 
entities.   
 Another beneficial queuing theory calculation6 that is used by the report generator is 
the time-average number of parts waiting in the particular queues: 
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Time-average number waiting in queue = 
L

dttQ
L

∫
0

)(
                                (2)  

 
where Q(t) is the number of parts in the particular queue at time t and L is the simulation 
length in base time units.  This statistic adds visibility to where the bottlenecks are occurring 
in any particular simulation, as well as what kind of facility space needs to be allocated to the 
resource.  For example if a simulation of banking transactions indicates that the time-average 
number of people waiting for a teller is 10 people, then adequate space for at least 10 people 
should be made in the waiting lines.  The automatically generated report also includes the 
minimum and maximum values for these statistics.   
 Queuing theory, while simple in nature, can provide powerful insight into what is 
happening in a particular system or model.  The most problematic occurrence in any model 
is extensive queue times, since these drive overall throughput and usually capture a majority 
of an entity’s life. 
 Resource utilization is another area that is vital to simulation studies.  If entities are 
not waiting in some sort of queue, then they are probably busy interacting with a resource 
(assuming transfer times are minimal).  Resources are assigned a capacity either on a fixed-
capacity basis or by schedule.  A resource’s capacity is a direct modeling translation to how 
many entities with which the modeled machine/person/etc. can interact.  The capacity of a 
teller resource will usually be one, while an automotive repair shop may be able to dual-
process two vehicles at the same time.  Long queue lines can usually be related to very high 
utilization metrics for queues, while very low utilization numbers can be seen as identifiers 
for overly-equipped resources.  If a resource's capacity is representative of the number of 
employees on-shift, then a low utilization number may indicate that the scheduled shift is 
over-manned.  The basic resource utilization metric can be calculated as follows6: 

Average resource utilization = 
L

dttB
L

∫
0

)(
                                       (3) 

 
where B(t) is equal to 1 if the resource is busy or 0 if the resource is idle at time t and L is the 
simulation length in base time units.  The Arena report provides this metric along with the 
maximum and minimum utilization values for each resource in a particular Arena model. 
 The Record module in Arena is commonly used to record user-specified metrics in the 
simulation report based on entity-related attributes such as an arrival time, or in some cases a 
replication specific value such as a total cost.  Every time an entity passes through the Record 
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module, the specified metric is recorded and averaged by the numbers of entities that have 
passed through.  This holds true whether the simulation is replicated one or many times.  
The report documents the average, minimum, minimum average, maximum, and maximum 
average value of all of the user-specified metrics. 
 The Arena simulation report also contains “half-widths” for every metric that is 
presented.  These half-widths are actually 95% confidence interval half-widths that were 
calculated using the following6: 
 

95% confidence interval half-width = 
n
s

n 2/1,1 α−−t                                 (4) 

 
where tn-1,α/2 is the upper 1- α/2 t-statistic critical point with n-1 degrees of freedom, s is the 
sample standard deviation, and n is the number of samples.  Sometimes the report will 
present a half-width as “insufficient”, which means that there were not enough data points 
for the equation to be accurate.  A 95% confidence interval is a normal distribution related 
concept, so there is an inherent assumption that the data points are normally distributed.   
 

Upper BoundLower Bound

Sample Average

95% of Samples Contained

Half-Width Upper BoundLower Bound

Sample Average

95% of Samples Contained

Half-Width

 

Figure 1.  95% Confidence Interval Half-Width on a Normal Distribution. 
 
The Central Limit Theorem in statistics10 stages there has to be a certain minimum of data 
points in order for a normally distributed trend to appear in data.  If there are not enough 
data points for this to happen, then Arena declares the half-width fields as “insufficient”. 
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Figure 2.  95% Confidence Interval Half-Width. 
 
 Arena allows any time-related event to be distributed in just about any type of 
distribution the user sees fit.  The major choices presented to the user are beta, erlang, 
exponential, gamma, johnson, lognormal, normal, poisson, triangular, uniform, and weibull.  
If a user wishes to gather random data from a distribution not mentioned above, then the 
user can code in the probability density function (PDF) of that distribution.  The three major 
distributions used in RLVSim model are the exponential, normal, and triangular 
distributions.  Only the arrival times of the initial set of orbiters and booster stages are 
modeled as exponential, which only happens a few times in each simulation run, so this 
distribution is not overly important.  Exponential is Arena’s default distribution for such 
cases since it only requires a nominal mean value.  The normal distribution is used only in 
the sense that the output data points have to behave normally distributed in order for the 
aforementioned half-widths to be calculated.  The triangular distribution is what is used to 
model all time distributions, and is a good representation of real-world occurrences since the 
physics of the problem usually dictate a minimum value that can be achieved.  Figure 3 
contains the PDF for a triangular distribution.  The basic parameters are the minimum value 
(a), the most likely value or mode (m), and the maximum value (b).   
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Figure 3.  Triangular Distribution Probability Density Function. 

 
The triangular distribution is useful in that it bounds the range of possible values, and can be 
used to weigh the randomization process towards either bound.   
 Although discrete event modeling uses a heavy amount of stochastic data generation, 
any computer generated random number is not truly “random” in the sense that it is not 
completely a spontaneous occurrence.  Computers actually rely on pseudorandom-number 
generators that use complex algorithms that create the appearance of random numbers, but 
provide quite repeatable results.  In fact, these numbers will pass any sort of statistical 
distribution test and are no different than a true random number for most intents or 
purposes.  The benefit from this is that the generations are repeatable, allowing for easier 
debugging.  If an Arena model is set to only replicate once, and no variables or any other 
model specific parameters are changed, every run will result in the same results.  A constant 
random number seed is used during every run that causes the same “random” numbers to 
reoccur.  When a simulation is replicated, a different seed stream is chosen each time, which 
creates the variability that is essential for the report calculations.  Recent versions of Arena 
use a complex random number generator (RNG) called a combined multiple recursive 
generator6 (CMRG) which uses the following: 
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Where A and B are a six-vector stream of seeds and Un is a random number between 0 and 
1.  The CMRG is a recently developed technique that generates a random number stream 
cycle that has a length of 3.1 * 1057. Arena further breaks this stream down into substreams 
that are used uniquely during each replication of a model.   
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3.0 RLVSim Arena Model 
The RLVSim Arena model uses a variety of Basic Process, Advanced Process, 

Advanced Transfer, and Blocks modules to model the turnaround operations of typical 
single or two-stage reusable launch vehicles.  Many vehicle and model specific parameters 
can be changed to parametrically study the output metrics.  These metrics consist of average 
vehicle turnaround, average vehicle recurring cost per flight, total recurring cost per 
simulation, total launches per replication, average launches per year, and the average loss of 
vehicle (LOV) rate.  The model can be used in either of three different fashions: single 
replication run (for use with multidiscipline design suites such as Phoenix Integration’s 
ModelCenter® and debugging), a Monte Carlo run (multiple replications), or a single run 
with Excel output (to view processing schedules).   

3.1 RLVSim Arena Model Logic 
The RLVSim model consists of logic modules that provide a high-level modeling of 

RLV turnaround operations as well as various mechanisms used to record the cost and 
turnaround metrics of interest.  The different entities that represent either an orbiter or a 
booster proceed through the processing, integration, runway/pad, ascent, and depot 
maintenance phases of the operations.   
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Figure 4.  Top-Level Process Flow. 

 
The three major phases all have a cost per day factor associated with them that is 

used to determine the variable cost per flight based on the number of days the orbiters 
spend in each of the facilities.  Each time an orbiter or booster entity arrives at a particular 
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facility, Arena draws a random value from the assigned triangular distributions and places 
that entity in a delay for that specified amount of time.  If an orbiter or booster arrive at a 
facility resource that is already in use (utilization = 1), then they wait in a queue until that 
resource becomes available.   

 

 

Figure 5.  RLVSim Screen Capture – Entire Model. 

 
Because the waiting time in the queues can become a significant portion of the orbiter’s time 
spent in the process flow, the user has two options regarding how to treat the variable cost 
while in queue.  The first is straightforward in that waiting times in the queues are 
considered part of the times spent at the facilities, which usually becomes the costliest of the 
options.  For example if an orbiter arrives at the OPF but has to wait for two weeks for 
another orbiter to finish processing in the OPF and transfer to the integration facility, those 
two weeks of wait are included in the total time the arriving orbiter spends at the OPF.  
These two weeks are also included when the total time is used in conjunction with the 
processing cost per day factor to generate that launches’ variable cost.  This logic does not 
accurately reflect real-world operations since the primary cost of using a facility consists of 
the payroll of technicians and maintenance workers that operate on the vehicle.  If a vehicle 
is waiting for a facility, then no work is generally being performed, therefore the cost per day 
should not be anywhere near that of when the vehicle is currently being worked on.  The 
RLVSim model presents users with a trigger that allows them to choose a second option that 
reduces the cost associated with waiting for facilities.  The “Cost Incurred Outside of 
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Facilities” trigger on the user input form, which will be discussed in section 3.2, can be 
turned off (“No”) so that facility waiting times are tracked separately than facility times 
themselves.  There is also an option in the user form that allows users to select what kind of 
factor should be used in conjunction with the cost per day factors in order to determine 
what kind of cost, if any, should be incurred while vehicles wait for facilities to become 
available.   
 

 

Figure 6.  RLVSim Screen Capture - Integration Phase. 
 

In order for the model to be able to track waiting times outside of the facilities and 
not have the waiting times included with the total facility time, separate queues were 
established using Hold modules to keep vehicles in place until the facility utilizations are less 
than one.  A utilization of less than one allows a facility to take in another vehicle.  This 
modeling technique renders the queues that are directly associated with the resources useless, 
therefore their statistical information is not contained in the simulation report.  For example, 
orbiters waiting to use the OPF wait in the Orbiter Processing Hold Queue instead of the Orbiter 
Processing Facility Queue.  Another reason that the logic is modeled this way is because the 
integration batching process that batches the orbiter and booster entities has to ensure that 
two incoming entities are one orbiter and one booster instead of two of one type.  A Hold 
module is used to contain booster entities until an orbiter is actually in the batching module.   
 In order to model real-world events associated with RLVs, a loss of vehicle (LOV) 
decision was also included in the model that requires a user or baseline provided vehicle 
reliability to stochastically model catastrophic failures.  This feature can be turned on and off 
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by a trigger in the user form and can also be further modified by identifying in the user form 
whether or not a replacement vehicle will be introduced in the fleet.  If the replacement 
vehicle option is activated, a user-specified replacement time will dictate how long the fleet 
operates at a diminished size until a new vehicle is introduced into the model.  Since 
RLVSim is only concerned with vehicle operation costs as opposed to development and 
manufacturing costs, the introduction of replacement vehicles into the system does not incur 
any extra cost.  Replacement vehicles will be introduced into the system only when an LOV 
occurs in order to maintain the specified starting vehicle count.   
 In addition to the basic process flow in Figure 4, there is a section in the logic that 
models the off-ramp depot maintenance periods that typical RLVs go through in order to 
maintain vehicle health.  The user has the option to turn this feature on and off in the user 
input form, which will dictate whether the orbiter entities enters this phase of model logic.  
If the trigger is turned on, then a counter is used to determine whether or not a depot 
maintenance visit is needed based on a user-provided missions-per-depot-maintenance field.  
The user also has the ability to change the cost incurred every time a depot maintenance visit 
is called for, as well as specify a statistical distribution (triangular) to be used to determine 
the duration of depot visits.   

3.2 Model Input Form and General Usage Guidelines 
When the model is run, a Visual Basic for Applications (VBA) coded user-form 

prompt asks the user which run method is desired.  Figure 7 contains the first of two pages 
that the user has to populate in order to run the model.   

 

 
Figure 7.  RLVSim Input Form – Page 1 of 2. 
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The “Run Control” box contains the three run types that are available.  The Single Run 
option replicates the model only once and prompts the user as to whether they want to view 
the output report or not.  The Monte Carlo Run option replicates the model twenty times in 
order to generate enough data points so that half-widths can be correctly calculated.  The 
Single Run with Excel option replicates the model only once, but it exports detailed data on the 
first fifty launches to the Excel file specified in the RLVSim Excel Output Filename box.  The 
Excel file has to be a version of the one developed for use with this model or else an error 
will occur.   
 The “Baseline” box contains three options pertaining to three different scenarios 
that can be used.  The first scenario is a blank template where the user has to input all of the 
data from scratch (second page contains the vehicle input form).  The second option is the 
current Space Transportation System (STS) baseline.  The values for the inputs were 
generated using the STS-baseline setup of NASA’s AATe.  The third option pertains to an 
unmanned TBCC TSTO concept vehicle called Aztec11 that was developed by Georgia 
Tech’s Space Systems Design Lab (SSDL).   
 

 

Figure 8.  RLVSim Input Form – Page 2 of 2. 
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Figure 8 contains a screen capture of the second page of the user input form.  In this 
particular instance the fields are populated since the STS baseline option was chosen on the 
prior screen.  A short description of each of the fields can be seen in Table 3. 

Table 3.  User Input Form Fields. 

Field Name Units Description 
Fleet Size  Vehicle Fleet Size 

Number of Stages  Number of vehicle stages (1 or 2) 
Depot Maintenance?  Boolean trigger for off-ramp vehicle 

maintenance 
Missions Per Depot Maintenance  Number of missions between off-ramp vehicle 

maintenance (if applicable) 
Vehicle Reliability  Vehicle reliability in 0.xxx format 

Vehicle Replacement  Boolean trigger for LOV vehicle replacement 
Replacement Manufacture Time Days Manufacture time for LOV vehicle replacement
Processing Facility Cost Per Day FY04 $M Cost per day for vehicle in processing facility 
Integration Facility Cost Per Day FY04 $M Cost per day for vehicle in integration facility 

Runway/Pad Cost Per Day FY04 $M Cost per day for vehicle on runway/pad 
Depot Maintenance Cost FY04 $M Off-ramp depot maintenance cost incurrence 

Cost Incurred Outside of Facilities?  Boolean trigger for full-cost incurrence while 
waiting for facility use 

Queue Cost Factor  Cost factor to cost per day rate while vehicle is 
waiting in queue 

Orbiter Processing Facility Capacity  OPF capacity 
Booster Processing Facility Capacity  BPF capacity 

Integration Facility Capacity  Integration facility capacity 
Runway/Pad Capacity  Runway/pad capacity 

Orbiter Processing Facility Time Days OPF time in triangular distribution format 
Integration Facility Time Days Integration time in triangular format 

Orbiter Mission Time Days Orbiter mission time in triangular format 
Booster Processing Facility Time Days BPF time in triangular format 

Booster Mission Time Days Booster mission time in triangular format 
Runway/Pad Time Days Runway/pad time in triangular format 

Depot Maintenance Time Days Depot maintenance time in triangular format 
Fixed Cost Minus Facility Costs FY04 $M Fixed per year operational costs for items such 

as cargo processing, traffic control, logistics, 
etc. 

Launch Facility Cost FY04 $M Fixed per year cost of launch facilities  
Processing Facility Cost FY04 $M Fixed per year cost of processing facilities 
Integration Facility Cost FY04 $M Fixed per year cost of integration facilities 

Landing Facility Cost FY04 $M Fixed per year cost of landing facilities 
 
As mentioned before, there are two baselines that can be selected to use as a starting point.  
Both the STS and the Aztec are reusable launch vehicles, but they differ in the number of 
stages and how they are treated operationally.  STS is a legacy-type system that has been used 
for over twenty years and was built using late 1970s technology that forces the turnaround to 
be approximately 90 days.  Aztec on the other hand is a next-generation type vehicle that 
generally takes approximately nine days to turnaround and relaunch.   
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Table 4.  STS and Aztec Baseline Settings. 

Field Name STS Baseline Aztec Baseline 
Fleet Size 3 2 

Number of Stages (Orbiter/Booster Stages) 1  2 
Depot Maintenance Yes Yes 

Missions Per Depot Maintenance 8 8 
Vehicle Reliability 0.998 0.9995 

Vehicle Replacement No No 
Replacement Manufacture Time (days) 365 100 

Processing Facility Cost Per Day (FY04 $M) 1.571859 0.77815 
Integration Facility Cost Per Day (FY04 $M) 1.008731 0 

Runway/Pad Cost Per Day (FY04 $M) 2.106812 0.54264 
Depot Maintenance Cost (FY04 $M) 108 11 
Cost Incurred Outside of Facilities No No 

Queue Cost Factor 0 0 
Orbiter Processing Facility Capacity 2 20 
Booster Processing Facility Capacity 0 20 

Integration Facility Capacity 2 20 
Runway/Pad Capacity 2 2 

Orbiter Processing Facility Time (days) TRIA(46.50, 62.00, 77.50) TRIA(5.07, 6.76, 8.45) 
Integration Facility Time (days) TRIA(4.20, 5.61, 7.01) 0 

Orbiter Mission Time (days) TRIA(7.5, 10, 12.5) TRIA(1.5 ,2, 2.5) 
Booster Processing Facility Time (days) 0 TRIA(5.07, 6.76, 8.45) 

Booster Mission Time (days) 0 TRIA(0.375, 0.5, 0.625) 
Runway/Pad Time (days) TRIA(17.88, 23.83, 29.80) TRIA(1.71 ,2.27, 2.84) 

Depot Maintenance Time (days) TRIA(265.5 ,354, 442.5) TRIA(26.23, 34.98, 43.72) 
Fixed Cost Minus Facility Costs (FY04 $M) 1882.188 75.051 

Launch Facility Cost (FY04 $M) 9.887 0.599 
Processing Facility Cost (FY04 $M) 12.998 1.93 
Integration Facility Cost (FY04 $M) 4.959 0 

Landing Facility Cost (FY04 $M) 6.965 0.455 
 
Table 4 contains the baseline settings for both baseline vehicles that are hard-coded into the 
VBA code that generates the user form.  A user can choose either of these two options and 
change any fields needed, or can start from scratch using the “No Baseline” option.  
However, there are some general guidelines that have to be abided by when using the forms 
and general version of the model: 
 

1. Facility capacities have to be greater than zero or else entities will queue permanently 
in the model (premature simulation termination).  If a particular configuration does 
not require an integration facility or dedicated processing facility, then the 
distribution times for said facilities should be set to zero and the capacity set to a 
high value, such as 20, that will prevent the seizing of that particular resource from 
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becoming a bottleneck.  The exception to this rule is single stage vehicles that negate 
the need for a booster processing facility altogether (capacity can be a zero). 

2. All fields in the user forms must be populated or else a VBA error will occur that will 
terminate accurate data generation. 

3. The Excel access mechanism will not perform properly if a copy of Excel is running 
in the background or foreground during the “Single Run with Excel” option.  To 
ensure that the model runs correctly and that data is successfully populated in the 
Excel spreadsheet, it is recommended that the model be closed and reopened after 
several runs. Almost all problems regarding the model’s failure to access the RLVSim 
spreadsheet can be corrected by closing all related programs (Arena and Excel), 
terminating any instances of Excel running in the background (Processes tab under 
Windows Task Manager – Ctrl-Alt-Delete), and reopening the model.  The “Single 
Run with Excel” option actually opens the specified Excel spreadsheet before 
execution, so there is no need to have the RLVSim spreadsheet already open when 
the model is executed. 

4. The “RLVSim Excel Output Filename” field has to be correctly populated with the 
filename of the RLVSim spreadsheet that should be located in the same folder as the 
model.  The original filename for this spreadsheet is “RLVSim_ver1.xls”, but can be 
changed if needed necessitating that this field be changed to the new name when the 
model is run in Excel output mode. 

5. Modification of the Arena modules can lead to unpredictable results since many 
modules are specially labeled using “tags” in order to be accessed by the VBA code. 

3.3 Single Run Mode 
 The single run mode is set up to replicate the model only once and prompt the user 
as to whether or not to display the report.  A single run rarely generates enough data-points 
for Arena to be able to compute the 95% confidence intervals, so the data presented in the 
report is highly variable.  This mode is useful if a user wishes to slow down the animation 
factor in order to view the entities proceeding through the model logic, which can be 
assisted by checking the “Highlight Active Module” option under the “Run Control” 
options under the “Run” option on the toolbar.  Even though this mode does not generate 
confidence intervals on the statistics due to lack of data points, it is useful in analyses that 
focus on trends and sensitivities.  Some trade studies that demonstrate how this option can 
be useful in this manner will be discussed in a later section.   
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3.4 Monte Carlo Mode 
 The Monte Carlo mode is similar to the single run mode in every way except that the 
model is set-up to be replicated 20 times.  By replicating the model 20 times enough data 
points are generated for the 95% confidence intervals to be calculated.  The average values 
that are presented in the report are averaged over each of the occurrences within a single 
replication (such as each launches turnaround time) as well as over all 20 replications.  When 
the simulation is complete, the user is prompted as to whether or not to display the report.   
 

 

Figure 9.  RLVSim Report Screenshot (Queue Statistics). 

 
The report for this simulation is usually five pages long (using Arena version 7.01) and 
contains statistics regarding the Queues, the facility resources, as well as the tally averages 
that document the costs. Figure 9 contains a screenshot of the second page of the report, 
which documents some of the queue statistics.  The first section documents the average 
waiting times associated with each of the queues.  In Figure 9, only the Orbiter Processing Hold 
Queue is displayed in the top area because this is the only queue that had any entities in wait 
during the entire simulation.  This is due to the orbiter processing time being the longest of 
any phase.  It can be seen in the circle in Figure 9 that the orbiters wait for an average of 
12.2065 days to use the OPF.  This number would be higher had the fleet size been larger or 
smaller if the OPF had a higher capacity rate.  The bottom section of the second page of the 
report pertains time-average number of entities waiting in the various queues.   
 The third, fourth, and fifth pages of the RLVSim report contain data concerning the 
facility resources in the model.  The third page of the STS report contains an “Instantaneous 
Utilization” metric that is the time-weighted average of the utilization (number busy/number 
scheduled).  There is also a “Scheduled Utilization” metric on the fourth page that is 
essentially the same utilization figure but uses the average number scheduled capacity as 
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opposed to the instantaneous number scheduled.  Since the scheduled capacity never 
changes in the RLVSim model, these two metrics are the same. The third page also 
documents the average number busy in each of the resources.  This pertains to how many 
units of the resources’ capacity, such as the number of OPF bays, are in use on average.  The 
fourth and fifth pages contain further documentation regarding the assigned resource 
capacities as well as the average number seized over the 20 replications. 
 The essential part of the RLVSim report is the last section, which provides tally 
averages for each of the five statistics that are recorded in the model. This section can be 
seen in Figure 10. 
 

 

Figure 10.  RLVSim Report Screenshot (Tally Averages). 

 
These five tally averages that are documented in the last section each pertain to a Record 
module placed in the model.  Every time an entity passes through each of these record 
modules the tally is incremented by the designated amount and averaged.  The three tallies 
that pertain to a global replication variable such as the Total Cost per Replication tally are 
recorded by creating a dummy entity at the end of the simulation (day 7300) that is 
immediately assigned the three global variables of interest so that the three Record modules 
the entity passes through can record the tally averages.  Table 5 documents each of the five 
tally statistics along with a short description of each. 
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Table 5.  RLVSim Tally Statistic Descriptions. 

Expression Units Description 
LOV Count per Replication  The average number of vehicles lost during each 

replication 
Mission Cost per Launch FY04 $M The variable cost associated with each launch 
Total Cost per Replication FY04 $M The total variable and fixed cost sum associated with 

each simulation run 
Total Launches per 

Replication 
 The total number of launches per replication 

Turnaround per Launch Days The average number of days for vehicle 
turnaround 

 
The LOV Count per Replication, Total Launches per Replication, and the Turnaround per Launch 
averages are self-explanatory.  The Mission Cost per Launch is the variable cost value associated 
with each launch that is calculated using the number of days in each facility along with the 
corresponding CPD values.  This value does not take into account any fixed costs nor depot 
maintenance costs.  The Total Cost per Replication encapsulates every cost associated with each 
replication.  This is the total cost, both fixed and variable, and depot maintenance costs, of 
the entire 20-year simulation span.  This value is updated with the variable costs after every 
launch, and is updated with the total fixed cost (twenty times the fixed cost per year value) at 
the end of each replication.  A useful figure of merit is the operations cost per flight, which 
can be calculated by dividing the Total Cost per Replication by the Total Launches per Replication 
figure.  This new figure will be representative of all of the costs incurred for each flight.  
Averaging the Total Launches per Replication by the 20-year simulation length also provides the 
average number of flights per year, which is also a commonly tracked figure of merit in LCC 
studies.  The average number of flights per year represents the maximum achievable 
throughput for a vehicle for a particular fleet size and facility resource capacity.  Since the 
Arena report generator is only capable of tallying specified statistics, the operations cost per 
flight and the average number of flights per year have to be calculated by hand when using 
RLVSim in this mode.   

3.5 Single Run with Excel 
 The third run option that the user is presented with when running the RLVSim 
model is a single run with an Excel output.  An Excel output file (“RLVSim_ver1.xls”) 
was developed for Arena model to access and write detailed results pertaining to 
turnaround and cost metrics for the first 50 flights of the simulation run.  Since a 
significant number of output variables are being exported from Arena and written to 
Excel in real-time with the model’s execution, CPU memory limitations become a factor 
dictating that only the first 50 records be written.  Any depot maintenance visits during 
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the first 50 flights are also recorded on a separate worksheet.  Table 6 lists the twenty-two 
variables that are output each time an orbiter completes its turnaround operations.   
 

Table 6.  RLVSim Excel Output - Simulation Results Worksheet. 

Mission Number Processing End Mission Start 
Orbiter Number Total Integration Time Mission End 

Mission Variable Cost Integration Start OPF Wait Time 
Total Turnaround Time Integration End Integration Wait Time 

Turnaround Start Total Runway Time Runway Wait Time 
Turnaround End Runway Start Total Wait Time 

Total Processing Time Runway End  
Processing Start Total Mission Time  

 
The Queue Cost Trigger in the user input form dictates how waiting times are treated.  If the 
trigger is set to a one, then all wait time columns on the Excel output sheet will be zeroes 
since the waiting time will be batched with the time spent at each of the resources.  If the 
trigger is set to a zero, then the waiting times will be populated and the mission variable cost 
value will be incremented appropriately based on the Queue Cost Factor setting.  If a vehicle is 
lost during a mission and the Vehicle Replacement Trigger is set to one, then a new vehicle will 
appear in the schedule after the user-specified length of time.  The additional vehicle will be 
assigned a vehicle number consistent with the number that have already been introduced 
into the system.  For example, if vehicle two of a four-vehicle fleet is lost then the new 
vehicle that is introduced will be vehicle five.  The following is a list of the six depot 
maintenance-related output variables that are written to the second tab (“Depot 
Maintenance Schedule”) of the RLVSim Excel sheet: 

• Orbiter Number 
• Depot Cost 
• Depot Time 
• Depot Start 
• Depot End 
• Mission Number 

The mission number that is associated with each visit is the mission immediately following 
the maintenance visit.  The depot cost value that is populated in the sheet will always be a 
constant value since no distribution has been placed on depot maintenance.  The Excel 
output sheet also has a third worksheet tab (“Average Facility Time Breakdown”) that 
contains a pie chart depicting the time percentages of each of the major turnaround facilities 
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as well as the time spent in waiting.  These percentages are the averages of the fifty flights 
that were populated in the Excel sheet.  

3.6 Baseline RLVSim Results 
Both baselines were evaluated using both the Monte Carlo and single run with Excel 

analysis options.  The Excel outputs for both configurations can be seen in Appendix B.  
The Monte Carlo simulation results for the STS baseline are shown in Table 7. 

Table 7.  STS Baseline Results. 

Tally Statistic Average Value Units 
LOV Count per Replication 0.2000  

Mission Cost per Launch 111.79 FY04 $M/launch 
Total Cost per Replication 58,156.91 FY04 $M 

Total Launches per Replication 155.15  
Turnaround per Launch 96.9195 Days 

   
Total Ops Cost per Mission 374.843 FY04 $M 

Flights per Year 7.7575 Flights/year 
 
The RLVSim model predicted that the total operations cost for the twenty-year simulation 
would be $58,157 million.  When averaged over the 155.15 predicted flights this value came 
out to be approximately $375 million, which encapsulates all variable costs associated with 
the mission, the full fixed costs associated with the mission, as well as the any depot 
maintenance costs that are averaged into each flight.  This value is consistent, but on the low 
end of typically quoted values for STS missions (generally $300-600 million).  This can be 
explained by the slightly high flight rate of 7-8 flights a year.  RLVSim predicts what can be 
achieved based on the provided fleet size but payload market demands usually dictate lower 
launch rate demands. Since the fixed costs are averaged over all of the flights, the total 
operations cost per flight figure decreases as flight rates increases.  If RLVSim had predicted 
that STS could launch only four-five times at most based on the current fleet, then the ops 
cost per flight would be slightly higher and into the commonly quoted $400-500 million 
range.   
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Figure 11.  STS Average Facility Dwell Time Percentage Pie Chart. 
 
Error! Reference source not found. depicts a pie chart that is representative of the 
percentages of each of the phases versus the overall turnaround time.  It can be seen that the 
orbiters spend about 64% of their turnaround time in the OPFs, while only 6% of the time 
is spent in the integration facility.  This pie chart also demonstrates that the orbiters spend 
about 6% of their time waiting for one of the facilities to become available.   
 The Aztec baseline resulted in a total ops cost of $8,724.84 million for the entire 20-
year simulation (Table 8).  This cost translates to a $9.6370 million cost when divided over 
the 905 flights. Aztec certainly achieves a much higher flight rate than STS because it takes 
on average 9.6 days to be readied for relaunch.  Because of the high flight rate, the average 
LOV count for Aztec is higher than that of the STS baseline despite Aztec having a higher 
reliability.  An Aztec fleet size of two can achieve a maximum of approximately 45 flights per 
year based on the baseline assumptions. 
 

Table 8.  Aztec Baseline Results. 

Tally Statistic Average Value Units 
LOV Count per Replication 0.4500  

Mission Cost per Launch 6.4963  FY04 $M/launch 
Total Cost per Replication 8,724.84 FY04 $M 

Total Launches per Replication 905.35  
Turnaround per Launch 9.2654 Days 

   
Total Ops Cost per Mission 9.6370 FY04 $M 

Flights per Year 45.268 Flights/year 
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It can be seen in Figure 12 that the Aztec orbiters spend about 71% of their time in 

the processing facility while spending only 24% of their time on the runway/pad.  Only 5% 
of the time is spent in waiting due to baseline assumptions that Aztec has a three-vehicle fleet 
with a dual-processing facility capability.  The primary different between the Aztec facility 
percentage pie chart and that of STS (Error! Reference source not found.) is that Aztec 
spends no time in any sort of integration facility, which is consistent with the model’s 
assumption that Aztec is integrated on the runway/pad. 
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Figure 12.  Aztec Orbiter Average Facility Dwell Time Percentage Pie Chart. 
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4.0 RLVSim ModelCenter® Capability 
 ModelCenter® is a multidisciplinary design suite that allows users to incorporate 
many different types of tools (Excel, Fortran code, etc.) into one framework in order to 
parametrically study complex designs.  Using VBScript code in a ModelCenter® 
ScriptWrapper, Arena models can be integrated into the framework in order to be used 
along with other tools.  For instance, an Arena model’s variable values, expression values, 
process distribution time, etc. can all be updated with results from an Excel-based tool in a 
rapid manner that allows various trade studies or even numerical optimizations to be 
performed.  Such a VBScript ScriptWrapper was written for the RLVSim model in order to 
be able to perform trade studies, such as optimizing fleet size based on facility capacities.  
The ScriptWrapper utilizes the ActiveX Automation6 technology to allow ModelCenter® to 
manipulate not just the various modules inside the RLVSim model but also the Arena run 
controls that dictate the running of the simulation.  When Arena is installed on a computer, 
its object library is added to the list of object libraries registered with the local Windows 
system.  VBScript codes should then be able to utilize the Visual Basic commands associated 
with the object library, and typical Windows applications like Excel can do so through VBA.  
In fact, the user input forms that are presented to the user when the simulation model is 
executed were built using Excel VBA code that utilizes the Arena object library.   

4.1 RLVSim ScriptWrapper Details 
 The code for the ModelCenter® ScriptWrapper (“RLVSim_ver1.ScriptWrapper”) can 
be fully seen in Appendix C.  It is written in similar fashion to the user input form in that the 
user has a choice between three options (a new concept, Aztec, or STS).  The primary 
difference is that if a user selects Aztec or STS, the only ModelCenter® input variables that 
can be changed and still influence the model are the fleet size and facility capacity values.  
The other model input-specific values become obsolete when a “ConceptChoice” of 2 (STS) 
or 3 (Aztec) is chosen.  The script is setup this way to allow users to perform trade studies on 
either of the two baselines regarding fleet size versus facility capability settings.  The first 
choice, the new concept choice, is set up by default to have STS values.  The user is free to 
change any of the inputs to see the impact on the resulting output metrics.  The first choice 
is also used in conjunction with the RLVSim version for AATe that has been modified from 
the original AATe to output RLVSim specific parameters such as the cost per day and fixed 
facility cost values.   The ScriptWrapper outputs the same tally statistics as the RLVSim 
report, as well as an AverageCostPerYear and OpsCostPerFlight metric.  The AverageCostPerYear 
value is the average of the total cost over the 20-year span.  The OpsCostPerFlight is the total 
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cost incurred, fixed and variable, for each flight that is calculated by dividing the total cost by 
the number of flights achieved.   
 The ScriptWrapper specifically controls the RLVSim model by opening the RLVSim 
model file, updating all of the fields that would normally be updated by the user input form, 
and fast-forwarding the simulation.  Once the simulation is complete the tally statistics are 
retrieved from their SIMAN-related model records and the model is saved and closed.  It 
should be noted that several changes need to be made to the RLVSim model before the 
ScriptWrapper will successfully run the model: 

• While open, the model’s report generator has to be set to “never” so that the report 
prompt will not interfere with ModelCenter® execution.  This can be achieved by 
specifying this particular option on the “Reports” tab in the “Run Setup” options 
(under “Run” on toolbar).  This change does not have to be reset in order for 
normal operation of the RLVSim model since the VBA user input form sets it 
appropriately.   

• The user input form has to be turned off in order for the ModelCenter® 
ScriptWrapper to operate correctly.  This is achieved by clicking on the “Basic 
Process” module template, choosing the “Variable” module, clicking on the “Initial 
Value” box on the “User Form Trigger” variable, and setting the value to zero.  This 
change will have to be reversed before normal operation of the RLVSim model since 
it prevents the user input form from being prompted when the simulation is run.   

• Likewise, the “Excel Output Trigger” has to be set to a zero to prevent the model 
from writing to the RLVSim Excel file during ModelCenter® use.  This change will 
be reset any time the model is run with the “User Form Trigger” set to a one. 

4.2 RLVSim & AATe Integration 
 The modified version of AATe (AATe_RLVSim_ver.xls) and the AATe 
ModelCenter® ExcelWrapper were modified to allow ModelCenter® to receive the RLVSim 
specific values from the output page.  The output variables of interest are tabulated in Table 
9. 
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Table 9.  RLVSim Related AATe Output Variables. 

Output Name Units Description 
LaunchfacilityTime_cf Days Curve-fit launch facility time 

LandingFacilityTime_cf Days Curve-fit landing facility time 
ProcessingFacilityTime_cf Days Curve-fit processing facility time 

IntegrationFacilityTime_cf Days Curve-fit integration facility time 
BaseFixedOpsCost FY04 $M Fixed cost per year minus fixed facility 

maintenance cost 
FixedLaunchFacilityCost FY04 $M Fixed launch facility cost per year 
FixedLandingFacilityCost FY04 $M Fixed landing facility cost per year 

FixedTurnaroundFacilityCost FY04 $M Fixed turnaround facility cost per year 
FixedIntegrationFacilityCost FY04 $M Fixed integration facility cost per year 

LaunchCPD FY04 $M/Day Launch facility cost per day per year 
TurnaroundCPD FY04 $M/Day Turnaround facility cost per day 
IntegrationCPD FY04 $M/Day Integration facility cost per day 

 
A user wishing utilize AATe in conjunction with the RLVSim model in ModelCenter® will 
have to establish links between the variables in Table 9 with the proper inputs in the 
RLVSim ScriptWrapper as well as any other variable that they may wish to have fed from 
AATe to RLVSim, such as a fleet size.   
 

 

Figure 13.  AATe and RLVSim in ModelCenter®. 
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4.3 Aztec ModelCenter® Trade Study 
A typical RLV design study would consist of a conceptual level LCC analysis to 

determine the economic viability of the vehicle.  Based on what missions a particular RLV is 
designed for, an analysis of the ability of the architecture to achieve various mission goals for 
a reasonable cost is required.  One major driver in such a study is the market demand, 
whether it is commercial or governmental, of payloads that the RLV is capable of delivering.  
From this demand a desired annual launch rate can be estimated for a RLV concept.  AATe 
provides the general turnaround values for various phases of an RLV’s preparation for flight, 
but this does not take into account facility resource constraints and facility queues.  How 
many orbiter processing facilities are needed?  How many launch pads would allow the 
desired launch rate to be achieved?  These questions can be answered by using RLVSim in 
the ModelCenter® environment.  It should be noted that each simulation run in 
ModelCenter® requires roughly ten seconds to return resulting values, so smaller scale 
analyses such as these do not present a problem in terms of run times. 

Aztec has a turnaround time of around nine days according to AATe, but how does 
that translate to an increased fleet size along with a specified facility resource level?  If the 
payload delivery market will support 100 launches per year, how large should the Aztec fleet 
size be?  Trade studies performed using RLVSim shed insight to these questions by 
demonstrating the general trends associated with increasing fleet sizes based on various 
facility resource designations.     
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Figure 14.  Aztec Flight Rate vs. Fleet Size with Facility Capacity at 1. 
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The first phase of the study was performed by sweeping Aztec’s fleet size from one to ten 
while holding each of the facility resource levels (OPF, BPF, and runway/pad) at one.  
Because Aztec is processed in dedicated processing facilities and integrated on the 
runway/pad, only the OPF, BPF, and runway pad resource facilities were taken into account.  
It is apparent from Figure 14 that a flight rate of 100 flights per year could never be achieved 
if the facility capacity levels were only one, regardless of the number of vehicles in the fleet.  
In fact, adding more than three vehicles would not be beneficial since bottlenecks in the 
processing flow would prevent any increase in flight rate beyond 53-54 flights per year.   
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Figure 15.  Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 1. 

Figure 15 demonstrates that the average turnaround time for the vehicles increases almost 
linearly as more vehicles are added to the fleet.  This is expected since additional vehicles 
would spend a majority of their time waiting to enter a facility.  If the market demands 100 
flights per year, then it is apparent that a higher facility resource level is needed.   
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Figure 16.  Aztec Flight Rate vs. Fleet Size with Facility Capacity at 2. 

Figure 16 was created by sweeping the fleet size from one to ten while holding all of the 
facility resource levels at two.  A level of two can be considered a “dual-processing” 
capability that significantly increases the maximum throughput of the process.  Figure 16 
indicates that a flight rate of 100 flights per year is achievable if there are at least five vehicles 
in the fleet.  The desired launch rate is obtained by this fleet size, but only by a small margin.  
It is apparent that a dual-processing capability still allows only a maximum of around 110 
flights per year, which is not significantly higher than the target of 100 per year.  Because of 
this, to achieve confidence that the vehicle architecture is capable of always achieving the 
desired flight rate, a sixth vehicle may or may not be required. 
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Figure 17.  Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 2. 

If the fleet size is determined to be five vehicles, an average turnaround time of 12-13 days 
should be expected according to Figure 17.  The average turnaround curve increases almost 
linearly if more than five vehicles are introduced which is consistent with the leveling-out of 
the achievable flights per year plot in Figure 16. 
 A dual-processing capability along with five vehicles seems to be adequate, but in 
order for the architecture to be robust enough to handle fluctuating yearly launch demands, 
it may be wise to increase the facility resource capability one step further. 
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Figure 18.  Aztec Flight Rate vs. Fleet Size with Facility Capacity at 3. 

Figure 18 demonstrates that a facility resource capacity level of three may be a better choice 
because the trend levels-out at a much higher flight rate than the dual-capacity scenario.  The 
five-vehicle fleet should obtain a flight rate of 120 flights per year, while a four-vehicle fleet 
would still achieve the 100 flights per year target.  If only four vehicles were used, the 
average turnaround per vehicle would be just over nine days according to Figure 19.   
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Figure 19.  Aztec Turnaround Time vs. Fleet Size with Facility Capacity at 3 
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It appears that the target flight rate could be achieved in either of two ways.  First, a dual-
processing facility capacity could be used in conjunction with a five-vehicle fleet.  An 
alternative would be to use only a four-vehicle fleet but with a facility resource capacity level 
of three.  Table 8 contains the results from each of the scenarios. 

Table 10.  Aztec Trade Study Results. 

Processing 
Capability 

Level 

Fleet Size to 
Meet 100 

flights/year 

Approximate 
Achievable 

Launch Rate 

Average Turnaround 
(Days) at Optimal 

Fleet Size 
1 N/A 54 N/A 
2 5 108 12.5 
3 4 155 9.5 

 
The two alternative solutions to the problem should be compared in terms of financial 
commitment.  Generally, the cheaper alternative would be to use the dual-processing 
capability with the five vehicles since adding an extra vehicle will usually be cheaper than 
adding more facility infrastructure as long as the vehicle is not too complex.  Not only would 
the expanded infrastructure require a significant cost commitment up front for construction, 
but the yearly maintenance costs would be higher as well as the costs associated with the 
labor force needed to operate the facilities.  However, Figure 16 shows that having five 
vehicles with a dual-processing capability barely gets an achievable throughput that is higher 
than the target.  This is important to keep in mind, because any detriment to the fleet, such 
as a LOV scenario or longer than normal vehicle refurbishment, may lead to a flight rate 
lower than needed.  If the infrastructure is kept at a facility capacity level of two, it may be 
wise in include a sixth vehicle.  Even with an additional vehicle, the achievable throughput 
may not be sufficient if the demand fluctuates.  In order to be truly prepared for a market 
fluctuation scenario more facilities may be needed.  Despite the additional costs, a facility 
resource capacity of three would allow a more robust response to any fluctuations, and 
would allow a fleet size of four or five ensure that the targeted flight rate of 100 flights per 
year be achieved.   

4.4 STS ModelCenter® Trade Study 
The current STS fleet consists of three vehicles, and the processing and launch 

facilities at the Kennedy Space Center can generally process two vehicles in parallel.  Using 
these baseline assumptions in RLVSim, a maximum launch rate of almost eight flights a year 
can be achieved.  STS initially was designed to have a much higher flight rate, and 
modifications and additions to the International Space Station (ISS) necessitate that STS 
achieve as high a flight rate as possible.  Because of this, it may be of interest to see what 
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changes could be made to improve the possible throughput.  Basically, how much of a 
benefit can be achieved if each of the facilities were improved to handle three vehicles at a 
time?  In addition, what kind of benefit would a fourth replacement orbiter provide if the 
infrastructure were expanded?   
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Figure 20.  STS Flights per Year vs. Fleet Size. 

 
Figure 20 was generated using the STS baseline assumptions in RLVSim along with 
ModelCenter® in a similar manner as the Aztec trade study in section 4.3.  ModelCenter was 
used to sweep the fleet size from one to four to see the effects on the flight rate and 
turnaround time based on specified facility resource levels.  The results show that a slight 
improvement in the flight rate can be achieved if the infrastructure is expanded.  With three 
vehicles this improvement is very slight, going from just under 8 to around 8.5 flights a year.  
If a fourth vehicle was added to replace the orbiter Columbia, the modified infrastructure 
would have a more significant benefit.  Four vehicles operating in the infrastructure as it is 
currently configured would achieve just over 9 flights a year.  Four vehicles operating in an 
expanded infrastructure would achieve almost 11 flights per year.  Figure 21 shows that the 
average turnaround time decreases from the two-vehicle processing capability to the three-
vehicle processing capability.  In this case a four-orbit fleet would see a 118-day turnaround 
time reduced to 95 days if the infrastructure were expanded. 
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Figure 21.  STS Turnaround Time vs. Fleet Size. 

 
The STS is a legacy vehicle that is significantly close to retirement.  Throughout the years 
many proposals have been put forth regarding ways to improve the fleet in order to keep it 
flying for many more years, but the recent change of focus in the space industry to Lunar 
and Martian exploration has restricted future plans of STS operation to within the current 
decade.  Because of this, the STS trade study documented in this section is solely provided to 
give an example of how RLVSim can be used in conjunction with ModelCenter® to study 
the impacts of improvements to existing architectures that are in place today.  Even though 
the STS fleet may not be used after 2010, a next generation vehicle may take advantage of 
the STS processing and launch infrastructure at KSC, just as STS took advantage of what 
was left from the Apollo program of the 1960s. 
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5.0 Conclusions 
In summery RLVSim is a tool that can be used in several different ways to assist in 

LCC analyses of single-stage and two-stage reusable launch vehicles.  In its primary role as a 
stochastic simulator that can be replicated many times to obtain confidence intervals 
associated with each of the output metrics, RLVSim provides a capability to students and 
student researchers that is significantly different from traditional deterministic tools.  
Statistical support for any forecasted value is beneficial since it captures the variability 
associated with such a value.  In its secondary role as a tool that can collaborate with other 
tools in the ModelCenter® environment, RLVSim can quickly provide results based on 
various input settings. These settings allow quick trade studies to be performed using 
RLVSim, and allows the tool to act as a contributing analysis to larger scale concept studies.     

Section 3.6 documented both the STS and Aztec baseline results which demonstrate 
the validity of RLVSim’s outputs. Sections 4.3 and 4.4 each described typical analyses that 
can be performed using RLVSim, demonstrating the importance of decisions that can be 
made using RLVSim regarding turnaround drivers such as infrastructure processing levels 
and fleet sizes.  There are various input parameters to RLVSim, any of which could be 
identified as trade study subjects to truly discern what factors lead to high operational costs.    

Because RLVSim was developed to be used in several different fashions, there are a 
number of supporting files other than the model itself that need to be accounted for.  Table 
11 provides a brief description all of the files that have been developed for this project, all of 
which are needed to operate RLVSim along with AATe in the ModelCenter® environment.   

Table 11.  RLVSim Related Files and Spreadsheets. 

File Name Description 
RLVSim_ver1.doe RLVSim Arena model 
RLVSim_ver1.xls RLVSim Excel output spreadsheet 

AATe_RLVSim_ver.xls AATe Excel tool modified for RLVSim use
RLVSim_ver1.ScriptWrapper ModelCenter® ScriptWrapper file for 

RLVSim_ver1.doe file 
AATe_RLVSim_ver.ExcelWrapper ModelCenter® ExcelWrapper for 

RLVSim_ver1.xls file 
 

In the effort to truly bring operational considerations to the forefront of conceptual 
vehicle design, RLVSim assists by complementing other tools commonly used such as 
RMAT and AATe.  It has been developed in order to provide sophisticated results while 
keeping in mind that the average operations researcher may not be familiar with the 
intricacies of DES.  The user forms allow even beginner users to tweak time and cost 
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parameters for each of the major turnaround facilities used in a vehicle’s turnaround flow, 
which leads to a high level of control over the concept of operations formulation.  Due to 
this versatility, RLVSim is a prime example of how discrete event simulation can be brought 
into a complex vehicle’s conceptual design, allowing probabilistic and dynamic analyses to be 
performed.  These analyses offer insight into vehicle turnaround operations that have not 
been possible with tools in the past. 
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Appendix A – Baseline Data Derivations 
 Both the STS and Aztec baseline configurations that are in the model are primarily 
based on results from NASA’s AATe.   A modified version of AATe that automatically 
calculates the variable cost per day per each phase of the turnaround operations as well as 
the fixed cost values was constructed.  Some of the same assumptions used in the AATe 
models were utilized in the RLVSim model, such as orbiter time in orbit values, turnaround 
flow paths, and nominal fleet sizes.   

A.1    Space Transportation System Baseline 
 The baseline STS configuration assumes a single-stage orbiter component since the 
space shuttle itself is the primary piece of the configuration.  In reality, there are two solid 
rocket boosters (SRBs) and one external tank (ET) that are integrated into the stack, but 
since these components are either expendable or partially reusable, they do not drive the 
turnaround time operations.  While detailed studies of the current Space Transportation 
System derived systems would require detailed DES-type analysis of SRB and ET arrival, 
inspection, and transfer, the RLVSim model has been developed to be used for next 
generation RLV conceptual studies that will not require expendable boosters or tanks.  The 
RLVSim model also had to be kept under educational-mode constraints, which prevented 
worthwhile modeling of the SRB and ET type components. 
 AATe’s output spreadsheet provides a variable cost breakdown that specifies the 
values associated with the three phases of interest: processing, integration, and pad/runway.  
These are three out of four phases that AATe uses to roll-up overall turnaround time, with 
the fourth being the landing phase.  Since the landing phase does not contribute significantly 
to the overall turnaround time (less that 1%), its AATe generated time and variable cost 
contributions were combined into those of the runway/pad phase.  In order to quantify a 
cost per day factor for each of the modeled phases, the variable cost contribution of each 
phase was first translated to a percentage of the sum of the three phases of interest 
(processing + integration + launch/landing).  For example, AATe calculated that the 
variable cost per launch of STS due to the processing phase was $6.37 million, which is 
around 56% of the variable cost sum of the three major phases ($3.82 M + $6.37 M + $1.20 
M = $11.39 M).  The percentages of each of the three phases were then used to spread the 
remaining variable cost per flight - traffic control costs, cargo processing costs, logistics 
costs, etc. - amongst the launch/landing, processing, and integration phases.  For the 
processing phase this resulted in a total variable processing cost of $56.80 M.  These total 
variable costs were then used in conjunction with the curve-fit turnaround times in AATe 
(still assuming launch and landing are combined) in order to generate a variable cost per day 
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factor (CPD) for each of the phases.  These CPD figures were then translated from FY00 
dollars to FY04 dollars using an inflation factor (1.101) that was taken from the “NASA 
New Start Index Inflation Calculator”12. Figure  contains a screen-shot directly from the 
modified version of AATe that contains the CPD calculations for the STS baseline. 
 

RLVSim Output Metrics

cost ($M) % time (days) add-on ($M) total cost 
($M) per day FY04$M

launch 3.82 0.335054 23.8342 30.21073573 34.03 1.427664 1.571859
turnaround 6.37 0.559322 61.99914 50.43223513 56.80 0.916195 1.008731
integration 1.20 0.105624 5.605769 9.523752551 10.73 1.913544 2.106812

total 11.39 91.4391
remaining 90.167

Launch 23.01129
Landing 0.82291

turnaround 61.99914
integration 5.605769

91.4391
 

Figure A-1.  STS Cost per Day Calculations (from modified AATe). 

 
 The fixed cost values used to populate the STS baseline were also pulled directly 
from AATe, this time by separating the fixed “launch”, “landing”, “turnaround”, and 
“integration” operations cost values from the total fixed operations cost per year in the 
“Detailed Operations Outputs” section.  The remaining $1882.188 million ($1,709.526 FY00 
M) was then used as the baseline fixed cost per year value, which is populated in the user 
input form.  AATe predicts that this baseline fixed cost per year value starts to increase 
when a launch rate greater than 12 per year is achieved.  Such a rate is out of the range of a 
three vehicle STS fleet (the RLVSim model predicts that the fleet can achieve a maximum 8 
flights per year).  When the model is run, the facility costs that were removed from the total 
fixed operations cost per year are added back into the TotalFixedCostPerYear model variable 
based on the number of facilities designated in the user form.  For example, the baseline STS 
configuration is established with two processing bays, two integration bays, and two launch 
facilities (along with an assumed single runway).  The fixed cost per year value that is 
populated into the model during execution is calculated by adding: $1882.188 M base value 
+ $6.965 M (landing facility) + 2 x $9.887 M (launch facility) + 2 x $12.998 M (processing 
facility) + 2 x $4.959 M (integration facility) = $1,944.841 M (all dollar figures FY04).  At the 
end of each replication 20 times this cost (20 years) is added into the total cost of the twenty-
year simulation run in order to capture the cost associated with facility overhead, logistics 
support, and so forth.    
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 The curve-fit turnaround times that were used to populate the model were pulled 
directly from the AATe curve-fit values.  The launch and landing curve-fit time values were 
combined into the one value for the model, and a +/- factor of 25% was used to obtain the 
minimum, mode, and maximum values of triangular distributions for each of the three 
phases.  A factor of 25% was chosen since it allows enough variation to impact the 
throughput, but is still consistent with the nominal value.  The ranges were chosen to be 
symmetric since the nominal value itself is an estimation, and it is not known whether the 
value is skewed towards the minimum or maximum.  

The depot maintenance value used for the STS baseline was derived from a 
reference13 that listed the depot maintenance times for three shuttle flights.  These times 
should be representative of the average range of time spent in depot maintenance.   The 
three quoted depot maintenance visits (STS-89, 101, 109) are from a six-year time span and 
show an increasing trend in both the number of days and the associated cost of the visit.  
However, these three depot maintenance visits took place at the Palmdale facility in 
California, which has since discontinued such work.  The orbiter depot maintenance now 
takes place in the third OPF at the Kennedy Space Center, thus requiring a less time and 
cost to complete.   Since the value used in the RLVSim model is just a basis of a statistical 
distribution, it is believed that the average (with inflation taken into account on the cost value) 
of the three historical depot maintenance visit values is adequate.  An assumption being 
made is that the increasing trend in depot maintenance time will be counteracted by having 
the maintenance operations transferred back to the Kennedy Space Center.  Table A-1 
contains the turnaround time in days and the associated cost for the depot maintenance for 
each of the three flights. 

Table A-1.  Depot Maintenance Reference Values14. 

Mission Number Depot 
Maintenance 
Time (days) 

Depot 
Maintenance 

Cost ($M) 

Depot 
Maintenance 

Cost (FY04 $M) 
STS-89  235 49 (FY98) 57 
STS-101 310 88 (FY00) 97 
STS-109 517 162 (FY02) 169 
average 354  108 

 
The RLVSim model was populated with a nominal STS depot maintenance time of 354 days, 
which is the average calculated in Table .  In order to determine the nominal depot 
maintenance cost, each of the three cited dollar figures were translated to FY2004 dollars 
and averaged.  This computation resulted in a value of $108 M.  Just as in the case with the 
processing, integration, and pad/runway phases, a +/- 25% margin was added to the 
nominal turnaround value in order to obtain a triangular distribution where the minimum is 
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265.5 days and the maximum is 442.5 days.  The nominal value of 354 days itself was used as 
the mode in the distribution.  

A.2    Aztec Baseline 
 The Aztec baseline was computed in similar fashion to that of the STS baseline using 
NASA’s AATe.  The primary difference is that Aztec’s turnaround flow consists of only the 
launch and processing phases since all vehicle integration takes place on the pad.  Figure A-2 
contains a screen-shot from the modified version of AATe that documents how the variable 
cost per day factors were calculated.   
 

RLVSim Output Metrics
cost % time add-on total cost per day FY04

launch 0.22 0.189966 2.273686 0.898741 1.12 0.492861 0.54264
turnaround 0.95 0.810034 6.760915 3.83233 4.78 0.70677 0.778153
integration 0.00 0 0 0 0.00 0 0

total 1.17 9.034601
remaining 4.731

Launch 1.611962
Landing 0.052765

turnaround 6.760915
integration 0.60896

9.034601

 

Figure A-2.  Aztec Cost per Day Calculations (from modified AATe). 

As shown in Figure A-2, the integration variable cost per flight figure was zero for Aztec.  
Because Aztec is integrated on the pad, AATe assumes that the integration costs are 
encapsulated in the variable launch cost per flight.  AATe does break the turnaround time 
down into the four major phases (launch, landing, processing, and integration), but the 
modified version of AATe combines the launch, landing, and integration values into the 
launch turnaround time in order to calculate the variable launch cost per day factor.  This 
factor was calculated as being $0.492861 M/day, but became $0.54264 M/day when the 
1.101 inflation factor was applied.  The variable processing cost per day factor was calculated 
as being $0.70677 M/day, or $0.778153 M/day in FY04 dollars.   
 The fixed costs per year values for the Aztec baseline were calculated in the exact 
same way as the STS baseline, though the integration related costs were zero since Aztec is 
integrated on the runway.  A fixed cost minus facility maintenance costs of $75.051 M 
($68.166 FY00 M) was derived with the assumption that Aztec will never have a fleet size 
more than two vehicles.  A fleet of this size translates to a maximum flight rate of 45.3 per 
year in the RLVSim model.  The fixed cost minus facility cost value in AATe does not start 
to increase beyond a constant value of $75.051 M until a flight rate greater than 60 flights per 
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year is achieved.  At the beginning of an RLVSim Aztec run, the pad/runway capacity 
entered by the user is used to add the fixed facility maintenance costs back into the 
TotalFixedCostPerYear value that is populated into the model.   
 The nominal depot maintenance time and cost for Aztec were calculated using the 
ratio of the total AATe turnaround of Aztec to that of STS along with the nominal STS 
depot maintenance values derived in section A.1.  A nominal maintenance time of 34.9765 
days and a nominal maintenance cost of $11 M were derived from the following 
relationships: 
 

daysdays
days
days _9765.34_354*)

_44.91
_0346.9( =                                   (A-1) 

and 

millionmillion
days
days _11$_108$*)

_44.91
_0346.9( =                                 (A-2) 

 
 

The 34.9765 day nominal depot maintenance time was then used to develop a triangular 
distribution to be used in the model by using a +/- 25% range to determine the min and the 
max value.  The nominal value itself was used as the mode in this distribution. 
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Appendix B – Baseline Excel Outputs 
 

Table B-1.  STS RLVSim Excel Output Schedule. 

 
 

Table B-2.  STS RLVSim Excel Depot Maintenance Schedule. 

Orbiter Number

Depot Cost 
per Visit 

(FY04 $M)
Depot Time 

(days)
Depot Start 

(day)
Depot End 

(day) Mission Number
2.00 108.00 309.63 825.48 1135.11 23.00
1.00 108.00 381.92 807.21 1189.12 22.00
3.00 108.00 395.52 855.93 1251.45 24.00
2.00 108.00 368.21 1896.35 2264.57 45.00
1.00 108.00 345.14 1945.24 2290.39 47.00
3.00 108.00 394.17 1997.12 2391.29 48.00  
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Table B-3.  Aztec RLVSim Excel Output Schedule. 

 
 
   

Table B-4.  Aztec RLVSim Excel Depot Maintenance Schedule. 

Orbiter Number

Depot Cost 
per Visit 

(FY04 $M)
Depot Time 

(days)
Depot Start 

(day)
Depot End 

(day) Mission Number
1.00 11.00 35.91 75.84 111.75 14.00
2.00 11.00 34.26 87.15 121.41 16.00
1.00 11.00 34.84 186.88 221.72 31.00
2.00 11.00 28.41 195.58 223.99 32.00
2.00 11.00 32.32 299.87 332.19 48.00
1.00 11.00 39.35 298.10 337.46 47.00  
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Appendix C – RLVSim ScriptWrapper Code 
# 
# This is a ScriptWrapper for the RLVSim Arena Discrete Event Simulation Model 
# 
# @author: John Daniel Reeves 
# @description: RLVSim Arena Model Wrapper 
# @version: 1.00 
# @date: 7/10/2004 
 
# general variables 
 
variable: ConceptChoice     double   input   description="1 - new concept, 2 - STS, 3 - Aztec"     lowerbound=1   upperbound=3 
variable: ConceptFleetSize   double   input   description="Orbiter and Booster fleet size"                lowerbound=1 
variable: ConceptStageCount   double   input   description="Number of stages (1 or 2)"                      lowerbound=1   upperbound=2 
variable: ConceptDepotTrigger  double   input   description="Depot maintenance trigger. 0=No 1=Yes"   lowerbound=0   upperbound=1 
variable: ConceptMissionsPerDepot  double   input   description="Number of missions between depot maintenance" 
variable: ConceptReliability   double   input   description="Vehicle reliability in 0.xxx format" 
variable: ConceptLOVReplacement  double   input   description="Trigger for LOV Replacement, 0=No 1=Yes"  lowerbound=0  upperbound=1 
variable: ConceptReplacementTime  double   input   units="days" description="LOV Replacement time in applicable" 
variable: ConceptProcessingCPD  double   input   units="$M" description="Cost per day for processing facility"   
variable: ConceptIntegrationCPD  double   input   units="$M"  description="Cost per day for integration facility"   
variable: ConceptRunwayCPD  double   input   units="$M" description="Cost per day for Runway/Pad facility" 
variable: ConceptMaintenanceCost  double   input   units="$M" description="Average cost for depot maintenance"   
variable: ConceptCostIncurred  double   input   description="Trigger for full cost penalty while in queues, 0=No 1=Yes" lowerbound=0  upperbound=1 
variable: ConceptQueueCostFactor  double   input   description="Cost factor for vehicles in queue 0-100%"   lowerbound=0  
variable: ConceptOPFCapacity  double   input   description="Orbiter Processing Facility capacity" 
variable: ConceptBPFCapacity  double   input   description="Booster Processing Facility capacity" 
variable: ConceptIntCapacity   double   input   description="Integration facility capacity" 
variable: ConceptRunwayCapacity  double   input   description="Launch runway/pad facility capacity" 
variable: ConceptOPFTimeMin  double   input   units="days" description="OPF time triangular distribution min"   
variable: ConceptOPFTimeMode  double   input   units="days" description="OPF time triangular distribution mode"   
variable: ConceptOPFTimeMax  double   input   units="days" description="OPF time triangular distribution max"   
variable: ConceptBPFTimeMin  double   input   units="days" description="BPF time triangular distribution min"   
variable: ConceptBPFTimeMode  double   input   units="days" description="BPF time triangular distribution mode"   
variable: ConceptBPFTimeMax  double   input   units="days" description="BPF time triangular distribution max"   
variable: ConceptIntMin   double   input   units="days" description="Integration time triangular distribution min"  
variable: ConceptIntMode   double   input   units="days" description="Integration time triangular distribution mode"  
variable: ConceptIntMax   double   input   units="days"  description="Integration time triangular distribution max"  
variable: ConceptOrbiterMissionMin  double   input   units="days" description="Orbiter mission time triangular distribution min"  
variable: ConceptOrbiterMissionMode  double   input   units="days" description="Orbiter mission time triangular distribution mode"  
variable: ConceptOrbiterMissionMax  double   input   units="days" description="Orbiter mission time triangular distribution max"  
variable: ConceptBoosterMissionMin  double   input   units="days" description="Booster mission time triangular distribution min"  
variable: ConceptBoosterMissionMode  double   input  units="days" description="Booster mission time triangular distribution mode"  
variable: ConceptBoosterMissionMax  double   input  units="days" description="Booster mission time triangular distribution max"  
variable: ConceptRunwayMin  double   input  units="days" description="Launch runway/pad time triangular distribution min"  
variable: ConceptRunwayMode  double   input  units="days" description="Launch runway/pad time triangular distribution mode"  
variable: ConceptRunwayMax  double   input  units="days" description="Launch runway/pad time triangular distribution max" 
variable: ConceptDepotMin   double   input  units="days" description="Depot Maintenance time triangular distribution min" 
variable: ConceptDepotMode   double   input  units="days" description="Depot Maintenance time triangular distribution mode" 
variable: ConceptDepotMax   double   input  units="days" description="Depot Maintenance time triangular distribution max  
variable: ConceptBaseFixedCost  double   input  units="$M" description="Fixed cost per year minus facility maintenance costs" 
variable: ConceptLaunchFixedCost  double   input  units="$M" description="Launch facility related fixed costs" 
variable: ConceptLandingFixedCost  double   input  units="$M" description="Landing facility related fixed costs" 
variable: ConceptProcessingFixedCost  double   input  units="$M" description="Processing facility related fixed costs" 
variable: ConceptIntegrationFixedCost  double   input  units="$M" description="Integration facility related fixed costs" 
 
variable: LaunchCount   double   output description="Number of launches during 20 year simulation" 
variable: AverageTurnaround   double   output units="days" description="Average turnaround during 20 year simulation" 
variable: AverageLaunchCost   double   output units="$M" description="Average launch cost during 20 year simulation" 
variable: TotalCost   double   output units="$M" description="Total cost of launches during 20 year simulation" 
variable: LOVCount   double   output description="LOV count during 20 year simulation" 
variable: LaunchesPerYear   double   output units="Launches/yr"   description="Average number of launches per year" 
variable: AverageCostPerYear  double   output units="$M" description="Average variable cost per year" 
variable: OpsCostPerFlight   double   output units="$M/flight"       description="Total cost per flight (variable + fixed)" 
 
#------------------------------------------------------------------------------- 
script: 
 
'create application variables 
dim AM 
dim excel 
 
' set default values to STS 
ConceptFleetSize = 3 
ConceptStageCount = 1 
ConceptDepotTrigger = 1 
ConceptMissionsPerDepot = 8 
ConceptReliability = 0.998 
ConceptLOVReplacement= 0 
ConceptReplacementTime = 365 
ConceptProcessingCPD = 1.008731 
ConceptIntegrationCPD = 2.106812 
ConceptRunwayCPD = 1.571859 
ConceptMaintenanceCost = 108 
ConceptCostIncurred = 0 
ConceptQueueCostFactor = 0 
ConceptOPFCapacity = 2 
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ConceptBPFCapacity = 0 
ConceptIntCapacity = 2 
ConceptRunwayCapacity = 2 
ConceptOPFTimeMin = 46.499325 
ConceptOPFTimeMode = 61.9991 
ConceptOPFTimeMax = 77.498875 
ConceptIntMin = 4.20435 
ConceptIntMode = 5.6058 
ConceptIntMax = 7.00725 
ConceptOrbiterMissionMin = 7.5 
ConceptOrbiterMissionMode = 10 
ConceptOrbiterMissionMax = 12.5 
ConceptBPFMin = 0 
ConceptBPFMode = 0 
ConceptBPFMax = 0 
ConceptBoosterMissionTimeMin = 0 
ConceptBoosterMissionTimeMode = 0 
ConceptBoosterMissionTimeMax = 0 
ConceptRunwayMin = 17.87565 
ConceptRunwayMode = 23.8342 
ConceptRunwayMax = 29.79275 
ConceptDepotMin = 265.5 
ConceptDepotMode = 354 
ConceptDepotMax = 442.5 
ConceptBaseFixedCost = 1882.188 
ConceptLaunchFixedCost = 9.887 
ConceptLandingFixedCost = 6.965 
ConceptProcessingFixedCost = 12.998 
COnceptIntegrationFixedCost = 4.959 
 
sub run 
 Set AM = CreateObject( "Arena.Application" ) 
 AM.Visible = True 
 AM.Models.Open ( wrapper.directory & "\RLVSim_ver1.doe") 
 Set Siman = AM.ActiveModel.Siman 
 
 ' Turn off Excel output and userform trigger 
 AM.ActiveModel.Modules(129).Data( "Initial Value") = 0 
 AM.ActiveModel.Modules(73).Data( "Initial value") = 0 
  
if ConceptChoice=1 then 
  AM.ActiveModel.Modules(126).Data( "Max Batches" ) = ConceptFleetSize 
  if ConceptStageCount=2 then 
   AM.ActiveModel.Modules(9).Data( "Max Batches" ) = ConceptFleetSize 
   AM.ActiveModel.Modules(17).Data( "Batch Size" ) = 2 
  else 
   AM.ActiveModel.Modules(9).Data( "Max Batches" ) = 0 
   AM.ActiveModel.Modules(17).Data( "Batch Size" ) = 1 
  end if 
  AM.ActiveModel.Modules(106).Data( "Initial Value" ) = ConceptDepotTrigger 
  AM.ActiveModel.Modules(90).Data( "Value" ) = ConceptMissionsPerDepot 
  AM.ActiveModel.Modules(53).Data( "Percent True" ) = ConceptReliability*100 
  AM.ActiveModel.Modules(67).Data( "Initial Value" ) = ConceptLOVReplacement 
  AM.ActiveModel.Modules(117).Data( "DelayType" ) = ConceptReplacementTime 
  AM.ActiveModel.Modules(68).Data( "DelayType" ) = ConceptReplacementTime 
  AM.ActiveModel.Modules(27).Data( "Initial Value" ) = ConceptProcessingCPD 
  AM.ActiveModel.Modules(28).Data( "Initial Value" ) = ConceptIntegrationCPD 
  AM.ActiveModel.Modules(29).Data( "Initial Value" ) = ConceptRunwayCPD 
  AM.ActiveModel.Modules(96).Data( "Initial Value" ) = ConceptMaintenanceCost 
  AM.ActiveModel.Modules(78).Data( "Initial Value" ) = ConceptCostIncurred 
  AM.ActiveModel.Modules(79).Data( "Initial Value" ) = ConceptQueueCostFactor 
  AM.ActiveModel.Modules(20).Data( "Capacity" ) = COnceptOPFCapacity 
  AM.ActiveModel.Modules(48).Data( "Capacity" ) = ConceptBPFCapacity 
  AM.ActiveModel.Modules(31).Data( "Capacity" ) = ConceptIntCapacity 
  AM.ActiveModel.Modules(38).Data( "Capacity" ) = ConceptRunwayCapacity 
  AM.ActiveModel.Modules(1).Data( "Min" ) = ConceptOPFTimeMin 
  AM.ActiveModel.Modules(1).Data( "Value" ) = ConceptOPFTimeMode 
  AM.ActiveModel.Modules(1).Data( "Max" ) = ConceptOPFTimeMax 
  AM.ActiveModel.Modules(2).Data( "Min" ) = ConceptIntMin 
  AM.ActiveModel.Modules(2).Data( "Value" ) = ConceptIntMode 
  AM.ActiveModel.Modules(2).Data( "Max" ) = ConceptIntMax 
  AM.ActiveModel.Modules(3).Data( "Min" ) = ConceptOrbiterMissionMin 
  AM.ActiveModel.Modules(3).Data( "Value" ) = ConceptOrbiterMissionMode 
  AM.ActiveModel.Modules(3).Data( "Max" ) = ConceptOrbiterMissionMax 
  AM.ActiveModel.Modules(10).Data( "Min" ) = ConceptBPFTimeMin 
  AM.ActiveModel.Modules(10).Data( "Value" ) = ConceptBPFTimeMode 
  AM.ActiveModel.Modules(10).Data( "Max" ) = ConceptBPFTimeMax 
  AM.ActiveModel.Modules(18).Data( "Min" ) = ConceptBoosterMissionMin 
  AM.ActiveModel.Modules(18).Data( "Value" ) = ConceptBoosterMissionMode 
  AM.ActiveModel.Modules(18).Data( "Max" ) = ConceptBoosterMissionMax 
  AM.ActiveModel.Modules(37).Data( "Min" ) = ConceptRunwayMin 
  AM.ActiveModel.Modules(37).Data( "Value" ) = ConceptRunwayMode 
  AM.ActiveModel.Modules(37).Data( "Max" ) = ConceptRunwayMax 
  AM.ActiveModel.Modules(95).Data( "Min" ) = ConceptDepotMin 
  AM.ActiveModel.Modules(95).Data( "Value" ) = ConceptDepotMode 
  AM.ActiveModel.Modules(95).Data( "Max" ) = ConceptDepotMax 
  AM.ActiveModel.Modules(139).Data("Initial Value") = ConceptBaseFixedCost+ConceptLandingFixedCost+ 

ConceptLaunchFixedCost*ConceptRunwayCapacity+ConceptProcessingFixedCost* 
ConceptOPFCapacity+ConceptIntegrationFixedCost*ConceptIntCapacity 

end if 
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if ConceptChoice=2 then 
  AM.ActiveModel.Modules(126).Data( "Max Batches" ) = ConceptFleetSize 
  AM.ActiveModel.Modules(9).Data( "Max Batches" ) = 0 
  AM.ActiveModel.Modules(17).Data( "Batch Size" ) = 1 
  AM.ActiveModel.Modules(106).Data( "Initial Value" ) = 1 
  AM.ActiveModel.Modules(90).Data( "Value" ) = 8 
  ' AM.ActiveModel.Modules(53).Data( "Percent True" ) = 99.8 
  AM.ActiveModel.Modules(53).Data( "percent True" ) = ConceptReliability 
  AM.ActiveModel.Modules(67).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(117).Data( "DelayType" ) = 365 
  AM.ActiveModel.Modules(68).Data( "DelayType" ) = 365 
  AM.ActiveModel.Modules(27).Data( "Initial Value" ) = 1.008731 
  AM.ActiveModel.Modules(28).Data( "Initial Value" ) = 2.106812 
  AM.ActiveModel.Modules(29).Data( "Initial Value" ) = 1.571859 
  AM.ActiveModel.Modules(96).Data( "Initial Value" ) = 108 
  AM.ActiveModel.Modules(78).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(79).Data( "Initial Value" ) = 0 
  ' AM.ActiveModel.Modules(20).Data( "Capacity" ) = 2 
  ' AM.ActiveModel.Modules(48).Data( "Capacity" ) = 0 
  ' AM.ActiveModel.Modules(31).Data( "Capacity" ) = 2 
  ' AM.ActiveModel.Modules(38).Data( "Capacity" ) = 2 
  AM.ActiveModel.Modules(20).Data( "Capacity" ) = COnceptOPFCapacity 
  AM.ActiveModel.Modules(48).Data( "Capacity" ) = ConceptBPFCapacity 
  AM.ActiveModel.Modules(31).Data( "Capacity" ) = ConceptIntCapacity 
  AM.ActiveModel.Modules(38).Data( "Capacity" ) = ConceptRunwayCapacity 
  AM.ActiveModel.Modules(1).Data( "Min" ) = 46.499325 
  AM.ActiveModel.Modules(1).Data( "Value" ) = 61.9991 
  AM.ActiveModel.Modules(1).Data( "Max" ) = 77.498875 
  AM.ActiveModel.Modules(2).Data( "Min" ) = 4.20435 
  AM.ActiveModel.Modules(2).Data( "Value" ) = 5.6058 
  AM.ActiveModel.Modules(2).Data( "Max" ) = 7.00725 
  AM.ActiveModel.Modules(3).Data( "Min" ) = 7.5 
  AM.ActiveModel.Modules(3).Data( "Value" ) = 10 
  AM.ActiveModel.Modules(3).Data( "Max" ) = 12.5 
  AM.ActiveModel.Modules(10).Data( "Min" ) = 0 
  AM.ActiveModel.Modules(10).Data( "Value" ) = 0 
  AM.ActiveModel.Modules(10).Data( "Max" ) = 0 
  AM.ActiveModel.Modules(18).Data( "Min" ) = 0 
  AM.ActiveModel.Modules(18).Data( "Value" ) = 0 
  AM.ActiveModel.Modules(18).Data( "Max" ) = 0 
  AM.ActiveModel.Modules(37).Data( "Min" ) = 17.87565 
  AM.ActiveModel.Modules(37).Data( "Value" ) = 23.8342 
  AM.ActiveModel.Modules(37).Data( "Max" ) = 29.79275 
  AM.ActiveModel.Modules(95).Data( "Min" ) = 265.5 
  AM.ActiveModel.Modules(95).Data( "Value" ) = 354 
  AM.ActiveModel.Modules(95).Data( "Max" ) = 442.5 
  AM.ActiveModel.Modules(139).Data("Initial Value") = 1882.188+6.965+9.887*ConceptRunwayCapacity+12.998*ConceptOPFCapacity 

+4.959*ConceptIntCapacity 
end if 
if ConceptChoice=3 then 
  AM.ActiveModel.Modules(126).Data( "Max Batches" ) = ConceptFleetSize   
  AM.ActiveModel.Modules(9).Data( "Max Batches" ) = ConceptFleetSize 
  AM.ActiveModel.Modules(17).Data( "Batch Size" ) = 2 
  AM.ActiveModel.Modules(106).Data( "Initial Value" ) = 1 
  AM.ActiveModel.Modules(90).Data( "Value" ) = 8 
  AM.ActiveModel.Modules(53).Data( "Percent True" ) = 99.95 
  AM.ActiveModel.Modules(67).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(117).Data( "DelayType" ) = 180 
  AM.ActiveModel.Modules(68).Data( "DelayType" ) = 180 
  AM.ActiveModel.Modules(27).Data( "Initial Value" ) = 0.77815 
  AM.ActiveModel.Modules(28).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(29).Data( "Initial Value" ) = 0.54264 
  AM.ActiveModel.Modules(96).Data( "Initial Value" ) = 11 
  AM.ActiveModel.Modules(78).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(79).Data( "Initial Value" ) = 0 
  AM.ActiveModel.Modules(20).Data( "Capacity" ) = ConceptOPFCapacity 
  AM.ActiveModel.Modules(48).Data( "Capacity" ) = ConceptBPFCapacity 
  AM.ActiveModel.Modules(31).Data( "Capacity" ) = 20 
  AM.ActiveModel.Modules(38).Data( "Capacity" ) = ConceptRunwayCapacity 
  AM.ActiveModel.Modules(1).Data( "Min" ) = 5.0706825 
  AM.ActiveModel.Modules(1).Data( "Value" ) = 6.76091 
  AM.ActiveModel.Modules(1).Data( "Max" ) = 8.4511375 
  AM.ActiveModel.Modules(2).Data( "Min" ) = 0 
  AM.ActiveModel.Modules(2).Data( "Value" ) = 0 
  AM.ActiveModel.Modules(2).Data( "Max" ) = 0 
  AM.ActiveModel.Modules(3).Data( "Min" ) = 1.5 
  AM.ActiveModel.Modules(3).Data( "Value" ) = 2 
  AM.ActiveModel.Modules(3).Data( "Max" ) = 2.5 
  AM.ActiveModel.Modules(10).Data( "Min" ) = 5.0706825 
  AM.ActiveModel.Modules(10).Data( "Value" ) = 6.76091 
  AM.ActiveModel.Modules(10).Data( "Max" ) = 8.4511375 
  AM.ActiveModel.Modules(18).Data( "Min" ) = 0.375 
  AM.ActiveModel.Modules(18).Data( "Value" ) = 0.5 
  AM.ActiveModel.Modules(18).Data( "Max" ) = 0.625 
  AM.ActiveModel.Modules(37).Data( "Min" ) = 1.7049675 
  AM.ActiveModel.Modules(37).Data( "Value" ) = 2.27369 
  AM.ActiveModel.Modules(37).Data( "Max" ) = 2.8421125 
  AM.ActiveModel.Modules(95).Data( "Min" ) = 26.232375 
  AM.ActiveModel.Modules(95).Data( "Value" ) = 34.9765 
  AM.ActiveModel.Modules(95).Data( "Max" ) = 43.720625 
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RLVSim  Appendix C – RLVSim ScriptWrapper Code 

  AM.ActiveModel.Modules(139).Data("Initial Value") =  75.051+0.455+0.599*ConceptRunwayCapacity+1.930*ConceptOPFCapacity 
 end if 
 
 ' Run Model 
 AM.ActiveModel.FastForward 
 
 LaunchCOunt =  Siman.TallyAverage(3) 
 AverageTurnaround =  Siman.TallyAverage(4) 
 AverageLaunchCost =  Siman.TallyAverage(5) 
 TotalCost  =   Siman.TallyAverage(2) 
 LOVCount =   Siman.TallyAverage(1) 
 LaunchesPerYear = LaunchCount/20 
 AverageCostPerYear = TotalCost/20 
 OpsCostPerFlight = TotalCost/LaunchCount 
 
 AM.ActiveModel.end 
 AM.ActiveModel.Save 
 AM.ActiveModel.Close 
 AM.Quit 
end sub 
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