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The admissible region must be expressed probabilistically in order to be used in Bayesian estimation schemes.
When treated as a probability density function (PDF), a uniform admissible region can be shown to have non-
uniform probability density after a transformation. This paper uses the fundamental multivariate probability
transformation theorem to show that regardless of which state space an admissible region is expressed in, the
probability density must remain uniform. The admissible region is shown to be a special case of the Jeffreys’ prior,
an uninformative prior with a probability density that remains constant under reparameterization. This paper
introduces requirements on how these uninformative priors may be transformed and used for state estimation.

1. Introduction

Observation systems often act in information deprived environments
where a single observation cannot fully determine the state of an ob-
served object. Even though the full state cannot be determined, it is
useful to be able to initialize an estimation scheme capable of construct-
ing a distribution over the possible true states of the system. While this
problem is applicable to a vast variety of different dynamical systems
and observation schemes, in this paper this problem will be address
with respect to space situational awareness. For example, short optical
or radar measurements of space objects do not provide enough infor-
mation to uniquely determine the state of the space object. However,
with the increasing number of objects in orbit around the Earth, char-
acterizing these space objects is an active area of research. Currently,
over 20,000 objects larger than 10 cm are tracked by a group of optical
and radar sensors in the Space Surveillance Network (SSN) and it is
estimated that catastrophic collisions are likely to occur every 5 to 9
years [1] [2]. Both types of sensors operate in data deprived environ-
ments as optical measurements cannot determine the range to the target
and radar measurements cannot determine the angular position of the
space object. However, over long observation periods or with multiple
observations it is possible to use approaches such as Gauss’s method
or Lambert’s method to fully estimate the state of a space object using
these measurements [3]. The difficulty with these methods is that over
short observation periods (relative to the time scale of the dynamics)
there is an unobservable subspace causing traditional methods, such as
Gauss’s, to fail. For example, this problem readily presents itself in the
case of an optical observation of an object generated by a streak cap-
tured over a matter of seconds. Traditional methods cannot produce an
orbit state estimate from such an observation. Because of this, the de-
velopment of initial orbit determination approaches based on short-arc
optical and radar measurements is a very active area of research.
Several nonlinear initial orbit determination approaches are based
on the admissible region method. When an observation is too short to
provide enough geometric data for an initial orbit estimate, a contin-
uum of possible solutions exist. The admissible region method uses
hypothesized constraints to bound the feasible solutions to a closed
and computationally tractable state space volume [4]. First proposed
by Milani et. al., the admissible region method constrains the possible
solutions for a given too-short arc (TSA) observation using the dynam-
ics of the orbiting bodies and hypothesized constraints [4] [5]. Many
have extended the admissible region’s applicability to SSA since Mi-
lani et. al. For example, methods have been presented that discretize
the admissible region and consider solutions at discrete points [6] [7].
Multiple hypothesis filter or particle filter methods can also be initial-
ized from discretized admissible regions [8]. Optimization methods to
identify a best fitting orbit solution are presented by Siminski et. al. [9].
A boundary value problem approach is applied to the admissible re-
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gion by Fujimoto and Alfriend which uses the angle-rate information
to eliminate hypotheses [10].

In general, Bayesian estimation techniques are initiated with a prior
distribution of the initial state. Thus, admissible regions must be ex-
pressed probabilistically when used as prior distributions to initiate
Bayesian estimation schemes. Fujimoto et. al. showed that the ad-
missible region possesses a uniform probability density over the con-
strained unobservable state space volume; every state satisfying the
constraint is equally likely to be true [11]. Without the inclusion of
measurement, observer, and parameter uncertainty, a uniform PDF re-
sults in a probability discontinuity at the admissible region boundary. It
is important to include uncertainty effects to remove this discontinuity
when generating an admissible region in order to account for states that
would otherwise have been assigned zero probability. DeMars and Jah
indirectly accomplish this by using a Gaussian mixture model (GMM)
to approximate the admissible region [12]. The edges of the admis-
sible region as represented by a GMM are continuous as a result of
the sum of the Gaussians, however this approach does not directly in-
corporate the measurement uncertainty into the admissible region. An
approximate analytical expression for the exact probability distribution
of an admissible region is presented by Worthy and Holzinger which
directly accounts for uncertainty and errors in the measurements and
observer state [13]. Hussein et. al. generate a probabilistic admissi-
ble region by uniformly sampling from alternative state space, such as
semi-major axis and eccentricity, and mapping these uniformly sam-
pled states into the admissible region [14]. The resulting non uniform
PDF is approximated with a Gaussian mixture to describe the new ad-
missible region. All of these approaches essentially treat the admissible
region as a probability density function (PDF). The motivation of this
paper is to determine what the correct statistical representation of the
admissible region should be. Again, Fujimoto et. al. show that an
admissible region is necessarily a uniform distribution [11], but what
does this mean in regard to using the admissible region to instantiate
a Bayesian estimator and how can the admissible region probability
distribution be transformed to be used in such estimators.

Admissible regions are typically formulated in a specific state
space based on the hypothesized constraints. Operational requirements
may necessitate estimation schemes which operate in a different state
space. Thus, the statistical representation of the admissible region must
be mapped into the different state space. In general, probability map-
pings of PDFs are only restricted by the requirement that the trans-
formation be left invertible [15]. This condition preserves probabil-
ity across the transformation and is important to ensure that Bayesian
estimation schemes are initiated properly. If the statistical represen-
tation of the admissible region is not best represented by a PDF then
the requirements for probability mappings are no longer valid. An-
other motivation for this work is to determine the correct way to ini-
tiate a Bayesian estimation scheme from a statistical representation of
an admissible region and identify the requirements for transforming an
admissible region prior.

To address the questions of the correct statistical representation of
admissible regions and the proper way to initialize a Bayesian estima-
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tion scheme with an admissible region, this paper includes 1) a formal
analytical relationship between the observability of a dynamical system
and the statistical representation of the admissible region, 2) a formal
expression of the constant gradient condition for the transformation of
an admissible region prior consistent with Jeffrey’s Rule and 3) a novel
extension of the approximate analytical probability distribution func-
tion for the transformation of an admissible region.

This paper is organized as follows. The general requirements and
approach to transform probability distributions are described in §1I.A
with applicability to admissible regions shown in §II.B. In §III.A the
theory is applied to assess the validity of the transformation of proba-
bility from topocentric spherical to cartesian coordinates and show the
conditions for observability of the system.

II. Probability Transformations for Admissible Regions

The general theory of probability transformations is an exhaustively
studied topic in statistics and probability with a wide range of applica-
tions [15] [16] [17]. The purpose of this section is to introduce funda-
mental results regarding general probability mappings and apply them
to the admissible region problem. This will show that the statistical rep-
resentation of the admissible region is consistent with that of a Jeffrey’s
prior and not of a PDF.

A. General Probability Transformations

Given the PDF fx : R" — R, of a random variable X € R", x ~ fx(x),
the cumulative distribution function (CDF) can be written as

Fx(x) =P[X <x] = fAfx(X)dX M

where the volume of integration is given by A = (—o0,x;] X -+ X
(=00, x,]. Define a transformation g : R” — R” where n > m. Apply-
ing the transformation X = g(x), the CDF for the transformed variable
is obtained using integration by substitution and is given by

) @3

where A = (=00, %] X - -+ X (=00, %,] and abs (iag"(i)/ﬁf(b is the de-
terminant of the Jacobian matrix and the absolute value ensures fz(X)
is non-negative for all values of X [15]. The integrand of Eqn. (2) is by
definition the PDF of X = g(X) and the following foundational theorem
in multivariate statistics gives the PDF of the transformed variable.

g (®)
0%

Iw@ﬂﬁ3ﬂ=fﬁgﬁ»wﬂ
A

Theorem 1 (Transformation theorem for continuous random variables
[15]). Given a PDF fx(x) and a left-invertible transformation ¥ = g(x)
the PDF of the transformed variable fz(%,) is given by

otherwise

Fol®) = { gx(g’l(i))-absd%g"(i)b for¥ e RE@®) 5

Proof. The proof of Theorem 1 is given in [15]. O

This transformation of X into X must also satisfy
F5(®) = Fx(g'(®) “

where F(, denotes the CDF over X or x [18]. This implies that for a
given transformation X = g(x), the CDF must not be changed. In other

words, if the CDF is known for X then the CDF is known for X.

Corollary 1 (Equivalence of CDFs). Given a known CDF Fx(x) for x
and a once differentiable and right-invertible transformation ¥ = g(x),
the CDF Fx(X) for X must satisfy Fx(X) = Fx(%).

Proof. The proof of Corollary 1 follows directly from the derivation
and analysis of Eqn. (1). By definition Eqn. (1) is equal to Eqn. (2)
and thus Eqn. (4) must hold. O

B. Admissible Region Transformations

The purpose of the following subsections is to outline why, in general,
an admissible region prior cannot be transformed. The first subsection
shows the application of the derivation of Eqn. (3) to the admissible
region problem. Then the necessary conditions for an admissible re-
gion prior to be transformed based on the definition of an admissible
region are defined, followed by a discussion of the limitation of practi-
cal transformations satisfying these necessary conditions. The second
subsection considers the case when an admissible region prior is not
considered to be uniform. The third subsection discusses the observ-
ability condition in the admissible region problem and discusses when
Eqn. (3) may be applied to an a posteriori PDF based on an admissible
region without any additional conditions. As this section will prove,
a uniform PDF representation is in contradiction to Theorem 1. This
contradiction supports defining the statistical representation of the ad-
missible region as an admissible region prior as opposed to a PDF.

1. Observability of Admissible States

The observations relevant for the admissible region approach are typi-
cally short enough relative to the dynamics that a continuum of states
could have generated the measurements observed. In optical observa-
tions this is readily realized as a short streak from which not enough
information is available to obtain a full state estimate. The admissible
region approach allows the continuum of possible solutions for an un-
derdetermined system to be bounded based on hypothesized constraints
as described above. The continuum of possible solutions for an under-
determined system indicates that the system is unobservable. The un-
determined states may be considered the unobservable states, and the
admissible region must be a subset of this unobservable subspace. It
is then desired to determine the observability of the dynamical system
being observed since, for an admissible region to exist, the system must
be unobservable. Conversely, if the dynamical system can be shown to
be observable then the admissible region is not defined.

Consider the general nonlinear dynamical system and measure-
ment model

x = f(x, 1) )
y =hx:k,?) (6)

where the measurement function is defined as h : R” x R/ x R — R™,
y € R™ is the measurement vector, x € R” is the state, k € R? is
the parameter vector that may include the observer state and any other
necessary parameters, and 7 is the time. Several approaches exists to
show observability of the general system given by Eqns. (5) and (6).
For linear systems, the conditions for observability of this system, over
a time interval ¢ € [fo, 7], can be assessed by the observability gramian
P € S [19] which is given in most general form as

oh(x(1); k, 7) 7 oh(x(1); k, 7)
0x(1) 0x(1)

D(7, ty)dr
@)

P(t;, to, (1)) = f D7 (1, 19)
]

where @ : R” Xx R — R” is the state transition matrix (STM). The
observability gramian as defined above is also valid for linearized
system in a region near the point of linearization, however it does
not provide information of observability of other states. The rank of
the above observability gramian gives the dimension of the observ-
able subspace of the system along x(7),t € [to,f;]. A point in state
space x(f) is observable if and only if rank[P(t, to,x(t))] = n. If
rank[ P(t;, to, X(t))] < n then there is an unobservable subspace which is
realized as N'(P(t, 1, X(¢))), the nullspace of the observability gramian
about x(#) over the time interval ¢ € [f, f/], and a state estimate admits a
continuum of solutions that generate the same measurement sequence.

Hermann and Krener show that for a nonlinear system, the nec-
essary condition for local observability is that a one-to-one mapping
exist between the output (and derivatives of the output) and the input
or initial conditions [20]. It is shown in [21] that this condition may
be sufficiently satisfied by linearizing Eqns. (5) and (6) about a ref-
erence trajectory and showing that for any reference trajectory in the
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domain (x,(?), k,(t)) € W, the linearized system is observable. For the
admissible region approach W is defined as

W = (%0, X,(1) : Xy, € R, Ky, = 07\ (3, K, 10)) ®

Linearization of Eqns. (5) and (6) about trajectories in W yields

o
s = A® 5x(1) ©)
OX I, 0.k, (1)
Oh(x, k
sy(n = PxkD 5x(1) (10)
13) SN NS

Observability of the linearized system may be determined directly by
application of Eqn. (7) and checking the rank of the local linearized ob-
servability gramian. By Theorem 3.2 in [21], if P(tf, to, (x,(1), k(1)) >
0 for all (x,(¢), k,(t)) € W then since no two trajectories in W can yield
an identical observation, the system must be observable at 7y over the
entire domain W. Satisfying Theorem 3.2 in [21] is equivalent to show-
ing that, for every point x,, € AR, the mapping between the output and
input is indeed one-to-one. For autonomous systems, this observability
mapping is defined as

y
y
oK) = |y an

where the order of the derivatives of the output depend on the sys-
tem [20]. The rank of the Jacobian of this mapping, dO(x) = dO(x)/0x,
is of particular interest. A rank-deficient Jacobian of this mapping im-
plies there exists an equivalent unobservable space for nonlinear sys-
tems which is the null space of this Jacobian. Thus, if Theorem 3.2
in [21] is not satisfied then an unobservable space N (dO(x)) exists and
a state estimate admits a continuum of solutions generating the same
measurements over the time interval ¢ € [1y, t/].

For observation of general dynamical systems, it is clear that if a
continuum of solutions is yielded from a measurement, the continuum
of solutions form nullspace of either P or dO(x). The admissible region
is a bounded subset of this nullspace, which implies that 42 can only
be formed if the system is unobservable. Alternatively, this implies
that if a system can be shown to be observable, then /42 must be an
empty set. Statistically this implies that if /R = & then a state estimate
and corresponding distribution around that state estimate exists and the
admissible region approach is not necessary. Applying this theory to
observation of space objects leads to the following Lemma.

Lemma 1 (Admissible Regions and System Observability). Obser-
vation of an object following Keplerian dynamics over a time period
t € [ty t7] such that At = t; — th) < \IFl*/3u vields a local lin-
earized observability gramian with rank P(ty,ty, (x.(1), k(1)) = d <
nV (x,(1),k.(t)) € W. Every point x, € /R is therefore unobservable
for this short observation sequence. This Lemma is generalizable to
any Newtonian system.

Proof. Utilizing the linearized system described in Eqns. (9) and (10),
the observability gramian is given by Eqn. (7). Consider the Taylor
series approximation of the state transition matrix.

of
O(r, to) = HG + &(T - 1)+ HO.T (12)

Taking the first order terms and assuming two body dynamics,

Mﬂ=LL] (13)

gz[o 113] (14)

where [, is the v X v identity matrix and

0 (T - [0)]13

(7, 1)) ~ g + 15
( s O) 6 (T— to)M 0 ( )
The matrix, M, is given by
3pr} _ K 3uryry 3uryr;
[Ie{l> lIrll [N [N
3uryrx 3ury u 3uryre 16
[N [N Iirl® liel> (16)
3prery 3prery 3ury _ p
[Ir> [N [ [Ie?
which can be written as
o1 Ity rary
3 [ir2 3 zHer [irl2
= 2K nn no_1  nn a7
| | P Il 3 el
ey ey o1
lirl? lIr(I? lirl? 3

It is clear that without the 3u/||r|® factor, the M matrix satisfies M;;<1
where M; ; is the component of M in row i and column j. Thus it is
possible to define a time interval sufficiently small enough that M(7—1;)
can be approximated to have a negligible contribution. To quantify
sufficiently small, if

(r—19) < ;—# (18)

then each of the terms in M(7 — 7,) are very small and considered neg-
ligible. Thus, Eqn. (15) may be written as

mﬁm““g(hyﬂ (19)
and the dynamics essentially follow a straight line.
Define
o % (20)
. T '
- (o o] o

By definition, the rank of H' H depends on the dimension of dh/dx.
Introduce a bijective transformation ¢ : R” — R" which maps the
state vector into a partitioned state vector containing the observable
and unobservable states as follows

z=;@>:ﬁj 4

where z; € R? are the observable states of the system and z, € R""? are
the unobservable states of the system. Each of the partial derivatives
may now be partitioned as well yielding

oh Ohiz (g 02
Eial il i ] b 25

where rank[g—;] = n since ¢ is a bijective transformation. The unob-
servable states play no role in the measurements, 0h/0z, = 0 leaving

0x %4 ox

which implies that rank[H'H] = g, the dimension of the observable
states. With the approximation for @(r, 7,) and the definition of H' H,
the local linearized observability gramian may be analytically inte-
grated. Keeping the matrices expressed in block form, and introducing
a change of variables s = 7 — 1 then
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az" [ H'H,

At
P17 10, (%, (1), K (1)) = fo -

The three specific cases for evaluating P(t/, ty, (X,(1), k,())) are
possible are given as follows

Case 1 : h(x;k, 1)

Tl 3
Case 2: hx;k {n,---,0D), & -1)< % (28)
Case 3: hx:Kk, {r,---,t}), @& —1)> %

where v € Z*,v > 1. Case 1 details a measurement that is dependent
upon a single instance in time #,. The integration of Eqn. (27) is then
only dependent upon instantaneous evaluations of h at a given time.
Case 2 details a measurement function dependent upon a time interval
1, to t, where the total time interval satisfies (f, —#;) > [|r||*/3u. In this
case the measurement is essentially a convolution over time which must
be evaluated when determining the rank of the observability gramian.
This is particularly the case for optical measurements where y is often
obtained from a streak which is obtained over a short time inverval.
Case 3 details a measurement function dependent upon a sufficiently
long time period where the assumption of Eqn. (19) is no longer valid.

For both Case 1 and Case 2, since At < ||r||>/3u is small, thus it
is reasonable to assume that any higher order powers of At in ®(z,, ;)
may be considered negligible. With this in mind, the integration of
Eqn. (27) gives a simple result after neglecting higher order terms of
At.

H, Hz] 29)

P(ts, 1, (x,(1), k(1)) =~ At [HZT H;

The matrix P(ty, t, (x,(¢), k,(¢))) has rank[H'H] = d where d = g for
Case 1. For Case 2, the value of d depends on the time convolution of
the measurement function over the time of observation. For both Case
1 and Case 2 then, rank[P(¢f, 1, x(1))] = d as long as At < [l /3.
Because this is true for any point x,, if d < n, all such points are
unobservable. For an observation falling under Case 3, it is possible
that the system is observable and P(t/, t, (x,(¢), k,(¢))) may have full
rank.

It can be shown that this Lemma is generalizable to any Newtonian

system where
*_[o 1
ox [Mg 0] G0

and M, is a general matrix capturing the linearized dynamics of the
system. For this general case, there exists some constant C such that
CM, =~ 0. When the time period satisfies t; — #, < C then the ex-
act proof shown above for Keplerian dynamics holds and this general
Newtonian system is unobservable over that time period. O

Lemma 1 gives the conditions under which an admissible region
exists for a dynamical system. For optical observations, the instanta-
neous measurement consists of two angles giving d = g = 2, a Case
1 situation. However, since a truly instantaneous measurement is of-
ten not realizable, optical observations have a finite integration time.
The convolution of these instantaneous measurements over the integra-
tion time provides angle rate information for the measurement and thus
while g = 2, this Case 2 situation yields d = 2¢q. It is important to
understand the type of measurement to properly determine the observ-
ability of the system. The next sections build upon the existence of the
admissible region and show its definition and properties.

2. Defining the Admissible Region

Defining the admissible region requires knowledge of a measurement
model for the system being observed. Consider a general nonlinear
measurement model given by

y =hx; k1) €1V

sLHIH, + (HIH;)"

H'H,sT; + H H; oz ds @7
SLHH, + sH H; + (H H)” sT; + H H; | 9x

As done in all admissible region approaches, the state vector is parti-
tioned in to determined states x; € R and undetermined states x,, € R¥
where u + d = n [13]. This means that

y =hxs; Kk, 1) (32)

Admissible region approaches constrain this continuum of solutions
using hypothesized constraints in the form «;(x,,y, k, #) < 0 where «; :
R*x R" x R! x R — R. The admissible region for the i hypothesized
constraint «;(-) is then defined as

A= {x, € R'| k(xy,y, K, 1) < 0} (33)

where AR; € R*. Furthermore, if there are ¢ such hypotheses then the
total combined admissible region is given by

A= ﬁ R, (34
i=1

where AR must be a compact set [22]. The requirement that /2 be
compact ensures the assumed uniform distribution has non-zero prob-
ability. Thus, each state x € /A can be assigned a non-zero uniform
probability. This is by definition consistent with /4R being statistically
represented as an uninformative prior.

3. The Admissible Region Prior

The probability that a given state x, € R* satisfies the i admissible
region constraint is then given by

IIEI7[Xu € /Rl] = P[K,‘(Xu, y. k, [) < O] (35)

Without any additional information, the inequality defining /R, in
Equation (33) is a binary constraint and P[x, € R;] € {0, 1} since
each x, has either 100% or 0% probability of satisfying the constraint.
Thus the probability that x,, satisfies a given constraint x; can be exactly
expressed as a piecewise membership function defined as

_J L ok(x,y.k)<0
mi(x”)_{ 0, xx.y. k>0

Thus P[x, € AR;] = m;(x,), and the prior distribution for a particular
constraint hypothesis can then be defined as [16]

(36)

m; (Xu)
I, ax

Eqn. (37) results in a uniform distribution, which is demonstrated
in [11]. Applying the chain rule of probabilities, the general joint prob-
ability function over all k constraints can be written as

_ Plx, € R]
Jo (%) = [, i,

1 c k-1
= Plx, € R |x, € R; (38)
fjﬁ dx, 1;[ g D !

where the bracketed term gives the probability that k™ constraint is sat-
isfied given that each of the k— 1 previous constraints are satisfied [17].
If the constraints «; are assumed to be independent, then by Bayes’ rules
the conditional probability terms evaluate to 1 and Eqn. (38) simplifies
to

ﬁ,x,, (Xy) =

(37

Hli:l P [Xu € /Rk]

f/R dx,

— H;é:l mk(xu) (40)

[ o,

S (X)) = (39)
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By this formulation, every x, € /R is a candidate solution that satis-
fies the ¢ constraints and without additional information; no one state
can be considered more likely than another. Thus f; (x,) is a constant
over A and as such the admissible region must be considered a uni-
form distribution. This fact is consistent with the work presented by
Fujimoto and Scheeres stating that without any a priori information re-
garding the observation, an admissible region is expressed as a uniform
PDF [23]. However, it should be noted that the notation used in this pa-
per will refer to the statistical representation of the admissible region
as an admissible region prior, which is consistent with Jeffreys’ prior,
not as a PDF. The reason for this distinction will become clear in the
next section.

4. Transformation of the Admissible Region Prior

Suppose a user wishes to use the admissible region method to initi-
ate an estimation procedure in a state space different from the state
spate in which the admissible region constraints are formed. Follow-
ing the general probability transformation approach, a transformation
g : R" — R” can be defined. This transformation must also be able to
be partitioned into g, : R* — R* and g, : RY — R? such that

X, = g,&;Y. k1) 41)
Xq = g,(X43¥,K, 1) (42)

For simplicity, this transformation will be expressed as g,(x,; -) for the
remainder of this paper. In general, the transformation g, (xX,;-) must
be left invertible in order to preserve probability. Additionally, the
transformation must satisfy the condition that the underdetermined and
determined states in the transformed space are still capable of being
partitioned, leading to the following Lemma.

Lemma 2 (Partitioned Transformed State). An admissible region prior
expressed in state space x, may be transformed to state space X, =
g.(x,; ) only if there exist some %4 = 8,(y;"), &, : R" — RY such that
y=hxgk ) =h@Es k0, h:RIx R XR — R™,

Proof. The undetermined states x,, are independent of the determined
states X, as defined in [13]. This enables the partitioning of the state
space such that the measurement y is only a function of the determined
states, the parameters Kk, and time and can be expressed by

y = h(x,, x5k, 1) = h(xz: k, 1)

which by definition means x; = h™'(y, k, 7). If there is a transformation
of x,,, then the transformation can be given by

Xy = 84(Xq)

=g, (7' (y,k, 1)
which can be defined as g, = g, o h™! : R” — R giving,

Xs =84y
Thus, the measurement function is now expressed by

y = h(g,(x.: ). 8(y: ). k. 1)

For the admissible region problem, it is required that X can be par-
tjtioned into X, and X, sugh that y is independent of X,. In general
h(g,(x.; ), 8,(y; ). Kk, 1) # h(g,(y; -), k, 1) since the transformation is not
necessarily a function solely of x,,. Thus, the function g,(y; -) must be
defined to ensure that the determined variables are transformed such
that the transformed undetermined states remain independent of the

measurements. If a transformation g, (y; -) cannot be defined such that
this is true then

y = h(g,(x.: ), 8,(y; ). k, 1) # h(g,(y; ).k, 1)

and the admissible region formulation is invalid. O

The result of Lemma 2 essentially requires that if the undetermined
states can be transformed then they must remain unobservable with re-
spect to the observations. Because this is a requirement for the forma-
tion of an admissible region, any transformation that does not satisfy
Lemma 2 necessarily generates a region that can no longer be defined
as an admissible region.

Assuming a transformation satisfying Lemma 2 exists, the admis-
sible region in the transformed space can be defined. For the admissible
region problem, since the constraint hypothesis is a function of a unique
state x,,,

Ki(Xu, ¥, K, 1) = Ri(g, (X5 ), ¥, K, 1) (43)
&%y, K D) = k(g Rz ), ¥, K. 1) (44)

Eqns. (43) and (44) then imply that P[%, € A&;] = P[x, € A and
m;(x,) = m;(X,) where,

R =% € R"| k(R v, k, 1) < 0} (45)
and

~ i~ _ 1, ki(iusy’kv [) < O

i) ‘{ 0. &(X.y.k1)>0 o)

The general admissible region prior in the transformed space is given
by

c

1
(%) — | |]P>
qu(Xu) f;ﬁ df(

U k=1

X, € /Rk

k-1
%, €| R, (47)
j=1

Assuming again that the constraint hypotheses are independent, the ad-
missible region prior expressed in X, is given by,

]—I ]i: 1 ’;hk (iu)
%

A general nonlinear transformation of a uniform PDF must yield
a non-uniform PDF according to Eqn. (3). The uniform PDF of an
admissible region is a statistical representation of the fact that each
state x, € AR is consistent with the measurement y. Without any addi-
tional information, each state necessarily has equal probability which
must also be true if x,, is expressed in any other state space. Given this
fact, the necessary relationship between fx, (x,) and fx (X,) is given by
Theorem 2, leading to a contradiction which identifies the issue with
classifying the admissible region as a PDF.

fiu (Xy) = (48)

Theorem 2 (Equivalence of Admissible Regions). Given x, € /R and
an invertible transformation X, = g,(x,; -), a reparameterization of the
admissible region prior by g is only valid if the transformation satisfies
|0x,/0%,| = LY x, € AR where { is the ratio of the volume of the admis-
sible region as expressed in both state spaces and fz (¥,) = { fr, (x.).

Proof. The proof of Theorem 2 is given by way of contradiction. As-
sume first that the statistical representation of the admissible region is
given by a PDF. Then assume there exists an invertible transformation
g,(x,; ) for which |0x,/0%,| # { for some x € AR. The relationship
between fy, (x,) and fi, (X,) may be determined by applying Eqn. (3)
as follows

c . -1 ~u .
fz,&) = i1 (g ® )) abs (‘agu )

f R qu a)’Zu

Each of the terms in Eqn. (49) have been defined thus far except for the
Jacobian term |6g“(i,,)/6iu|. Rearranging Eqn. (49), by substituting
the X, PDF on the left hand side and multiplying by the denominator of
the right hand side,

) (49)

ag, (Xy)

dx, = [ [ (g %) abs o

fi% dx, R =1

H]i:l mk (iu) - (

) (50)
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Note that for the admissible region approach my(x,) = m(X,) since it
is necessary that P[x, € AR;] = P[X, € A;]. Thus, dividing each side
by [1;., my (X,) results in,

dx, .
Ls N = abs (’—ag" (&) ) &)
fZ% qu aXu
If |0x,/0%,| # { then,
dxu
R u

which then implies P[x, € /&;] # P[X, € 4] for Eqn. (50) to hold.
But this is a contradiction since, by definition, the admissible region

approach gives that P[x, € &;] = P[X, € %] regardless of the trans-
formation. O

Theorem 2 imposes a geometric constraint on the transformation
g through the determinant of the Jacobian. The constraint requires the
determinant to be constant which implies the distortion of the X, state
space relative to the x, state space is the same at every point. This
is necessary to ensure that any one point inside the admissible region
in X, remains inside the equivalent admissible region expressed in X,.
The constant Jacobian constraint limits the practical applicability of
probability transformations to admissible region because useful state
space transformation are often complex, nonlinear functions. More im-
portantly, Theorem 2 shows an admissible region must be uniform, or
uninformative, regardless of the state space it is expressed in. Any gen-
eral PDF must satisfy the probability transformation given by Eqn. (3),
but as shown by Theorem 2, under most practical transformations, an
admissible region fails to satisfy Eqn. (3).

The result of Theorem 2 is directly related to Jeffreys’ prior [24].
A Jeffreys’ prior is a non-informative prior which satisfies

F(X) o y/detZ(x) (53)

where f() denotes the prior and 7(x) is the Fisher information ma-
trix [25]. If Z(x) is singular then Jeffreys’ prior does not exist [26].
For the application of Jeffreys’ prior in this paper, since x essentially
belongs to a uniform distribution, the Fisher information matrix will
be non-singular. The proportionality of Eqn. (53) gives that a Jeffreys
prior is invariant to a reparamaterization of x. Applying the previously
derived probability transformation and defining a reparameterization or
transformation of x given by X = g(x; -) then

J&) = f(x)

ox

It can likewise be shown that

VdetZ (%) = v/detZ(x)

0x
a_| 2
thus for Jeffrey’s prior to hold, Eqn. (53) may be rewritten as

oc y/det (X)

The proportionality of Eqn. (53) requires that [0x/0%|! =
|6g;](iu)/6f(u| to be a constant. This result is directly equivalent to
Theorem 2 for admissible regions. Jeffreys’ prior is based on Jeffreys’
Rule which states that given an equation for f(x), applying the equation
to determine f(X) directly should yield an identical result as computing
f(x)|0x/0%|. Applying this to an admissible region system, Jeffreys’
Rule states that if fx,(x,) is the prior, then a reparameterization of x
must satisfy

-1 -1

_|ox
f® T

g, (%)

ox,

og; ' (x
o NdetT (xy) | 28 )
0%,
which confirms Theorem 2 and shows it is consistent with the statistical
representation of an admissible region being identified in this paper as
an admissible region prior as opposed to a PDF.

Jx, &) (57

Given that a transformation g exists which satisfies Theorem 2, it
is possible to define the transformed admissible region prior. The final
expression for the transformed admissible region prior is then given by

HIL;:I ny (Xu)
[

Eqn. (58) signifies that for the admissible region problem with no addi-
tional information, the admissible region of x,, expressed in any trans-
formed state space X, such that g~!(%,) exists is necessarily uniform
and simply scaled by a factor . Given that the transformation satisfies
Theorem 2, the admissible region prior may be expressed in any state
space which agrees with the work shown in [11]. It should be noted
that useful transformations are often highly non-linear and as such will
not typically satisfy the conditions presented by Theorem 2. It is likely
that, in general, an admissible region admissible region prior cannot be
transformed since no practical transformations exists satisfying Theo-
rem 2. If an admissible region prior is transformed by a transformation
not satisfying Theorem 2, then the prior in the transformed space is no
longer a uniform representation of the state space, and this non-uniform
representation is not based on statistical information but based only on
the transformation function. Because of this, any transformation not
satisfying Theorem 2 generates an admissible region prior misrepre-
senting the true distribution.

&) =14 (58)

5. Priors Using Uncertain Admissible Region Constraints

While Eqn. (58) applies for transformations of uniform priors, it may
also be applied to non-uniform admissible region priors. An approach
for generating the non-uniform probability that x, is in /A is shown
in [13]. The approximate analytical probability for a given admissible
region is given by

”Xu - Xu,BL,i”

/2trquvzch i

which updates the piecewise membership function given by Eqn. (36)
to a continuous membership function by including uncertainty effects.
These uncertainties are quantified as the covariance matrix P, where z
is the combined matrix of the measurements, parameters, and time. The
quantity X, g, ; is the point on the boundary of /R; orthogonal to x,, and
Py, s, ; is the covariance calculated at this boundary point. Substituting
Eqn. (59) into Eqn. (40) then gives the non-uniform PDF.

PlOx, € A1 = mi(x) = 3 |1 +erf (59)

Corollary 2 (Systematic Uncertainty in Admissible Regions). If the
combined measurements, parameters, and time covariance matrix P,
are known then transformation of the non-uniform admissible region
probability is given by

llg,(eus ) — guxus, is )l

) IZtI'P;uﬂi i

where Px, , . is the modified covariance matrix.

PIGE, € )] = e, = 5 |1 +erf 60)

Proof. Given the previous transformation X, = g,(X,; -), Eqn. (59) can
be derived for X,. The simplified Taylor series expansion from Eqn.
(17) in [13] now becomes

6K,‘ aiu 6K,‘

- 0X, = —0Z 61

0X, 0x, oz 6D
Carrying the notation defined in [13], a new perpendicular vector p is
defined as

~ 6Ki aggl(xu;')
P= X, Ox,

(62)

Xu

The rest of the derivation can be carried out as specified in [13] by
replacing p with P resulting in

e
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where T € R*"™ is a matrix of tangential unit vectors which gives
P, = MP,M (63)
Eqn. (60) is obtained by substituting Py, and g(x,) into Eqn. (59). O

Eqn. (60) defines the approximate analytical probability distribu-
tion function for an admissible region A, in the X, space. Alternatively,
from Eqns. (43) and (44)

Pl(x, € R)] = PR, € R)] (64)

1 ”gu(xu;’)_gu(xu;')ufﬁ_”

=—|l+erf - (65)
2 [

ZtrP;uvm

1 HXu — Xy B ”

~ 2|1 +erf| 02t (66)
2 JuP,,,

Because of this, it is equivalent to directly map each x,, to X, and assign
each X, = g(x,) the probability of set membership P[x € A4;] or vice-
versa.

6. The Observability Condition

Lemma 1 shows that the existence of the admissible region implies
that there is a non-trivial unobservable subspace of the system given
a short enough observation. However, it is possible for the system to
become fully observable given enough observations or a long enough
observation of the system. Thus, it is of interest to understand how the
observability of a system affects the transformation of the admissible
region prior. If an initial observation is made such that the admissible
region is non-empty then the admissible region prior is the statistical
representation of the /. However, if an additional measurement can
be taken at a time ¢ such that each state x, € AR is locally observable,
then an a posteriori PDF can be constructed. This a posteriori PDF
represents a true PDF over the state space and can be used directly
with Eqn. (3) to transform probabilities between state spaces. As such,
it is of interest to determine when the states x,, € /4R become locally
observable.

Corollary 3 (Observability in Admissible Region Problems). If
the observability gramian for the admissible region system satisfies
rank[ P(tg, tg, x(t))] = n where x(t) = [x,(t) x,()]Y x, € AR then
the PDF associated with the admissible region estimate may be trans-
formed without the condition |0x,/0%,| = (V¥ x, € AR.

Proof. The admissible region /R is, as defined, a subset of the unob-
servable state space where each state x,, € /R has no effect on the mea-
surements. Since the mapping h from x to y cannot be a one-to-one and
onto, each x, € A must necessarily have a uniform probability. Be-
cause this is also true in any transformed state space X, the admissible
region must necessarily be uniform in any state space. If a system is
locally observable at x; € R", where k is an arbitrary index, then there
exists a measurement function h, : R* — R™ where h, is a one-to-one
and onto function. Thus, x; # x; = h,(x;) # h,(x;) and each unique
observation corresponds to a unique state x. If the transformation g(x)
is also one-to-one and onto then there must also exist a measurement
function h, : R" — R” such that X; # %, = h,(%)) # h,(%) and
h,(x;) = h, (% ;) =Y. A unique solution exists for a given observa-
tion, or set of observations, and a PDF can then be defined about that
solution. Because this unique PDF cannot be identical in both state
spaces, the condition given by |0x,/d%,| = { can no longer hold, and
for an observable system the PDF can simply be transformed by Eqn.
3). O

The main result of Corollary 3 is that the PDF associated with a
given AR may not generally be transformed until it is observable. Since
there are likely no practical transformations that satisfy Theorem 2,
the significance of Corollary 3 is in the fact that general admissible
region PDF transformations are possible, but only once each state in
/R becomes locally observable. Furthermore, by Lemma 1, if every
x, € AR is locally observable, then the region is necessarily not an
admissible region.

C. Additional Transformations

This section discusses additional transformations that apply to the
probability transformation theorems, corollaries, and lemmas pre-
sented in this work.

1. Linear Transformations

The only set of functions that will always satisty Theorem 2 are linear
transformations leading to Remark 1.

Remark 1: Any linear transformation X, = g,(x,) = T,x, such that
T, € R* rankT, = n that can be defined Vx, € /R will satisfy
the requirements given by Lemma 1 and Theorem 2. Thus, for any
linear transformation of an admissible region, ¢ can be defined such

that fiu (f(u) = {qu (Xu)~

Any invertible linear transformation of covariance in extended
Kalman filters satisfies Theorem 2 as long as the covariance is suffi-
ciently small. While any linear transformation of the admissible region
prior satisfies Theorem 2, it is unlikely that these transformations are
practical or useful for the admissible region problem.

2. Sigma Point Transformations

An additional application of the general probability transformation
comes from sigma point transformations and filters [27]. Sigma point
filters use transformations of the sigma points of a Gaussian PDF to
map the PDF over nonlinear transformations, used largely in the Un-
scented Kalman Filter. The sigma point transformation as originally
defined relies on the fact that the transformation preserves the mean and
covariance [28]. Alternatively, the sigma point transformation must
preserve the PDF. Assume a PDF f,(x) is known for a given x, then the
first order Taylor Series expansion of the inverse of the transformation
X = g(x) is given by

e
x+ox=g@+ & ®o (67)
_l ~
x+ox=x+ B P (68)
X
s
sx= 28 P (69)
ox

Since a sigma point transformation aims to preserve the mean and co-
variance a transformation given by |dg™'(X)/0%| = 1 is a valid sigma
point transformation since the PDFs of x and X are the same. However,
if |#g™1(X)/0%| = ¢ where ¢ is a constant for all x in the vicinity of
the Gaussian PDF parameterized by the sigma points, then the PDF is
also preserved by the scaling factor c. The PDFs can then be written as
fx(x) = fzx(X)/c. This result is analogous to Theorem 2 since the admis-
sible region prior must be preserved and the PDF must be preserved for
sigma point transformations, the scaling factor ¢ is equivalent to { for
admissible regions.

3. Transformations Over Time

General probability transformations also apply to transformations
through time as shown by Park and Scheeres [29]. Here it is shown
that the framework presented in this paper is consistent with these ex-
isting methods. Given an initial PDF for a system, it is often useful to
know how that PDF changes over time. Consider the following system
dynamics

x = f(x,7) (70)
where x € R” and 7 € R. The solution is expressed as
X(1) = ¢(t; X0, 1) (7D

where the subscript ‘0’ denotes the initial state, X(fp) = X, and ¢ is the
flow function satisfying

d
d_f = f(¢(t; X0, 1), 1) (72)
&(to; X0, o) = Xo (73)
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In the case of time transformations, the function ¢ is the transformation
function g(-). The PDF transformation of a dynamical system over
time comes from analysis of the Fokker-Planck equation. If the system
introduced above satisfies the 1td stochastic differential equation, then
the time evolution of the PDF stochastic variable X over time is given
by the Fokker-Planck equation [30]

OfXD _ < 8 ,
= Z‘ i (fu(x, DFi(x, 1)) (74)

assuming no diffusion terms. Park and Scheeres show the integral in-
variance of a PDF through the solution to this simplified Fokker-Planck
equation for a system with no diffusion resulting in [29] [31].

-1

f(@(t; X0, 20), 1) = f(x0,10) (75)

X
6X0
which is the exact form given in Eqn. (3). Under Hamiltonian dynam-
ics, Liouville’s theorem proves that |0x/dxe| = 1 for all time ¢ since
the transformation over time is a Canonical transformation [29]. For
a Hamiltonian system Eqn. (75) simplifies further since the Jacobian
term evaluates to unity. Thus, if the PDF is known at any time, it is
known for all time for Hamiltonian systems. This exactly matches with
Theorem 2 since [0x/0%o| = ¢ = 1 and at any time ¢ the PDF is given
by £ f(xo, 1) = f(Xo, o).

D. Discussion

The results presented in this paper show that in general, transforma-
tions of admissible region probabilities are only possible under strict
conditions outlined by Theorem 2. Notably acceptable transformations
include linear transformations and transformations with constant Ja-
cobians over the admissible region. If a nonlinear transformation is
applied to an admissible region prior that does not satisfy Theorem 2,
then the resulting prior is necessarily a mis-representation of the sta-
tistical representation of the admissible region. Furthermore, if a fil-
ter is instantiated from this improperly transformed prior then it may
cause unnecessary inefficiency in filter convergence. However, once
every state in the admissible region becomes observable then Theorem
1 can be applied to transform the true a posteori PDF with appropriate
X = g(x) as desired. As such, for any filter to be properly instantiated,
it must remain in the state space of the original admissible region prior
formulation unless either Theorem 2 or Corollary 3 is satisfied.

III. Simulation and Results

To demonstrate probability transformations as applied to admissible re-
gions, consider the observation of an object in LEO from an observer
in Socorro, NM. Following the approach described in [13], the mea-
surement vector is given by,

v=le s a & (76)

with the object state vector,
x=[r v )
where r and v are position and velocity of the space object. The state

matrix may also be represented by the topocentric spherical coordi-
nates,

. T
x=[a 6 a & p § (78)
For this observation model the undetermined states are given by X, =

[p p], where p is the range and p is the range-rate. The true state of the
object at time £, is given in canonical units as

—-0.9281 -0.5171
r = (—0.0489( DU v=|0.1292 [DU/TU 79)
0.6167 —-0.7662

where 1 DU = 6378 km and 1 DU/TU = 7.90538 km/s. An initial
series of 2 measurements of the inertial bearings are gathered at 20

second intervals producing the following determined states, or obser-
vation, vector

x;=[-3.0337rad  -0.0538rad —0.1003 rad/TU  ~0.4482 rad/TU]
(80)

From this information an admissible region can be constructed. The
admissible region is then constructed such that the constraint hypothe-
ses give a region where 10000 km < a < 50000 km and ¢ < 0.4. A
set of 5000 points are uniformly sampled from the admissible region
to demonstrate the requirements on admissible region transformations
and are shown in Figure 1. The upper bound on semi major axis is
given by the solid line and the upper bound on eccentricity is given by
the dotted line in Figure 1.

3.2 3.4 3.6 3.8 4 4.2
p DU

Figure 1. A set of 5000 points sampled uniformly from the admissible re-
gion.

Initial orbit determination methods can then use these sampled
points to initiate particle filters or multiple hypothesis filters to process
new observations. For these particle filter methods, the state vector can
be converted to cartesian coordinates for propagation. However, this
involves a transformation of the state space which implies either The-
orem 2 or Eqn. (3) must be applied. The transformation from X to x is
given by,

r=o+pl (81)
v = 0+ pl + pdd, + pbl, (82)

where,

AT . .
1 = [cos @cosd sinacosd sin 5]

@

irz[—sina/cosé COS @ COS & 0]

T . . .
I; = [cosasmé —sinasinod cosé]

and o € R? is the observer position and 6 € R? is the observer velocity.
This transformation is both one-to-one and onto as there is only one
cartesian state corresponding to a given p, p, and observation vector.
The Jacobian of this transformation is clearly a function of p and p and
thus cannot be constant over the admissible region. After a single ob-
servation, the admissible region must still be expressed as a uniform
distribution and transforming the sampled points into cartesian coor-
dinates and expressing the admissible region prior in cartesian coor-
dinates violates Theorem 2. To demonstrate this, Figure 2 shows the
values of the determinant of the Jacobian over the admissible region.
Since the probability transformation of an admissible region requires
this value to be constant, it is clear that the transformation to cartesian
coordinates violates Theorem 2.
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x10°3

9 [@ [ox/0%]|
Semi-Major Upper Bound
8 |— - Eccentricity

e 0T X 2L

Figure 2. Values of [0x/0%| evaluated for each particle x(r)

With a single observation and no consideration of uncertainty, each
of the points sampled from the admissible region necessarily has a uni-
form spatial distribution. New measurements should allow the admis-
sible region to become observable by taking into account the new infor-
mation provided by the measurements. Once the system is observable,
by Corollary 3, the admissible region prior becomes a true PDF and the
transformation is given directly by Eqn. (3). To test for observability,
the condition number, K(P(¢, ¢, X(¢))), for the local linearized observ-
ability gramian is computed for each value of p and p shown in Figure
1. The inverse of the machine epsilon value &, is also plotted, which
indicates that any K(P(t, to, x(f)) > &,! is essentially infinity due to the
precision of the computer. Then an additional observation is made 30
minutes after the initial set of observations. The additional observations
are ingested by the particle filter and the updated observability gramian
is computed. Figure 4 shows how the condition number for the observ-
ability gramian for each particle changes after the second observation is
made. This change in condition number implies that the observability
gramian becomes full rank after a second observation is made. At this
point it is possible to transform the PDF expressed in terms of p and p
into cartesian coordinates by direct application of Eqn. (3). Figure 5
shows the updated PDF after the second observation is made and can
equivalently be expressed in cartesian coordinates by Eqn. (3).

To demonstrate the importance of Theorem 2 and Corollary 3, con-
sider the process shown in Figure 3 by which the cartesian PDF for
these observations can be determined. The original admissible region

in p and p is represented by /7%,0 and after the second observation is
made the PDF over the particles is given by fg (X,). The admissible

region given by A% represents the transformation of /4?,, while the sys-
tem is still unobservable. It has already been shown that this particular
transformation does not satisfy Theorem 2, thus it is expected that the
resulting PDF in cartesian space given by fx,(x,) will not be equal to
the transformation of fg (X,) into cartesian coordinates once the sys-
tem is observable. This subtle difference in approach will generate
two different PDFs for the particles resulting from the second obser-
vation and mathematically the PDF generated from the unobservable
transformation is incorrect. Figure 6 shows the resulting PDF for the
unobservable and observable transformations outlined in Figure 3. The
PDFs shown are represented as the normalized histograms of the par-
ticles for each cartesian state after the resampling step in the particle
filter. As can be seen, there is a slight bias in the particle filter results
when instantiating the particle filter with an admissible region that has
been transformed while unobservable. Note that these results do not
imply that the particle filter will not converge to the correct state, but in
certain cases, especially when the time between observations is short,
there can be a noticable bias in the particle filter. Figures 7 and 8 il-
lustrate this dependence on time. If the second observation is one hour
after the initial observation, as seen in Figure 8, there is little difference
between the PDFs because the particle filter eliminates the bias intro-
duced by the incorrect initial weighting of the transformed particles.
However, if the second observation is only 10 minutes after the initial
observation, as seen in Figure 7, there is a considerable bias in the PDF
for the unobservable transformation. Since initial orbit determination

systems are often faced with short times between observations, it is
important to ensure particle filters for initial orbit determination are in-
stantiated properly. Thus, once a particle filter is instantiated in a given
state space using an admissible region, the PDF must remain expressed
in that state space until the system is observable. The general exception
to this are linear transformations which always satisfy the requirements
of Theorem 2.

IV. Conclusions

The general theory of probability transformations is presented and ap-
plied directly to the admissible region problem. It is found that gen-
eral probability transformations are invalid for admissible regions, thus
a constraint on transformations for admissible region problems is de-
fined. The constraint is shown to ensure the admissible region remains
an uniform distribution regardless of the state space it is expressed in.
This shows that the statistical representation of the admissible region
is consistent with Jeffreys’ prior and inconsistent with a PDF. Further-
more it is shown once the system becomes observable with new mea-
surements the admissible region prior becomes a true PDF. It is also
shown that probability transformations of admissible regions can also
take into account measurement, parameter, and observer uncertainties.
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