
Image Credit: NASA voyager.jpl.nasa.gov 

Prox-1 

Guidance, Navigation & Control   
Formulation and Algorithms   

 

 

Richard Zappulla II 

 

 

 



 Prox-1 Guidance, Navigation & Control  
Formulation and Algorithms 

 
Date: 3 May 2013 Page 1 of 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE IS INTENTIONALY LEFT BLANK



 Prox-1 Guidance, Navigation & Control  
Formulation and Algorithms 

 
Date: 3 May 2013 Page 1 of 81 
 

 

Abstract 

Beginning with the manned Gemini missions, proximity operations and rendezvous between two 
(2) spacecraft have significantly evolved from human-in-the-loop to ground-in-the-loop to more 
autonomous vehicles, such as the Japanese ETS-VII and the Russian Progress vehicles.  Prior to 
the proposal for the Prox-1 mission, numerous other missions—such as XSS-10, XSS-11, 
DART, and Orbital Express—have demonstrated varying levels of autonomy.  Unlike previous 
missions, the Prox-1 mission will utilize a completely autonomous GN&C system driven by an 
on-board GPS receiver, an uncooled infrared microbolometer, a three-axis magnetometer, an 
inertial measurement unit (IMU), and sun sensors.  The GN&C algorithms and strategies 
discussed in this paper are designed around robust formulations that are shown to guarantee 
asymptotic stability and aid in mitigating risk involved with passive, autonomous proximity 
operations.   
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Quest oculus non vide, cor non delet 
What the eye does not see, the heart does not feel 
“A lot happens that we are not telling you about” 
-Opening lines of Apollo software source code 
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and Referece System Service 

iid 
independent and identically 
distributed 
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Inertial 
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IPAs 
Image Processing 
Algorithms 

ISS 
International Space 
Station 

kb kilobit 
kB kilobyte 
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LCF 
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Object 
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Solar Radiation 
Pressure 

STC 
Slew and Tracking 
Controller 

STM 
State Transition 
Matrix 

TOF Time of Flight 
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1. Introduction 

1.1. Initial Forays into  Spacecraft GN&C 

Beginning with the manned Gemini missions, proximity operations and rendezvous between two 
(2) spacecraft have significantly evolved from human-in-the-loop to ground-in-the-loop to more 
autonomous vehicles, such as the Japanese ETS-VII and the Russian Progress vehicles, both of 
which are capable of autonomous docking with the International Space Station (ISS)  [1-4].  The 
difficulties of both proximity operations and formation flying were first encountered during the 
Gemini program, where pilots attempted to rendezvous with various objects in orbit (such as 
spent booster sections and other spacecraft) and achieved varying levels of success.  While 
astronauts Gus Grissom and John Young were able to successfully maneuver their capsule via 
dead reckoning on Gemini III, the Gemini IV astronauts found great difficulty attempting to 
perform proximity operations.  As a result, the first set of guidance algorithms were developed 
for an on-board digital computer manufactured by IBM that had only 4,096 words of 39-bit 
memory.  The computer calculated trajectories and provided the astronauts with thrust and 
orientation suggestions.  However, as the missions grew more complex and the need for more 
accurate and efficient celestial navigation increased, the desire for more automated guidance, 
navigation, and control (GN&C) algorithms grew.  Some of these improved algorithms included 
the inclusion of the Kalman Filter to produce more accurate navigation solutions during the 
Apollo program [1].     
 

1.2. Steps Towards Autonomy  

In the present day, while the basics of GN&C algorithms remain fundamentally unchanged from 
the late 1960’s, the capabilities of spacecraft have increased exponentially.  This increased 
capability is primarily due to the increase in sophistication of on-board computational hardware 
and software.  This increased capability of on-board computational hardware allowed for 
development in the area of automation, among many others. 
 
Prior to the proposal for the Prox-1 mission, numerous other missions—such as XSS-10, XSS-
11, DART, and Orbital Express—have demonstrated varying levels of autonomy enabled by 
varying levels of technology [5-7].  The Demonstration of Autonomous Rendezvous Technology 
(DART) mission was designed to demonstrate the use of various autonomous rendezvous 
capabilities, including the Advanced Video Guidance Sensor (AVGS).  DART was to perform 
autonomous rendezvous and proximity operations about a communications satellite that was 
specially outfitted with fiducial markers that aided the DART spacecraft with its image-based 
guidance scheme.  The XSS-10 and XSS-11 microsatellites demonstrated autonomous proximity 
operations via visual cameras and LIDAR systems, respectively.      
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1.3. The Prox-1 Mission: Automated GGN&C 

Unlike previous missions, the Prox-1 mission will utilize a completely autonomous GN&C 
system driven by an on-board GPS receiver, an uncooled infrared microbolometer, a three-axis 
magnetometer, an inertial measurement unit (IMU), and sun sensors.  Inertial navigations are 
obtained via GPS and an attitude determination filter that utilizes IMU, sun sensor, and 
magnetometer measurements. Relative navigation solutions (i.e. relative position) are driven 
primarily by the range and angles estimates produced via image processing algorithms (IPAs) 
applied to infrared images from the microbolometer; inputs from the inertial attitude solution are 
also used.  Spacecraft guidance is provided via Artificial Potential Functions (APFs), algorithms 
that are driven by relative position estimates.  In order to track the guidance solutions, the Prox-1 
spacecraft will utilize the TORC Box90 control moment gyro (CMG) array along with a 
hydrazine thruster from Stellar Exploration.   
 
An autonomous GN&C system such as that of Prox-1 requires a great deal of interconnectivity 
among its various components. Figure 1 illustrates at a high-level the first-order connections 
between the various components of the GN&C system, along with the critical inputs to and from 
each element.  Additionally, each of subset of the GN&C systems are color-coded such that all 
Guidance blocks are green, all Navigation blocks are blue, and all Control blocks are light 
orange.   
 
Figure 2 illustrates the general automated sequence that Prox-1 will follow.  Once the ground 
station authorizes Prox-1 to enter proximity operations, the spacecraft will first need to locate the 
Resident Space Object (RSO) by using an estimate of the last known point (LKP) of the RSO.  If 
the RSO is not located in the field of view (FOV), Prox-1 will then begin a raster scan using the 
initial error covariance for the Relative Orbital Determination (O/D) filter – shown in Table 6.  
This error covariance forms an ellipsoidal projection around the RSO such that the bounds of the 
ellipsoid are defined to be the 3σ error bounds.  Once the target is detected to reside inside of an 
image, a Relative O/D solution is obtained.  Once the filter converges, the relative position 
estimate is then passed to the appropriate APF guidance formulation, depending on whether rest-
to-rest or natural motion circumnavigation (NMC) maneuvers are being performed.  If it is 
determined that a thrust maneuver is required, the appropriate attitude is computed and the 
spacecraft slews to this attitude in order to fire the thruster.  Once complete, the LKP of the RSO 
is updated via the Clohessy-Wiltshire (CW) equations of relative motion, the anticipated attitude 
of the RSO is computed, and the spacecraft is commanded to slew to this attitude before 
repeating the process.   
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Figure 1. Top-level Prox-1 GN&C integration diagram.  
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Figure 2. Generic proximity operations flow diagram.  
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2. Background Information 

2.1. Quaternion Primer 

 Overview  2.1.1.

A quaternion – also known as the Euler Parameters – is a sub set of hyper-complex numbers with 
rank 4.  They were invented by William Rowan Hamilton in 1843, along with the following rule 
that governs operations on the vector part of the quaternion, 

 𝒊2 = 𝒋2 = 𝒌2 = 𝒊 ⊗ 𝒋⊗ 𝒌 =  −1 (1) 

where {𝒊, 𝒋,𝒌} are the dextral orthonormal basis in ℝ3 and ⊗ represents the quaternion product, 
which will be discussed further [8].  
 
The quaternion is a 4-tuple set 𝒒 𝜖 ℝ4 that is composed of a vector element, 𝜺 𝜖 ℝ3 and a scalar 
component 𝜂 𝜖 ℝ such that  

 𝒒 = �
𝜺
𝜂� = �

𝑞1
𝑞2
𝑞3
𝜂
� (2) 

and has a unity norm constraint such that 𝒒𝑇𝒒 = 𝜺𝑇𝜺 + 𝜂2 = 1 .  

 Equality and Additive Properties 2.1.2.

In order for any two (2) quaternions to be equal, all the components must be same. That is, the 
two (2) quaternions 𝒑  

 𝒑 = 𝜂𝑝 + 𝒊𝑝1 + 𝒋𝑝2 + 𝒌𝑝3 (3) 

and 𝒒  

 𝒒 = 𝜂𝑞 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 (4) 

are equal if and only if 𝜂𝑝 =  𝜂𝑞,𝑝1 = 𝑞1, 𝑝2 = 𝑞2,𝑝3 = 𝑞3.  
 
The sum of the two (2) quaternions 𝒑  and 𝒒  listed above is defined by adding similar 
components such that  

 𝒑 + 𝒒 = (𝜂𝑝 +  𝜂𝑞) + 𝒊(𝑝1 + 𝑞1) + 𝒋(𝑝2 + 𝑞2) + 𝒌(𝑝3 + 𝑞3) (5) 

Furthermore, each quaternion has an additive inverse, −𝒒, where each component is the negative 
of the corresponding component of 𝒒. 
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 Quaternion Multiplication 2.1.3.

Similar to vectors in ℝ3, the product of a scalar and a quaternion is simply some scalar, 𝛼,  
multiplied by all of the components of 𝒒 

 𝛼𝒒 = 𝛼𝜂𝑞 + 𝒊𝛼𝑞1 + 𝒋𝛼𝑞2 + 𝒌𝛼𝑞3 (6) 

The multiplication of any two (2) quaternions must satisfy the following products 

 

𝒊2 = 𝒋2 = 𝒌2 = 𝒊 ⊗ 𝒋⊗ 𝒌 =  −1      (𝑎) 
𝒊𝒋 = 𝒌 =  −𝒋𝒊                                          (𝑏) 
𝒋𝒌 = 𝒊 =  −𝒌𝒋                                         (𝑐) 
𝒌𝒊 = 𝒋 =  −𝒊𝒌                                        (𝑑) 

(7) 

Using the Hamilton’s special products listed and the rules for algebraic multiplication, the 
quaternion product follows. The product of two (2) quaternions 𝒑 and 𝒒 (listed above) is  

 

𝒑𝒒 = �𝜂𝑝 + 𝒊𝑝1 + 𝒋𝑝2 + 𝒌𝑝3��𝜂𝑞 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3� 
 
                               =  𝜂𝑝𝜂𝑞 + 𝒊�𝑝1𝜂𝑞 + 𝑞1𝜂𝑝� + 𝒋�𝑝2𝜂𝑞 + 𝑞2𝜂𝑝� + 𝒌�𝑝3𝜂𝑞 + 𝑞3𝜂𝑝� 
                                    +𝒊2𝑝1𝑞1 + 𝒊𝒋𝑝2𝑞1 + 𝒊𝒌 𝑝3𝑞1 + 𝒋𝒊𝑝1𝑞2 + 𝒋2𝑝2𝑞2 + 𝒋𝒌𝑝3𝑞2  
                                    +𝒌𝒊𝑝1𝑞3 + 𝒌𝒋𝑝2𝑞3 + 𝒌2𝑝3𝑞3  

(8) 

Applying the special products and collecting like terms, the quaternion product becomes 

 
                              𝒑𝒒 =  𝜂𝑝𝜂𝑞 − (𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3) 
                                       + 𝜂𝑝(𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3) + 𝜂𝑞(𝒊𝑝1 + 𝒋𝑝2 + 𝒌𝑝3) 
                                       +𝒊(𝑝2𝑞3 − 𝑝3𝑞2) + 𝒋(𝑝3𝑞1 − 𝑝1𝑞3) + 𝒌(𝑝1𝑞2 − 𝑝2𝑞1) 

(9) 

This can once more be rewritten as a more concise expression as  

 𝒑𝒒 =  𝜂𝑝𝜂𝑞 − 𝒑 ⋅ 𝒒 + 𝜂𝑝𝒒 + 𝜂𝑞𝒑 + 𝒑𝑥𝒒 (10) 

where 𝒑𝑥 is the skew operator defined as  

 𝒂𝑥 = �
0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

� (11) 

and represents the matrix multiplication of a vector cross product.  

2.2. Quaternion Attitude Kinematics 

The attitude kinematics of quaternions are given as  

 𝒒̇ =
1
2
𝚵(𝒒)𝝎 (12) 

where 𝚵: ℝ4 →  ℝ4𝑥3 and is defined as  

 𝚵(𝒒) = �𝜂𝑰 + 𝜺𝑥

−𝜺𝑇
� (1) 

where 𝐼 𝜖 ℝ3𝑥3 is the identity matrix.  
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3. Coordinate Frame Definitions & Transformations 

3.1. Overview  

This section will define the various the coordinate systems specific to the Prox-1 mission.  
Additionally, all relevant and pertinent coordinate system transformations will be derived as 
well.  

3.2. Coordinate Frame Definitions 

 Imager Coordinate Frame (ICF) Definition  3.2.1.

The main purpose of this coordinate frame is to provide relative information of the RSO – 
specifically angle and apparent size information.  This will in turn be used to generate a relative 
position estimate between the chaser spacecraft and the RSO.  The imager coordinate frame is 
defined with respect to the microbolometer’s focal plane array (FPA).  The coordinate frame is 
anchored to the top-left corner of the FPA when viewing the output image as shown in Figure 3. 

The ICF dextral orthnormal basis vectors 
�𝑿�𝐼 ,𝒀�𝐼 ,𝒁�𝐼�are defined as follows:  

• Origin of the ICF anchored in the 
upper-left hand corner of the FPA 
when viewing the output image.  

• Imager (positive) X-axis: down the 
480 pixel height of the FPA  

• Imager (positive) Y-axis: to the 
right along the 640 pixel width of 
the FPA 

• Imager (positive) Z-axis: via 
Right-Hand Rule (RHR) 

 

 
Figure 3. Imager coordinate frame 

 Earth-Centered Inertial (ECI) Coordinate Frame Definition 3.2.1.

The ECI frame, also known as the Earth Centered Space Frame (ECSF), is a geocentric 
coordinate frame where the Earth’s center is considered the origin.  The basis vectors for the ECI 
frame are defined by the Conventional International Origin (CIO) reference axis of the North 
Pole’s average location over the year 1900 and the direction of the vernal equinox () at a 
given epoch.  It is interesting to note that this coordinate frame is only quasi-inertial due to the 
motion of the Earth’s center accelerating as it moves around the sun, however, it can be used as 
inertial here since no rotation takes place with respect to the CIO.  A common formalization of 
the ECI frame for spaceflight applications is the J2000 frame.  For this particular formalization 
this means that the coordinate frame is always centered at the center of Earth, the 𝑍̂𝐽2000 axis 
points toward the North Pole, the 𝑋�𝐽2000 direction points in the direction of the mean equinox at 
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the epoch of 12:00 Terrestrial Time on January 1, 2000, and the 𝑌�𝐽2000 direction is defined by the 
cross product of the first two basis vectors using the right hand rule.  Note that this frame does 
not rotate with the spin of the Earth.  Figure 1 shows a representation of the ECI Frame using the 
J2000 epoch [9].   

 Earth Centered, Earth Fixed (ECEF) Coordinate Frame Definition 3.2.1.

The ECEF frame is similar to the ECI frame in that it is a geocentric frame, however, unlike the 
ECI frame, its basis vectors are fixed with respect to the Earth (i.e. the frame rotates with the 
spin of the Earth).  The 𝑍̂𝐸𝐶𝐸𝐹 axis points toward the CIO coinciding with the mean rotational 
axis of the Earth, not the instantaneous Earth rotational axis.  The 𝑋�𝐸𝐶𝐸𝐹 axis points toward the 
intersection of the equator and the prime meridian (the point of 0° latitude, 0° longitude) and the 
𝑌�𝐸𝐶𝐸𝐹 is defined by the cross product of the first two basis vectors completing the right-handed 
system.  Earth’s magnetic field is one of many things conveniently expressed in the ECEF frame.  
Figure 4 shows the similarities and differences of the ECEF frame when compared to the ECI 
frame.   
 

  
Figure 4. Comparison of the ECI and ECEF coordinate frame [9, 10]s.  
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 Body-Fixed Coordinate Frame (BFCF) Definition 3.2.2.

The main purpose of the Body-Fixed 
coordinate frame (BFCF) is to define the 
orientation of the attitude and control 
hardware.  Specific to the Prox-1 spacecraft, 
the BFCF is illustrated in Figure 5.  The BFCF 
dextral orthonormal basis vectors �𝑿�𝐵 ,𝒀�𝐵,𝒁�𝐵� 
for the spacecraft are defined as follows: 

• Origin of the BFCF anchored at the 
geometric center of the LVI plate.  

• Spacecraft (positive) Y-axis  normal to 
and thru the imager FPA 

• Spacecraft (positive) Z-axis normal to 
and away (downward)  

• Spacecraft (positive) X-axis via RHR 
 

 
Figure 5. Prox-1dextral orthonormal basis 

superimposed on the spacecraft.   

It is worth noting that the BFCF is not anchored at the spacecraft center of mass.  This fact will 
become important later as the all measured properties of the spacecraft – including the moments 
of inertia – are taken about this geometrically fixed point [11, 12].   

 Satellite Coordinate Frame (RSW Frame) Definition 3.2.3.

The Satellite Coordinate Frame, or as it is more commonly known as the RSW frame, is applies 
to the study of relative motion of a chaser spacecraft about the resident space object, or RSO.  
Typically, this coordinate frame is inertially fixed at the center of mass of the RSO with the 
dextral orthonormal basis being defined by the position unit vector (Radial) and the velocity unit 
vector (In-Track) of the RSO and the third basis vector (Cross-Track) via RHR.  This orientation 
is illustrated in Figure 6.  
Specific to the case of Prox-1, since no a priori 
knowledge of the RSO is known, the 
orientation of the RSW frame is based off of 
the Prox-1 inertial position, implying the 
following assumptions: 𝑟𝑟𝑠𝑜

𝑟𝑐ℎ𝑎𝑠𝑒𝑟
 is small and 

𝑽�𝑟𝑠𝑜 ≈  𝑽�𝑐ℎ𝑎𝑠𝑒𝑟.  As a result, the orientation of 
the dextral orthonormal basis vectors �𝑹� ,𝑺�,𝑾�� 
are defined as follows:  

• 𝑹� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
||𝒓𝑐ℎ𝑎𝑠𝑒𝑟||

 

• 𝑾� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟

��𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟��

 

• 𝑺� ∶= 𝑾�𝑥𝑹�

��𝑾�𝑥𝑹���
 

 

 
 
Figure 6. RSW orthonormal basis superimposed 

in the Earth-Centered Inertial (ECI) frame.  
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3.3. Coordinate Frame Transformation 

 Imager to Body-Fixed Coordinate Frame Transformation 3.3.1.

 
Figure 3Figure 7 illustrates the imager 
coordinate frame (ICF) superimposed 
on the Prox-1 body-fixed coordinate 
frame (BFCF).  Since these two (2) 
frames are spatially fixed the 
transformation can be derived visually.  
For the sake of simplicity, it is 
assumed that any mounting errors are 
small and negligible and therefore any 
angles between corresponding axes are 
approximately zero (0).  The resulting 
coordinate frame transformation is 

 �
𝑋𝐵
𝑌𝐵
𝑍𝐵
� = �

0 1 0
0 0 1
1 0 0

� �
𝑋𝐼
𝑌𝐼
𝑍𝐼
� (2) 

 

 
 

Figure 7. Imager coordinate frame superimposed on the 
Prox-1 body-fixed coordinate frame. 

 

 

 Body-Fixed to RSW Coordinate Frame Transformation 3.3.2.

3.3.2.1. Coordinate Frame Transformation Derivation 

The Body-Fixed to RSW coordinate frame transformation is essential as it allows for the 
determination of a relative state vector given measurements made in the BFCF.  Figure 8  
 
involved in the coordinate frame 
transformation formulation where: ℐ  is the 
inertial frame whose dextral orthonormal basis 
is defined by �𝑿� ,𝒀�,𝒁�� ; ℬ  is the body-fixed 
coordinate frame whose dextral orthonormal 
basis is defined by �𝑿�𝑩,𝒀�𝑩,𝒁�𝑩�  and 
orientation with respect to the inertial frame is 
defined by the quaternion 𝒒 ; and 𝒟  is the 
satellite coordinate frame, or RSW frame, 
whose dextral orthonormal basis  is defined 
by �𝑹� ,𝑺�,𝑾��  and orientation quaternion with 
respect to the inertial frame is defined by the 
quaternion 𝒒𝑑 .   Thus, the orientation of the 
BFCF with respect to the RSW frame is 
defined by the (error) quaternion 𝒒𝑒. 

 
Figure 8. Diagram of the relationship between the 

three (3) different reference frames.   
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Since the rotation matrix, 𝑹𝑒, which maps a vector in the RSW frame to the BFCF, is not known, 
a combination of the inertial quaternion and the definition of the RSW frame can be used to aid 
this transformation.  
 
The rotation matrix that maps a vector in the inertial frame to a vector in the RSW frame can be 
defined as 

 𝑹𝑑 = [𝑹� 𝑺� 𝑾�]𝑇 (3) 

where 𝑹� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
||𝒓𝑐ℎ𝑎𝑠𝑒𝑟||

, 𝑾� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟

��𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟��

, and 𝑺� ∶= 𝑾�𝑥𝑹�

��𝑾�𝑥𝑹���
 and are column vectors anchored in 

the inertial (ECI) frame.  Given a quaternion relating any two (2) frames, a rotation matrix can be 
formed that maps a vector between the frame can also be described as mapping between the 
orthonormal basis and the associated quaternion where 𝑹𝑑:ℝ3 →  ℝ4 .  Generically, the 
quaternion relating the orientation of the RSW frame with respect to the inertial frame can be 
given by the following set of equations, assuming 𝜂4 ≠ 0:two frames; resultantly, the rotation 
matrix transforming a vector from the inertial frame to the RSW 
 

 

𝜂4 = ± 
1
2
�𝑇𝑟�𝑹� + 1       (𝑎) 

𝜂1 =
1

4𝜂4
�𝑹2,3 − 𝑹3,2�    (𝑏) 

𝜂2 =  
1

4𝜂4
�𝑹3,1 − 𝑹1,3�   (𝑐) 

𝜂3 =  
1

4𝜂4
�𝑹1,2 − 𝑹2,1�   (𝑑) 

(4) 

where 𝑹(𝑖, 𝑗)𝜖 ℝ for i,j = 1, 2, 3 and represents the (i,j) component of the rotation matrix. It is 
important to note that if 𝜂4 is close to zero (0), Equations (4)(b-d) will not be accurate due to a 
loss of numerical precision in the square root.  To maximize numerical accuracy, the set 
Equations (4), (5), (6), or (7) should be selected and evaluated based upon the largest argument 
in the square root [13].  

 

𝜂1 = ± 
1
2�

1 +  𝑹1,1 −  𝑹2,2 −  𝑹3,3       (𝑎) 

𝜂2 =  
1

4𝜂4
�𝑹1,2 + 𝑹2,1�                              (𝑏) 

𝜂3 =  
1

4𝜂4
�𝑹1,3 + 𝑹3,1�                              (𝑐) 

𝜂4 =
1

4𝜂4
�𝑹2,3 − 𝑹3,2�                              (𝑑) 

(5) 
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 𝜂2 = ± 
1
2�

1 −  𝑹1,1 +  𝑹2,2 −  𝑹3,3       (𝑎) 

𝜂1 =
1

4𝜂4
�𝑹1,2 + 𝑹2,1�                              (𝑏) 

𝜂3 =  
1

4𝜂4
�𝑹2,3 + 𝑹3,2�                             (𝑐) 

𝜂4 =  
1

4𝜂4
�𝑹3,1 − 𝑹1,3�                             (𝑑) 

(6) 

 𝜂3 = ± 
1
2�

1 −  𝑹1,1 −  𝑹2,2 +  𝑹3,3       (𝑎) 

𝜂1 =
1

4𝜂4
�𝑹1,3 + 𝑹3,1�                               (𝑏) 

𝜂2 =  
1

4𝜂4
�𝑹2,3 + 𝑹3,2�                              (𝑐) 

𝜂4 =  
1

4𝜂4
�𝑹1,2 − 𝑹2,1�                             (𝑑) 

(7) 

 
Now that the quaternion relating the orientation of the RSW frame with respect to the inertial 
frame, 𝒒𝑑, is known, the error quaternion relating the orientation of the BFCF with respect to the 
RSW frame can be computed. Without the loss of generality, the error quaternion, 𝒒𝑒, is defined 
as   

 𝒒𝑒 = 𝒒𝟏 ⊗ 𝒒𝟐 (8) 

When computed, the error quaternion simplifies to  

 𝒒𝑒 = � 𝚵�𝒒𝟐−𝟏� 𝒒2−1 �𝒒1 (9) 

Specific to the application of orientations of the RSW and BFCF frames, the error quaternion is  

 𝒒𝑒 = � 𝚵(𝒒𝑑−1) 𝒒𝑑−1 �𝒒 (10) 

 
Before continuing, it is worth spending a few lines to show the derivation of a quaternion-based 
rotation operator. Generally speaking, to rotate a vector from one frame to another, the following 
transformation is used 

 𝒘 = 𝑨𝒗 (11) 

where a vector 𝒗,𝒗 𝝐 ℝ𝟑 is operated on by a rotation matrix 𝑨,𝑨 𝜖 ℝ3𝑥3, and whose output in the 
desired frame is 𝒘,𝒘 𝝐 ℝ𝟑.  In order to use the quaternion to rotate a vector from to one frame to 
another, both vectors 𝒗 and 𝒘 must first be transformed into pure quaternions to allow the use of 
a quaternion as the rotation operator – that is treat a vector 𝒗 𝜖 ℝ3 as if it were a quaternion 
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𝒒 𝜖 ℝ4 whose real part is zero (0).  Therefore, the vector 𝒗 becomes�𝒗0�; likewise, the vector 𝒘 

becomes�𝒘0 �.  Since both 𝒗 and 𝑤 are now in ℝ4, the rotation operator can now be represented 

by a quaternion.  Equation (11) becomes  
  

 𝒘 = 𝒒⊗ 𝒗⊗ 𝒒−1  (12) 

which can be re-written as a matrix equation 

 𝒘 = �(𝜂2 − 𝜺𝑻𝜺)𝑰  + 𝟐(𝜺𝜺𝑻 − 𝜂𝜺𝒙)� 𝒗 (13) 

 
Evaluating the matrix equation defined by Equation (13) yields the rotation matrix as a function 
of a quaternion 

 𝒘 = �
2𝜂2 − 1 + 2𝑞12 2𝑞1𝑞2 − 2𝜂𝑞3 2𝑞1𝑞3 + 2𝜂𝑞2
2𝑞1𝑞2 + 2𝜂𝑞3 2𝜂2 − 1 + 2𝑞22 2𝑞2𝑞3 − 2𝜂𝑞1
2𝑞1𝑞3 − 2𝜂𝑞2 2𝑞2𝑞3 + 2𝜂𝑞1 2𝜂2 − 1 + 2𝑞32

� 𝒗 (14) 

Defining the quaternion-based rotation matrix as 𝑸(𝒒), the transformation can be written in a 
more familiar form,  

 𝒘 = 𝑸(𝒒)𝒗 (15) 

where 𝑸, 𝑸  𝜖 ℝ3𝑥3,  is the rotation operator given a quaternion 𝒒, 𝒒  𝜖 ℝ4. From this, it can be 
seen that the vector component of the quaternion describes the axis of rotation.  
 
Continuing, since the error quaternion and the corresponding rotation matrix is known, the 
transformation from the BFCF to the RSW frame is given as 

 �
𝑅̂
𝑆
𝑊
� =  𝑸𝑇(𝒒𝒆) �

𝑋𝐵
𝑌𝐵
𝑍𝐵
� (16) 

Given the definition of the inverse of a quaternion, Equation (16) can be rewritten as  

 �
𝑅̂
𝑆
𝑊
� =  𝑸(𝒒𝒆−1) �

𝑋𝐵
𝑌𝐵
𝑍𝐵
� (17) 

where  

 𝒒𝑒−1 = �
−𝜺𝑒
𝜂𝑒 � (18) 
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3.3.2.2. BFCF to RSW Frame Algorithm  

Given the computational and system resource limitations of many (space-based) in-situ 
computational platforms, it is highly beneficial to utilize low-cost computational algorithms with 
a minimal memory footprint.  To accomplish this, computationally costly operations such as 
matrix inversion and square root function calls, for example, are to be minimized.  To aid with 
minimizing the memory footprint of an algorithm, selecting the appropriate data type for the 
level of precision is critical.  For example, if the resulting inertial quaternion from a navigation 
filter only produces four (4) digits places of precision, then the smallest data type that should be 
used are ‘Single’ floating point values; conversely, if a navigation filter is capable of seven (7) 
significant figures, then at least a ‘Double’ floating point value should be utilized as it is capable 
of up to 16 digits of precision.  For higher digits of precision, a ‘Long Double’ floating data type 
should be used as it is capable of up to 34 digits of precision [14-16].  The resulting algorithm is 
listed in Table 2. 
 
The input and output variables for the BFCF to RSW Transformation algorithm are listed in 
Table 1.  At the time of writing, the precision of the resulting inertial quaternion from the 
navigation filter is unknown.  Single’ floating point data types can also be used to store each 
value of the inertial position and velocity 

 

Table 3 illustrates the algorithm overhead measured in terms of variable storage footprint.  For 
the purpose of this analysis, it is assumed all inputs are passed by value.  One method to reduce 
the overall memory footprint of the algorithm is to pass the inputs by address rather than value.  
Passing a variable by address (via a pointer in C/C++), does not replicate the variable and results 
in lower memory usage.  The associated risks by passing an input via pointer include 
modification of the value of input at a particular memory address, which will impact future 
computations involving that variable until it is updated.  However, these concerns are not 
addressed here as ‘Best Coding Practices’ are outside the scope of this section and are mentioned 
only for thought-provoking reasons.  

Table 1. BFCF to RSW Frame Algorithm Inputs and Outputs. 

Variable Definition Data Type 

Inputs 

Inertial Quaternion, 𝒒: 4x1 Vector Single 
Inertial Position, 𝒓𝑐ℎ𝑎𝑠𝑒𝑟: 3x1 Vector Single 
Inertial Velocity, 𝑽𝑐ℎ𝑎𝑠𝑒𝑟: 3x1 Vector Single 
Body-Fixed Measurement, 𝑿𝐵: 3x1 Vector Single 

Output RSW Measurement,  𝑿𝑅𝑆𝑊: 3x1 Vector Single 

 

Table 2. BFF to RSW Coordinate Frame Transformation Algorithm 



 Prox-1 Guidance, Navigation & Control  
Formulation and Algorithms 

 
Date: 3 May 2013 Page 24 of 81 
 

Body-Fixed to RSW Coordinate Frame Transformation Algorithm & Variable Definition 
1. Compute the components of the rotation matrix 
 

𝑹𝑑 = [𝑹� 𝑺� 𝑾�]𝑇  
 

where 
 

𝑹� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
||𝒓𝑐ℎ𝑎𝑠𝑒𝑟||

, 𝑾� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟

��𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟��

, and 𝑺� ∶= 𝑾�𝑥𝑹�

��𝑾�𝑥𝑹���
 

 

Variable Definition: 
𝑹𝑑: 3x3 Matrix 

 
Data Type: 

Single 

2. Evaluate only the arguments of Equations (4)a, (5)a, (6)a, and (7)a: 
 

Equation (4)a: 

𝜂4 = ± 
1
2
�𝑇𝑟�𝑹� + 1 

Equation (5)a: 

𝜂1 = ± 
1
2�

1 + 𝑹1,1 −  𝑹2,2 −  𝑹3,3 
Equation (6)a: 

𝜂2 = ± 
1
2�

1 −  𝑹1,1 + 𝑹2,2 −  𝑹3,3 
Equation (7)a: 

𝜂3 = ± 
1
2�

1 −  𝑹1,1 −  𝑹2,2 + 𝑹3,3 
 

Variable Definition: 
𝜂: Scalar 

 
Date Type: 

Single 
 

3. Determine the largest value between 𝜂1, 𝜂2, 𝜂3, 𝜂4  
 

if (𝜂1 > {𝜂2, 𝜂3, 𝜂4}) 
• Use Equations (5) 

 
else if (𝜂2 > {𝜂1, 𝜂3, 𝜂4}) 

• Use Equations (6) 
 

else if (𝜂3 > {𝜂2, 𝜂1, 𝜂4}) 
• Use Equations (7) 

 
else: 

• Use Equations (4) 

Variable Definition: 
N/A 

 
Data Type: 

N/A 

4. Compute 𝒒𝑑  using the appropriate set of equations determined from Step 3.  
 

Variable Definition: 
𝒒𝑑: 4x1 Vector 

 
Data Type: 

Single 
 

5. Determine the error quaternion 𝒒𝑒 
 

 𝑞𝑒 = � 𝚵(𝒒𝑑−1) 𝒒𝑑−1 �𝒒 
 

 
Variable Definition: 
𝒒𝑒: 4x1 Vector 

 
Data Type: 

Single 
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Body-Fixed to RSW Coordinate Frame Transformation Algorithm & Variable Definition 

6. Compute the rotation operator 𝑸(𝒒𝒆−1) =  𝑸��
−𝜺𝑒
𝜂𝑒 ��  
 

𝑸��
−𝜺𝑒
𝜂𝑒 ��  =  (𝜂𝑒2 − 𝜺𝑒𝑇𝜺𝑒 )𝑰  + 2(𝜺𝑒𝜺𝑒𝑇 + 𝜂𝑒𝜺𝑒𝑥) 

 
(Note: This equation differs from Equation (13) by a single sign difference as it takes into account that 
the rotation operator is being computed for an inverse quaternion as opposed to a quaternion.) 

 
Variable Definition: 
𝑸: 3x3 Matrix 

 
Data Type: 

Single 
 

7. Transform vector from BFCF to RSW 

�
𝑅̂
𝑆
𝑊
� =  𝑸(𝒒𝒆−1) �

𝑋𝐵
𝑌𝐵
𝑍𝐵
� 

 
Variable Definition: 
𝑿𝑅𝑆𝑊: 3x1 Vector 

 
Data Type: 

Single 
 

 

Table 3. Approximate variable storage footprint for the BFCF to RSW transformation algorithm 

Parameter Value 

Input Variable Storage Footprint 416 bits, 52 bytes 

In-Function Variable Storage Footprint 1056 bits, 132 bytes 

Total Variable Storage Footprint 1472 bits, 184 bytes 

 RSW to ECI Coordinate Frame Transformation 3.3.3.

The rotation matrix that maps a vector in the inertial frame to a vector in the RSW frame can be 
defined as 

 𝑹𝑑 = [𝑹� 𝑺� 𝑾�]𝑇 (19) 

where 𝑹� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
||𝒓𝑐ℎ𝑎𝑠𝑒𝑟||

, 𝑾� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟

��𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟��

, and 𝑺� ∶= 𝑾�𝑥𝑹�

��𝑾�𝑥𝑹���
 and are column vectors anchored in 

the inertial (ECI) frame.  Given the rotation matrix, the resulting transformation to map a vector 
from the RSW frame to the ECI frame is  

 �
𝑋
𝑌
𝑍
� = 𝑹𝑑𝑇 �

𝑅̂
𝑆
𝑊
� (20) 

 

 ECEF to ECI Coordinate Frame Transformation 3.3.4.

In order to transform between any two frames, three rotational matrixes, 𝑅1,𝑅2, and 𝑅3 must first 
be defined: 
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𝑅1(𝜙) = �
1 0 0
0 cos(𝜙) sin(𝜙)
0 − sin(𝜙) cos(𝜙)

� , 𝑅2(𝜙) = �
cos(𝜙) 0 − sin(𝜙)

0 1 0
sin(𝜙) 0 cos(𝜙)

� ,

          𝑅3(𝜙) = �
cos(𝜙) sin(𝜙) 0
− sin(𝜙) cos(𝜙) 0

0 0 1
�  

(13) 

 
where 𝜙  can be used to represent any angle that the system is being transformed by.  To 
complete the transformation from the ECI frame to the ECEF frame, four types of motion need 
to be accounted for: precession, nutation, rotation, and polar motion.  If three types of these 
motions are neglected, precession, nutation, and polar motion, then the transformation between 
the two frames is relatively simple and only rotation needs to be accounted for.  The rotational 
matrix is as follows: 
 

 𝑋�𝐸𝐶𝐸𝐹 = 𝑅3(𝜃𝐺𝑆𝑇)𝑋�𝐸𝐶𝐼  (14) 

where 𝜃𝐺𝑆𝑇 is the rotational angle based on the Greenwich Sidereal Time (GST). 
 
In Prox-1’s case, however, this type of simplification cannot be done.  Since autonomous 
proximity operations will be taken place throughout the mission, the transformation into the 
ECEF frame needs to be more accurate.  For that reason, transformation between the ECI and 
ECEF coordinate frames was performed with assistance for verification purposes of the 
constants[10].  To begin, a visualization of the precession and nutation phenomenon may help.  
Figure 3 shows the precession and nutation the earth undergoes over the long, 26,000 year 
precession period and the shorter, 18.6 year nutation period. 
 

 
 

Figure 3: Precession and Nutation [10]  
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In order to transform the Earth Centered Inertial frame into the Earth Centered, Earth Fixed 
frame, a series of rotations needs to be completed in a specific order.  The four rotations take 
place as followed: 
 

𝑋�𝐸𝐶𝐸𝐹 = 𝑅𝑀𝑅𝑆𝑅𝑁𝑅𝑃𝑋�𝐸𝐶𝐼 
 
where RM is polar motion matrix, RS is the Earth rotation matrix, RN is the nutation matrix, RP is 
the precession matrix, and 𝑋�  is the coordinate vector with subscripts denoting the related 
coordinate system. 
 

3.3.4.1. Precession 

The Earth’s rotational axis is not fixed in space, but rather has a slow precession period that takes 
place over a 26,000 year period (about 1o per 72 years).  This precession is essentially a torque 
acting on the Earth by a combination of the sun’s and moon’s gravity pulling on the equatorial 
bulges on the Earth (note: other planets gravity pulls on the Earth as well, but the amount is 
insignificant compared to the sun and moon).  The precession rotational matrix is defined as: 
 

𝑅𝑝 = 𝑅3(−𝑧)𝑅2(𝜃)𝑅3(−𝜁) 
or 
𝑅𝑃

= �
cos(𝑧) cos(𝜃) cos(𝜁) − sin(𝑧) sin(𝜁) − cos(𝑧) cos(𝜃) sin(𝜁) − sin(𝑧) sin (𝜁) − cos(𝑧) sin(𝜃)
sin(𝑧) cos(𝜃) cos(𝜁) + cos(𝑧) sin (𝜁)

sin (𝜃)cos (𝜁)
− sin(𝑧) cos(𝜃) sin(𝜁) + cos(𝑧) cos (𝜁) − sin(𝑧) sin(𝜃)

− sin(𝜃) sin (𝜁) cos (𝜃)
� 

 
where 𝑧,𝜃, 𝜁 are precession parameters defined as: 
 

𝑧 = 2306.′′ 2181𝑇 + 1. ′′09468𝑇2 + 0.′′ 018203𝑇3 
𝜃 = 2004.′′ 3109𝑇 − 0. ′′42665𝑇2 − 0.′′ 018203𝑇3 
𝜁 = 2306.′′ 2181𝑇 − 0. ′′30188𝑇2 − 0.′′ 017998𝑇3 

 
where T is the measuring time in Julian centuries (36525 days) counted from J2000, 0h. 
 

3.3.4.2. Nutation 

Nutation is principally caused by the tidal forces of the sun and moon.  The largest component of 
nutation is caused by the moon’s orbital nodes which occur with an 18.6 year period.  Smaller 
components of nutation range in period from 14 days up to 18.6 years.  The rotational matrix 
associated with nutation is: 
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𝑅𝑁 = 𝑅1(−𝜀 − ∆𝜀)𝑅3(−∆𝜓)𝑅1(𝜀) 

or 
𝑅𝑁

= �
cos (Δψ) − sin(Δψ)cos (𝜀)                                           − sin(Δψ) sin(𝜀)

sin(Δψ) cos (εt)
sin(Δψ) sin (εt)

cos(Δψ) cos(εt) cos(ε) + sin(εt) sin (ε) cos(Δψ) cos(εt) sin (ε) − sin(𝜀𝑡) cos(𝜀)
cos(Δψ) sin(εt) cos(ε) − cos(εt) sin (ε) cos(Δψ) sin(εt) sin(ε) + cos(𝜀𝑡) cos(𝜀)

� 

 
which can be approximated by letting cos(Δψ) = 1 and sin(Δψ) = Δψ for very small angles of 
Δψ, as is the case for the Prox-1 mission.  Therefore, 
 

𝑅𝑁 ≈ �
1 −Δψcos (ε) −Δψsin (ε)

Δψcos (εt) 1 −∆𝜀
Δψsin (εt) ∆𝜀 1

� 

 
where 𝜀 is the mean axial tile of the ecliptic angle on the date as seen in Figure 3, Δψ and ∆𝜀 are 
nutation angles in longitude and axial tilt, and 𝜀𝑡 = 𝜀 + ∆𝜀.  𝜀 is further defined as: 
 

𝜀 = 84381.′′ 448 − 46′′.8150𝑇 − 0′′.00059𝑇2 + 0.′′ 001813𝑇3 
 

3.3.4.3. Earth rotation 

Since the Earth rotation is only about the 𝑍̂𝐸𝐶𝐼-axis based on the Greenwich Apparent Sidereal 
Time (GAST), the Earth rotation matrix is simply represented as: 
 

𝑅𝑆 = 𝑅3(GAST) 
 
where GAST is equal to: 
 

GAST = GMST + ∆ψ cos(𝜀) + 0.′′ 00264 sin(Ω) + 0.′′ 000063 sin(2Ω) 
 
where GMST is the Greenwich Mean Sidereal Time, Ω is the mean longitude of the ascending 
node of the moon, and 𝜀 is as defined above.  Additionally, 
 

GMST = GMST0 + 𝛼UT1 
 
GMST0 = 6 ∗ 3600.′′ 0 + 41 ∗ 60.′′ 0 + 50.′′ 54841 + 8640184.′′ 812866𝑇0 + 0.′′ 093104𝑇02

− 6.′′ 2 ∗ 10−6𝑇03 
 
           𝛼 = 1.002737909350795 + 5.9006 ∗ 10−11𝑇0 − 5.9 ∗ 10−15𝑇02 
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where GMST0 is the Greenwich Mean Sidereal Time at midnight on the day of interest, 𝛼 is the 
rate of change, UT1 is the polar motion corrected for Universal Time, and T0 is the measuring 
time in Julian Centuries (36525 days) counted from J2000.0 to 0h UT1 on the measuring day. 
 

3.3.4.4. Polar Motion 

Polar motion accounts for the difference between the true equatorial system and the ECEF 
system.  In other words, polar motion is simply the angle between the pole on the date measured 
and the CIO pole.  Since polar motion is defined in the xy-plane associated with an x-axis 
pointed south corresponded to the mean Greenwich meridian and y-axis pointed to the west, two 
angles 𝑥𝑝 and 𝑦𝑝 can be defined as the angles of the pole on the date of measurement.  This 
means the polar rotational matrix is defined as: 
 
𝑅𝑀 

= 𝑅2�−𝑥𝑝�𝑅1�−𝑦𝑝� = �
cos�𝑥𝑝� sin�𝑥𝑝� sin�𝑦𝑝� sin�𝑥𝑝� cos (𝑦𝑝)

0 cos (𝑦𝑝) − sin�𝑦𝑝�
−sin (𝑥𝑝) cos�𝑥𝑝� sin (𝑦𝑝) cos�𝑥𝑝� cos�𝑦𝑝�

� ≈ �
1 0 𝑥𝑝
0 1 −𝑦𝑝
−𝑥𝑝 𝑦𝑝 1

� 

 
Since both the quantities of 𝑥𝑝 and 𝑦𝑝 are small angles, the small angle approximations for sine 
and cosine can be made without significant loss in results.  Using the International Earth 
Rotation and Reference System Service (IERS) website, 𝑥𝑝 and 𝑦𝑝 can be looked up directly for 
the dates needed. 

4. Guidance Formulation 

4.1. Image Processing Algorithms (IPAs) 

 Imaging Instruments 4.1.1.
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The Prox-1 spacecraft will 
utilize two (2) independent 
imagers to locate RSOs: a 
visible camera and a 
Microbolometer Thermal 
Imager (MTI).  The visible 
camera is a Point Grey 
Research CMLN-13SC 
Chameleon camera.  This 
Commercial Off-The-Shelf 
(COTS) camera features a 
1296-by-964 pixel (1.3MP) 
Red-Green-Blue (RGB) CCD 
and utilizes a Fujinon 
HF25HA-1B lens providing a   

 
 

Figure 9. Visible camera (right) and MTI (left) mounted together. 

FOV of 10.97º by 8.16º.  The MTI features a Focal Plane Array (FPA) size of 640-by-480 and 
utilizes a 100mm lens that produces a FOV of 9.1º by 6.8º.   It is important to note that the MTI 
will be the main imager since it will be able to track the RSO in all lighting conditions. 
 
The desired frequency of imaging is to be determined by the requirements of the APF decision-
making process. Two opposing parameters must be balanced in this requirement. First, the 
gradient-based search techniques of the APF process are more optimal when state information is 
available with high frequency. In this case the state information is provided by the IPAs 
following new image capture. Therefore, the higher frequency of image capture, the more likely 
it is that APF processes will close to a solution and the solution is likely to be more efficient for 
time and fuel. However, this desire is opposed by the limited computational abilities of Prox-1. 
Image capture, transfer, and image processing are computationally expensive and will tax the 
computing budget. A more detailed simulation must be utilized to further evaluate the 
requirement.  

 Image Processing Algorithms 4.1.2.

4.1.2.1. Overview 

The image processing algorithms (IPAs) form the basis of the Prox-1 guidance as they provide 
relative positioning information to the rest of the Prox-1 GN&C system.  While in their current 
form, the IPAs results are shown to vary depending on both the range and orientation of the 
RSO.  However, through the use of filtering, the precision of the relative position estimate is 
increased.  

4.1.2.2. Blobber Algorithm 
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Immediately following image acquisition, the Blobber Algorithm is the first step in the IPAs and 
the main process in image processing.  The purpose of the Blobber Algorithm is to identify the 
RSO in the image.  The algorithm flow diagram is illustrated in Figure 10.   
 
First, it detects the pixels in an image which are in a certain range of intensity; for the MTI this 
intensity is analogous to temperature; for the VC it is a measure of visible radiance.  Next, it 
detects the groups of pixels which are connected to each other and which form a blob (Binary 
Large OBject).  Generally, there is not just one blob detected, especially when the image 
background is the Earth.  However the object which has to be localized should be one of the 
blobs detected.  Therefore, to choose the correct blob among the few which are remaining, an 
area screening must be applied.  The correct blob is selected by calculating its area on the image, 
actually the number of pixels contained in the blob.  Indeed, with previous knowledge about the 
object to detect, it is possible to know approximately the range of the cross-sectional area [17]. 
 
The ideal results of the Blobber algorithm are a calculated area for the identified blob and the 
location of the Center of Brightness (COB) for the blob.  The COB is similar to an area centroid 
of or a center of mass and is used as the central location of the RSO.  The COB coordinates are 
given with respect to the imager’s focal plane; therefore these coordinates must be mapped into 
the body-fixed coordinate frame in order to represent the unit vector from Prox-1 to the RSO.   
 

4.1.2.1. Unit Vector Determination 

Using the COB coordinates, a unit vector can be found using geometry and the optical properties 
of the imager.  The RSO can at all times be considered to be focused at infinity in relation to the 
focal length of the camera lenses – that is the distance to the RSO is much greater than the focal 
length of the lens –the  calculation of the unit vector or rotation angles can be determined.   
 
As illustrated by Figure 3, the unit vector, 𝒖��⃑ , can be determined given the focal length of the lens 
and the position of the COB on the FPA or CCD.  Alternatively, the position vector of RSO can 
be expressed in spherical coordinates using the radial distance of the COB and the rotation 
angles 𝜃𝑖 and 𝜑𝑖.  Using the rotation defined in Equation Error! Bookmark not defined., the 
unit vector describing the relative position of the RSO to Prox-1 is given as 
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Figure 10. Blobber algorithm flow diagram[18] 
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 �
𝑋�𝐵
𝑌�𝐵 
𝑍̂𝐵 

� = �
0 1 0
0 0 1
1 0 0

� �
sin(𝜃𝑖) cos(𝜑𝑖)
sin(𝜃𝑖) sin(𝜑𝑖)

cos(𝜃𝑖)
� (15) 

 
 

 
 

Figure 11. Geometric representation of the relative position vector in the ICF. 

 

 

4.1.2.2. Range Estimation 

Range estimation occurs only after the RSO has been successfully identified and the unit vector 
from the Prox-1 spacecraft to the RSO is determined.  Range estimation can be broken down into 
four main steps:  

1) Determination of the major and minor axes of the RSO 
2) Determination of the ratio of the major axis to the minor axis 
3) Estimation of the minimum and maximum apparent areas of the RSO.  
4) Determination of the range its associated uncertainty  
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4.1.2.2.1. Major and Minor Axis Determination 

The major axis of the RSO is the line which maximizes the sum of the squares of the distance 
between itself and each pixel of the blob belonging to the RSO.  Likewise, the minor axis of the 
RSO is the line which minimizes the sum of the distance between itself and the blob.  By 
definition, these two (2) axes intersect at the center of the blob, which is defined as the COB, and 
are orthogonal to each other.     
 

4.1.2.2.2.  Major-to-Minor Axis Ratio Determination 

The ratio of the major-to-minor axis is determined by comparing 
the lengths of each axis.  The length of each axis is determined by 
counting the number of pixels along the line defining the respective 
axes.  This can be accomplished by rotating the image of the blob 
such that both the major axis is vertical and the minor axis is 
horizontal.  Since the two (2) axes intersect at the COB, the column 
and row of the major and minor axis are known respectively.  
Furthermore, since the blob is a binary matrix – that is, the matrix is 
populated by ones (1) or zeros (0) – the sum of the column and row 
containing the COB will  yield the length of each axis respectively.  
However, this method assumes that all other pixels not belonging to 
the RSO are zero (0).  

 
Figure 12: Major and Minor 

Axes of Blob 

 

4.1.2.2.3. RSO Orientation Estimation 

Given a prioi knowledge of the RSO, a numerical approximation for the projected area as a 
function of the ratio of the major-to-minor axis can be derived.  For the case of a 3U Cubesat, 
Error! Reference source not found. illustrates the dataset from which the numerical 
approximations for the major and minor , given as Equation (16) and (17) respectively, are 
derived from.  It is important to note that the area ratio is given with respect to the area of the 
smallest face of the RSO, 𝐴0.  For a 3U Cubesat, this corresponds to 100 cm2.   
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Figure 13. Projected Area as a Function of Axis Length Ratio 

 

 𝐴
𝐴0

(𝑟)𝑚𝑎𝑥 = �
3.091 𝑖𝑓 0.25 ≤ 𝑟 < 0.305

71716𝑟5 − 144219𝑟4 − 114743𝑟3 − 45172𝑟2 + 8812.5𝑟 − 679.42 𝑖𝑓 0.305 ≤ 𝑟 < 0.495
2.4853𝑟4 − 23.737𝑟3 + 50.09𝑟2 − 42.372𝑟 + 14.977 𝑖𝑓 𝑟 ≥ 0.495

  (16) 

𝐴
𝐴0

(𝑟)𝑚𝑖𝑛 = �
2.963 𝑖𝑓 0.25 ≤ 𝑟 < 0.305

5.51𝑟4 − 20.70𝑟3 + 30.73𝑟2 − 22.02𝑟 + 7.36 𝑖𝑓 𝑟 ≥ 0.305  (17) 

 

4.1.2.2.4. Range and Uncertainty Determination 

Given the focal length of the lens, 𝑓, the area of each pixel, 𝑝2, the number of pixels in the blob, 
N, and the numerical approximations for the projected, the average range, 𝜌, is given as   

 
𝜌 =

1
2
�
𝐴0 ��

𝐴
𝐴0
�
𝑚𝑖𝑛

+ � 𝐴𝐴0
�
𝑚𝑎𝑥

� 

𝑁𝑝2
  

(18) 

The uncertainty of the IPAs was shown to be primarily dependent upon the uncertainty in the 
area ratio function computed from the body axis ratio.  The resulting estimated mean relative 
uncertainty is approximately 16% [17]. 
 
 

  

Maximum Area 

Minimum Area 

Area Uncertainty 
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 IPA Testing 4.1.3.
4.1.3.1. Image Generation for Image Processing Algorithm Testing 

Aiming towards the implementation of closed loop simulation of the AutoNav subsystem, a 
simulink-based image generator was required to mimic the input from the microbolometer into 
the IPAs.  The image generator implementation was performed in two steps.  The first one 
consisted of the implementation of a MATLAB code that can reliably generate a black and white 
image that accounts for location of the RSO within the FOV, inertial orientation of the RSO in 
space, and the distance between chief and deputy.  The second part consisted of the actual 
integration of the image generator into Simulink so that the images being generated represent 
what the microbolometer would actually see in space, without consideration of Earth in the 
background or other possible satellites that the microbolometer might observe. 
 
The MATLAB code that generates image matrices does this by representing the dimensions of 
the RSO and plotting them in a three-dimensional figure.  Each of the individual faces is rotated 
with the Euler angles provided with a 3-2-1 rotation.  The corresponding coordinates are then 
translated by a vectorial distance given as an input, which represents the location of the RSO 
within the FOV.  To account for the range, all physical dimensions are multiplied by a scaling 
factor.  The scaling factor is calculated as s = 20

d1
, where d1 = 2ρ tan (α

2
), corresponds to the total 

amount of units being plotted for the aspect ratio of the image to be precise, and α = 9.1° is 
the angular aperture of the microbolometer’s FOV.  It is important to notice that the angle α 
corresponds to the aperture in the Y-axis in the ICF.    
 
Next, the sides of the RSO are filled in.  After rotating the view to an orientation that the imager 
will see, the aspect ratio is adjusted and the image is inversed  (black to white and white to black) 
to create a representative image.  It is possible to save a version of the image for reference, as 
well as to adding the Earth as a background by simple inclusion of one more input. 
 
The second part of the open loop implementation of the IPA’s is the integration into Simulink.  
The MATLAB code described above requires a call to the function coder.extrinsic() for Simulink 
to compile C-code related for plotting and some image processing functions.  The various inputs 
to the Simulink image generator are: relative location of the RSO to Prox-1, orientation with 
respect to Prox-1, and the Euclidian range from Prox-1. The resulting Simulink block diagram is 
illustrated in Figure 14. 
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Figure 14. Simulink block diagram for image generator implementation. 

4.1.3.2. Location Calculation 

The location of the RSO within the FOV of the microbolometer is performed by expressing the 
relative position vector from Prox-1 to the RSO in the body fixed frame and projecting it upon 
the y-axis of the body fixed frame.  Subtracting this projection from the relative position vector 
allows for the calculation of a vector projected upon the 𝑋�𝐵 − 𝑍̂𝐵 plane.   

4.1.3.3. Orientation Calculation 

It is important to accurately describe the orientation of the RSO with respect to Prox-1 the 
uncertainty of the IPAs are dependent up on the area ratio calculation.  The three Euler angles of 
interest are computed from the inertial quaternion of the RSO.  The Euler angles used to perform 
the Eulerian 3-2-1 rotation are defined to be (in MATLAB notation) 

 �
𝜙
𝜃
𝜓
� = �

𝑎𝑡𝑎𝑛2( 2 ∙  (𝑞0𝑞1 + 𝑞2𝑞3) , 1 − 2 ∙ (𝑞12 + 𝑞22) )
asin ( 2 ∙ (𝑞0𝑞2 − 𝑞3𝑞1) )

𝑎𝑡𝑎𝑛2( 2 ∙  (𝑞0𝑞3 + 𝑞2𝑞1) , 1 − 2 ∙ (𝑞32 + 𝑞22) )
� (19) 

The resulting rotation matrix to produce a 3-2-1 rotation is  

 𝑅3−2−1 = 𝑅(𝜙)𝑅(𝜃)𝑅(𝜓) (20) 

 

4.1.3.4. Covariance Matrix Determination 

The covariance of the IPAs were analyzed and aided in determination of the measurement noise 
of the relative O/D filter.  The inputs to the image generator were used as the truth data set.  The 
covariance analysis contained a permutation of the three (3) Euler angles for the orientation of 
the RSO, where 𝛼𝑖 ∈ {0°,45°,90°}, as well as the location of the RSO in the FOV of the 
simulated imager.  From this analysis, the standard deviation of the range error over all the 
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orientations was obtained and   is listed in Table 4 and illustrated graphically in Figure 15.  
Furthermore, Figure 16 illustrates the ratio of the error-to-range as a function of the range.  

Table 4.  Standard deviation of the error in range measurement as a function of rang 

Range (m) 1-σ Range Error (m) 
40 4.123 
60 7.526 
80 10.462 
100 12.783 
120 13.553 
140 16.027 

 

 
Figure 15.  Standard deviation of the error in range measurement as a function of range. 

 
Figure 16.  Ratio of 𝑹𝒂𝒏𝒈𝒆 𝑬𝒓𝒓𝒐𝒓

𝑹𝒂𝒏𝒈𝒆
 as a function of range. 
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4.1.3.5. Image Processing Algorithm Boundary Analysis 

In order to study the boundaries of the IPA’s and their capability for detecting the RSO location 
under different orientations, three specific orientations were selected as illustrated by Figure 17. 

   
(A) (B) (C) 

Figure 17. RSO orientations studied for image processing algorithm reliability. (A) Euler angles 
[ϕ,θ,ψ]=[0°,0°,0°]. (B) Euler angles [ϕ,θ,ψ]=[0°,0°,90°]. (C) Euler angles [ϕ,θ,ψ]=[45°,45°,45°]. 

These orientations expose the IPAs to both the minimum and maximum visible areas of the RSO.   
A simulation was created where every orientation was reproduced 24,400 different times for 
ranges between 30 and 150 m, in steps of 2 m, for 20 locations upon each of the axis.  The intent 
was to cover the entire FOV of the simulated imager.  From the output results, three metrics were 
used in determining whether a measurement was successful: (1) successfully found the the RSO 
(minimum number of pixels found), (2) correctly determined the aspect ratio to within a small 
error of the truth, and (3) the error in the range is less than the fitted error given as 0.1142𝑥 +
0.4695.  
 
Figure 18 illustrates the number of sample cases for which the IPAs failed to provide an accurate 
estimate of the location of the RSO as a function of true range in meters.  As expected, the 
orientation {0°, 0°, 0°} provided the highest reliability with 85% success.  This is the case for 
which the IPA’s is most finely tuned, since the CubeSat is represented by its exact aspect ratio.   
On the other hand, the cases for {45°,45°,45°} and {0°, 0°,90°} provided a low success rate.  
The success rate for these was 32.75% and 25.26% respectively.  The failure distribution 
{45°,45°,45°} test case is a bimodal distribution a minima occurring between the ranges of 
100m and 110m. 
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Figure 18.Number of cases for which the IPA's failed to approximate range to CubeSat as a function of range, 

for different orientations. 
 

4.2. Artificial Potential Functions 

 Overview  4.2.1.

Compared to other guidance control algorithms that utilize a Linear Quadratic Regulator (LQR) 
controller, for example, artificial potential functions (APFs) have a much lower computation cost 
as they can consist of only arithmetic operators – i.e. addition, subtraction, multiplication, 
division.  Additionally, the underlying formulation of the APFs includes the use of attractors and 
repellers such that a global minima is created.  A basic overview of attractors and repellers are 
discussed for informational purposes.   

 Attractors and Repellers   4.2.2.

Let 𝑝 𝜖 ℝ be a fixed point such that 

 𝑓(𝑝) = 𝑝 (21) 
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If |𝑓′(𝑝)| < 1, then p is classified as an attractor or an attractive fixed point.  If 𝑓′(𝑝) = 0, p is 
said to be super-attractive or super-stable. 
Furthermore, for points that are sufficiently 
close to an attractive fixed point converge 
geometrically [19].  In other words, let p be a 
super-stable fixed point.  Then, 𝑓(𝑝 + 𝛿) , 
where 𝛿 < 𝜀  as illustrated by Figure 19, can 
be shown to converge back to p since |𝑓′(𝑝 +
𝛿)| < 1. 
 
Conversely, if |𝑓′(𝑝)| > 1, then p is classified 
as a repeller or a repelling fixed point. Like an 
attractive fixed point, points sufficiently close 
can be shown to diverge from the point p.   

 
Figure 19. The attractive basin 

around the fixed point p. 
 

Expanding upon this idea, the attractive potential function must have either an attractive, or 
super-attractive fixed point at the goal.  By choosing the APFs such that they are valid 
Lyanpunov candidate functions (LCF) will ensure that the goal is a fixed point and at the global 
minimum. 

 APF Guidance Formulation 4.2.3.

4.2.3.1. Overview 

In order to use the APFs as a feasible guidance formulation, it must exhibit a global minimum at 
the goal (attractor) and regions of high potential around obstacles and/or keep out zones 
(repellers).  The total potential function is defined as the superposition of the sum of the 
attractors and the sum of the repellers,  

  𝛟 =  𝛟𝐴 +  𝛟𝑅 (22) 

To assure a solution is achieved, the APFs are treated as a Lyapunov candidate function (LCF) 
[20].  In order for a candidate function to valid, it must meet the following criteria:  

 

1.   𝛟(𝒓, 𝑡) > 0 ∀ 𝒓 ≠ 0
       𝛟(𝒓, 𝑡) = 0 𝑓𝑜𝑟 𝒓 = 0

2.     𝛟̇(𝒓, 𝒓̇, 𝑡) < 0 ∀ 𝒓, 𝒓̇ → 0
 (23) 

4.2.3.2. Attractive Potential 

The attractive potential, 𝛟𝐴is defined to be  

 𝛟𝐴 =
𝜅𝐴
2

(𝒓 − 𝒓∗)𝑻𝑸𝑨(𝒓 − 𝒓∗) (24) 

where (𝒓 − 𝒓∗) is the relative position of the chaser spacecraft to the goal in the RSW frame, or 
desired position, 𝜅𝐴 𝜖 ℝ1 is a small positive gain, and 𝑸𝑨 𝜖 ℝ3𝑥3 is a positive definite shaping 
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matrix for the attractive potential.  Figure 20 illustrates effects of the shaping matrix 𝑸𝑨 and gain 
𝜅𝑎 on the attractive potential.  For this illustration, Figure 20(a) illustrates the baseline APF with 
the shaping matrix set to the Identity matrix.  Significant geometric changes occur when the 
radial component of the shaping matrix is altered.  As illustrated by Figure 20(c), when the radial 
component of the shaping matrix is an order of magnitude larger than the in-track component, 
the attractive potential field becomes more bowl-shaped.  Changing the in-track component of 
the shaping matrix is equivalent to scaling the gain by the same amount while holding the 
shaping matrix equal to the identity matrix, 𝑸𝑨 = 𝑰.  Cross-track changes affect neither the 
geometry nor the scaling of the attractive potential field.    

4.2.3.3. Repulsive Potential  

The repulsive potential, 𝛟𝑅, is defined to be  

 𝛟𝑅 =
𝜅𝑅
2

(𝒓 − 𝒓∗)𝑻𝑸𝑨(𝒓 − 𝒓∗)
(𝒓 − 𝒓𝚫)𝑇𝑷𝑨(𝒓 − 𝒓𝚫) − 1

 (25) 

where (𝒓 − 𝒓𝚫) is the relative position of the chaser spacecraft to the RSO, 𝜅𝑅 𝜖 ℝ1 is a small 
positive gain, and 𝑷𝑨 𝜖 ℝ3𝑥3  is a positive definite shaping matrix for the repulsive potential.  
This shaping can be used to virtually encapsulate the RSO in a ‘Keep Out Region’.  The ‘Keep 
Out Region’ is enforced mathematical a sudden increase in the repulsive potential as the chaser 
spacecraft encroaches upon the virtual ellipsoidal projection that surrounds the RSO.  

4.2.3.4.  Control Law Formulation 

In order to ensure 𝛟 is a valid LCF, 𝛟̇ must be negative definite.  Taking the time derivative of 
the total potential yields  

 𝛟̇ =  𝛟̇𝐴 + 𝛟̇𝑅 =  ∇𝛟  (26) 

Examining the attractive potential first, 

 
𝜕𝛟𝐴

𝜕𝒓
=

𝜕
𝜕𝒓

�
𝜅𝐴
2
�𝒓𝑻𝑸𝑨𝒓 −  𝒓𝑻 𝑸𝑨𝒓∗ − 𝒓∗𝑻𝑸𝑨𝒓 + 𝒓∗𝑻𝑸𝑨𝒓∗�� (27) 

Taking the partial derivative and collecting like terms,  

 
𝜕𝛟𝐴

𝜕𝒓
=
𝜅𝐴
2
�𝒓𝑻𝑸𝑨 + 𝑸𝑨𝒓 − 𝑸𝑨𝒓∗ − 𝒓∗𝑻𝑸𝑨� (28) 

Since 𝑸𝑨 =  𝑸𝑨
𝑻, it follows that 𝒓𝑻𝑸𝑨 =  𝑸𝑨𝒓.  Therefore, Equation (28) becomes  

 ∇𝛟𝐴 = 𝜅𝐴𝑸𝑨𝒓𝐶𝑇 (29) 

where 𝒓𝐶𝑇 =  (𝒓 − 𝒓∗) is the relative position of the chaser spacecraft to the desired (or targeted) 
position.   
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𝑸𝑨 = 𝑰 
(a) 

𝜅𝐴 = 3𝜅𝐴 
 

(b) 

Radial Component = 10  
(c) 

In-track Component = 10 
(d) 

Radial Component = 10 
In-track Component = 0.1 

(d) 
Figure 20. Effects of the shaping matrix 𝑸𝑨 on the attractive potential 
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Next, following a similar procedure, the gradient of the repulsive potential is  

 ∇𝛟𝑅 = 𝜅𝑅
�𝒓𝐶𝐷𝑇 𝑷𝑨𝒓𝐶𝐷 − 1�𝑸𝑨 − 𝒓𝐶𝑇𝑻 𝑸𝑨𝒓𝐶𝑇�𝑷𝑨𝒓𝐶𝐷�  

�𝒓𝐶𝐷𝑇 𝑷𝑨𝒓𝐶𝐷 − 1�2
 (30) 

where 𝒓𝐶𝐷 =  (𝒓 − 𝒓𝚫) is the relative position of the chaser spacecraft to the RSO (or deputy 
spacecraft).  
Therefore, the gradient of the total potential becomes 

  ∇𝛟 =  𝜅𝐴𝑸𝑨𝒓𝐶𝑇 + 𝜅𝑅
�𝒓𝐶𝐷
𝑇 𝑷𝑨𝒓𝐶𝐷−1�𝑸𝑨−𝒓𝐶𝑇

𝑻 𝑸𝑨𝒓𝐶𝑇�𝑷𝑨𝒓𝐶𝐷�  

�𝒓𝐶𝐷
𝑇 𝑷𝑨𝒓𝐶𝐷−1�

2   (31) 

In order to meet the negative definite requirement, the negative gradient of the total potential is 
taken 

  −∇𝛟 = 𝑽𝐷 =  −𝜅𝐴𝑸𝑨𝒓𝐶𝑇 −  𝜅𝑅
�𝒓𝐶𝐷
𝑇 𝑷𝑨𝒓𝐶𝐷−1�𝑸𝑨−𝒓𝐶𝑇

𝑻 𝑸𝑨𝒓𝐶𝑇�𝑷𝑨𝒓𝐶𝐷�  

�𝒓𝐶𝐷
𝑇 𝑷𝑨𝒓𝐶𝐷−1�

2   (32) 

where 𝑽𝐷 𝜖 ℝ3 is the desired velocity at any point along the total potential field in the RSW 
frame [20, 21].  
 
The control algorithm used to implement the APF guidance formulation drives the error velocity 
to zero (0), as illustrated in Figure 21.  For a rest-to-rest maneuver, the vector 𝑽𝑡𝑎𝑟𝑔𝑒𝑡 is zero (0) 
– assuming the desired position is not moving – and the error velocity becomes the velocity of 
the chaser in the RSW frame.   

 
Figure 21. APF Guidance controller 
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 APF Guidance Strategy and Preliminary Results 4.2.4.

4.2.4.1. Rest-to-Rest Maneuver 

During formation flying, 
Prox-1 will utilize a 
waypoint-based 
maneuver strategy to 
gradually approach the 
RSO, as illustrated in 
Figure 22.   The intent of 
this strategy is to avoid 
an possible collision            

 
Figure 22: Waypoint-based maneuver diagram.  

 

with  the RSO.  The APF implementation will require an updated relative orbital determination 
(O/D) solution throughout the approach.  While, given a waypoint-based maneuver strategy is 
not necessary, it mitigates risk in two (2) distinct ways: (1) reduces the time of flight (TOF) of 
any leg of the approach/retreat; and (2) decreases the chances of overshooting the desired goal 
position and colliding with the RSO.   
 
Figure 23 illustrates the results of a rest-to-rest maneuver from a 120m trailing orbit to 50m 
(stable) trailing orbit with no intermediate waypoints.  Performing the maneuver consumes 
approximately 6.6g of fuel – just under 2% of the total on-board propellant capacity.  
 

 
 

Figure 23. Results of a rest-to-rest maneuver a 120m to 50m trailing orbit with no intermediate waypoints.  
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4.2.4.2. Natural Motion Circumnavigation (NMC) 

The relative orbital dynamics, as 
demonstrated by the CW equations illustrate 
in Figure 24, indicate that, given a correct 
initial state, a natural motion relative orbit 
can be achieved around a target.  In the ideal 
scenario a NMC can be entered with a single 
burn should the initial relative position of the 
chaser lie on the desired orbit.  This NMC 
could then be carried out indefinitely, sans 
external disturbances such as solar ration 
pressure (SRP), drag, et cetera, without any 
thruster control, only requiring slew 
maneuvers to track the target spacecraft.  In 
this case the required ∆V for NMC insertion 
would be minimal, as listed in Table 5.  

 
 
Figure 24. Natrual Motion Circumnavigation (NMC) 

about the RSO. 
 

Table 5. NMC Nominal𝜟𝑽 requirements 

Semi-Major Axis (m) 𝛥𝑉 (m/s) 

100 0.0553 

236 0.0692 

150 0.0830 

175 0.0986 

200 0.1107 

 
An equal in magnitude, opposite in direction burn would be required when the chaser returns to 
its original position exactly one orbital period after insertion to return to the original stationary 
trailing orbit. 
 
However, should an incorrect thrust maneuver be performed or natural orbital perturbations 
cause a significant change in spacecraft relative velocity, the chaser will drift out of its desired 
NMC.  Error analysis shows that an incorrect applied velocity vector of 0.01 m/s has the 
potential to cause the Prox-1 spacecraft to enter the keep out region surrounding the RSO within 
one orbit if left uncontrolled.  It is therefore necessary to develop a guidance strategy to inject 
Prox-1 into a correct NMC and should an incorrect injection or unexpected change in velocity 
occur, re-insert Prox-1 into a stable relative orbit. 
 
The guidance strategy will be based upon a dynamic application of the rest-to-rest APF control 
law.  During NMC, the guidance algorithms will track two error terms, each of which are 
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capable of triggering a burn should they exceed their allowable error tolerances.  First, the 
guidance algorithm tracks the current relative position of Prox-1 versus the current relative 
position vector as determined by the propagation of the original desired NMC.  If this relative 
error becomes too large, a maneuver flag will become tripped within the guidance system 
initiating the corrective guidance algorithm. 
 
The guidance algorithm will also track the relative velocity of Prox-1 versus the desired velocity 
as determined by the propagated reference NMC.  Should the relative velocity error become 
large enough where the guidance system deems an undesired state will result with time, a 
maneuver flag is also tripped. 
 
When it is determined that a corrective maneuver is required, a two-fold approach will be used to 
correct the orbit.  First, APF's will be utilized to drive the chaser towards a reference NMC, and 
second, the CW equations will be used to correct the relative velocity and re-insert Prox-1 along 
the reference NMC. 
 
Since the APF control law is derived using a chaser satellite that is driving towards a specified 
target, a specific position on the NMC must be chosen that is ahead of the Prox-1 spacecraft 
along some reference NMC.  This dynamically updated desired will be used to drive Prox-1 
towards it should the guidance algorithm deem it the error is too large and drive Prox-1 back to 
the reference NMC.   After the APFs drive Prox-1 into a position on the reference NMC, the CW 
equations are used to calculate the necessary velocity to maintain circumnavigation and the 
necessary thrust applied. Once Prox-1 is determined to be within the acceptable error parameters, 
no thrust maneuvers occur.    
 
A baseline test case was performed whose results are shown in Figure 25. The test case was 
initialized with an incorrect initial position and velocity and was able to successfully demonstrate 
the validity of the APF NMC guidance.  The ∆V requirements of this formulation, in a worst 
case scenario have also shown to be acceptable with a use of approximately 1.1 m/s per NMC. 
Although in the early stages of development, this guidance strategy has shown great promise and 
further refinement should yield significantly better results and control authority. 
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Figure 25. Results of baseline algorithm testing. 
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5. Navigation Formulations 

5.1. Overview 

The ‘Navigation’ portion of the GN&C refers to the determination of the vehicle’s state, 
classically including position, velocity, and attitude.  Classical methods of determining position 
and velocity include integrating the equations of motion based on sensor inputs from an Inertial 
Measurement Unit (IMU).  More modern methods include the use of various measurement 
methods, such as GPS, magnetometers, rate gyros, accelerometers, et cetera, and blend them 
together via sensor fusion.  This method typically involves the use a filter – typically a variant of 
the Kalman Filter (such as the Kalman Filter, Extended Kalman Filter, or the Unscented Kalman 
Filter) – to produce an optimal state estimate.  

5.2. Filter Derivation 

 Overview 5.2.1.

The Kalman Filter (KF) is an optimal sequential state estimator which is derived from the 
models of stochastic dynamical systems in addition to stochastic models of sensor 
measurements.  The use of the measurement model is an integral part of the filtering process as it 
relates measurements from several different sensors to the state variables in the filter – thus 
allowing a spectrum of various measurement methods to be used.  To account for nonlinearities 
in the both the dynamics and measurement models, an Extended Kalman Filter (EKF) can be 
utilized.  The EKF differs in several ways from the KF, but the basic algorithm between the two 
versions is similar:  

1) State Prediction  
2) Compute Prediction Error 
3) Compute Optimal Gain 
4) Update State Estimate 
5) Compute Error for Updated State Estimate 

The next two (2) sections will first derive the Kalman filter and then introduce modifications of 
the Kalman filter to account for the nonlinearities of a dynamics and measurement model.  

 Kalman Filter Derivation  5.2.2.

5.2.2.1. State Prediction 

Let 𝑥 𝜖 ℝ𝑛 be a Guass-Markov process such that an initial condition,  𝑥0, is known and 

 𝑥𝑘 = 𝝓𝑘−1𝑥𝑘−1 + 𝑤𝑘−1 (33) 

where 𝝓 𝜖 ℝ𝑛 x 𝑛  is the state transition matrix (STM) and 𝑤𝑘−1 𝜖 ℝ𝑛  is an independent and 
identically distributed (iid) random variable, called the process noise.  The process noise 
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accounts for unmodeled disturbances acting on the system and is assumed to be distributed 
normally with zero (0) mean and strength 𝑸.  Assuming the estimate 𝑥�𝑘−1 exists for time k-1, 
then the prediction of the state at time k is  

 𝑥�𝑘(−) = 𝝓𝑘−1𝑥�𝑘−1 (34) 

 

5.2.2.2. Prediction Error Covariance 

The error covariance matrix 𝑷𝑘(−) is given as  

 𝑷𝑘(−) = 𝐸 ��𝑥𝑘 − 𝑥�𝑘(−)�
𝑇�𝑥𝑘 − 𝑥�𝑘(−)�� (35) 

 
Defining  

 

𝑒𝑘(−) ≡ 𝑥�𝑘(−) − 𝑥𝑘 
                                 =  𝝓𝑘−1𝑥�𝑘−1 − 𝑥𝑘 

                                                               =  𝝓𝑘−1𝑥�𝑘−1 − 𝝓𝑘−1𝑥𝑘−1 − 𝑤𝑘−1 
                                                         =  𝝓𝑘−1(𝑥�𝑘−1 − 𝑥𝑘−1) −𝑤𝑘−1 

                                       =  𝝓𝑘−1𝑒𝑘−1 − 𝑤𝑘−1 

(36) 

Therefore,  

 𝐸�𝑒𝑘(−)𝑒𝑘(−)
𝑇 � = 𝝓𝑘−1𝐸{𝑒𝑘−1𝑒𝑘−1𝑇  }𝝓𝑘−1

𝑇 +  𝑸𝑘−1 (37) 

where  𝑸𝑘−1 = 𝐸{𝑤𝑘−1𝑤𝑘−1𝑇 } 𝜖 ℝ𝑛 x 𝑛   be a positive semi-definite symmetric matrix and the 
prediction covariance is  

 𝑷𝑘(−) =  𝝓𝑘−1𝑷𝑘−1𝝓𝑘−1
𝑇 +  𝑸𝑘−1 (38) 

 

5.2.2.3. Kalman Gain, State Estimate Update 

Consider the following cost function at step k,  

𝐽�𝑥𝑘 , 𝑥�𝑘(−)� =
1
2
�𝒛𝑘 − 𝑯𝑘𝑥𝑘�

𝑇𝑹𝑘−1�𝒛𝑘 − 𝑯𝑘𝑥𝑘� +
1
2
�𝑥𝑘 − 𝑥�𝑘(−)�

𝑇 𝑷𝑘(−)
−1 �𝑥𝑘 − 𝑥�𝑘(−)� (39) 

where 𝒛𝑘 𝜖 ℝ𝑚  is the measurement vector, 𝑯𝑘 𝜖 ℝ𝑚 x 𝑛  is the linear measurement model, and 
𝑹𝑘 = 𝐸{𝜂𝑘𝜂𝑘𝑇} 𝜖 ℝ𝑚 x 𝑚  is the measurement noise.  It can be shown that the updated state 
estimate, 𝑥�𝑘, is  

 𝑥�𝑘 = 𝑥�𝑘(−) + 𝑲𝑘(𝒛𝑘 − 𝑯𝑘𝑥�𝑘(−)) (40) 

where 𝑲𝑘 𝜖 ℝ𝑛 x 𝑚 is the Kalman Gain and is given as 



 Prox-1 Guidance, Navigation & Control  
Formulation and Algorithms 

 
Date: 3 May 2013 Page 51 of 81 
 

 𝑲𝑘 = 𝑷𝑘(−)𝑯𝑘
𝑇�𝑯𝑘𝑷𝑘(−)𝑯𝑘

𝑇 − 𝑹𝑘�
−1

 (41) 

minimizes the cost function in Equation (39) - but is too tedious to do here as it is crashing 
Word. 
 

5.2.2.4. State Prediction Error Update 

Beginning with the State Update Equation, Equation (40), defining 𝑒𝑘 = 𝑥�𝑘 − 𝑥𝑘 ,  

 𝑒𝑘 = 𝑥�𝑘(−) − 𝑥𝑘 + 𝑲𝑘 �𝒛𝑘 − 𝑯𝑘𝑥𝑘 − 𝑯𝑘�𝑥�𝑘(−) − 𝑥𝑘�� (42) 

Since the measurement equation is given as 𝑧𝑘 =  𝑯𝑘𝑥𝑘 +  𝜂𝑘 

 
𝑒𝑘 = 𝑒𝑘(−) + 𝑲𝑘�𝜂𝑘 − 𝑯𝑘𝑒𝑘(−)� 
     = �𝑰 −  𝑲𝑘𝑯𝑘�𝑒𝑘(−) + 𝑲𝑘𝜂𝑘 

(43) 

Then,  

 𝐸{𝑒𝑘𝑒𝑘𝑇} = �𝑰 −  𝑲𝑘𝑯𝑘� 𝐸�𝑒𝑘(−)𝑒𝑘(−)
𝑇 ��𝑰 −  𝑲𝑘𝑯𝑘�

𝑇 + 𝑲𝑘𝑹𝑘𝑲𝑘
𝑇 (44) 

and  

 𝑷𝑘 = �𝑰 −  𝑲𝑘𝑯𝑘� 𝑷𝑘(−)�𝑰 −  𝑲𝑘𝑯𝑘�
𝑇 + 𝑲𝑘𝑹𝑘𝑲𝑘

𝑇 (45) 

It is important to note that this form of the error covariance matrix is called the Joseph Form. 
Compared to other equivalent forms of the error covariance matrix, the Joseph Form provides 
improved numerical stability and precision and guarantees the matrix is symmetric and positive 
definite.  

 Extended Kalman Filter Extension  5.2.3.

5.2.3.1. State Prediction  

For a Kalman Filter, the (linearly) predicted state is simply the previous state transformed to the 
new state via a state transition matrix. For the non-linear case, the state transition matrix can 
simply be replaced by the non-linear state equation with no process noise. The resulting state 
prediction is  
  𝑥�𝑘− = 𝑓(𝑥𝑘−1) (46) 

 

5.2.3.2. Prediction Error Covariance 

In order to capture the non-linear dynamics, 𝑓(𝑥𝑘−1, … ) can be expanding in a Taylor series 
about the point 𝑥�𝑘−1 yielding  
  𝑓(𝑥𝑘−1, … ) = 𝑓(𝑥𝑘−1) + 𝑱𝑥│𝑥�𝑘−1(𝑥𝑘−1 − 𝑥�𝑘−1) (47) 
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where 𝐽𝑥�𝑘−1  𝜖 ℝ𝑛 x 𝑛 is the Jacobian of 𝑓(∙) evaluated at the point 𝑥�𝑘−1. Additionally, the error 
covariance matrix 𝑃𝑘− can be defined in an analogous way to the KF 
 𝑃𝑘− = 𝐸[(𝑥𝑘 − 𝑥�𝑘)(𝑥𝑘 − 𝑥�𝑘)𝑇] (48) 

The error, defined as,  
 𝑒𝑘− ≡ 𝑥�𝑘− − 𝑥𝑘  = 𝑓(𝑥�𝑘−1) + 𝜔𝑘−1 − 𝑓(𝑥𝑘−1) (49) 

becomes 
 𝑒𝑘− =  𝑓(𝑥�𝑘−1 − 𝑥𝑘−1 ) + 𝜔𝑘−1 (50) 

which is approximately 
 𝑒𝑘− ≈ 𝐽𝑥�𝑘−1𝑒𝑘−1 + 𝜔𝑘−1 (51) 

The error covariance 𝑃𝑘− becomes 
 𝐸�𝑒𝑘−  𝑒𝑘−

𝑇 � = 𝑱𝑥│𝑥�𝑘−1𝐸[𝑒𝑘−1𝑒𝑘−1𝑇 ] 𝑱𝑥𝑇│𝑥�𝑘−1  + 𝐸[𝜔𝑘−1 𝜔𝑘−1
𝑇 ] (52) 

It follows that,  
 𝑃𝑘− = 𝑱𝑥│𝑥�𝑘−1𝑃𝑘−1𝑱𝑥

𝑇│𝑥�𝑘−1 + 𝑸𝑘−1 (53) 

 

5.2.3.3. State Update Equation 

Let 𝒉(𝑥) 𝜖 ℝ𝑚 be the observation nonlinear vector function, then the measurement equation is 
given as 𝒛𝑘 =  𝒉(𝑥𝑘) +  𝜂𝑘.  Since the state update equation for the EKF is the same as the KF, 
the state update equation becomes 

 𝑥�𝑘 = 𝑥�𝑘(−) + 𝑲𝑘(𝑧𝑘 − 𝒉(𝑥𝑘)) (54) 

 

5.2.3.4. Updated Error Covariance 

Defining the error to be 𝑒𝑘 = 𝑥�𝑘 −  𝑥𝑘, and following a similar treatment of the error to find 
error covariance matrix for the KF yields,  

 𝑷𝑘 = �𝑰 −  𝑲𝑘 𝑱ℎ│𝑥�𝑘(−)�  𝑷𝑘(−) �𝑰 −  𝑲𝑘 𝑱ℎ│𝑥�𝑘(−)�
𝑇

+ 𝑲𝑘𝑹𝑘𝑲𝑘
𝑇 (55) 

 

5.2.3.5. Kalman Gain 

The Kalman Gain is found by minimizing the 𝑇𝑟(𝑷𝑘) with respect to 𝑲𝑘 
𝜕 �𝑇𝑟�𝑷𝑘��

𝜕𝑲𝑘
= −�𝑱ℎ│𝑥�𝑘(−)𝑷𝑘(−)�

𝑇
− 𝑷𝑘(−)𝑱ℎ│𝑥�𝑘(−) + 2𝑲𝑘 𝑱ℎ│𝑥�𝑘(−)𝑷𝑘(−) 𝑱ℎ𝑇│𝑥�𝑘(−)𝑲𝑘

𝑇 + 2𝑲𝑘𝑹𝑘 = 0 (56) 
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where 𝑱ℎ│𝑥�𝑘(−)  𝜖 ℝ𝑚 x 𝑛 is the Jacobian of 𝒉(⋅) about the point 𝑥�𝑘(−).  The resulting Kalman Gain is  

 𝑲𝑘 = 𝑷𝑘(−)  𝑱
ℎ
𝑇│𝑥�𝑘(−) � 𝑱

ℎ
│𝑥�𝑘(−)

𝑷𝑘(−) 𝑱
ℎ
𝑇│𝑥�𝑘(−)

− 𝑹𝑘�
−1

 (57) 

 
Substituting the Kalman Gain into Equation (55)(57) yields a simplified form of the error 
covariance matrix 

 𝑷𝑘 = �𝑰 −  𝑲𝑘 𝑱ℎ│𝑥�𝑘(−)�  𝑷𝑘(−) (58) 

 

5.3. Relative O/D Filter Implementation  

 Overview  5.3.1.

Accurate relative orbit determination is essential for the successful completion of any proximity 
operations maneuver, whether it is completed via ground-in-the-loop or autonomous control.  
The latter option is critical if communications coverage is not continuous.  As a result, an 
optimal sequential state estimator, such as a Kalman Filter, is desirable for autonomous 
proximity operations since it allows for real-time state estimation.  More importantly, since the 
measurements are processed as they occur, corrective maneuvers can be performed as necessary.  
This is particularly of importance due to the varying range of uncertainties associated with the 
IPAs.   

 Linearized EKF Formulation 5.3.2.

5.3.2.1. Initial State Estimate 

In order to converge on a solution, any Kalman filter variant must have an initial state estimate to 
seed the filter.  The algorithm to acquire the initial guess is detailed in Table 6.  Through testing, 
an initial error covariance of  𝑷𝑘−1 = 10 𝑰6x6 was found to work.  The rationale for choosing a 
large initial covariance is that if the filter is working properly, the error covariance will shrink 
and converge to a ‘steady-state’ value.  
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Table 6. Relative O/D Initial Guess Algorithm 

Relative O/D Initial Guess Algorithm   

8. Compute an average relative position vector based on 
ten (10) images.  
 
char ImageArray[639][479] = NULL; 
char *ImgPtr; 
ImgPtr = &ImageArray[0][0]; 
float InitialGuess[2]; 
for(char count = 0; count++; count < 10) 
{ 
 ImgPtr = AcquireImage();  
 InitialGuess += IPA_Routine(); 
} 
InitialGuess = InitialGuess/10.; 
  

9. Compute the components of the rotation matrix 
 

𝑹𝑑 = [𝑹� 𝑺� 𝑾�]𝑇  
 

where 
 

𝑹� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
||𝒓𝑐ℎ𝑎𝑠𝑒𝑟||

, 𝑾� ≔ 𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟

��𝒓𝑐ℎ𝑎𝑠𝑒𝑟
𝑥 𝑽𝑐ℎ𝑎𝑠𝑒𝑟��

, and 𝑺� ∶= 𝑾�𝑥𝑹�

��𝑾�𝑥𝑹���
 

 

10. Evaluate only the arguments of Equations (4)a, (5)a, 
(6)a, and (7)a: 

 
Equation (4)a: 

𝜂4 = ± 
1
2
�𝑇𝑟�𝑹� + 1 

Equation (5)a: 

𝜂1 = ± 
1
2�

1 + 𝑹1,1 −  𝑹2,2 −  𝑹3,3 
Equation (6)a: 

𝜂2 = ± 
1
2�

1 −  𝑹1,1 + 𝑹2,2 −  𝑹3,3 
Equation (7)a: 

𝜂3 = ± 
1
2�

1 −  𝑹1,1 −  𝑹2,2 + 𝑹3,3 
 

11. Determine the largest value between 𝜂1, 𝜂2, 𝜂3, 𝜂4  
 

if (𝜂1 > {𝜂2, 𝜂3, 𝜂4}) 
• Use Equations (5) 

 
else if (𝜂2 > {𝜂1, 𝜂3, 𝜂4}) 

• Use Equations (6) 
 

else if (𝜂3 > {𝜂2, 𝜂1, 𝜂4}) 
• Use Equations (7) 

 
else: 

• Use Equations (4) 

12. Compute 𝒒𝑑  using the appropriate set of equations 
determined from Step 5.  

13. Compute the rotation operator 𝑸(𝒒𝒆−1) =  𝑸��
−𝜺𝑒
𝜂𝑒 ��  
 

𝑸��
−𝜺𝑒
𝜂𝑒 ��  =  (𝜂𝑒2 − 𝜺𝑒𝑇𝜺𝑒 )𝑰  + 2(𝜺𝑒𝜺𝑒𝑇 + 𝜂𝑒𝜺𝑒𝑥) 

 
(Note: This equation differs from Equation (13) by a single sign 
difference as it takes into account that the rotation operator is being 
computed for an inverse quaternion as opposed to a quaternion.) 

14. Rotate InitialGuess into the RSW frame and set equal 
to 𝒙�𝑘−1 

𝒙�𝑘−1 =  𝑸(𝒒𝒆−1) �
𝑋𝐵
𝑌𝐵
𝑍𝐵
� 

15. Initial Error Covariance  
 

𝑷𝑘−1 = 10 𝑰6x6 

  



 Prox-1 Guidance, Navigation & Control  
Formulation and Algorithms 

 
Date: 3 May 2013 Page 55 of 81 
 

5.3.2.2. State Prediction and Prediction Error Covariance 

For the purposes of relative navigation, the state vector, 𝒙 𝜖 ℝ6 , is taken to be 
𝒙 = [𝑥𝑅𝑆𝑊,𝑦𝑅𝑆𝑊, 𝑧𝑅𝑆𝑊, 𝑥̇𝑅𝑆𝑊, 𝑦̇𝑅𝑆𝑊, 𝑧̇𝑅𝑆𝑊]𝑇 .  Furthermore, the use of the Clohessy-Wiltshire 
(CW) equations provides a unique solution to a set of second-order linear differential equations 
whose solution is given as the sum of the homogenous solution, 𝚽(𝑡), and a particular solution,  
𝝍(𝑡)  [22].  For the sake of generality, the solution to a linear, time-varying, second order 
differential equation takes the form of  

 𝒙(𝑡) = 𝑨(𝑡, 𝑡0)𝒙(𝑡0) + � 𝑩(𝑡, 𝑡0) 𝒖(𝜏) 𝑑𝜏
𝑡

𝑡0
  (59) 

where 𝑨 𝜖 ℝ𝑛 x 𝑛 is a time-varying, constant coefficient matrix,  𝑩 𝜖 ℝ𝑛 x 𝑚 is the time-varying, 
constant coefficient input matrix, and 𝒖(𝜏) 𝜖 ℝ𝑚 is the input vector.   
 
The Prox-1 spacecraft utilizes a mono-propellant hydrazine thruster that is controlled via an off-
the-shelf micro solenoid valve and produces approximately 1N of thrust [23].  As a result of 
valve actuator limitations of the thruster, thrusts of less than 1N cannot be realized.  Therefore, 
the CW equations with a constant thruster input can be written as 

 𝒙(𝑡) = 𝚽(𝑡𝑘, 𝑡0)𝒙(𝑡0) + 𝝍(𝑡𝑘, 𝑡0)𝒖 u(𝑡 − 𝑡0)   (60) 

where u(𝑡 − 𝑡0) is the Heaviside step function, 𝚽𝜖 ℝ6𝑥6  is the state transition matrix (STM) 
given as  

𝚽(𝑡𝑘, 𝑡0)  =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 4 − 3 cos(𝑛𝑡) 0 0

sin(𝑛𝑡)
𝑛

2 − 2 cos(𝑛𝑡)
𝑛

0

6(sin(𝑛𝑡) − 𝑛𝑡) 1 0
2 cos(𝑛𝑡) − 2

𝑛
4 sin(𝑛𝑡) − 3𝑛𝑡

𝑛
0

0 0 cos(𝑛𝑡) 0 0
sin(𝑛𝑡)
𝑛

3𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡) 2 sin(𝑛𝑡) 0
6𝑛(cos(𝑛𝑡) − 1) 0 0 −2 sin(𝑛𝑡) −3 + 4 cos(𝑛𝑡) 0

0 0 −𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(61) 

where n is the mean motion of the RSO and is defined to be 𝑛 =  �𝜇⊕
𝑎3

 and 𝛙𝜖 ℝ6𝑥3  is the 

particular solution matrix and is given as  
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 𝚿(𝑡𝑘, 𝑡0) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑛2

−
cos(𝑛𝑡)
𝑛2

2𝑡
𝑛
−

2 sin(𝑛 ∗ 𝑡)
𝑛2

0

−
2𝑡
𝑛

+
2 sin(𝑛𝑡)

𝑛2
4
𝑛2

−
3𝑡2

2
−

4 cos(𝑛𝑡)
𝑛2

0

0 0
1
𝑛2

−
cos(𝑛𝑡)
𝑛2

sin(𝑛𝑡)
𝑛

2
𝑛
−

2 cos(𝑛𝑡)
𝑛

0

−
2
𝑛

+
2 cos(𝑛𝑡)

𝑛
−3𝑡 +

4 sin(𝑛𝑡)
𝑛

0

0 0
sin(𝑛𝑡)
𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (62) 

 
Since the Relative O/D process will not coincide with a thrust maneuver, for the particular 
solution can be ignored.  However, it is important to note that the particular solution will be used   
for estimating the position of the RSO after a thrust maneuver is performed.  Resultantly, the 
state prediction equation for the KF is  

 𝒙�𝑘(−) = 𝚽(𝑡𝑘, 𝑡0)𝒙𝑘−1 (63) 

The prediction error covariance is given as 

 𝑷𝑘(−) =  𝚽(𝑡𝑘, 𝑡0)𝑷𝑘−1𝚽(𝑡𝑘 − 𝑡0)𝑇  +  𝑸𝑘−1 (64) 

where 𝑸𝑘−1 = 𝐸�𝑤𝑘−1𝑤𝑘−1𝑇 � 𝜖 ℝ𝑛 x 𝑛 is the Process noise covariance matrix.  The Process noise is 
defined as  

 𝑸k =  � 𝚽(𝑡𝑘, 𝑡0)𝑮𝑸𝑮𝑇𝚽(𝑡𝑘, 𝑡0)𝑇𝑑𝜏
𝑡𝑘

𝑡0
 (65) 

Discretizing Equation (65) and assuming 𝑡𝑘 − 𝑡𝑘−1 ≈ 0 , the STM becomes 𝚽(𝑡𝑘, 𝑡𝑘−1) ≈ 𝑰 .  
The Process noise then becomes  

 𝑸k =  𝑮𝑸𝑮𝑇Δ𝑡 (66) 

Defining 𝑮 to be 

 𝑮 = �
𝟎3𝑥3 𝟎3𝑥3
𝟎3𝑥3 𝑰3𝑥3

� (67) 

𝑸k becomes  

 𝑸k =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝜎𝑋𝑅𝑆𝑊

2 0 0
0 0 0 0 𝜎𝑌𝑅𝑆𝑊

2 0
0 0 0 0 0 𝜎𝑍𝑅𝑆𝑊

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

Δ𝑡 (68) 
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Specific to the Prox-1 Relative Orbital Determination process, the process noise was chosen to 
be 𝜎𝑋𝑅𝑆𝑊

2 =  𝜎𝑌𝑅𝑆𝑊
2 = 𝜎𝑍𝑅𝑆𝑊

2 ~𝑁(0,1𝑒 − 6) since it was found to be only dependent upong the 
sampling rate of the imager.   
 

5.3.2.3. State Update and Error Covariance  

The Kalman Gain is given as 

 𝑲𝑘 = 𝑷𝑘(−)𝑯𝑘
𝑇�𝑯𝑘𝑷𝑘(−)𝑯𝑘

𝑇 − 𝑹𝑘�
−1

 (69) 

where 𝑯𝑘 𝜖 ℝ3 x 6 is the linear measurement model and is given as 

 𝑯𝑘 = [𝑰3𝑥3 𝟎3𝑥3] (70) 

since no operations are needed to be done on the measurements to map them to the state 
variables; and 𝑹𝑘 = 𝐸{𝜂𝑘𝜂𝑘𝑇} 𝜖 ℝ𝑚 x 𝑚 and is the measurement noise.   
 
The measurement noise matrix is derived from the expected noise produced by the IPAs.  
Analysis of the IPAs has yielded that the noise is a function of range and is not constant.  The 
resulting measurement noise matrix is given to be 

 𝑹𝑘 = �
𝑒𝑖|𝒛𝑘|ℓ2 0 0

0 𝑒𝑖|𝒛𝑘|ℓ2 0
0 0 𝑒𝑖|𝒛𝑘|ℓ2

� (71) 

where |𝒛𝑘|𝐿2is the Euclidean norm of the measurement vector and 𝑒𝑖~𝑁(0,1).  It is important to 
note that 𝑹𝑘  is in the Body-Fixed frame and must be rotated into the RSW frame prior to 
integration into the KF.  This is accomplished by  
 

 𝑹𝑘𝑅𝑆𝑊 =  𝑸(𝒒𝑒−1)𝑹𝑘𝑸(𝒒𝑒 ) (72) 

where 𝑸(𝒒𝒆−1) is given by Equation (13)  For more details on the Body-Fixed to RSW coordinate 
frame transformation, see Section 3.3.2.2.  
 
It is important to note that the measurement vector 𝒛𝑘 is anchored in the body-fixed frame and 
must be mapped to the RSW reference frame before being applied to the KF.  The resulting state 
update equation for the Relative O/D filter is given as  

 𝒙�𝑘 = 𝒙�𝑘(−) + 𝑲𝑘(𝒛𝑘𝑅𝑆𝑊 − 𝑯𝑘𝒙�𝑘(−)) (73) 
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where 𝑯𝑘 𝜖 ℝ3 x 6 is the linear measurement model and 𝒛𝑘𝑅𝑆𝑊  𝜖 ℝ3 is the measurement vector 
anchored in the RSW frame and is given as   

 𝒛𝑘𝑅𝑆𝑊 =  𝑸(𝒒𝑒−1)𝒛𝑘 (74) 

Lastly, the update error covariance matrix is given as  

 𝑷𝑘 = �𝑰 −  𝑲𝑘𝑯𝑘� 𝑷𝑘(−)�𝑰 −  𝑲𝑘𝑯𝑘�
𝑇 + 𝑲𝑘𝑹𝑘𝑲𝑘

𝑇 (75) 

The algorithm for the Relative Orbital Determination Filter is illustrated in Figure 26.  Given an 
initial guess, the filter propagates both an estimated state and error covariance.  If measurements 
are available, the filter then corrects the predicted state estimate and updates the error covariance.  
It can be seen visually here that without measurements, the error covariance grows with respect 
to the process noise, 𝑸k.  Only when measurements are available can the filter begin to converge 
on a solution and reduce thee error covariance.  
 

 
Figure 26. Relative Orbit Determination Filter Algorithm. 
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 Relative O/D Filter Performance  5.3.3.

To tune the Relative O/D navigation solution, a closed loop test of consisting of flight-like 
images were used to generate relative measurements via IPAs and fed into the KF to produce 
final relative position measurements in the RSW frame.  
 

5.3.3.1. Truth State and Image Generation 

Given an initial position and relative velocity, the CW equations were used to propagate a 
relative orbit for the designated length of the simulation. The resulting relative state vectors were 
then used to create a range measurement to be fed into the image generator developed by the 
Prox-1 AutoNav team. For the purposes of this test, perfect target acquisition (i.e. the target is 
always within the FOV of the imager) was assumed, although perfect pointing was not. LightSail 
was placed at a random locations within the FOV (however at the predetermined range) to 
simulate the effects of rotational drift and therefore put the relative orbit determination system 
through a much more thorough test. The initial orientation of LightSail was also randomized and 
its orientation rotated throughout the test to simulate moving around the target in a NMC. 
 
Once the images were acquired, they were then processed using the IPA's and therefore produced 
a relative position vector in the body-fixed frame. For the purposes of this test, the truth data was 
then used to produce the necessary rotation to change the measurement to the RSW frame for use 
in the relative OD filter. This data was then fed through the Kalman filter and the results 
compared to the truth state.  
 

5.3.3.2. Sample Scenario 

In this scenario, a NMC is simulated with an initial position of -75m in the in-track direction and 
an initial radial velocity. The orbit is designed such that there is no motion in the cross-track 
direction. The Kalman filter is given an incorrect initial position with an incorrect in-track 
component as well as a small cross-track and radial components. The initial state vector given to 
the Kalman filter also has incorrect radial and cross-track velocity components. The simulation 
was then propagated for one orbit. 
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Figure 27. Accuracy of the Relative O/D Kalman Filter 
 

 
 

Figure 28. Relative O/D Error and covariance tracking 
 

As illustrated by Figure 27 and Figure 28, the navigation filter rapidly tracks to the actual orbit 
and exhibits minimal error while the navigation solution is tracking the orbit. Table 7 lists the 
performance metrics of the Relative O/D filter.  

Table 7. Relative O/D Filter Performance Metrics 

Parameter Value 

Position Nominal Error ±5m 

Position 3σ Error ±15m 

Velocity Nominal Error ±0.02 m/s 

Velocity 3σ Error ±0.10 m/s 
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5.4. No-Measurement Navigation Strategy 

 Relative O/D 5.4.1.

5.4.1.1. State Estimate Propagator 

 During nominal proximity operations, constant relative position measurements will not be 
provided to the relative orbit determination filter for two reasons.  First, image processing is 
computationally expensive; therefore there exists a finite sample rate (on the order of tens of 
seconds) between each image to account for the limitations imposed by the Prox-1 flight 
computer.  Second, thrusting maneuvers will require slews that move RSO out of the 
microbolometer's FOV.  However, although no relative position measurements are acquired 
during this period, Prox-1's GNC control logic will require a relative state estimate for maneuver 
planning and execution.  It is for this reason that a state estimate propagator must be introduced 
into Prox-1's navigation system to continuously provide relative state estimates between periods 
of measurement. 
  
The State Estimate Propagator will consist of two components; the steady state propagator and 
the force propagator.  The steady state propagator will be used in all states where no 
measurement is being taken which include but are not limited to: time period between 
measurements, slew periods, and periods where RSO is temporarily lost or out of range. The 
force propagator will be used to update the state estimate when a known a thrust maneuver is 
applied.  The updated state will aid in quick convergence of the Kalman filter once the 
measurement period begins again.  Additionally, the propagated estimate will also aid in 
reacquisition of RSO after the slew and thrust maneuvers.  Prox-1 tracking controllers will 
therefore be configured to slew to the expected location of RSO and not the previous location, 
minimizing any necessary search periods.  If the RSO is not present, the propagated error 
covariance is then used to create an ellipsoidal search whose bounds are designated by the 3σ 
errors. 

5.4.1.2.  Steady State Propagation 

Between measurements, the GNC control logic will require an updated relative position vector.  
The propagated relative state vector is determined using the homogenous solution to the CW 
Equations.  For convenience (and not for taking up more space, I promise), Equation Error! 
Reference source not found. is repeated,  

 𝒙�𝑘 = 𝚽(𝑡𝑘, 𝑡𝑘−1)𝒙�𝑘−1 (76) 

where 𝑛 =  �𝜇⊕
𝑎3

  and  
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𝚽(𝑡𝑘, 𝑡0)  =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 4 − 3 cos(𝑛𝑡) 0 0

sin(𝑛𝑡)
𝑛

2 − 2 cos(𝑛𝑡)
𝑛

0

6(sin(𝑛𝑡) − 𝑛𝑡) 1 0
2 cos(𝑛𝑡) − 2

𝑛
4 sin(𝑛𝑡) − 3𝑛𝑡

𝑛
0

0 0 cos(𝑛𝑡) 0 0
sin(𝑛𝑡)
𝑛

3𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡) 2 sin(𝑛𝑡) 0
6𝑛(cos(𝑛𝑡) − 1) 0 0 −2 sin(𝑛𝑡) −3 + 4 cos(𝑛𝑡) 0

0 0 −𝑛 sin(𝑛𝑡) 0 0 cos(𝑛𝑡)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(77) 

and the error covariance is given by Equation Error! Reference source not found..  As 
mentioned previously, since no measurements are being made, the error covariance grows with 
respect to the process noise.  
 

5.4.1.3. Force Propagator  

Whenever a thrust maneuver is performed, thee resulting force applied to the Prox-1 bus is 
accounted for in the state estimation by utilizing both the homogenous and particular solutions to 
the CW equations.  The discretized equivalent to Equation Error! Reference source not found. 
is  

 𝒙�𝑘(−) = 𝚽(𝑡𝑘, 𝑡𝑘−1)𝒙�𝑘−1 + 𝝍(𝑡𝑘, 𝑡𝑘−1)𝒖 (78) 

where 𝒖 𝜖 ℝ3 is the thruster input 𝑛 =  �𝜇⊕
𝑎3

 and  

  

 𝚿(𝑡𝑘, 𝑡0) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑛2

−
cos(𝑛𝑡)
𝑛2

2𝑡
𝑛
−

2 sin(𝑛 ∗ 𝑡)
𝑛2

0

−
2𝑡
𝑛

+
2 sin(𝑛𝑡)

𝑛2
4
𝑛2

−
3𝑡2

2
−

4 cos(𝑛𝑡)
𝑛2

0

0 0
1
𝑛2

−
cos(𝑛𝑡)
𝑛2

sin(𝑛𝑡)
𝑛

2
𝑛
−

2 cos(𝑛𝑡)
𝑛

0

−
2
𝑛

+
2 cos(𝑛𝑡)

𝑛
−3𝑡 +

4 sin(𝑛𝑡)
𝑛

0

0 0
sin(𝑛𝑡)
𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (79) 
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6. Controller Formulation 

6.1. Slew and Tracking Controller 

 Overview 6.1.1.

Spacecraft attitude control methods range can from low accuracy, passive control techniques 
such as gravity-gradient boom and passive magnetic control, to more accurate, active control 
mechanisms such as control moment gyros (CMGs), reaction wheels, and thrusters.  However, 
attitude control via angular momentum exchange devices (AMED) is more desirable given the 
fact that their life-span is not dictated by the amount of propellant stored on-board and can 
achieve a higher degree of precision than an attitude thruster.  However, control algorithms 
involving an AMED require more detailed knowledge of the dynamics and physical limitations 
of the AMED is needed so that unrealistic actuator commands are not instructed by the control 
laws.  

 Error Quantity Definitions 6.1.2.

For the sake of clarity, two (2) error quantities, the error quaternion, 𝒒𝑒, and the error spacecraft 
angular rate, 𝝎𝑒, are respectively defined as: 

 𝒒𝑒 = � 𝚵(𝒒𝑑−1) 𝒒𝑑−1 �𝒒 (80) 

 𝝎𝑒 = 𝝎𝐵 − 𝑹𝑒 𝝎𝑑 (81) 

where 𝒒 = �
𝜺
𝜂�, and 𝜺 𝜖 ℝ3𝑥1  and 𝜂 𝜖 ℝ1, 𝑹𝑒𝜖 ℝ3𝑥3 is the rotation matrix that maps a vector in 

ℝ3𝑥3 from the desired reference frame to the body-fixed reference frame and is defined as  

 𝑹𝑒 = 𝚵𝑇(𝒒𝑒)𝚿(𝒒𝑒) (82) 

where 𝚵(𝒒):ℝ4 → ℝ4𝑥3 and is defined as 

 𝚵(𝒒) = �𝜺
𝑥 + 𝜂𝐈
−𝜺𝑇

�  (83) 

and 𝚿(𝒒): ℝ4 → ℝ4𝑥3 and is defined as 

 𝚿(𝒒) = �−𝜺
𝑥 + 𝜂𝐈
−𝜺𝑇

�  (84) 

 
The error attitude kinematics can be defined by using Equation  (12) and Equation (81) 

 𝒒̇𝑒 =
1
2
𝚵(𝒒𝑒)𝝎𝑒 (85) 

which can be equivalently written as  
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 𝒒̇𝑒 =
1
2
𝛀(𝝎𝑒)𝒒𝑒 (86) 

where 𝛀 𝜖 ℝ4𝑥4 and is defined as  

 𝛀(𝝎) = �−𝝎
𝑥 𝝎

−𝝎𝑇 0 � 
(87) 

 

 Slew and Tracking Controller (STC) Formulation 6.1.3.

In order to realize the appropriate torque commands that will drive both the vector and scalar 
portion of the error quaternion zero (0) and unity respectively as well as null the error angular 
rate, the following Lyapunov candidate function (LCF) is considered 

 𝑉 =
1
2
𝝎𝑒
𝑇𝑲−1𝑱𝝎𝒆 + 𝜺𝑇𝜺 + (1 − 𝜂2) (88) 

where 𝑲 𝜖 ℝ3𝑥3  is a small, positive-definite gain matrix and 𝑱 𝜖 ℝ3𝑥3 is the centroidal inertia 
matrix without the AMED.  In order for the candidate function considered in Equation (88) to be 
valid, it must obey the following criteria:  

 
1.   𝑉(𝝎𝑒,𝒒, 𝑡) > 0 ∀ 𝝎𝑒 ,𝒒 ≠ 𝟎
       𝑉(𝝎𝑒 ,𝒒, 𝑡) = 0 𝑓𝑜𝑟 𝝎𝑒,𝒒 = 0

       2.   𝑉̇(𝝎𝑒 , 𝝎̇𝑒,𝒒, 𝑡) < 0 ∀ 𝝎𝑒 , 𝝎̇𝑒 ,𝒒 → 𝟎
 (89) 

By satisfying these criteria, the resulting control input will be asymptotically stable, in the sense 
of Lyapunov.  Asymptotic stability is defined as follows [24].   
Definition 1:  
An equilibrium point 𝒙� is asymptotically stable, 
in the sense of Lyapunov,  if:  

i. ∀ 𝜀 > 0, ∃ 𝛿 > 0  such that if 
 �|𝒙0 − 𝒙� |� < 𝛿 then  
�|𝒙0 − 𝒙� |� < 𝜀  ∀ 𝑡 ≥ 0 

and  
ii. ∃ 𝛿 > 0 such that if  �|𝒙0 − 𝒙� |� < 𝛿 then 

lim
𝑡→∞

𝒙(𝑡) = 𝒙�  
Figure 29. Lyapunov stability diagram. 

  

 
From the quaternion unity constraint, the identity 𝜺𝑇𝜺 = 1 − 𝜂2  can be substituted into and 
simplifying Equation (88) 

 𝑉 =
1
2
𝝎𝑒
𝑇𝑲−1𝑱𝝎𝒆 + 2𝜺𝑇𝜺 (90) 

Differentiating the LCF,  
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 𝑉̇ =
1
2
�𝝎̇𝑒

𝑇𝑲−1𝑱𝝎𝒆 + 𝝎𝑒
𝑇𝑲−1𝑱𝝎̇𝒆� + 2(𝜺̇𝑇𝜺 + 𝜺𝑇𝜺̇) (91) 

Since 𝒂𝑇𝒂̇ = 𝒂̇𝑇𝒂, Equation (91) can be simplified to 

 𝑉̇ = 𝝎𝑒
𝑇𝑲−1𝑱𝝎̇𝒆 + 𝟒𝜺𝑇𝜺̇ (92) 

Substituting the vector component of the time rate of change of the error attitude, 𝜺̇ =
1
2

(𝝎𝑒
𝑥𝜺 + 𝜂𝑒𝝎𝑒) yields 

 𝑉̇ = 𝝎𝑒
𝑇𝑲−1𝑱𝝎̇𝒆 + 𝟒𝜺𝑇 �

1
2

(𝝎𝑒
𝑥𝜺 + 𝜂𝑒𝝎𝑒)� (93) 

Differentiating Equation (81) prior to substituting into Equation (93),  

 𝝎̇𝑒 = 𝝎̇𝐵 − 𝑹̇𝑒𝝎𝑑 − 𝑹𝑒𝝎̇𝑑 (94) 

yields 

 𝑉̇ = 𝝎𝑒
𝑇𝑲−1 �𝑱𝝎̇𝐵 − 𝑱𝑹̇𝑒𝝎𝑑 − 𝑱𝑹𝑒𝝎̇𝑑� + 𝟒𝜺𝑇 �

1
2

(𝝎𝑒
𝑥𝜺 + 𝜂𝑒𝝎𝑒)� (95) 

where  

 𝑹̇𝑒 = 𝚵̇𝑇(𝒒̇𝑒)𝚿(𝒒𝑒) + 𝚵̇𝑇(𝒒𝑒)𝚿(𝒒̇𝑒) (96) 

Performing the matrix operations, the time rate-of-change of the error attitude rotation matrix 
simplifies to  

 𝑹̇𝑒 = −𝝎𝑒
𝑥𝑹𝑒 (97) 

Substituting Equation (97) into Equation (95) yields 

  𝑉̇ = 𝝎𝑒
𝑇𝑲−1 �𝑱𝝎̇𝐵 + 𝑱𝝎𝑒

𝑥𝑹𝑒𝝎𝑑 − 𝑱𝑹𝑒𝝎̇𝑑� + 2𝜺𝑇(𝝎𝑒
𝑥𝜺 + 𝜂𝑒𝝎𝑒) (98) 

By using the following identities,   

 
𝒂𝑇𝒃 =  𝒃𝑇𝒂                          (𝑎) 
𝒂𝑥𝒃 = −𝒃𝑥𝒂                       (𝑏) 
(𝒂𝑥)𝑻𝒃 =  −(𝒃𝑥)𝑇𝒂           (𝑐) 

(99) 

the second half of Equation (98) becomes 

 2𝜺𝑇(𝝎𝑒
𝑥𝜺 + 𝜂𝑒𝝎𝑒) = 2𝝎𝑒

𝑇(−𝜺𝑒𝑥𝜺𝑒 +  𝜂𝑒𝜺𝑒) 
               =  2𝜂𝑒𝝎𝑒

𝑇𝜺𝑒 (100) 

since the cross-product of a vector and itself is zero (0).  Substituting back into Equation (98) and 
simplifying  

 𝑉̇ = 𝝎𝑒
𝑇𝑲−1 �𝑱𝝎̇𝐵 + 𝑱𝝎𝑒

𝑥𝑹𝑒𝝎𝑑 − 𝑱𝑹𝑒𝝎̇𝑑 + 2𝜂𝑒𝑲𝜺𝑒� (101) 
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From Euler’s Second Law, 

  𝑱𝝎̇𝐵 = 𝝉 − 𝝎𝐵
𝑥𝑱𝝎𝐵 (102) 

where 𝝉 𝜖 ℝ3 is the control torque applied on the spacecraft by an AMED in the body-fixed 
reference frame.  Substituting Equation (102) into Equation (101) 

 𝑉̇ = 𝝎𝑒
𝑇𝑲−1 �𝝉 − 𝝎𝐵

𝑥𝑱𝝎𝐵 + 𝑱𝝎𝑒
𝑥𝑹𝑒𝝎𝑑 − 𝑱𝑹𝑒𝝎̇𝑑 + 2𝜂𝑒𝑲𝜺𝑒� (103) 

In order for this LCF to meet the second criteria listed in Equation (89), 𝝉 is chosen to be  

 𝝉 =  𝝎𝐵
𝑥𝑱𝝎𝐵 −  𝑱𝝎𝑒

𝑥𝑹𝑒𝝎𝑑 + 𝑱𝑹𝑒𝝎̇𝑑 − 2𝜂𝑒𝑲𝜺𝑒 − 𝑪𝝎𝑒 (104) 

where 𝑪 𝜖 ℝ3𝑥3  is small, positive-definite gain matrix.  Substituting the control torque into 
Equation (103) yields  

 𝑉̇ = −𝝎𝑒
𝑇𝑲−1𝑪𝝎𝑒 (105) 

Resultantly, the time-derivative of the LCF is in-fact negative definite and is a valid LCF as long 
as 𝑲−1𝑪 is positive-definite.  In order to ensure this condition, one such selection of 𝑲 and  𝑪 is 
𝑲 = 𝑘𝑱 and 𝑪 = 𝑐𝑱 where 𝑘 𝜖 ℝ1 and 𝑐 𝜖ℝ1 are small and positive [16].   
 
To insure only realizable actuator commands are requested by the STC, a saturation function is 
employed and is defined as follows. 
Definition 2:  
 A saturation function of an n-dimensional vector 𝒗 = [𝑣1, 𝑣2, … , 𝑣𝑛]𝑇 is defined as  

 𝑠𝑎𝑡(𝒗) = �

𝑠𝑎𝑡1(𝑣1)
𝑠𝑎𝑡2(𝑣2)

⋮
𝑠𝑎𝑡𝑛(𝑣𝑛)

�  

where  

 𝑠𝑎𝑡𝑖(𝑣𝑖) = �
𝑣𝑖+
𝑣𝑖  
𝑣𝑖−  

if vi > vi+          
 if vi− ≤ vi ≤ vi+
  if vi < vi−           

 (106) 
 

Applying Definition 2 to the STC, the resulting controller input 𝒖 is given as  

 𝒖 = 𝑠𝑎𝑡(𝝉) (107) 

where  

 𝑠𝑎𝑡(𝝉) = �
𝛾τ𝑚𝑎𝑥

+

𝜏𝑖  
𝛾τ𝑚𝑎𝑥

−   

if τi > τi𝑚𝑎𝑥
+                

 if τi𝑚𝑎𝑥
−  ≤ τi ≤ τi𝑚𝑎𝑥

+

  if τi < τi𝑚𝑎𝑥
−                  

 (108) 
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𝛾 𝜖 (0,1] is a scaling parameter, τi𝑚𝑎𝑥
+  is the maximum positive toque about the i-th axis,   τi𝑚𝑎𝑥

−  
is the maximum negative torque about the i-th axis, and the control torque is  

 𝝉 =  𝝎𝐵
𝑥𝑱𝝎𝐵 −  𝑱𝝎𝑒

𝑥𝑹𝑒𝝎𝑑 + 𝑱𝑹𝑒𝝎̇𝑑 − 2𝜂𝑒𝑲𝜺𝑒 − 𝑪𝝎𝑒 (109) 

Typically, for most AMEDs, τi𝑚𝑎𝑥
+ = τi𝑚𝑎𝑥

− .  

 STC Development & Validation  6.1.4.

6.1.4.1. STC Development Environment 

A generic spacecraft AMED controller block diagram is illustrated in Figure 30.  Typically, the 
AMED controller is developed without detailed a priori knowledge of any physical limitations 
of the control actuators or mechanisms, such as angular momentum saturation limits, while more 
basic information, such as torque limitations, are known.   

 
Figure 30. Generic attitude control block diagram. 

 
Figure 31 illustrates the top-level initial testing environment for the STC. It is important to note 
that this environment does not simulate the Angular Momentum Exchange Devices (AMEDs) 
used by Prox-1 - specifically, Control Moment Gyros (CMGs). The spacecraft properties used in 
this testing environment are similar to the current best estimates (CBEs) for the Prox-1 
spacecraft.   
 
Additionally, in the environment shown in Figure 31, only the slew portion of the STC is being 
tested – as the variables pertaining to tracking a desired reference frame – specifically 𝑹𝑒 , 𝑹̇𝑒,  
and 𝝎𝑑  – contain inputs of zero (0).  In order to test the tracking capabilities of the STC, 
information a more sophisticated testing environment is needed as information regarding the 
desired frame must be inputted into the controller. However, since the basic functionality of a 
tracking controller relies on the functionality of the slew component, the tracking controller 
component is secondary in importance.    
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Figure 31. Top-level STC testing environment.  

 

6.1.4.2. Controller Gain Selection 

In order to properly select the gains, a range of gains was considered for both 𝑘 𝜖 (0, 1.5] and 
𝑐 𝜖 (0 1.5] along with the following metrics for a 90º-180º-270º slew about the spacecraft x, y, 
and z axes respectively:  

1. AMED control input limitations       2. Slew Completion Time    3. Error Angle 
 
In order to avoid both CMG 
saturation and hardware 
anomalies, an upper control 
torque limit of 75% of 𝜏max 
was selected. Additionally, 
the slew convergence 
criterion of 1x10-5 radians 
was selected for the 
maximum error angle 
allowable. 
 
The resulting plot comparing 
the gains of c and k to the 
slew completion time is 
shown in Figure 32. The 
minimum slew completion 
time that meets the 
constraints listed above 

 
 

Figure 32. Comparison of gains c and k as a function of slew compeltion time. 
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is approximately 70 seconds. In order to minimize the control torque input – and therefore 
minimizing power consumption – the closed-loop system must be critically damped - that is, 𝜉 is 
unity. By imposing this constraint and realizing that the slew completion time is invariant under 
k, the approximation for the value of k can be rewritten in terms of the scalar value c,  𝑘 ≈ 1

4
𝑐2. 

Additionally, the range of values for the scalar gain c that meet the constraints imposed and 
minimize the slew completion time is [0.485 , 0.505]; the corresponding range of optimal values 
for the scalar gain k is [0.0588 0.0638]. However, it is important to note that since the control 
torque input is non-linear, these ranges are not definite. Resultantly, these ranges were opened up 
by 20% in each direction to account for the non-linearity of the control torque input.  
 
The resulting  gains from the analysis for the scalar gains c and k are listed in Table 8.  

Table 8. Selected gains for the STC. 

Parameter Value 

k 0.05 

c 0.5 

 

 STC Performance 6.1.5.

Given the gains in Table 8 , the resulting control torque input is illustrated in Figure 33.  

 
 

Figure 33. STC control torque input 
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Other performance parameters, such as the error quaternion, spacecraft angular rates, spacecraft 
angular acceleration, and inertial quaternion are illustrated in Figure 34. As illustrated by Figure 
34(a), the error quaternion demonstrates that the selected gains do in-fact produce a critically 
damped system. 

 
(a) 

 
(c) 

Figure 34. STC performance parameters: (a) error quaternion; (b) spacecraft angular acceleration; (c) inertial 
quaternion; (d) spacecraft angular rate. 
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 Convergence Criteria 6.1.6.

Convergence of the STC is measured using both the error angle and the norm of the error angular 
rate.  The error angle is defined as  

 𝜃𝑒 = cos−1 𝜂𝑒 (110) 

As the spacecraft converges on the desired quaternion, the vector component of the error 
quaternion goes to zero (0); as a result of the quaternion unity constraint, the scalar component of 
the error quaternion goes to unity consequently causing the error angle to go to zero(0).  
Expressing the error angle in terms of the vector component of the error quaternion, Equation 
(110) becomes   

 𝜃𝑒 = cos−1 �1 − 𝜺𝑇𝜺 (111) 

The value for 𝜃𝑒 is dependent upon the precision of the Inertial Attitude Determination (A/D) 
filter.  
 
The second part of the STC convergence criteria is the norm of the error angular rates.  As 
defined by Equation (81), the error angular rate is a combination of both the spacecraft angular 
rate, 𝝎𝐵, and the rotation of the desired frame, 𝝎𝑑, with respect to the body frame.  In other 
words, for a rest-to-rest maneuver, 𝝎𝑑 (as defined by Equation (81)) is zero (0) and the error 
angular rates is purely a measure of the spacecraft angular rate; for a tracking maneuver, the 
error angular rate is a comparison of the spacecraft angular compared to the angular rate of the 
desired frame.  Therefore, the norm of the error angular rate is a valid metric for convergence.  It 
is important to note here that the value signaling convergence of the angular rate is dependent 
upon the resolution of the rate gyros in the inertial measurement unit (IMU).  The resolution of 
typical rate gyros is dependent upon the dynamic sensitivity range selected as the gain used to 
amplify the signal is larger for larger dynamic ranges.  

6.2. De-tumble Controller 

 Overview 6.2.1.

Once released from a launch vehicle, a spacecraft will typically begin to tumble at some angular 
rates proportional to the moment applied on the spacecraft by the separation event divided by the 
inertia of the spacecraft.  For most satellites, the random tumbling produced by the separation 
event creates an undesirable environment in which the spacecraft cannot successfully complete 
its mission.  As a result, these angular rates must be damped prior to satellite checkout and 
commissioning.  In the case of the Prox-1 mission, the de-tumble maneuver will be performed 
via magnetic torque rods.  Compared to other attitude controlling mechanisms, magnetic torque 
rods trade the mechanical complexity and higher torque capabilities for a more reliable actuator 
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that relies solely on renewable electricity at lower power levels.  This is a particularly important 
consideration since, after launch, the satellite’s batteries may not be fully charged.  As a result, 
the time of the launch and the state of the batteries at separation can have a significant impact on 
when the satellite will not only startup but the length of time between the separation event and a 
stable attitude being achieved.  

 De-Tumble Controller (DTC) Formulation 6.2.2.

Like the development of the STC, the control input for the de-tumble controller (DTC) will be 
derived using the following LCF,  

 𝑉 =
1
2
𝝎𝑒
𝑇𝑲−1𝑱𝝎𝒆 (112) 

where 𝝎𝑒 𝜖 ℝ3 is the error angular velocity, 𝑲 𝜖 ℝ3𝑥3 is a small, positive-definite gain matrix 
and 𝑱 𝜖 ℝ3𝑥3 is the centroidal inertia matrix.  Since the DTC is anchored only in the BFCF, it is 
worth noting the error angular velocity is simply the angular velocity in the body frame, 𝝎𝐵.  In 
order for the candidate function considered in Equation (112) to be valid, it must obey the 
following criteria:  

 
    1.   𝑉(𝝎𝐵 , 𝑡) > 0 ∀ 𝝎𝐵 ≠ 𝟎
          𝑉(𝝎𝐵, 𝑡) = 0 𝑓𝑜𝑟 𝝎𝐵 = 0
    2   𝑉̇(𝝎𝐵, 𝑡) < 0 ∀ 𝝎𝐵 → 𝟎

 (113) 

Differentiating the LCF,  

 𝑉̇ =
1
2
�𝝎̇𝐵

𝑇𝑲−1𝑱𝝎𝐵 + 𝝎𝐵
𝑇𝑲−1𝑱𝝎̇𝐵� (114) 

Knowing 𝒂𝑇𝒂̇ = 𝒂̇𝑇𝒂, Equation (114) becomes 

 𝑉̇ = 𝝎𝐵
𝑇𝑲−1𝑱𝝎̇𝐵 (115) 

Substituting Equation (102) yields 

 𝑉̇ = 𝝎𝐵
𝑇𝑲−1(𝝉 −  𝝎𝐵

𝑥𝑱𝝎𝐵) (116) 

In order Equation (116) to be negative definite, the control torque is chosen to be  

 𝝉 =  𝝎𝐵
𝑥𝑱𝝎𝐵 − �𝑪 − 𝒃�𝒃�𝑇�𝝎𝐵 (117) 

where 𝒃� = 𝒃
|𝒃|

 𝜖 ℝ3 is the unit vector parallel to the local geomagnetic vector expressed in the 

body-fixed frame and 𝑪 𝜖 ℝ3𝑥3 is a positive definite gain matrix [25].  Substituting the control 
torque into Equation (116) yields  

 𝑉̇ = 𝝎𝐵
𝑇𝑲−1(𝝎𝐵

𝑥𝑱𝝎𝐵 − �𝑪 − 𝒃�𝒃�𝑇�𝝎𝐵 −  𝝎𝐵
𝑥𝑱𝝎𝐵) (118) 
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which simplifies to  

 𝑉̇ = −𝝎𝐵
𝑇𝑲−1�𝑪 − 𝒃�𝒃�𝑇�𝝎𝐵 (119) 

It is easily seen that the lim𝝎𝐵→0 𝑉̇ = 0 and that 𝑉̇ vanishes whenever 𝝎𝐵 is parallel to the local 
geomagnetic field. 
 
However, if possible, this situation needs to be avoided as when the spacecraft rotates about an 
axis parallel to the local magnetic field vector, the (magnetic) torque rods will not be able to 
apply a torque in the axis of rotation since  

 𝝉 = 𝒎𝑥𝒃 (120) 

where 𝒎 𝜖 ℝ3  is the commanded magnetic moment of the spacecraft.   By introducing an 
orthogonality constraint, 𝒎𝑇𝒃� = 0, Equation (120) becomes 

 𝒎 =
1

|𝒃|𝒃
�𝑥𝝉 (121) 

and combing with the control torque specified in Equation (117), the control input 𝒖 𝜖 ℝ3 is  

 𝒖 = −
1

|𝒃|𝒃
�𝑥 �𝝎𝐵

𝑥𝑱𝝎𝐵 − �𝑪 − 𝒃�𝒃�𝑇�𝝎𝐵� (122) 

The recommend gain selection for 𝑪 is given as  

 𝑪 = 2𝜋�
𝜇
𝑎
𝑱 (123) 
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7. Future Work 

7.1. Guidance 

The main area of improvement for the IPAs is in the area of orientation estimation of the RSO.  
From consultation of others, this author strongly feels that the incorporation of edge detection 
algorithms can help improve the accuracy of the determining the orientation of the RSO.  
However, due to time constraints, the author was not able to explore this opportunity further.  

7.2. Navigation  

The largest risk item in the Navigation section is the inertial attitude determination (A/D) filter.  
Without this filter, the orientation of the spacecraft with respect to the inertial frame cannot be 
determined.  Due to time and resource constraints, the author was not able to actively pursue the 
completion of this filter personally.  
 

7.3. Control 

 STC Future Work 7.3.1.

The slew controller is completed and has been shown to work as an independent controller.  The 
next step is integration into the automated GN&C system.   

 DTC Future Work 7.3.2.

While the control input for the DTC has been derived, it has not been successfully tested due to 
simulation environment errors.  The errors in the simulation environment are attributed in the 
following areas and will be addressed in the next revision of this document: errors in the 
magnetometer model as well as lack of controller bandwidth filtering.  
 

7.4. Automated GN&C System 

 While the underlying framework has been created for automated proximity operations, the task 
of fully integrating all of the individual components that comprise the GN&C system into a 
generic logic structure that will allow for successful completion of both the rest-to-rest in-track 
maneuver as well as successful completion of NMC maneuvers around a RSO still remains.  This 
can be accomplished in the MATLAB Simulink environment via inclusion of StateFlow 
blocksets which will aid with the various mode transitions to compelte aiding with mode 
transitions  
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Appendix A: Overview of Relative Motion 

Introduction 

Motion of a spacecraft can be characterized in several frames of references that can aide in 
conceptual understanding or aide in maneuver planning and orbit propagation. For the purpose of 
proximity operations between two spacecraft, the relative motion of one spacecraft with respect 
to the other is of particular importance. Rather than a traditional pseudo-inertial reference frame 
such as the Earth-Centered-Inertial (ECI) frame that describes motion of a spacecraft about the 
Earth, it is more beneficial to describe the spacecraft’s motion in a non-inertial frame centered 
upon the other spacecraft. 
The problem of relative motion was first studied by George W. Hill in 1886 to account for the 
motion of the lunar perigee. [26]Later Clohessy and Wiltshire (CW) formulated a similar 
approach specifically for spacecraft. [27]In both cases a series of linearized, time-invariant 
equations of motions were developed that described relative orbital motion. 

Basic Equations of Motion 

The formulation of the equations of motion for Prox-1 will follow Vallado’s derivation[28], a 
similar derivation to Clohessy-Wiltshire with a few exceptions. First, define a frame centered 
upon a spacecraft, heretofore referred to as the ‘Chief’. This frame will be defined using the 
RSW coordinate system: 

• 𝑅�: Radial component, collinear with the position vector. 
• 𝑆̂: In-track component, in the direction of the Chief’s velocity vector. 
• 𝑊� : Cross-track component, normal to the orbital plane, or 𝑅�𝑥𝑆̂ 

This frame is also referred to as the Local-Vertical, Local-Horizontal (LVLH) frame. Within 
RSW, the relative position can be defined as (𝑥𝑅� , 𝑦𝑆̂, 𝑧𝑊� )  and the relative velocity as 
(𝑥̇𝑅� , 𝑦̇𝑆̂, 𝑧̇𝑊� ).  
Next, define the relative motion of a second spacecraft, called the “Chaser”, with respect to the 
Chief.  

𝑟⃑̈𝑟𝑒𝑙 = 𝑟⃑̈𝐶ℎ𝑎𝑠𝑒𝑟 − 𝑟⃑̈𝐶ℎ𝑖𝑒𝑓 
Additionally, define the angular rate of the Chief spacecraft’s motion; this is equal to the mean 
motion of the orbit, as it is assumed that the Chief is in a circular orbit. 

𝜔 = 𝑛 = �
𝜇

𝑟𝐶ℎ𝑖𝑒𝑓3  

The relative motion can be transformed into the RSW frame using a series of rotations and 
coordinate transformations. See Vallado for the full derivation. The results yield: 

𝑟⃑̈𝑟𝑒𝑙𝑅 = −𝜔2�𝑥𝑅� + 𝑦𝑆̂ + 𝑧𝑊� − 3𝑥𝑅�� + 𝐹�𝑇ℎ𝑟𝑢𝑠𝑡 + 2𝜔𝑦̇𝑅� − 2𝜔𝑥̇𝑆̂ + 𝜔2𝑥𝑅� + 𝜔2𝑦𝑆̂ 
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Separating into each coordinate, the basic CW equations form a set of second-order differential 
equations: 

𝑥̈ − 2𝜔𝑦̇ − 3𝜔2𝑥 = 𝑓𝑥 
𝑦̈ + 2𝜔𝑥̇ = 𝑓𝑦 
𝑧̈ + 𝜔2𝑧 = 𝑓𝑧 

 
Next, the unforced solution (FThrust = 0) can be solved, assuming near-circular motion. Using 
Laplace transforms for the ODEs, the following equations can be used to describe the relative 
motion of the Chaser: 

𝑥𝑢 =
𝑥̇0
𝑛

sin(𝑛𝑡) − �3𝑥0 +
2𝑦̇0
𝑛 � cos(𝑛𝑡) + �4𝑥0 +

2𝑦̇0
𝑛 � 

𝑦𝑢 =
2𝑥̇0
𝑛

cos(nt) + �6𝑥0 +
4𝑦̇0
𝑛 � sin(𝑛𝑡) − (6𝑛𝑥0 + 3𝑦̇0)𝑡 −

2𝑥̇0
𝑛

+ 𝑦0 

𝑧𝑢 =
𝑧̇0
𝑛

sin(𝑛𝑡) + 𝑧0 cos(𝑛𝑡) 

𝑥𝑢̇ =
𝑥̇0
𝑛

cos(nt) + (3𝑛𝑥0 + 2𝑦̇0) sin(𝑛𝑡) 

𝑦̇𝑢 = −2𝑥̇0sin (nt) + (6𝑛𝑥0 + 4𝑦̇0)cos (nt) − (6𝑛𝑥0 + 3𝑦̇0) 
𝑧̇𝑢 = 𝑧̇0sin(𝑛𝑡) − 𝑛𝑧0sin (𝑛𝑡) 

Thrusting Equations of Motion 

The forced equations of motion can also be solved, given a constant thrust magnitude and 
direction. In solving the set of differential equations, the equations of motion are a combination 
of the homogenous unforced solution and the particular solution. These equations can be seen 
below, where fx refers to the acceleration due to thrusting in the radial (x) direction. [29] 

𝑥𝑓 = 𝑥𝑢 +
𝑓𝑥
𝑛2

(1 − cos(𝑛𝑡)) + 2
𝑓𝑦
𝑛
�𝑡 −

sin(𝑛𝑡)
𝑛

� 

𝑦𝑓 = 𝑦𝑢 + 4
𝐴𝑦
𝑛2

(1 − cos(𝑛𝑡)) − 2
𝑓𝑥
𝑛
�𝑡 −

sin(𝑛𝑡)
𝑛

� −
3
2
𝑓𝑦𝑡2 

𝑧𝑓 = 𝑧𝑢 + 4
𝑓𝑧
𝑛2

(1 − cos(𝑛𝑡)) 

𝑥̇𝑓 = 𝑥̇𝑢 +
𝑓𝑥
𝑛

sin(𝑛𝑡) + 2
𝑓𝑦
𝑛

(1 − cos(𝑛𝑡)) 

𝑦̇𝑓 = 𝑦̇𝑢 + 4
𝑓𝑦
𝑛

sin(𝑛𝑡) − 2
𝑓𝑥
𝑛

(1 − cos(𝑛𝑡)) − 3 𝑓𝑦𝑡 

𝑧̇𝑓 = 𝑧̇𝑢 +
𝑓𝑧
𝑛

sin (𝑛𝑡) 
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Appendix B: Relative Orbital Elements 

The relative motion of the chaser spacecraft may also be described by six parameters, analogous 
to the orbital elements used to describe inertial movement of a satellite. These parameters will be 
called Relative Orbital Elements (ROE). The equations for the ROEs can be seen below. 

𝑎𝑒 = 2��
𝑥̇
𝑛�

2

+ �3𝑥 + 2
𝑦̇
𝑛�

2

 

𝑥𝑑 = 4𝑥 +
2 𝑦̇
𝑛

 

𝑦𝑑 = 𝑦 − 2
𝑥̇
𝑛

 

𝛽 = 𝑎𝑡𝑎𝑛2(𝑥̇, 3𝑛𝑥 + 2𝑦̇) 

𝑧𝑚𝑎𝑥 = ��
𝑧̇
𝑛�

2

+ 𝑧2 

𝛾 = 𝑎𝑡𝑎𝑛2(𝑛𝑧, 𝑧̇) − 𝛽  
A diagram is useful to define ae, xd, yd, and β; this can be seen in Figure 35. ae defines the semi-
major axis of the 2x1 ellipse of the chaser. The coordinates (xd, yd) define the location of the 
center of the ellipse. β* defines the angle from perigee for the current position of the satellite in 
the X-Y plane, defined from perigee. Zmax defines the amplitude of the sinusoidal cross-track 
motion, and γ defines the angle between the X-Y plane and the relative orbital plane, as 
measured from the relative ascending node of the motion.  
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Figure 35 ROE Diagram (Credit: Lovell) 
In unforced motion of the chaser spacecraft, the ROEs follow a linear set of equations, as seen 
below. Only yd and β change in time for unforced motion; the other ROEs remain constant. 

𝑎𝑒 = 𝑎𝑒0 
𝑥𝑑 = 𝑥𝑑0 

𝑦𝑑 = 𝑦𝑑0 −
3
2
𝑛𝑥𝑑0𝑡 

𝛽 = 𝛽0 +  𝑛𝑡 
𝑧𝑚𝑎𝑥 = 𝑧𝑚𝑎𝑥0 

𝛾 = 𝛾0 

ROEs in Forced Motion 

Using the thrusting EOMs described earlier, it is possible to re-parameterize them using ROEs to 
determine the effects of thrusting upon ROEs. These equations can be seen below; Δt refers to 
the burn time for continuous thrust maneuver, while tf refers to the wait time from a particular 
state before a thrust maneuver begins.  
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𝑎𝑒+ = �
�𝑎𝑒0 sin �𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 2

𝑓𝑥
𝑛2

sin(𝑛∆𝑡) + 4
𝑓𝑦
𝑛2

(1 − cos(𝑛∆𝑡))�
2

+ �𝑎𝑒0 cos �𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 4
𝑓𝑦
𝑛2

sin(𝑛∆𝑡) − 2
𝑓𝑥
𝑛2

(1 − cos(𝑛∆𝑡))�
2 

𝑥𝑑+ = 𝑥𝑑0 + 2
𝑓𝑦
𝑛
∆𝑡 

𝑦𝑑+ = 𝑦𝑑0 −
3
2
𝑛𝑥𝑑0�𝑡𝑓1 + ∆𝑡� − �2

𝑓𝑥
𝑛

+
3
2
𝑓𝑦∆𝑡� ∆𝑡 

𝛽+ = 𝑎𝑡𝑎𝑛2 ��𝑎𝑒0𝑛 sin �𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 2
𝑓𝑥
𝑛

sin(𝑛∆𝑡)

+ 4
𝑓𝑦
𝑛

(1 − cos(𝑛∆𝑡))� ,�𝑎𝑒0𝑛 cos �𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 2
𝑓𝑥
𝑛

sin(𝑛∆𝑡)

+ 4
𝑓𝑦
𝑛

(1 − cos(𝑛∆𝑡))�� 

𝑧𝑚𝑎𝑥
+ =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

�𝑧𝑚𝑎𝑥0 cos �𝛾0 + 𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� +
𝑓𝑥
𝑛2

sin(𝑛∆𝑡)�
2

+

�𝑧𝑚𝑎𝑥0 sin �𝛾0 + 𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� +
𝑓𝑥
𝑛2

(1 − cos(𝑛∆𝑡))�
2 

𝛾+ = 𝑎𝑡𝑎𝑛2 ��𝑧𝑚𝑎𝑥0𝑛 sin �𝛾0 + 𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 𝑓𝑧
𝑛

(1 − cos(𝑛∆𝑡))�  , �𝑧𝑚𝑎𝑥0𝑛 cos �𝛾0 +

𝛽0 + 𝑛�𝑡𝑓1 + ∆𝑡�� + 𝑓𝑧
𝑛

sin(𝑛∆𝑡)��  
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