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SUMMARY 

 

The past decades have seen the state of the art in aerospace system design progress from a scope 

of simple optimization to one including robustness, with the objective of permitting a single system to 

perform well even in off-nominal future environments.  Integrating flexibility, or the capability to easily 

modify a system after it has been fielded in response to changing environments, into system design 

represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must 

consider not only the present system design decision, but also sequential future design and operation 

decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace 

systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, 

single-objective, and/or limited to consider a single future time period. 

To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period 

framework for integrating flexibility into space system design decisions. Central to the framework are five 

steps. First, system configuration options are identified and costs of switching from one configuration to 

another are compiled into a cost transition matrix. Second, probabilities that demand on the system will 

transition from one mission to another are compiled into a mission demand Markov chain. Third, one 

performance matrix for each design objective is populated to describe how well the identified system 

configurations perform in each of the identified mission demand environments.  The fourth step employs 

multi-period decision analysis techniques, including Markov decision processes from the field of operations 

research, to find efficient paths and policies a decision-maker may follow.  The final step examines the 

implications of these paths and policies for the primary goal of informing initial system selection. 

Overall, this thesis unifies state-centric concepts of flexibility from economics and engineering 

literature with sequential decision-making techniques from operations research. The end objective of this 

thesis’ framework and its supporting tools is to enable selection of the next-generation space systems today, 

tailored to decision-maker budget and performance preferences, that will be best able to adapt and perform 

in a future of changing environments and requirements. Following extensive theoretical development, the 

framework and its steps are applied to space system planning problems of (1) DARPA-motivated multiple- 

or distributed-payload satellite selection and (2) NASA human space exploration architecture selection. 
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The point we wish to make is that in modern life, in economic, industrial, 
scientific and even political spheres, we are continually surrounded by 
multi-stage decision processes.  Some of these we treat on the basis of 
experience, some we resolve by rule-of-thumb, and some are too complex 
for anything but an educated guess and a prayer. 
 

Richard E. Bellman, Ph.D., 1957 
Preface to Dynamic Programming 
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CHAPTER 1 

INTRODUCTION:  FLEXIBILITY IN SPACE SYSTEMS 

In the late 1960s, as it was preparing to mount the first manned lunar mission, the 

nascent National Aeronautics and Space Administration (NASA) encountered its first 

major budget cuts. Between 1965 and 1970, the agency’s annual budget was cut by over 

$1.5 billion, or 29% [1].  In a political environment focused on other national priorities 

and on lowering federal spending, support for future space exploration enterprises fell 

short of NASA’s post-Apollo ambitions [2].  On January 4, 1970, it was announced that 

Apollo 20 would be cancelled [3]-[4], and on September 2, two more Apollo lunar 

missions were cancelled [5].  With development of a space shuttle years away from 

approval, NASA’s Apollo Applications Program (AAP), formed in 1965 to develop 

alternative mission options using Apollo architectural components, was the only measure 

available to mitigate a disastrous gap in human spaceflight and loss of the 400,000-person 

Apollo workforce [6]-[8].  

Thus was born the Skylab space station program.  Skylab itself (see Figure 1), 

launched atop a Saturn V rocket in May 1973, was a modified S-IVB stage originally 

intended to fly as the upper stage of a Saturn IB launch vehicle [8].  Three-man crews 

were transported to the space station using an adapted Apollo command and service 

module (CSM) that incorporated 23 major modifications [7] and that launched on the 

Apollo-heritage Saturn IB.  Plans even existed – and in one instance saved a mission 

from a premature end – to modify the CSM further for a rescue capability to 

accommodate five crew [6]-[7].  Over the course of eight months, nine crew launched to 

the station and accumulated a total of 513 crew-days in space [7], five times more than all 

previous U.S. spaceflight and providing a wealth of data on long-duration effects of 

spaceflight. 



2 

       

Figure 1.  An early concept for Skylab which included a Lunar Module converted for use as 
the solar observatory (left) [9], and the Skylab configuration as launched (right) [10]. 

 
 

Importantly, Skylab and the Apollo Applications Program demonstrated the 

capability of the Apollo lunar architecture to be easily modified after it had been fielded 

in response to a changing environment and changing requirements.  This property is what 

the present thesis will refer to as flexibility.  However, Apollo’s flexibility was largely 

accidental:  The components of the Apollo architecture had been selected to meet the goal 

of landing a man on the Moon by 1970, with little emphasis on other objectives like 

flexibility.  Of the 98 pages discussing possible Apollo architectures in the authoritative 

1962 architecture decision document [11], only three pages are devoted to implications 

on growth potential – and these three pages indicate the chosen lunar orbit rendezvous 

architecture offered the least growth potential compared to others under consideration. 

Over the four decades since Apollo, the world’s civil and military space programs 

have given increasing emphasis to flexibility when designing new systems, but flexibility 

tends to remain an intangible and abstract concept to engineers.  Many of the techniques 

used to evaluate this elusive property are qualitative, subjective, deterministic, single-

objective, and/or limited to consider a single time step in the future.  The question 

remains:  How can engineers and decision-makers systematically, quantitatively, and 

objectively consider flexibility in the design of a new space system?  How can the space 

system design community reduce future occurrences where flexibility is desirable but is 

unattainable, or where it exists but is accidental? 
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These questions drive the present thesis, which begins by investigating the state of 

the art of considering flexibility in space and other engineering system design decisions 

in order to substantiate the characterization of this art as described in the preceding 

paragraph.  In the process of this investigation, it is found that, although disparate, some 

threads of thought on flexibility are common in the literature.  These threads, which entail 

the construction of state spaces to describe a system’s flexibility of movement in a two-

period setting, form a foundation for the framework that this thesis presents. 

The new framework that this thesis introduces consists of five practical steps 

intended for implementation by engineering systems analysts, the first three of which 

focus on defining and characterizing a set of state spaces representing system options and 

environment demands.  The fourth step employs multi-period decision analysis 

techniques, including Markov decision processes from the field of operations research, to 

find efficient paths and policies a decision-maker may follow.  The final step examines 

the implications of these paths and policies for initial system selection.  The end product 

is a quantitative, stochastic, multi-objective, and multi-period framework for integrating 

flexibility into engineering system design decisions.  Moreover, this thesis illustrates that 

not only is a state-centric notion of flexibility prevalent in the literature compatible with a 

comprehensive decision support framework, but that it is naturally adapted for use with 

Markov decision process solution techniques from the operations research community. 

After theoretical development using a simple satellite system example, 

applications are illustrated using a fractionation-motivated multi-payload defense satellite 

example, as well as the substantially more complex example of NASA human space 

exploration architecture selection.  These latter two applications in particular substantiate 

the relevance of this framework in informing decisions for problems of interest to the 

space industry today.  Before proceeding further, however, it is necessary to establish a 

preliminary background on several related topics. 
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1.1. Uncertainty in Modern Space Missions 

Flexibility in space systems design is relevant largely because of the uncertainties 

involved when planning space missions, whether the goal of the mission is as limited as 

low-resolution Earth observation or as ambitious as human exploration of Mars.  These 

uncertainties can be divided into categories of downside risk and upside potential: 

The foremost uncertainties in most system engineers’ minds are generally those 

involving downside risk, or the possibilities of off-nominal situations causing undesirable 

consequences.  These include risks of launch failure, component failure or degradation, 

physical or directed energy attack, funding cuts, cost growth, or decrease in satellite 

service demand. 

Another important but less commonly considered form of uncertainty is upside 

potential, or the possibility for an off-nominal situation to present opportunities upon 

which a program can capitalize with desirable consequences.  Examples include increases 

in satellite service demand, new initiatives and increases in funding, and unforeseen 

scientific opportunities. 

While by definition these risks and opportunities are not predictable with 

certainty, some may be more probable than others, and some may entail greater 

consequences.  Decisions made during design have the potential to mitigate or exacerbate 

such consequences when or if these events occur, and ideally a decision-maker will make 

the proper choices during design to allow the system to adequately respond to 

requirement or environment changes later.  In the words of former and current Defense 

Advanced Research Projects Agency (DARPA) program managers Owen Brown and 

Paul Eremenko, “an uncertain future does not mean that we throw up our hands, and 

simply wait to react to future shocks.  It does mean that we must explore a variety of 

potential futures, and create strategies and policies, as well as technical and architectural 

solutions that provide hedges for a variety of circumstances that could occur.” [12] 
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1.2. Flexibility Defined 

The Merriam-Webster Dictionary definition of flexibility is the “ready capability 

to adapt to new, different, or changing requirements.” [13]  This thesis adopts a similar 

definition, namely that flexibility is the capability to easily modify a system after it has 

been fielded in response to a changing environment or changing requirements (cf. 

[14]). Central to this notion of flexibility are the conditions that (1) a system’s 

environment or requirements may change in the future and (2) the system can, to some 

degree, be modified to accommodate such change.  This definition also includes the 

notion of ease of modification, which means that the effort required to effect a change 

(whether measured in dollars, manpower, or other resource-representative metrics) is also 

relevant to discussions of flexibility.  These important properties of the flexibility 

definition will become more clearly defined throughout Chapters 2 and 3.  Also, note that 

while some techniques developed in this thesis may apply to incorporating flexibility into 

system development phases (i.e., permitting system modifications prior to system 

fielding), this thesis focuses on modifications that are to be available after the system is 

fielded.  Flexibility during the development process is another important area of work, 

described by Refs. [14] and [15] and often linked to the desire to preserve design freedom 

and delay cost commitment between design and manufacturing [16]-[19]. While Chapter 

6 shows that approaches developed herein are extensible to the consideration of 

flexibility in the development process, the principal intent of these techniques is toward 

considering modifications to present or future fielded systems. 

1.2.1. Flexibility in the Context of Optimization and Robustness 

The definition of flexibility above may be enhanced with a graphical comparison 

to the more established engineering concepts of optimization and robustness.  Figure 2 

illustrates a helpful way of visualizing these concepts, with each concept shown in terms 
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of a notional performance metric plotted against an environment (or requirement) 

variable: 

Traditional optimization involves the minimization or maximization (as in Figure 

2) of the performance metric assuming a system subject to the nominal operating 

environment.  Off-nominal environments are not considered, and it is possible for 

performance to degrade significantly in these environments. 

In contrast, a robust system is designed such that, when the system is exposed to 

an off-nominal environment, performance remains close to the nominal level.  Robust 

design techniques, popularized by Taguchi in the 1980s [20]-[24], has been well explored 

over the past few decades (for helpful surveys on this topic, see Refs. [24] and [25]).  By 

definition, however, a robust system cannot have a nominal performance better than the 

optimized case; and generally such a system will have a lower nominal performance. 

A flexible system is distinguished by the fact that modifications can allow the 

system to effectively change its performance curve at the operator’s discretion.  If the 

system is in a particular configuration at time t1 and the environment changes, the 

operator can choose to make a modification to the system (at some cost in resources) and 

achieve a new performance characteristic at time t2.  This dynamic behavior introduces a 

host of challenges in modeling and decision-making. 
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Figure 2.  Optimization, Robustness, and Flexibility Notionally Compared. 
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1.2.2. Observed and Observable Flexibility 

As defined here, system flexibility is essentially unobservable until required to 

manifest itself in response to requirement or environment changes.  As a result, flexibility 

tends to remain an intangible and abstract concept to engineers.  To help address this 

limitation, specific examples of observed flexibility in the history of space exploration 

and human spaceflight have been previously documented [26]-[28].  Analysis of these 

examples has highlighted the classification of space system flexibility into the two 

categories of intra- and inter-mission flexibility [28].  In cases of intra-mission flexibility, 

a one-of-a-kind system is fielded and then modified over time to adapt to a changing 

environment or requirements (examples include the Hubble Space Telescope, 

International Space Station, and the Mir  space station).  In cases of inter-mission 

flexibility, multiple vehicles are fielded in series and adapted from one mission to another 

during the course of a program (examples include the Space Shuttle, Apollo, and Venera 

programs).  For both categories, decisions made during design affect the system’s ability 

to adapt to new mission environments and requirements.  Examples in the following 

pages illustrate how this thesis’ framework can be applied to both intra-mission flexibility 

(see Chapter 5) and inter-mission flexibility (see Chapter 6). 

1.3. Recent Examples from Industry and Government 

Interest in codifying, quantifying, and integrating flexibility in space system 

design has grown in recent years.  Highlighted here are three examples from recent 

DARPA and NASA programs, representing what may reasonably be considered state of 

the art (or state of the practice) in incorporating flexibility into space system design. 

1.3.1. Exploration Systems Architecture Study (NASA) 

In May 2005, NASA Administrator Michael Griffin commissioned the 

Exploration Systems Architecture Study (ESAS) [29] to recommend an architecture to 
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support sustained human and robotic lunar exploration.  In its trade studies, ESAS used 

five categories of figures of merit, one of which was Extensibility/Flexibility.  Within this 

category were considerations of lunar mission flexibility, Mars mission flexibility, 

extensibility to other exploration destinations, commercial extensibility, and national 

security extensibility.  ESAS characterized these flexibility considerations in terms of 

qualitative high (green), medium (yellow), low (red) ratings based on expert judgement.  

One example of these qualitative ratings for an evolved expendable launch vehicle 

(EELV) derived crew launch vehicle (CLV) is shown in Figure 3. 

The ESAS methodology largely reflects of the state of the practice in designing 

for space system flexibility today.  The approach has positive qualities in that it considers 

flexibility during conceptual design process, and it does so with the recognition that 

flexibility must be traded against other objectives such as cost.  As a result, this approach 

is amenable to application of common multi-attribute decision-making techniques.  

However, this approach has clear disadvantages in its subjectivity and, more importantly, 

its use of a Likert-like qualitative scale with no physical units.  This inhibits the analysis’ 

repeatability and allows the method’s results to be readily disputed.  More fundamentally, 

the method treats flexibility as a scalar metric of the same class as cost or performance; it 

might reasonably be argued that the decision-maker does not actually care about 

flexibility itself (in whatever units one chooses for it), but rather cares about the effects 

that designed-in flexibility may have on future cost or performance.  These shortcomings 

will be addressed by the framework proposed by this thesis.  
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Figure 3.  Sample summary of figure of merit ratings for concepts in the ESAS report. 
Note the qualitative red/yellow/green ratings for flexibility. [29] 

 
 

1.3.2. System F6 (DARPA) 

In July 2007, DARPA issued a Broad Agency Announcement for the 

development of System F6, a flight demonstration of a satellite architecture in which the 

functionality of a traditional monolithic satellite is fulfilled with a fractionated cluster of 

free-flying, wirelessly interconnected modules.  A purpose of this program was to 

demonstrate the potential benefits of a system with a built-in capability to respond to 

mid-mission requirement changes.  Four industry teams participated in Phase 1 of the F6 

project, and an emphasized component of the project was the development of value-

centric design methodologies to account for the full range of benefits (beyond cost 

savings) available through the fractionated spacecraft approach.  All four teams 

developed discrete event simulations to track cost, revenue, and performance metrics 

throughout simulated spacecraft lifecycles [30]-[33].  Some teams tracked net present 

value of the satellite investment (in cases where monetary revenue was an appropriate 

measure of satellite performance), while others combined performance benefits into an 

aggregate utility [33].  In order to simulate system operator behavior, the methods tended 
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to assume ad-hoc decision policies (e.g., rules regarding when to replace or upgrade 

satellites) while exploring the space of possible satellite designs.  The efforts of the F6 

industry teams represent a considerable step forward in the space industry’s ability to 

quantitatively consider benefits of intangible properties like flexibility. 

1.3.3. Flexible-Path Human Space Exploration (NASA) 

In 2009, the White House Office of Science and Technology Policy called for the 

formation of the 10-member Review of U.S. Human Spaceflight Plans Committee (better 

known as the Augustine Committee) to independently assess the current status and future 

direction of NASA’s human spaceflight program.  The committee’s final report was 

released in October 2009 [34].  One of the report’s major findings was that “no [human 

spaceflight] plan compatible with the FY 2010 budget profile permits human exploration 

to continue in any meaningful way” and that “it is possible to conduct a viable 

exploration program with a budget rising to about $3 billion annually in real purchasing 

power above the FY 2010 budget profile.” [34] 

One of the viable exploration programs the committee proposed was an 

innovative “flexible path” for human space exploration involving the development of 

systems to enable mission options for a variety of inner solar system destinations.  

Highlighted in the committee’s report is an example of how missions to the lunar 

vicinity, Earth-Moon and Sun-Earth Lagrange points, near-Earth objects, Mars vicinity, 

and the moons of Mars could be accomplished in consecutive years using similar 

architectural components (e.g., see Figure 4).  Figure 5 shows the committee’s mapping 

of possible paths from one destination to another.  Although only the green path in Figure 

5 was costed and evaluated during the committee’s study, a variety of other paths exist.  

Furthermore, changing political and economic conditions may make demand for 

particular paths higher than others at different periods in the future.  These observations 

are incorporated later in this thesis when human space exploration architecture selection 
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is used as a demonstration of the proposed decision support framework.  In particular, the 

aim of this example application is to recommend what human spaceflight architecture 

should be developed initially in order to allow low cost and high return in an environment 

of uncertain and changing mission demand. 

 

Figure 4.  Possible "Flexible Path" Mission Sequence. [34] 
 

 

Figure 5.  Possible Flexible Path Destination Sequences. [34] 
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1.4. Flexibility in Space System Design Decisions 

In short, flexibility is a property that is sought after by many space system 

decision-makers but also one that is intangible and difficult to define opertionally.  

Conceptually, flexibility is the capability to easily modify a system after it has been 

fielded in response to a changing environment or changing requirements.  In the space 

industry, where environment and requirement changes are prevalent and typically cannot 

be predicted with certainty, flexibility has been increasingly recognized as important to 

success.  This recognition has been exemplified recently by the fact that DARPA and 

NASA have proposed flexible spacecraft and flexible paths, respectively, as future 

program directions with substantial budgetary and resource implications. 

However, certain aspects of flexibility, such as its distinction from robustness in 

the requirement to consider a system’s ability to be modified over multiple time periods, 

present challenges to analysis and decision-making.  These challenges add to an already 

demanding task for space system analysts and decision-makers, involving the 

enumeration and modeling of many engineering options, understanding the technical, 

programmatic, and political implications of these options, and making system decisions 

that strike the proper balance among multiple objectives of differing priorities.  To assist 

in informing the substantially more complex decision facing the decision-maker 

considering flexibility, flexibility-related challenges are confronted and addressed 

comprehensively in this thesis, with the objective of enabling selection of the next-

generation space systems today that will be best able to adapt and perform in a future of 

changing environments and requirements. 
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CHAPTER 2 

REVIEW OF LITERATURE ON FLEXIBILITY 

Before describing this thesis’ proposed framework, it is helpful to review the 

history of thought on flexibility.  This chapter is divided into five sections:  The first 

reviews early notions of flexibility in the economics literature, leading to a brief 

discussion of decision tree analysis.  The second section reviews a common 

representation of flexibility in terms of next-period decisions within a state space.  The 

third section reviews relevant literature on flexible manufacturing systems, and the fourth 

reviews recent efforts to consider flexibility in aerospace engineering academia.  The 

latter two sections in particular contain examples that reflect the limited current practice 

of treating flexibility as a separate scalar metric in a larger decision-making process. The 

final section identifies this and other gaps in the present literature and state of the 

practice, establishing the motivation for the framework described in Chapter 3. 

2.1. Early Economic Notions of Flexibility 

Some of the earliest discussions on flexibility in a decision-making context 

originate in the economics literature.  As early as 1921, economist Frank Knight* 

observed that, compared to agricultural production, which requires commitment at the 

beginning of each growing season, the supply of manufactured goods “is more flexible 

over short periods of time” since these goods can be stored and the decision about 

whether to bring them to the market can be delayed. [35]  Sixteen years later, Hart 

recognized that the postponement of decisions until additional information becomes 

                                                        
* Among his accomplishments, Knight is known for his distinction between risk and uncertainty.  

Knight characterized risk as a situation with an uncertain result but certain probability density or 

mass functions, whereas Knightian uncertainty involves situations with both uncertain results and 

uncertain distributions. 
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available is a normal occurrence and preserves flexibility in a business plan. [36]  

However, he also recognized that this flexibility generally comes at a cost: 

… an entrepreneur who was obliged to make all his decisions as to volume of 

operations in the present would be unable to use fuller information as it came in, 

and would have to act on what was available. But the normal case is that the 

business man expects to be in receipt of additional information bearing on 

markets at most future dates long before he will have been forced to make all the 

decisions affecting output … The entrepreneur’s fundamental means of meeting 

uncertainty is the postponement of decisions till more information comes in – 

that is to say, the preservation of flexibility in his business plan. But flexibility 

involves costs … ordinarily a given production-schedule can be produced at 

lower cost if the entrepreneur has adapted his input to it well in advance than if 

plans are improvised. [36] 

In 1939, Stigler* developed economic thought on flexibility somewhat further.  

He too recognized that “flexibility will not be a ‘free good’” [37] but also illustrated how, 

in terms of marginal cost and average cost plots (see Figure 6), a flexible plant might 

have a smaller variability in average and marginal costs as a function of output compared 

to an inflexible plant.  Figure 6, from Stigler’s 1939 article, illustrates how at a nominal 

output F, a flexible plant (represented by the dashed line) would incur a higher average 

cost to produce each item than would an inflexible plant; however, at an off-nominal 

output A, the flexible plant would have lower average costs.† 

                                                        
* In 1982, Stigler would earn the Prize in Economic Sciences in Memory of Alfred Nobel. 
† In fact, in a competitive market, the inflexible plant would need to close since output A falls on 

a decreasing part of the marginal cost curve, meaning price per item (equivalent to marginal cost) 

would be less than average variable costs. [37]  
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Figure 6.  Marginal Cost (MC) and Average Cost (AC) Curves for an 
Inflexible Plant (solid line) and Flexible Plant (dashed line). [37] 

 
 
 

Twenty-five years later, in 1964, Koopmans reiterated the relevance of flexibility 

by observing that “almost all choices occurring in real life are sequential, ‘piece-meal,’ 

choices between alternative ways of narrowing down the presently existing opportunity 

rather than ‘once-and-for-all’ choices between specific programs visualized in full 

detail.” [38]  Koopmans introduced the notion of “partitioning of opportunities” which, as 

shown in Figure 7, modeled the narrowing of opportunities with time as a tree of 

opportunity nodes spaced at discrete times in the future.  Koopmans’ partitioning of 

opportunities resembles decision tree analysis, introduced in the late 1950s and 1960s 

within the broader field of decision analysis. [39]-[45] Decision tree analysis has been 

used substantially in management, economics, and engineering contexts (for examples, 

see [44]-[48]), typically for the cases in which a user’s objective is minimization or 
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maximization of the expected value of a single profit, cost, or utility metric.*  A common 

drawback is that the analysis (and even simply populating the tree’s probability inputs) 

can quickly become unwieldy as the number of options and time periods grow into a 

“decision bush” rather than a “decision tree” [47]-[48].  Also, typically the focus of 

decision tree analysis is on valuating existing options rather than recommending which 

options should be embedded into the system initially. [49]  Nevertheless, recognition that 

the options provided by flexibility can be visualized in a rapidly-expanding tree structure 

provides a useful model for discussion and thought.  It also hints that dynamic 

programming techniques, which are well-suited to optimizing paths within networks of 

nodes, may be particularly useful in analysis of flexibility.†  This idea is incorporated into 

the approach proposed in Chapter 4; however, first it is important to introduce a second 

important concept from the economics literature. 

 

Figure 7.  Visualization of Koopmans' Partitioning of Opportunities. [38] 
                                                        
* An irony of this approach is that, in assuming a single expected-value objective, traditional 

decision-tree analysis leaves little or no prerogative for the decision-maker to trade different 

objectives or risks against each other.  
† For example, one application of stochastic dynamic programming in the later economics 

literature involves consideration of an individual’s labor supply flexibility in order to maximize 

total discounted lifetime expected utility. [50] 
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2.2. The Two-Period State-Centric Notion of Flexibility 

A second and largely separate body of literature in economics and industrial 

engineering considers flexibility within a framework of period-to-period transitions 

between options in a state-space.  Epitomizing this view is a paper written in 1984 by 

Jones and Ostroy [51] which suggested, “Flexibility is a property of initial positions.  It 

refers to the cost, or possibility, of moving to various second period positions.”  Jones 

and Ostroy also suggested, “One position is more flexible than another if it leaves 

available a larger set of future positions at any given level of cost.”  This was 

mathematically formalized with Eqs. (1) and (2).  Eq. (1) defines G(a,s,α) as the set of 

next-period positions b attainable from position a at a cost c that does not exceed some 

value α, in the context of some state s of the operating environment.  Eq. (2) formalizes 

that position a is more flexible than a' (denoted by a > F a') if the set of positions 

attainable from a always contains the set attainable from a', excluding the zero-cost 

option to stay in a'. 

 ( ) ( ){ }αα ≤≡ sbacbsaG ,,:,,  (1) 

 ( ) ( ) ( )'\,,',,

   when'

agsaGsaG

aa F

αα ⊃

>
 (2) 

Thus, an important recognition in Jones and Ostroy’s work is that the relative 

flexibility of two positions is budget-dependent (or resource-dependent).  For an infinite 

budget, two positions would be equally flexible because each can reach the same set of 

[all possible] future positions.  At lower budgets, this may not be true. 

However, Eq. (2) has a limitation:  It defines relative flexibility only for the case 

where the set of second-period positions from a' is fully contained within the set of 

second-period positions from a.  As illustrated in Figure 8, no conclusion can be drawn if 

one of the sets is not fully contained within the other.  This is appropriate in principle, as 
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the positions available from a' that are not available from a may be very important (e.g., 

may perform particularly well in meeting a particular new requirement or environment), 

and it illustrates the need to consider more than cost when making decisions regarding 

flexibility. 

a a'
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G(a',s,α)\g(a')

 'aa F>

a

a'
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Figure 8.  Graphical interpretation of Jones and Ostroy's 
interpretation [51] of relative flexibility of posi tions. 

 
 
 

Other works which have discussed similar state-centric frameworks include 

Christian and Olds [52]-[53], Gupta and Rosenhead [54], Baykasoğlu [55], Silver and de 

Weck [56]-[57], and Mandelbaum and Buzacott [58].  Saleh’s visualization of 

Mandelbaum’s and Buzacott’s basic concept [49] illustrates the interesting difference 

from Christian and Olds’ and that of Jones and Ostroy in that the system’s allowable 

states are not necessarily the same between periods (i.e., that the definition of a system’s 

state space may change with time, which can complicate analysis).  In general, these 

frameworks and others of this class are helpful because they provide a visualization of the 

concept of flexibility itself (as opposed to the value of flexibility), which is intuitively 
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related to the number of options that exist for a system as time progresses.  However, 

unlike decision tree analysis (see Section 2.1), these frameworks become difficult to 

visualize and apply for decisions consisting of more than two periods.  In essence, the 

framework detailed later in this thesis combines the intuitive concept of flexibility 

provided by these state-centric frameworks with extended variants of the multi-period 

analysis available through decision trees detailed earlier.   

2.3. Flexible Manufacturing Systems 

A large body of literature exists within the manufacturing community on the 

selection and operation of flexible manufacturing systems.  A flexible manufacturing 

system, or FMS, can be defined as a computer-controlled production system capable of 

processing a variety of part types. [59]-[60]  These systems generally consist of computer 

numerical controlled (CNC) machines, loading and unloading stations, transportation 

systems for parts and tools, and computerized planning and control systems (e.g., see 

Figure 9). [59],[61]  Key concerns in this field revolve around (1) how to select the 

appropriate pieces of equipment and layout for an FMS and (2) how to optimally operate 

an already existing FMS, in both cases to allow the system to optimally (e.g., quickly and 

inexpensively) respond to changing production requirements. 

 

 

Figure 9.  Example setup of a small flexible manufacturing system. [59] 
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Unfortunately, the literature in this field tends to be highly specialized to the 

modeling of machining systems, and analysis approaches suggest modeling and 

optimization techniques specific to different types of equipment rather than one 

overarching methodology.  As a result, FMS measures of flexibility are numerous 

(including machine flexibility, operation flexibility, routing flexibility, process flexibility, 

product flexibility, volume flexibility, and more [59],[61]-[63]; one survey identifies 28 

different types [64]).  In addition, these flexibility metrics are often measured either on a 

Likert-like (e.g., 1-5) scale (e.g., see [64]) or on a scale whose physical meaning is 

difficult to interpret [55],[65].  This combination of disparate, qualitative metrics can 

complicate decision-making, an issue which has been recognized in the past.  For 

example, Gupta and Goyal [63] note, “a single all encompassing measure of MF 

[manufacturing flexibility] seems to be an evasive issue and such a measure is yet to be 

developed,” and Mohamed [62] and Cox [66] note, “the concept of flexibility is new, 

with no acceptable measurement, and consequently is treated on an abstract basis rather 

than a concrete basis.” [62] 

One interesting detail raised by the work of Tempelmeier [61] and Tetzlaff [59] is 

that dynamic programming techniques may be used to find the lowest-cost route within a 

network in which nodes are time periods and arcs are paths of fixed FMS configurations 

(see Figure 10).  However, an important limiting assumption behind this approach (and 

throughout the thesis of Tetzlaff [59]) is that the required production rate in each period 

is known in advance.  This highlights that the definition of flexibility posed in Section 1.2 

encompasses situations in which future changes in environments and requirements are 

precisely known in advance (i.e., the deterministic limit of the more general case where 

environments and requirements are not known in advance).  Thus, Tempelmeier and 

Tetzlaff illustrate the curious concept of flexibility with respect to deterministic 

requirement changes.  
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Figure 10.  The deterministic flexibility example of Tempelmeier and Tetzlaff [61].  
The optimal path through the network is shown by the dark path 0 → 1 → 3 → 4. 

 

2.4. Examples from Aerospace Engineering Academia 

While the aerospace industry’s consideration of flexibility in design of new space 

vehicles is largely reflected by the examples provided in Section 1.3, the aerospace 

engineering academic community has recently proposed a variety of additional 

techniques. 

Ross, Viscito, and Rhodes [67]-[68] propose the analysis of flexibility in terms of 

epochs and eras, where an epoch is a time period of “fixed context and fixed value 

expectations” [68]  and an era is a time-ordered sequence of epochs (i.e., one possible 

timeline of expectations).  Once an era is defined, Ross and Viscito [67] propose 

quantifying flexibility with a metric called value-weighted filtered outdegree (VWFO) 

defined in Eq. (3).  In this equation, uj
k+1 indicates the utility of system design option j in 

epoch k+1 (i.e., the next epoch), and Arci,j
k is a binary 0 or 1 depending on whether the 

transition is possible for a given budget (or “filter”).  As a result, systems with many 

high-utility next-epoch (next-period) options and few low-utility next-epoch options 

receive high VWFO scores.  However, this metric has limitations.  First, the use of the 

signum function in the summation of Eq. (3) permits a system design with many high-
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utility options and many low-utility options to have a VWFO indistinguishable from one 

with only medium-utility options.  Second, VWFO is computed from epoch to epoch, 

making it difficult to assess for an entire era.  Finally, the metric convolves the notion of 

flexibility with the value (or utility) of that flexibility, preventing the two from being 

distinguished.  However, the metric contributes a clear example employing a two-period 

state-centric concept of flexibility similar to that of Jones and Ostroy (see Section 2.2), 

including use of a budget constraint. 
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More recently, in 2010 Olthoff, Cunio, Hoffman, and Cohanim [69] proposed a 

seven-step procedure for applying flexibility, in an attempt to develop a practical 

example of designing flexibility into a small guidance, navigation, and control testbed.  

The group identified two strategies for flexibility, namely modularity and maximum 

overhead capacity (i.e., system margin).  Limitations exist in that, at present, the group 

does not appear to distinguish flexibility from robustness, and development of the testbed 

appears to have occurred in parallel with development of the flexibility decision 

procedure.  As a result, the example application used the decision procedure in retrospect 

to justify decisions already made, and the procedure to date lacks detail on the tools 

needed to fully inform decision-making. 

Substantially greater depth on the nature and complexity of the flexibility problem 

was covered in theses by Saleh [48] and later Mark [70] and Nilchiani [71].  In 2002, 

Saleh [48] extensively motivated the need for flexibility in space systems and examined 

its definition, in particular contrasting it against the more static property of robustness.  

Specific examples were provided to illustrate the need for flexibility in modern space 

systems, including instances of historical requirements change, market demand change, 

and obsolescence.  Saleh applied techniques from decision tree and real options analysis 
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to demonstrate the existence of net-present-value-optimal design lifetimes for revenue-

generating satellites and used these techniques further to quantify the value of satellite 

servicing. 

In 2005, Mark [70] further explored designing flexibility into systems for the 

application of an unmanned aerial vehicle, proposing to consider flexibility in the context 

of platforms and frames (where the platform is the set of common elements between 

modified designs, and the frame is the set of changed elements).  Mark proposed to 

define flexibility as “the ratio of performance enhancement (output) to the cost and time 

required to realize such an enhancement (inputs)”. [70]  Later in 2005, Nilchiani [71] 

proposed a 12-step process for assessing the value of flexibility in a space system, which 

included using decision trees as well as creating a “flexibility tradespace” for visualizing 

alternatives’ cost-revenue (and/or cost-benefit) trades one period into the future.  

Nilchiani also addressed how the proposed methodology could be integrated into a multi-

attribute trade-space exploration in a merged methodology named FlexiMATE. [71] 

In 2009, Lim [72]-[73] also proposed a general approach to design evolution, 

focusing on aircraft and using example applications of evolving the F/A-18 Hornet 

fighter as well as a simpler cantilever beam design.  Lim adopted the framework of 

stochastic programming with recourse in order to optimize the initial design of a system 

while probabilistically considering events that could unfold one period in the future.  Lim 

suggested a combination of deterministic scenario-based optimization, stochastic 

programming, and interactive decision support tools to design evolvable systems using a 

9-step process named EvoLVE. 

The work of Christian and Olds [52]-[53] is another recent example of aerospace 

literature considering flexibility.  In their work, Christian and Olds describe flexibility in 

terms of a system’s ability to move between different end states in a lawful state space 

(similar to the two-period state-centric framework described in Section 2.2).  An example 

application evaluates two competing human exploration architectures in terms of their 
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ability to easily achieve extended lunar missions, if future requirements dictate such a 

need.  Three state variables are defined to describe the performance requirements of the 

extended lunar mission,* and a Difficulty Scale for Evolvability Analysis (DSEA) is 

formulated to permit expert judgement to rate the difficulty (on a 1-3-9-27-81 power 

scale) of evolving each architecture to meet various second-period performance states.  

The authors observed that “a single metric cannot capture the sensitivity of an 

architecture’s capability to evolve” since that capability depends on the final evolved 

state that is desired.  For example, architecture A may be able to easily adapt to 

requirement x but not requirement y, while architecture B may be able to easily adapt to 

requirement y but not requirement x.  In such a scenario, it cannot be said that either A or 

B is more flexible (or evolvable, or adaptable) unless the future requirement is known a 

priori. 

In 2006, Silver and de Weck [56]-[57] proposed an analysis of evolvability based 

on expansion of a network of system operating and switching costs through several time 

periods.  A set of particular deterministic exogenous demand scenarios was assumed, and 

an optimizer was used to find the least-cost path through the network for each scenario.  

Silver and de Weck refer to the method as a time-expanded decision network (TDN) and 

apply it to selection of an example NASA heavy-lift launch vehicle.  One notable 

limitation to the method is its single-objective and deterministic solution approach:  Since 

the exact present and future demands of each scenario are known in advance to the 

decision-maker (or optimizer), paths through the time domain are able to fully specify 

any optimal solution.  No explicit consideration is given to the possibility that a decision-

                                                        
* Contrary to Jones and Ostroy, whose state-space “positions” appear to refer to future options, 

the state space of Christian and Olds is defined by the performance of those future options.  For 

reasons that should become apparent in Section 4, this thesis primarily supports the view of Jones 

and Ostroy.  However, as will be shown, incorporation of future requirements into the state space 

is required in order to apply the Markov decision process approach. 
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maker will make choices in part to hedge against uncertain future events.  In this sense, 

the approach is similar to the deterministic flexibility considered by Tempelmeier and 

Tetzlaff (see Section 2.3). 

A final note should be made on recent work from Daniels, Tracey, Irvine, 

Schram, and Paté-Cornell [74], presented in March 2011 and developed independently of 

the present thesis.  Motivated by recent DARPA efforts toward developing value-centric 

frameworks to address the business case for fractionated spacecraft, the authors propose 

heuristic and dynamic-programming-optimized decision rules for the operation of future 

fractionated spacecraft.  Using the example of a fractionated 3-module weather satellite, 

the work simulated the state of the satellite and support systems (e.g., which modules 

were functional, whether spares existed on the ground) and optimized the procurement or 

launch of new modules in order to achieve the highest expected net present value under a 

set of assumptions to assign a dollar value to incoming weather data.  While the authors’ 

goals differ substantially from those of the present thesis (e.g., they do not seek to 

operationally define or measure flexibility, nor are they interested in informing initial 

system design decisions), their use of Markov decision processes from the operations 

research community is common. 

This set of literature from aerospace academia is listed in order in Table 1 and 

summarized in terms of several important characteristics that have arisen in the preceding 

discussion.  Each element of the table indicates whether each work either 

implemented/provided (�), recognized (�), or did not address (no mark) each of the six 

characteristics represented by the columns: 

Beginning with the first column, it is noted that many of the aerospace works 

surveyed here have arisen as a result of efforts to provide further definition to the concept 

flexibility, and some of these works have explored this topic in great depth.  As Table 1 

indicates, six of these nine works provide definitions for flexibility (or, in one case, the 

equivalent term evolvability).  Fewer of these works recommend metrics for flexibility, 
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although in some cases the metrics of others are recognized in literature reviews.  Also in 

terms of this second category, it is worth noting that neither of the two works that provide 

objective metrics for flexibility clearly distinguish flexibility from its value. 

The third column indicates whether a work considered trades among multiple 

distinct objectives.  In general, this topic tends to be covered unsystematically or not at 

all among present works on flexibility, perhaps in part because much of the aerospace 

flexibility literature has focused on application to systems with priced services (cf. 

Daniels, Tracey, Irvine, Schram, and Paté-Cornell [74], Nilchiani [71], and Saleh [48]).  

In cases where multiple decision-maker objectives are considered, few, if any, mentions 

are made of efforts to seek Pareto-optimal trades among these objectives to ensure that 

the decision-maker is making an objectively good decision. 

The fourth column indicates whether a work utilizes or considers stochastic 

models, and the fifth indicates whether a work considers decisions at multiple future 

periods.  With the exception of the very recent work of Daniels, Tracey, Irvine, Schram, 

and Paté-Cornell [74], note that implementation of these two characteristics is mutually 

exclusive.  This major limitation reflects the fact that posing a stochastic single-future-

decision problem and a deterministic multiple-future-decision problem are each relatively 

simpler than posing a stochastic multiple-future-decision problem.  However, 

overcoming the complexity of solving this more realistic problem brings with it 

corresponding benefits. 

The final column indicates whether a work implements or proposes a framework 

by which an engineer or decision-maker is intended to make an initial system decision.  

In many cases, such a framework is the intent of the work, but in some cases (e.g.,  

Daniels, Tracey, Irvine, Schram, and Paté-Cornell [74], Saleh [48], and Ross, Viscito, 

and Rhodes [67]-[68]) it is not. 

The final row in Table 1 indicates that it is the intent of the present thesis to 

contribute toward each of the key characteristics that have been here identified.  More 
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importantly, however, it is the intent of this present work to do so in an integrated 

fashion.  In considering all aspects of this problem simultaneously, it is intended that this 

thesis will contribute not only improvements in previous works’ considerations of 

individual aspects of the flexibility topic, but that it will contribute a more coherent 

understanding of flexibility as a whole. 

 
 
 

Table 1.  Summary of Flexibility-Related Literature in Aerospace Academia. 
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� (green) = Implemented or Provided 
� (orange) = Recognized 
No Mark (red) = Not Addressed 
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2.5. Gaps in the Flexibility Literature 

In summary, this chapter has surveyed a broad set of literature spanning 

economics, industrial and systems engineering, and aerospace engineering.  In 

combination with the state of the practice in industry described in Chapter 1, certain gaps 

are evident in current thinking on flexibility and current implementation of methods to 

consider this property in system design: 

 
� In much of the literature (esp. cf. Sections 2.3 and 1.3.1), there appears a 

tendency for engineers to consider flexibility as a system-dependent scalar 

quantity.  This concept has driven the invention of numerous scalar measures 

for flexibility that are often subjective and expressed on a scale with no units 

or clear physical interpretation.  Further, when or if these measures are used in 

trade studies, they imply that flexibility is a property of the system separate 

from all others (such as cost and performance measures).  However, the 

decision-maker likely has little interest in flexibility for the sake of 

flexibility:  He or she cares about flexibility primarily because of cost and 

performance benefits it may enable in the future. 

 
� Few existing methods for considering flexibility look at decisions more than 

one period in the future.  While considering one future period is an important 

first step, it is only one period less myopic than the traditional single-period 

horizon.  If a system or program is to be operated for many decades (as is 

often the case in the aerospace industry), the prudent decision-maker cares not 

only to consider options for the first time that requirements or environments 

change, but also for many subsequent changes. 

 
� Furthermore, of methods that do consider implications of flexibility more 

than one period into the future, few utilize stochastic models.  Some 
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methods assume a deterministic schedule of future requirements, while others 

select a handful of deterministic scenarios upon which to evaluate the system 

of interest.  However, the probability of any one scenario occurring may be 

nearly (or, if continuous random variables are involved, exactly) zero. 

Without an understanding of the underlying probabilities of transition between 

demand or requirement environments, it may be problematic to assume a 

handful of scenarios can properly represent the entire space of possible 

futures. 

 
� While some existing methods (such as decision trees) permit valuation of the 

avenues of flexibility provided by a system, they typically operate by 

assuming a single expected-value objective function.  In reality, engineering 

design involves trades among multiple cost and performance metrics as well 

as measures of dispersion for these parameters when subject to a 

stochastically changing environment. 

 
� Finally, the flexibility literature contains little discussion about the policies 

that flexible system operators should use to decide whether to exercise the 

options provided by flexibility.  Some appear to assume that the appropriate 

policy is to always modify the system to precisely meet the anticipated 

demand or requirement.  However, this is a very special case, and it may be in 

the program’s best interests not to meet this demand if it is likely to be 

transient,* or to over-perform if doing so is likely to boost performance in a 

later period of high demand.  The policy by which the system will be operated 

is an important part of system design, especially for a flexible system.  It 

would be imprudent to design a flexible system and “throw it over the fence” 

                                                        
* For example, in 1983 Bernanke illustrated a class of stochastic problem in which optimal 

investment must involve at least one period of no investment at all. [75]  
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to the operators with no guidance on how or when to exercise the options that 

were so carefully embedded. 

 
In summary, today there exists no quantitative, stochastic, multi-objective, 

and multi-period framework for integrating flexibil ity into space system design 

decisions.  It is such a framework that this thesis proposes.  It is fully recognized that in 

order to be practicable, this framework must (1) originate from an intuitive and easily 

communicable operational understanding of flexibility, (2) provide enough structure and 

tools to guide analysis but not so much as to lead to “process tunnel vision” for the 

engineer in the field, (3) require a reasonable number of inputs, and (4) provide for clear 

interpretation of results.  To accomplish this, the framework draws from literature and 

tools from operations research, engineering, and economics in order to operationally 

define flexibility and transform its consideration into a tractable problem of stochastic 

optimal control. 
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CHAPTER 3 

OBJECTIVES AND CONTRIBUTIONS 

The contributions of this thesis largely address the gaps in the present literature 

identified in Section 2.5.  These gaps suggest that at least four components are critical for 

a decision framework that integrates flexibility into space system design decision-

making:  First, a stochastic model for the evolution of system demand over multiple 

future time periods must be developed; such a model must describe what a system may 

be expected to accomplish (or what a decision-maker may be rewarded for performing) in 

the future.  Second, a set of candidate system designs or configurations must be 

developed that is valid for multiple time periods in the future; this describes the future 

options available to the decision-maker and is suggested by the two-period state-centric 

notion of flexibility in the literature.  Quantitative performance measures are required 

to evaluate how well the configuration that is fielded at a given time fulfills the demand 

or mission requested of it; in some scenarios, multiple performance measures may be 

required to capture trades among multiple objectives.  Finally, since decisions regarding 

which system(s) to develop and field next must be made at multiple future time periods, a 

process must exist for providing sequential decision support in an easily interpretable 

manner.  Since the framework developed in this proposal is intended to be used by 

decision-makers facing an immediate system selection problem, of particular interest is to 

aid in informing initial system selection.  These components are illustrated graphically 

in Figure 11. 
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Figure 11.  Critical components for decision frameworks addressing gaps in present 
flexibility literature. 

 

Guided by the present gaps in the literature and the critical components above, 

this thesis develops a particular set of steps that engineers and decision-makers in the 

future can follow not only to better understand modes and implications of flexibility for 

their particular engineering systems, but also to identify best possible initial system or 

architecture designs.  Considering flexibility in a way that addresses these gaps in current 

methods will enable the selection of systems today, tailored to the decision-maker’s 

budget and preferences, that will be best able to perform when subject to a future of 

changing environments and requirements.  To accomplish this, core objectives and 

contributions of this thesis include: 

 
� Formulation of the two-period state-centric notion of flexibility (see Section 

2.2) as a formal configuration-state-based concept for space system analysis 

and design. 
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� Formulation of a state-centric stochastic multi-period model capable of 

describing evolution of the demand environment in which an engineering 

system operates. 

� Incorporation of system modification policy into initial system selection by 

using the above formulation to pose integration of flexibility in design as a 

solvable sequential decision-making problem. 

� Implementation and demonstration of the utility of solving for the multi-

objective (Pareto-) optimal sequential decisions enabled by flexibility, 

including: 

� Optimal “open loop” sequential system configuration paths, in which 

future system configurations are changed according to a preset 

schedule. 

� Optimal “closed loop” system configuration policies, in which future 

system configurations are chosen based on a combination of the 

current configuration and current demand environment.  Enabling 

tools from the operations research community are the formulation and 

probabilistic dynamic programming solution techniques for Markov 

decision processes.  In addition, Appendix A contributes a new 

heuristic technique for identifying concave portions of Pareto frontiers 

in dynamic programming problems. 

� Systematic use of multi-objective (Pareto-) optimal configuration paths and 

policies to recommend initial system configuration decisions. 

� Application and illustration using the examples of (1) communications and 

reconnaissance satellite system selection, (2) multiple- or distributed-payload 
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satellite selection, and (3) NASA human space exploration architecture 

selection.  The latter two examples in particular use this thesis’ framework to 

provide practical insights regarding current problems of interest to the space 

industry.  Also, Appendices B and C include contributions of a human space 

exploration transition cost model and Markov chain expert judgement 

elicitation implementation that permit the NASA example to be executed.   

The remainder of this thesis is organized as follows:  Chapter 4 introduces the 

five-step framework central to the thesis and extensively establishes its theoretical basis.  

Chapter 4 also includes a demonstration of the framework for a simple example in which 

a small government must decide upon whether to develop and field 0, 1, or 2 

communications or reconnaissance satellites at various future time periods.  Chapter 5 

applies the newly developed framework to a more current fractionation-related question 

of whether to distribute payloads among multiple free-flying modules for an Earth-

orbiting satellite.  Chapter 6 applies the framework to a current NASA question of what 

human spaceflight architecture decisions will result in maximum long-run return for 

minimum long-run cost.  The latter example introduces several modeling complexities to 

the framework, demonstrating significant extensibility beyond the simple examples of 

Chapters 4 and 5.  Chapter 7 concludes with a summary and suggestions for future work. 
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CHAPTER 4 

THEORETICAL BASIS FOR A MARKOVIAN STATE-SPACE 
FLEXIBILITY FRAMEWORK 

Based on the gaps in the current literature observed in Chapter 2, Chapter 3 

established that the three rungs of Figure 11, plus the quantitative performance measures 

linking the bottom two rungs of the figure, are critical for a decision framework that 

integrates flexibility into space system design decision-making.  To accommodate these 

requirements, this chapter presents a framework consisting of five basic steps, outlined in 

Figure 12.  First, system configuration options are identified and costs of switching from 

one configuration to another are compiled into a cost transition matrix.  Second, 

probabilities that demand on the system will transition from one mission to another are 

compiled into a mission demand Markov chain.  Third, one performance matrix for each 

design objective is populated to describe how well the identified system configurations 

perform in each of the identified mission demand environments.  Fourth, possible future 

sequences of system configurations are simulated and sequences that are Pareto-optimal 

in terms of the decision-maker’s objectives are identified.  In a complementary approach, 

the system decision problem is formulated as a multi-objective variant of a Markov 

decision process, and Pareto-optimal decision policies are identified.  Finally, the paths 

and policies from the latter step are synthesized into a set of data to inform initial system 

selection. 

 



36 

 

Figure 12.  Five major steps of this thesis’ framework. 

 

4.1. Step 1:  Define Configuration Options and the Cost Transition Matrix 

As noted in Section 2.2, in 1984 economists Jones and Ostroy [51] suggested, 

“Flexibility is a property of initial positions.  It refers to the cost, or possibility, of 

moving to various second period positions.”  Thus, Step 1 of this proposed framework 

begins by defining:  What are the possible “positions” of an engineering system? 

4.1.1. Defining the Configuration Space 

This framework proposes that the “positions” of an engineering system are its 

possible configurations, or its possible design options.  This choice for the position 

definition has the reasonable implication that given enough resources, the engineer or 

decision-maker can choose to field any particular system configuration (or be at any 

particular “position”) in the future. 
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What precisely defines such a set of configurations is application-specific but may 

be guided by the fact that systems, by definition, consist of combinations of lower-level 

components or characteristics.  In the example of an airplane, each system configuration 

might be defined by a combination of characteristics such as wing sweep angle and 

aspect ratio, engine type, and fuselage diameter.  In the case of a satellite constellation, 

each configuration might be defined by characteristics like number of satellites, number 

of orbit planes, angular spacing between satellites in a plane, and the inclinations and 

right ascensions of the ascending nodes of the orbit planes.  In other words, each system 

Si in a set of systems {Si, i = 1, 2, …, N} may be defined by a set of design variables {xk, 

k = 1, 2, …, M}, where N is the number of candidate systems under consideration and M 

is the number of design variables required to uniquely define each system.  Written 

concisely, Si is defined by the ordered M-tuple (x1, x2, …, xM). 

Thus, the available configurations for an engineering system may be considered to 

comprise a configuration state space that can be visualized as a set of design points in a 

hyperspace in which each dimension represents a particular design variable or design 

characteristic.  A simple two-dimensional example is illustrated in Figure 13.  Here, the 

configuration state-space consists of five systems of interest defined by particular 

combinations of values of the design variables x1 and x2.  An important concept conveyed 

by this visualization is that different discrete systems may not be equally distinct from 

each other.  For example, in Figure 13 it is clear that S1, S2, and S3 are physically quite 

alike in the sense that their defining design variables have similar values; in contrast, S4 

and S5 lie in different areas of the configuration state space and are physically different.  

Thus, within the configuration state space, distance (euclidean or otherwise) is an 

indicator of the physical similarity of two systems. 

Unfortunately, in many cases, the design variables may not have cardinal or even 

ordinal properties.  For example, one design variable for a satellite might be the type of 

battery used for energy storage (e.g., nickel-cadmium, nickel-hydrogen, or lithium-ion 
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batteries).  In such cases, engineering judgement may still suggest that some of the 

options are more alike than others and at least a qualitative notion of distance may still 

exist.* 
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S5

S4

x1

x2 S1

S2

S3

S5

S4

S1

S2

S3

S5

S4
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Figure 13.  Example configuration state space in which five 
systems are defined by two design variables. 

 

From where do the discrete systems of the configuration state space originate?  In 

some applications, an engineer may be faced with a problem in which many candidate 

configurations have already been defined.  In others, a systematic process may be 

required to identify these configurations.  This is a common early step in multi-attribute 

decision-making (MADM) methodologies.  Since the combinatorial space of alternative 

system configurations can be quite large, previous works have proposed the use of 

morphological matrices as a brainstorming tool (and occasionally as a tool to enumerate 

the entire combinatorial space) [17],[76]-[79].  

An example morphological matrix is shown in Table 2.  Each row denotes a 

particular design variable xk for the system, and possible discrete values for each variable 

                                                        
* In many cases, this qualitative notion of distance might be rigorously quantified by defining 

each of the nominal (non-ordinal and non-cardinal) options in terms of their own internal design 

variables. 
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are listed as options.  A single configuration Si is defined once one value is selected from 

each row.  Thus, if values for each design variable may be selected independently, the 

total number of states Ntotal in the configuration state space is the product of the 

cardinality of each design variable’s set of possible discrete values.  This relationship is 

expressed via Eq. (4). 

This total number of states can be quite large, depending on the number of design 

variables considered and the number of values each may take.  One way to restrict the 

architectures considered to a representative but manageable set is to use the 

morphological matrix to assist in brainstorming themed configuration options [77].  In 

this case, the number of configurations N considered in the analysis will be less than full-

factorial Ntotal. 

Table 2.  Example Form of a Morphological Matrix. 

Design 
 Variable 

Discrete Values 
Number of 

Discrete Values 

x1 x1,1 x1,2 x1,3 x1,4   | x1 | = 4 

x2 x2,1 x2,2 x2,3    | x2 | = 3 

x3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 | x3 | = 6 
·       · 
·       · 
·       · 

xM · · · · · · | xM | 

 

 ∏
=

=

M

k
ktotal xN

1
 (4) 

4.1.2. Defining the Cost Transition Matrix 

Recalling that flexibility “refers to the cost, or possibility, of moving to various 

second period positions” [51], to proceed it is necessary to incorporate cost information 

in addition to information on the composition of each system configuration.  For 

engineering systems, this cost typically consists of two temporally distinct components:  

recurring and nonrecurring costs.   
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4.1.2.1. The Development Cost Transition Matrix 

The cost information most central to the concept of flexibility falls in the category 

of nonrecurring costs.  These costs, which typically account for the one-time costs 

required to develop a new engineering system, are related to the resources required to 

develop the system given existing components and technologies.  In other words, these 

are the transition costs incurred due to a switch from one configuration to another.  As a 

result, these switching costs are naturally defined in a pairwise manner.  This thesis 

proposes the definition of a matrix Cdev where the elements cdev,ij are the costs incurred to 

develop configuration j for the next time period given that the configuration in the current 

period is i.  Table 3 illustrates the format of such a matrix.   

 
Table 3.  Example Format for a Cost Transition Matrix C. 

  To Configuration 

 S1 S2 S3 · · · SN 

S1 c1,1 c1,2 c1,3 · · · c1,N 

S2 c2,1 c2,2 c2,3 · · · c2,N 

S3 c3,1 c3,2 c3,3 · · · c3,N 

· · · · ·   · 
· · · ·  ·  · 
· · · ·   · · 
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SN cN,1 cN,2 cN,3 · · · cN,N 

 

Costs in this matrix may be calculated element-by-element using available 

parametric models or other cost estimation techniques.  However, in some cases, 

especially when large numbers N of possible configurations are under consideration and 

N² elements must be populated, this technique may become time-prohibitive.  In such 

cases, simplifying approximations for these transition costs may be warranted.  For 

example, consider a configuration state space in which each system Si is defined by a set 

of binary design variables.  That is, Si = [x1 x2 … xM]T, where xk ∈ {0,1} ∀ k.  Let each 

design variable xk denote whether or not (xk = 1 or xk = 0, respectively) independent 

subcomponent k of the system has been developed and exists for system Si.  Let the cost 
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of developing each of the M independent subcomponents be defined by the M elements of 

a column vector R.  In this case, Eq. (5) provides a simple formula for computing costs 

for each element cdev,ij of the matrix.  Note that in Eq. (5), the open circle (◦) denotes the 

Hadamard entrywise product operator and the dot (·) indicates the dot product operator; 

in short, this equation simply adds the costs of developing each of the previously 

undeveloped components. 

 ( )( ) ( )jijijijdev SSSRSSRc
r

o

rrrrrrr

−⋅=−⋅= 0,max,  (5) 

Note that Eq. (5) inherently assumes that the retirement of subcomponents in the 

transition from Si to Sj has a negligible cost.  If this assumption is unrealistic and 

subcomponent retirement (or shutdown) costs can be defined by the M elements of a 

column vector D, the formula may be modified as in Eq. (6). 

 ( ) ( )jiijijijdev SSSDSSSRc
r

o

rrrr

o

rrr

−⋅+−⋅=,  (6) 

In the case of Eq. (6), for example, the number of data elements that must be 

provided by a cost estimation analyst has been changed from N² to 2M.  As Figure 14 

helps to illustrate, typically this change serves to substantially reduce the pieces of data 

that a cost analyst must provide:  For instance, in the case where a system is defined by M 

= 5 subcomponents, Eq. (6) is more efficient as long as more than N = 3 configurations 

are under consideration.  If shutdown costs are not relevant, Eq. (5) is more efficient as 

long as more than N = 2 configurations are under consideration.  Generally, N will be 

substantially larger than these break-even values if a significant trade-space exploration is 

to be conducted.  In fact, if the full space of possible configurations is to be explored for 

this binary example, then by definition N = 2M . 
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Figure 14.  The M-N space, indicating for the binary subcomponent scenario 
regions in which it is more efficient to use Eqs. (5) or (6) rather than 

populate the cost matrix element by element. 
 

It should be emphasized that this binary subcomponent example is intended only 

to illustrate one straightforward method for populating the development cost transition 

matrix from more basic pieces of information.  Extensions to this basic form are clearly 

possible (for example, if the subcomponents are not independent and having developed 

one for the current time period offsets costs of developing another for the next time 

period).  For the remainder of this thesis, no assumptions are made regarding how the 

development cost matrix is populated. 

4.1.2.2. The Recurring Cost Transition Matrix 

A second component to transition costs is the recurring cost, which typically 

accounts for the production and operation of a fully developed system.  These costs too 

can be represented in an N × N matrix, and can be decomposed into two lower-level costs 

of production and operation. 

If we extend the binary subcomponent model and define a configuration by a set 

of nonnegative integer-valued design variables, we have Si = [x1 x2 … xM]T, where xk 
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∈ {0, 1, 2, …} ∀ k.  Such a representation would be useful in describing, for example, an 

engineering system consisting of multiples of subcomponents.  In this case, the design 

variables of Si directly describe the number of subcomponents that must be produced in 

order to produce the system by the next time period.  If subcomponents in existence 

during the current period cannot be effectively reused into the next period, then 

production costs become a function only of the configuration decision for the next period, 

or the column of the cost matrix.*  In this case, the production component of the recurring 

cost transition matrix can be represented by the N × N matrix Cprod, described by Eqs. (7)-

(8).  Note that Q is a column vector of per-unit production costs, with dimensions M × 1 

and individual elements qk.  Equation (7) applies linear algebra and assumes no learning 

effects during production, while Eq. (8) demonstrates how learning effects can be 

incorporated using the Wright learning curve model with learning percent g [80].  Note 

that sj,k denotes individual element k of column vector Sj. 

 [ ]N
T

N

prod SSSQC
r

K
rrr

M 21

1
1

1
1

×











=  (7) 

 ∑
=

+=
M

k

g
kjkijprod sqc

1

1
,,  (8) 

If it is assumed that the configuration under development in the current period is 

to become the operational system in the next period, then operations costs can be 

accounted for through an N × N matrix Cops in which each column is identical.  

Unfortunately, in many scenarios it is unrealistic to simply add operations costs for each 

subcomponent of the configuration; for example, operations costs may be nonlinear 

functions of the total system investment cost.  In this case, per-period operations costs 

                                                        
* If this is not the case, an extension to Eqs. (7)-(8) to include dependence on the rows is possible.  
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cops,i for each configuration i must be estimated with application-specific tools and 

converted to Cops via Eq. (9). 

 [ ] [ ] NNiopsops cC
××

⋅⋅⋅= 11, 11  (9) 

The recurring cost matrix is simply the sum of the production and operations cost 

matrices, as in Eq. (10). 

 opsprodrec CCC +=  (10) 

4.1.2.3. The Total Cost Transition Matrix 

With nonrecurring (development) and recurring (production and operation) costs 

now defined in matrix format, the two can be added (as in Eq. (11)) to form the total cost 

transition matrix C.  This matrix accounts for all costs incurred over the subsequent time 

period as the result of the decision to transition from developing system configuration Si 

to developing system configuration Sj. 

 recdev CCC +=  (11) 

4.1.3. Analyzing the Cost Transition Matrices 

The data represented by the cost transition matrices can be analyzed, visualized, 

and related to flexibility in several useful ways. To illustrate, this section will assume a 

simple, notional scenario in which a government of a small country is contemplating 

options for government satellite systems to develop within the next eight years.  Two 

different types of satellites are under consideration:  communications satellites and 

reconnaissance satellites.  Producing up to two of each satellite is considered feasible.  In 

this case, a “configuration” will be defined by the number of communications satellites 

(x1 ∈ {0,1,2}) and number of reconnaissance satellites (x2 ∈ {0,1,2}) to be developed; 

that is, Si = [x1 x2]
T with i ∈ {1,2,3,4,5,6,7,8,9} as noted in Table 4. 
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Suppose the cost of development is $50 million for a communications satellite 

and $300 million for a reconnaissance satellite, and that each of these costs is 

independent of whether the other satellite has been developed.  Shutdown costs will be 

neglected.  In this case, Eq. (5) can be applied directly, with R = [50 300]T and with the 

resulting Cdev matrix shown in Table 5. Similarly, assume that production (including 

launch) costs are $100 million for the communications satellite and $200 million for the 

reconnaissance satellite, and that learning effects are negligible such that Q = [100 200]T 

and Eq. (7) can be used directly to calculate the production costs in Table 4.  Finally, 

assume that operations costs are a nonlinear function of the total development cost of the 

system, such that per-period operations costs are as given in Table 4.  The resulting 

matrices Crec and C are shown in Table 6 and Table 7, respectively. 

 
Table 4.  Configuration Definitions for Satellite Example. 

Config. 
ID No. 

(i) 

Number of 
Communications 

Satellites (x1) 

Number of 
Reconnaissance 
Satellites (x2) 

Production 
Costs (cprod,xi), 

$M 

Operations 
Costs (cops,ix), 
$M / period 

1 0 0 0 0 
2 0 1 200 310 
3 1 0 100 133 
4 1 1 300 372 

5 0 2 400 392 
6 2 0 200 191 
7 1 2 500 449 
8 2 1 400 412 
9 2 2 600 486 

 

Table 5.  Cdev for Satellite Example.  Costs are in millions of dollars. 

  To Configuration 
 1 2 3 4 5 6 7 8 9 

1 0 300 50 350 300 50 350 350 350 
2 0 0 50 50 0 50 50 50 50 

3 0 300 0 300 300 0 300 300 300 
4 0 0 0 0 0 0 0 0 0 
5 0 0 50 50 0 50 50 50 50 
6 0 300 0 300 300 0 300 300 300 
7 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 
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9 0 0 0 0 0 0 0 0 0 
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Table 6.  Crec for Satellite Example. Costs are in millions of dollars. 

  To Configuration 
 1 2 3 4 5 6 7 8 9 

1 0 200 100 300 400 200 500 400 600 
2 310 510 410 610 710 510 810 710 910 

3 133 333 233 433 533 333 633 533 733 
4 372 572 472 672 772 572 872 772 972 
5 392 592 492 692 792 592 892 792 992 
6 191 391 291 491 591 391 691 591 791 
7 449 649 549 749 849 649 949 849 1049 
8 412 612 512 712 812 612 912 812 1012 
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9 486 686 586 786 886 686 986 886 1086 

 

Table 7.  C for Satellite Example. Costs are in millions of dollars. 

  To Configuration 
 1 2 3 4 5 6 7 8 9 

1 0 500 150 650 700 250 850 750 950 
2 310 510 460 660 710 560 860 760 960 
3 133 633 233 733 833 333 933 833 1033 
4 372 572 472 672 772 572 872 772 972 
5 392 592 542 742 792 642 942 842 1042 
6 191 691 291 791 891 391 991 891 1091 
7 449 649 549 749 849 649 949 849 1049 
8 412 612 512 712 812 612 912 812 1012 F
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9 486 686 586 786 886 686 986 886 1086 

 

4.1.3.1. Development Cost Transition Matrix 

A helpful visualization of the switching or development cost data in Table 5 is 

provided in Figure 15.  In this figure, each vertical line indicates the range of switching 

costs from a given configuration, defined by the rows of Table 5.  Solid dots indicate 

minimum and maximum values, open circles indicate mean values, and triangles indicate 

median values.  Each vertical line is located horizontally at the cost needed to develop the 

configuration from scratch (in this case, Config. 1).  For example, if no system currently 

exists and a decision-maker chooses to develop Config. 2 (involving only the 

reconnaissance satellite), a cost of $300 million is incurred (on the x-axis), and the cost to 

switch configurations in the future varies from $0 to $50 million, depending on which 

future configuration is chosen.  In contrast, if the decision-maker instead chooses to 
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develop Config. 3 (involving only the communications satellite), a cost of $50 million is 

initially incurred, and the cost to switch configurations in the future varies from $0 to 

$300 million.  Thus, Figure 15 empirically confirms the intuitive trend that future 

switching costs can often be reduced by earlier investments.  More abstractly, this 

confirms the early observations of Hart [36] and Stigler [37] that flexibility (the ability to 

easily modify a system, of which switching cost is an inverse indicator) comes at a cost. 
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Figure 15.  Switching Cost vs. Initial Cost from Config. 1 (S1) for the satellite 
example.  Each vertical line indicates the range of switching costs from a given 

configuration; some configurations overlap.  Solid dots indicate minimum and maximum 
values, open circles indicate mean values, and triangles indicate median values. 
 

A similarly interesting set of data that can be obtained from the development cost 

transition matrix is shown in Table 8.  This table shows the ratio of cdev,ij to cdev,1j, 

expressed as a percentage.  In other words, recalling that configuration i = 1 refers in this 

example to the “do nothing” configuration, this is the cost savings that results from 

starting with Configuration i to reach Configuration j rather than starting with nothing.  

For example, Table 8 indicates that starting with Config. 3 (the one-communications-

satellite configuration) makes development of Config. 4 (the communications-plus-
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reconnaissance-satellite configuration) 14% less expensive than if Config. 4 were 

developed from scratch.  Values of 100% in Table 8 indicate that no additional 

development is required to reach Configuration j from Configuration i; this occurs 

frequently toward the bottom of the example matrix because, as they were numbered in 

Table 4, more capable and demanding configurations were generally listed later.  Also by 

definition, values of 100% occur along the diagonal, where no additional development is 

required to remain in the same configuration. 

 
Table 8.  Development Cost Savings Matrix.  Elements cdevpct,ij indicate the percent of 
development costs saved in reaching Configuration j by starting from Configuration i 

rather than nothing (Config. 1). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 
1          
2  100% 0% 86% 100% 0% 86% 86% 86% 
3  0% 100% 14% 0% 100% 14% 14% 14% 
4  100% 100% 100% 100% 100% 100% 100% 100% 
5  100% 0% 86% 100% 0% 86% 86% 86% 
6  0% 100% 14% 0% 100% 14% 14% 14% 
7  100% 100% 100% 100% 100% 100% 100% 100% 
8  100% 100% 100% 100% 100% 100% 100% 100% 
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9  100% 100% 100% 100% 100% 100% 100% 100% 

 

Before continuing, it is worth making one final note about this development cost 

matrix.  Recall that earlier it was mentioned the configuration space can be roughly 

conceptualized as a multidimensional map, with similar system configurations grouped 

together on the map and unlike configurations distant from each other.  While it is 

tempting to consider the possibility that the switching cost matrix of Table 5 might form 

the basis for drawing such a map, this is not possible.  Note first that Table 5 is not 

symmetric:  Movement between two configurations might be expensive in one direction 

and inexpensive (or zero) in the other direction.  This alone precludes the use of 

switching cost as a true distance measure.  Furthermore, although the triangle inequality 

is indeed fulfilled in the Table 5 example, it is not necessarily satisfied for all reasonable 

development cost matrices.  For example, starting at a particular Configuration A, 
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although improbable, it is not impossible for the development of an intermediate 

Configuration B to dramatically reduce costs of arriving at Configuration C, such that 

cdev,AC > cdev,AB + cdev,BC.  This further precludes the use of switching cost as a distance 

measure.  Because of these observations, this thesis retains the definition of configuration 

space distances in the sense described in Section 4.1.1 and Figure 13; in particular, Figure 

16 shows a visualization of this satellite example’s configuration state space. 
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Figure 16.  Configuration state space for the satellite example. 
 
 

4.1.3.2. Total Cost Transition Matrix 

Recall that the total cost transition matrix C accounts for all costs incurred over a 

subsequent time period as the result of the decision to transition from developing system 

Si to developing system Sj.  This matrix will be particularly important in steps 4-5 of this 

framework, and a helpful synthesis of the information contained in this matrix with the 

two-period state-centric notion of flexibility is shown in Figure 17.  Here, each node 

represents one of the configurations considered in the design space, the color of which is 

indicative of the cost to develop and produce it from the “nothing” configuration (Config. 

1).  The nodes are arranged in a configuration similar to that in Figure 16, but with slight 

geometric modifications to avoid confusion when ascertaining which arrows connect 
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which nodes.  Above each of the four groups of nodes is a budget, and for every element 

of the total cost transition matrix less than or equal to the given budget, a directed link is 

drawn.  In cases where the total cost on the diagonal of the matrix is less than or equal to 

the budget, a dark circle is drawn around the appropriate node.  For example, the top left 

portion of Figure 17 shows that, if the currently-fielded architecture is Config. 3, a $400 

million budget for a given eight-year period would allow the decision-maker to transition 

to Configs. 1 or 6, or to remain in Config. 3. 

A natural observation from Figure 17 is that, as budget is increased, more links 

become available.  That is, as the decision-maker has more resources available, more 

options exist.  The total number of links in the graphs of Figure 17 increases from 12 at 

the $400 million budget to 22 at the $550 million budget, 40 at the $700 million budget, 

and 60 at the $850 million budget.  Eventually, at a large enough budget, all 81 links 

would appear.  Linking this to the two-period state-centric concept of flexibility, a clear 

indicator of the flexibility of a given configuration i is the number of links or transitions 

available to it for a given budget b (the number of “outs” available, which will be denoted 

Φi(b)).  This indicator is plotted in Figure 18.  Here, the starting configuration (node) is 

shown on the x-axis, and the number of available transitions from that node to other 

nodes is shown on the y-axis.  Note that these available transitions do not increase 

linearly with budget; for example, adding $150 million of budget to $400 million results 

in no increases to the transitions available from Configs. 3 and 6, while adding the same 

amount to $700 million increases the transitions available to each by 75%. 
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Figure 17.  Available configuration transitions for $400, 550, 700, and 850 million budgets. 
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Figure 18.  Number of available transitions (Φ) for $400, 550, 700, and 850 million budgets. 
 

If available budget is considered on a continuum instead of four discrete intervals, 

the data in Figure 19 result.  This figure shows the number of available transitions as a 

function of available budget, where data for each configuration is represented by a single 

line.  For example, the figure shows that for a per-period budget of $200 million, Config. 

1 (the “nothing” configuration) has Φ = 2 transitions available, Configs. 3 and 6 each 

have Φ = 1 available transition, and all other configurations have no available transitions 

(i.e., the available budget is insufficient even to support operation of the current 

configuration into the next period).  It also shows that by a budget of $1.1 billion, any 

configuration can be reached from any other configuration since all configurations have 9 

available transitions. 

An interesting characteristic visible in Figure 19 is that Configs. 1, 3, and 6 tend 

to have significantly more transitions available than the other configurations for per-

period budgets below $500 million.  These configurations have in common the fact that 

they have no reconnaissance satellites to incur large operations costs; as a consequence, 

while all other configurations must spend between $300 and $500 million simply to 
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operate, Configs. 1, 3, and 6 are able to use this budget to effect transitions to other 

configurations. 

To develop this observation more fully, Figure 20 shows a subset of the 

configurations visible in Figure 19, in particular Config. 3 (one communications satellite 

only) and Config. 4 (one communications satellite and one reconnaissance satellite).  As 

expected from Figure 19, Config. 4 has fewer transitions available than Config. 3 at low 

budgets because of its operations cost requirements.  However, at a per-period budget of 

about $570 million, a reversal occurs.  Above this budget, Config. 4 always has at least as 

many transitions available as Config. 3.  At high budgets, the greater developed 

capability of Config. 4 (i.e., the existing reconnaissance capability) translates into lower 

development transition costs.  Thus, this graph serves to illustrate that flexibility is not 

solely a function of the engineering configuration a decision-maker selects, but also a 

function of the resources that are available to change that configuration.  In this case, the 

low-development-cost (no-reconnaissance-satellite) configurations are equally or more 

flexible than the high-development-cost configurations when resources are scarce 

because the low-development-cost configurations incur lower fixed operations costs.  

However, as financial resources become more abundant, the configurations that include 

reconnaissance satellites permit more flexibility because they already have a 

reconnaissance capability which the low-development-cost (no-reconnaissance-satellite) 

must spend resources to develop. 
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Figure 19.  Available configuration transitions as a function of available per-
period budget. 
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Figure 20.  Available configuration transitions for Configs. 3 and 4 as a 
function of available per-period budget, illustrating a “flexibility reversal”. 
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4.1.3.2.1. Sensitivity to Budget 

One analysis that Figure 19 and Figure 20 enable is examination of the sensitivity 

of a configuration’s number of available transitions Φ (roughly speaking, the sensitivity 

of a configuration’s flexibility) to changes in the allocated per-period budget.  Such an 

analysis is particularly useful to entities interested in selecting an appropriate budget level 

for a multi-period program or project. 

Figure 21, which is derived from Figure 20, tracks the number of transitions 

gained from a $250 million per-period budget increase at each of the budget levels in 

Figure 20.  Formally, this is the forward difference ∆hΦi(b) given in Eq. (12) (cf. [81]-

[85]), with h = $250 million. This difference is used in lieu of the derivative (that is, the 

limit of ∆hΦi(b)/h as h → 0) because the derivatives of the functions in Figure 20 take 

values only of zero or infinity and are not insightful to examine. 

 ( ) ( ) ( )bhbb iiih Φ−+Φ=Φ∆  (12) 

Note that this forward derivative, plotted on the y-axis of Figure 21, illustrates a 

distinct difference between Config. 3 (one communications satellite only) and Config. 4 

(one communications satellite and one reconnaissance satellite):  While ∆hΦ4 exhibits an 

overall unimodal behavior, having from $525-570 million a gain of 5 transitions per $250 

million budget added, ∆hΦ3 exhibits a more bimodal behavior.  Config. 3 has a high 

forward difference for low budgets that then disappears to ∆hΦ = 0 before rising again at 

higher budget levels.  In effect, the ∆hΦ = 0 valley illustrates that there exists a capability 

gap for Config. 3:  A certain threshold of resources must be invested in order to permit 

any options beyond a communications-satellite-only capability.  For a decision-maker 

considering a $250 million per-period budget increase above an existing $350 million 

budget in a situation where Config. 3 already exists, Figure 21 clearly indicates that such 

a budget increase would provide no additional options.  On the other hand, for a decision-

maker considering a $250 million per-period budget increase above an existing $625 
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million budget, Figure 21 indicates that such an increase may be justified, as it adds four 

more options. 
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Figure 21.  Number of transitions gained when budget on the x-axis is 
raised by $250 million. 

 
 

Another way to represent the data in Figure 21 is via an elasticity metric.  This 

metric, defined in Eq. (13) for the case of the discrete step size h, indicates the percentage 

change in the number of transitions Φ that can be achieved by adding budget h divided by 

the percentage change in the current budget that h represents.  Note that this metric is 

undefined when Φ = 0.  If this metric is plotted for Configs. 3 and 4, Figure 22 results.  

This indicates, for example, that at its peak elasticity, adding $250 million to a $470 

million budget for Config. 4 results in the number of transitions increasing relatively 7.5 

times more than the budget.  Thus, this is a region where flexibility can be very 

significantly impacted by budget increases.  Note that, as in Figure 21, the elasticity 

curves also fall to zero at the highest budgets since, at these budgets, any configuration 

state can be reached from any other configuration state. 
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Figure 22.  Transition Elasticity for a forward dif ference of $250 million. 
 
 

4.1.3.2.2. Transitions for Uncertain Costs 

A final extension of the cost transition concepts presented here is provided to 

illustrate how probabilistic analysis can assist in understanding the robustness of the 

deterministic transition results illustrated thus far.  Suppose, for example, that the $50 and 

$300 million development cost and $100 and $200 million production cost estimates 

assumed for R and Q in Section 4.1.3 are associated with significant degrees of 

uncertainty.  Suppose that each of these four parameters can take values from 25% below 

to 50% above their baseline values and can be modeled by independent triangularly-

distributed random variables with modes equal to the baseline values above.  As a result, 

the available transitions indicated by Figure 19 and Figure 20 are no longer properly 

described by single deterministic lines, but rather by bands of uncertainty. 
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These bands are shown in the upper plot of Figure 23 for Configs. 3 and 4.  This 

plot has a format identical to Figure 20, except that bands of uncertainty surround a 

median near the baseline deterministic result.  The bands in Figure 23 are drawn to 

encompass the 5th to 95th percentile results as obtained from 1,000 Monte Carlo 

simulations of the triangular input uncertainties.  Note that, even in the presence of these 

substantial uncertainties, the error bands for Config. 3 below a budget of about $550 

million do not overlap with those of Config. 4.  This is reflected as well in the lower plot 

of Figure 23, which shows that between a budget of $170 million and $500 million there 

is near certainty that Config. 3 will have more transitions available than Config. 4.  As 

the available budget is increased beyond $500 million, there is a sharp decline in this 

probability, until by $720 million the reverse occurs.  In this region, there is near 

certainty that Config. 3 will have fewer transitions available than Config. 4.  Thus, in 

addition to assisting the decision-maker in visualizing the uncertainty in the transition 

numbers from the deterministic analysis, the results of this probabilistic cost analysis can 

reveal the existence of “flexibility reversal” scenarios even in the presence of cost 

estimate uncertainties. 
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Figure 23.  Probabilistic comparison of the transitions available to Configs. 3 and 4. 
 

 

4.1.4. Limitations of Cost-Only Considerations 

In summary, this step of the framework has shown that the two-period state-

centric notion of flexibility from previous literature can be adapted to apply to 

configuration changes for engineering systems or architectures.  For an engineering 

system in which multiple configuration options exist over time, a cost transition matrix 

can be formed and used to visualize the options that exist for changing the system as a 
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function of available budget.  If a single, relatively constant per-period budget is likely to 

exist for the foreseeable future, that budget can be selected and a diagram such as one of 

the graphs in Figure 17 can be useful in tracing possible configuration pathways.  If the 

available budget is likely to be subject to change or partially under the control of the 

decision-maker, the available transitions can be plotted as a function of budget to 

determine if additional budget would make a substantial difference in the available 

options.  Analysis of these graphs and associated data illustrate how budget itself can 

drive whether one configuration is more flexible than another, and sensitivity and 

uncertainty analyses can both be conducted to yield additional useful insight. 

At the conclusion of Step 1, it is reasonable to ask:  From this information, what 

conclusions can be drawn about the best initial system configuration to select?  

Unfortunately, none.  To do so requires overcoming two limitations of considering only 

configurations and cost over a two-period time interval.  First, the time horizon of the 

analysis must be expanded to more than two periods to avoid potentially myopic 

decision-making.*   Second, the benefits of being in a given configuration at a given time 

must be quantified.  A limitation of using number of available transitions as an indicator 

for flexibility is that it contains no information about the value of each configuration in 

each future time period.  As a result, it is possible to manipulate this metric to make 

certain configurations appear relatively more or less desirable by either (1) including in 

the state space a large number of physically similar configurations or (2) including in the 

state space a large number of configurations that are unlikely to have any value in the 

future.  These limitations are resolved in the following two steps of the framework. 

 
 

                                                        
* If this were the only limitation, it might be overcome for example by defining a time horizon of 

n periods and expanding the configuration space into a tree, tracking in total how many 

configurations are accessible over the n-period horizon given an initial configuration. 
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4.2. Step 2:  Define Markovian Demand Environment Evolution Probabilities 

Discussed in Step 1 was how the two-period state-centric flexibility framework of 

previous literature can be adapted to apply to configuration changes for engineering 

systems or architectures.  That step focused on the options available to and under the 

control of the engineer or decision-maker.  However, as recognized in Step 1, information 

about the utility or value of being in each configuration at a given time period is needed 

in order to make meaningful conclusions about the suitability of each configuration 

decision.  In order to do this, it is necessary to have information about the environment 

(in particular, the demand environment) in which system is operating, which is generally 

out of the control of the engineer or decision-maker.  Rarely is deterministic prediction of 

this environment possible, and so this information must generally be in the form of a 

stochastic model. 

Mathematically, this is equivalent to the statement in Eq. (14), i.e., that a 

performance or utility u (preferably a metric with physical meaning, but not precluded 

from being a normalized aggregate metric) that is gained in time increment t is a function 

not only of the configuration S that is operational at that time, but also of the demand 

environment y that materialized at that time.  This environment evolves according to 

some stochastic process {Y(t)}.  The fact that u(t) is not a function of S(t) alone concisely 

explains why conclusions about value or utility cannot be drawn from Step 1 alone. 

 ( ))(),()( tytSftu =  (14) 

Thus, the two questions that arise in Step 2 are:  What are the environments that 

{ Y(t)} can describe, and what kind of stochastic model should be used to describe {Y(t)}? 

 
 
 
 
 
 
 



62 

4.2.1. Definition of the Demand Environment 

As with the definition of configurations in Step 1, what precisely defines a 

demand environment is application-specific.  Ideally, the environment definition would 

completely describe the current state of the world (or universe).  However, since such an 

extensive definition of the state of the environment would be far from tractable, the 

analyst may be guided by two practical considerations:  First, what major external factors 

or combination of factors tend to describe demand for the system being considered?  For 

example, in defense applications this might involve the terrain of the theater of operations 

or the type of enemy combatant, while in disaster relief applications this might involve 

the type and frequency of various natural and manmade disasters.  Second, of these 

factors or combinations of factors, are some likely to distinguish the performance of some 

configurations over others, or do they affect all configurations equally?  In general, 

factors that would have little effect on the configuration decision can be neglected. 

This framework assumes that the set of possible demand environments {Yi, i = 1, 

2, …, K} to which the system of interest may be subject is finite and discrete or can be 

reasonably approximated as finite and discrete, and that this environment evolves 

stochastically with time.  In the case of the example satellite application, suppose that the 

demands upon the satellite system are primarily driven by (1) the existence of armed 

conflicts and (2) the degree to which existing commercial capacities reduce the need for a 

government satellite capability.  In this case, the demand environment might be described 

by six states, summarized in Table 9.  This table characterizes the set of demand 

environments {Yi, i = 1, 2, …, K}, where K = 6, by the two drivers above, and translates 

these qualitative descriptions into a reasonable quantitative implication in terms of the 

number of government communications and reconnaissance satellites needed.  In general, 

within the table, hostile conflict environments with no available commercial capacity 
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produce the greatest demand for government satellites, while environments in which full 

capacity is provided by commercial entities produce the least demand.* 

 
Table 9.  Demand Environment Definitions for Satellite Example. 

Env.  
ID No. 

(i) 

Conflict 
Environment 

Available 
Commercial 

Capacity 

Implied No. of Government 
Communications Satellites 

Needed 

Implied No. of  Government 
Reconnaissance Satellites 

Needed 

1 Hostile None 2 2 

2 Hostile Some 1 1 
3 Hostile Full 0 0 
4 Quiescent None 1 1 
5 Quiescent Some 0 1 
6 Quiescent Full 0 0 

 
 

4.2.2. The Markovian Stochastic Model 

To continue, we address the second question of this step:  What sort of stochastic 

model should be used to describe {Y(t)}?  No doubt the simplest stochastic model for 

{ Y(t)} would be a time-ordered set of independent random variables; however, the 

implication of such a model is that the past has no influence on the future, and it is 

questionable whether such an assumption is reasonable in most practical situations faced 

in the space industry.  A more general stochastic model for {Y(t)} is a Markov chain.  

Formally, a Markov chain is a time-ordered† set of random variables {Y(t)} for which the 

probability that Y(t) takes some value a depends only on the value of Y(t-∆t), i.e., Y in the 

previous time period.  The possible values for Y must be finite or countable.  In a 

Markovian stochastic process, the past influences the future only through the present 
                                                        
* Note that some of these environments, such as environments 3 and 6, have identical satellite 

requirements.  It would be equally valid to define the demand environment states in terms of 

these requirements, if the transition probabilities were more easily estimable between these 

environment states. 

† Strictly speaking, the variables need not be time-ordered as long as they are ordered by some 

other monotonically increasing parameter.  For the present application, this parameter will be 

time. 
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state; if it is necessary to build additional memory into the process, it is possible to do so 

by expanding the chain’s state space (i.e., the definition of the possible values of Y).  The 

conditional probabilities P[Y(t) = a | Y(t-∆t) = b] with which values of Y at time t-∆t 

evolve to other values of Y at time t are organized in a probability transition matrix, 

which for Markov chains is typically assumed constant with time.  For further 

familiarization with Markov chains and its traditional applications, the reader is referred 

to Refs. [86] and [87]. 

If sufficient historical data exists, a Markov chain’s probability transition matrix 

can be populated by statistically mining the historical data for the appropriate conditional 

probabilities.  However, if this data does not exist or would take too much in time or 

resources to obtain, a positive quality to the use of a Markov chain is that the probability 

transition matrix can be populated via expert judgement without excessive complication.* 

Suppose that, by use of historical data or expert elicitation, a Markov chain 

probability transition matrix P for the satellite application is populated as in Table 10.  In 

this matrix, each element Pij indicates the probability that demand will transition from 

environment i to environment j over one time increment (in this case, eight years, 

corresponding to the time step assumed in Step 1). 

 
 
Table 10.  Sample Markov Chain Transition Matrix for the Satellite Example Application. 

  
To Demand Environment, Yj 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

- 1 -  Hostile, None 0.10 0.15 0.05 0.40 0.20 0.10 

- 2 -  Hostile, Some 0.20 0.10 0.10 0.10 0.30 0.20 

- 3 -  Hostile, Full 0.10 0.20 0.05 0.05 0.50 0.10 

- 4 -  Quiescent, None 0.20 0.10 0.05 0.30 0.30 0.05 

- 5 -  Quiescent, Some 0.10 0.20 0.10 0.15 0.30 0.15 F
ro

m
 D

e
m

a
nd

 
E

nv
iro

nm
en

t, Y
i 

- 6 -  Quiescent, Full 0.05 0.10 0.10 0.20 0.30 0.25 

 

                                                        
* One application of such a process is available in Ref. [88]. 
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The Markov chain of Table 10 can be visualized as a set of demand environment 

states as in Figure 24.  In this figure, high-probability transitions are represented as thick 

dark links and low-probability transitions are represented as thin light links.*  From each 

state, a green link identifies the most likely (highest-probability) transition(s).  For 

example, from this diagram it can be seen that environments 4 and 5 act much like a sink:  

The most likely transitions from each environment all lead to one of these two states. 

It is also useful, for reference, to observe two properties of the demand 

environment Markov chain.  First, most practical demand environment Markov chains 

will involve probability transition matrices with strictly positive elements; rarely will the 

probability of transition from one environment to another be exactly zero.  These will 

thus be single-class chains that are irreducible, positive recurrent, and aperiodic 

(therefore ergodic).  As a consequence, a unique long-run probability πj of being in 

demand environment j will exist [86] and can be found via Eq. (15).  While behavior of 

the demand environment an infinitely long time into the future is not often of principal 

interest to the decision-maker, it can provide the analyst helpful intuition regarding the 

direction toward which the demand will eventually tend as a consequence of the assumed 

matrix P.  In the case of the Markov chain in Table 10, the right half of Figure 24 

displays the stationary probabilities of existing in each demand environment.  Note that in 

the long term, the quiescent conflict environment with some available commercial 

capacity is the most likely (30.3%), while the hostile conflict environment with full 

available commercial capacity is nearly four times less likely (7.9%).  Also, it is 

insightful to note that the Markov chain of Table 10 implies that the conflict environment 

in the long term is more often than not (64.7% of the time) quiescent. 

                                                        
* In the field of combustion, a similar type of visualization, called a reaction pathway diagram, is 

used to convey information about the relative importance of elementary reactions in more 

complex reaction mechanisms (e.g., see Ref. [89]). 
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Second, it can be insightful to calculate the entropy rate H' of the demand 

environment Markov chain.  Entropy rate is a quantity with origins in the field of 

information theory that serves as an indicator of the degree of uniform randomness 

introduced at each time step (or other index) of a stochastic process.  In the case of a 

Markov chain with a stationary distribution defined by πj, ∀j ∈ {1,2,…, K}, the entropy 

rate is calculated as in Eq. (16) [90] and is reported in bits.  Note that the maximum 

entropy rate of a K-state Markov chain occurs when its transition matrix is completely 

uniform, i.e., Pij ≡ 1/K.  In such a case, H' = log2K, which serves as a helpful upper bound 

for understanding the randomness indicated by the entropy rate.  In the case of the 

Markov chain of Table 10, the entropy rate is a relatively high 2.36 bits (of a possible 

log26 = 2.58 bits) per eight-year time period.  As a result, this particular demand 

environment model can be characterized by significant uncertainty over its eight-year 

time step. 
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Figure 24.  Visualization of the Markov Chain (left) and Stationary 
Distribution (right) of Table 10. 
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4.3. Step 3:  Define State-Dependent Performance Matrix 

Step 2 presaged the fact that at least one utility or performance metric u is 

necessary to make decisions that are properly informed by both performance and cost 

considerations.  The functional dependence of the performance metric as provided in Eq. 

(14) (copied below for convenience) assumes an explicit dependence on the operational 

configuration S and demand environment y.*  As a result, a natural representation of the 

function u = f(S, y) is in the form of an N × K matrix (recalling that N is the cardinality of 

the set of possible configurations and K is the cardinality of the set of possible demand 

environments).   

 ( ))(),()( tytSftu =  (14) 

Such a matrix, denoted U, is shown in Table 11 for the satellite illustration.  In 

this case, the chosen performance metric is the number of demanded satellites that are 

available (and utilized).  For example, if the demand in one time period is associated with 

a hostile conflict environment and no available commercial satellite capacity 

(Environment 1, in column 1) and the operational configuration during that time period 

has two communications and two reconnaissance satellites available (Config. 9, in row 

9), then the decision-maker accumulates the successful utilization of all four available 

satellites.  As a consequence of the specification of this matrix, the decision-maker will 

be incentivized to place satellites into orbit that will meet likely demands. 

 

 
 
 
 

                                                        
* Note that time is not explicitly captured in this dependence, i.e., u(t) ≠ f(S(t),y(t),t).  In many 

cases, this lack of explicit time dependence in u has few or no practical modeling limitations.  

However, if such a dependence is indeed important, it can be incorporated by integrating time 

into the definition of the demand environment and/or configuration state. 
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Table 11.  U for Satellite Example. Metric indicates the number of 
demanded satellites available. 

  Demand Environment 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

1 0 0 0 0 0 0 
2 1 1 0 1 1 0 
3 1 1 0 1 0 0 
4 2 2 0 2 1 0 
5 2 1 0 1 1 0 
6 2 1 0 1 0 0 
7 3 2 0 2 1 0 
8 3 2 0 2 1 0 

C
on

fig
ur

at
io

n 

9 4 2 0 2 1 0 

 

Before concluding the discussion of Step 3, it is worth making two final notes:  

First, the example metric of Table 11 is just one of many that might be considered for this 

example.  For example, a decision-maker may also be interest in a cumulative binary 

metric that indicates a 1 or 0 in each time period depending on whether satellite needs 

were fully met; over the long term, such a metric would indicate the percentage of time 

that the system fully meets the demands placed on it.  Another two examples would be 

metrics that are specific to communications or reconnaissance satellites (e.g., (1) number 

of demanded communications satellites available or (2) number or demanded 

reconnaissance satellites available).  Any such metric can easily be accounted for via a 

matrix such as in Table 11.  Second, although the example application shown here 

employs only one performance metric, the theoretical development of Steps 4 and 5 

should make it evident that incorporation of multiple performance metrics and matrices 

U1, U2, …, Um can be fully accommodated and integrated within this thesis’ framework. 
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4.4. Step 4:  Decision Support Analysis 

At this point, enough information has been specified in Steps 1-3 to simulate a 

system as it changes in response to a decision-maker’s actions over time.  The space of 

possible configurations and the costs of moving between them over each time step have 

been defined in Step 1; the space of possible demand environments and the probabilities 

of moving between them over each time step have been defined in Step 2; and the 

performance accumulated when a given configuration is subjected to a given demand 

environment has been specified in Step 3. 

However, it has not yet been specified which actions the decision-maker will (or 

should) take during such a simulation.  As a result, Step 4 has the dual purposes of (1) 

defining this simulation and (2) solving for the decision-maker actions that will result in 

the “best” possible outcome. 

The definition of the simulation, given a T-period time horizon, ∆t time step, and 

a configuration S(t0) and demand environment y(t0) at initial time t0, is provided by the 

following two dynamics equations (or “equations of motion”) in Eq. (17).  The first 

indicates that the configuration selected for development by the decision-maker’s action 

a at time t becomes the operational configuration S at time t+∆t.  The second indicates 

that the demand environment that materializes at time t+∆t is distributed as indicated by 

the row of the Markovian probability transition matrix P corresponding to the demand 

environment y(t) in the current time period. 

 
( ) ( )

KtyPttY

tattS

..1),(~)( ∆+
=∆+

 (17) 

The goal of the more challenging decision support task is mathematically 

expressed in Eq. (18).  This task is multiobjective in nature:  The decision-maker will 
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typically wish to minimize cost and maximize one or more performance metrics* over the 

T-period horizon of the system.  This is represented in Eq. (18) by the maximization of a 

vector-valued function of a vector sum.  The first element of the vector within the 

summation is the element (S(τ), a(·)) of the total cost matrix C; this expresses the fact that 

at time index τ, the system configuration is S(τ) and the decision-maker has incurred 

some cost via the decision a.  The second element is element (S(τ), y(τ)) of the 

performance matrix U; this expresses the fact that at time index τ, a performance benefit 

has accrued as a result of the system being in configuration S(τ) while the demand 

environment is in state y(τ).  Additional elements of the vector are allowed, for example, 

to account for performance measures U2, U3, …, Um as described in Step 3.  For notation 

convenience, in Eq. (18) only the maximum function is used and minimum-preferred cost 

and performance objectives must be negated.  A conversion from the “real-world” time t 

to the index τ is also provided.  The vector-valued function F exists to convert its 

random-variable argument into a vector of representative deterministic values; in most 

cases, it will be convenient and computationally necessary to select this function to be the 

expected-value operator E; however, in principle F can be any function of the long-term 

cost and performance sums. 
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In general, it will not be possible to simultaneously minimize cost and maximize 

performance through any particular set of actions or decisions a(·).  Thus, the solution to 

the problem posed in Eq. (18) is not a single answer for a(·), but a set of decisions that 

                                                        
* The decision-maker may also have multiple cost metrics, which may be bookkept as “negative” 

performance measures. 
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depends on the decision-maker’s preferences for one objective over another.  This 

formulation is thus one of a multi-objective optimization problem,* the solution of which 

comprises a set of non-dominated points in the objective space.  These points form a 

multi-dimensional Pareto frontier, on which the performance of one objective cannot be 

improved without the sacrifice of another.  In mathematical terms, a scalar or vector input 

x* to the vector-valued function to be maximized f is said to be Pareto-optimal (non-

dominated) if there exists no other input x such that (1) fj(x*) ≤  fj(x) for all j and if (2) 

fj(x*) <  fj(x) for at least one j, where fj is the j th element of the vector-valued f.  The 

literature for single-period multi-objective optimization problems is well-established, and 

the reader is referred to Refs. [87] and [91] for helpful introductory reference material. 

Finally, some precision must be added to specify what is meant by the term a(·).  

The term a indicates the action or decision made at a given time, as indicated in Eq. (17).  

As specified in Eq. (18), the values taken by a are drawn from the set of available 

configurations {Si}.  Clearly, a is not simply a constant to be solved for and should be a 

function (to be solved for) of some other variable or variables; otherwise, a single 

configuration would be fielded for all time, which is in general an unrealistic expectation 

for decision-maker behavior.  Thus, the question addressed by Steps 4A and 4B centers 

around:  Of what variables should the decision-maker’s actions be a function?  Step 4A 

takes a view traditionally taken during long-term roadmapping analysis that this variable 

should be time, akin to open-loop control.  Step 4B takes a more complete but 

computationally more expensive view that this variable should be the total system and 

environment state, akin to closed-loop control. 

 
 
 
 

                                                        
* Other common names for this problem in the literature include multiple-attribute decision-

making, multiple-criteria decision-making, and multiple-objective decision-making. 
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4.4.1. Find Pareto-Optimal “Open-Loop” Paths 

Figure 25 frames the problem posed by Eqs. (17) and (18) graphically and, 

combined with Eqs. (17) and (18), suggests a method for simulating and solving for a 

Pareto-optimal path of actions a(τ).  In Figure 25, time progresses in discrete increments 

of duration ∆t along the x-axis.  In each period, the bottom two rows indicate the 

operational configuration and demand environment, which interact to produce per-period 

performance values uS(τ),y(τ).  The top row indicates the decision to be made about which 

configuration to develop in the current period, which directly affects current costs and 

determines what configuration will be operational in the subsequent time period, thereby 

affecting subsequent performance and transition costs.  This top row, posed as a sequence 

of T decisions over T timesteps, suggests that a reasonable covariate for the function a is 

indeed time, i.e., a(·) = a(τ). 
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Figure 25.  Visualization of Demand Environments, Operational Configurations, and 
Development Configurations (Actions) over Multiple Time Periods. 
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Posing the problem in this manner, there exist NT possible specifications of a(τ), 
or possible paths.  This is a consequence of the fact that at each of the T periods there 

exist N configurations that can be selected (recalling that N is the cardinality of {Si}).  

Since the configurations on these paths are specified by the time on the clock at which 

they are chosen, this type of specification is referred to as an open-loop path. 

The number of possible paths NT may be quite large, depending on the 

application-specific values of N and T.  However, if it is computationally tractable to do 

so, a Monte Carlo computer simulation may be set up to track the stochastic evolution of 

cost and performance for each possible path.  For each path, a large number of 

simulations (e.g., several hundred or thousand, depending on the parameters of interest 

and the confidence desired) is repeated using randomly-generated numbers where 

required for stochastic propagation of the Markov chain (i.e., according to Eq. (17)) .  At 

each time step in each simulation, the following events and computations occur: 

 
1. Mission demand evolves stochastically according to the Markov chain 

estimate of Table 10.   

2. The operator of the currently operational configuration attempts to use this 

system to fulfill the new mission demand, earning credit according to the 

performance matrix. 

3. The decision-maker chooses which configuration to develop in the current 

time period and field in the next time period, incurring a cost according to the 

cost transition matrix. 

 
For the example satellite application carried through this chapter, N = 9 and T will 

be set to 4 (i.e., an assumed time horizon of 32 years), translating into 6,561 possible 

paths.  The illustrative results that follow assume an initial condition at t0 = 0 in which 

the operational configuration is Config. 4 (one reconnaissance and one communications 
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satellite) and the demand is characterized by a quiescent conflict environment and full 

commercial capacity (i.e., Environment 6). 

A sample set of Monte Carlo simulation results is shown in Figure 26.  This figure 

shows the result of adopting a configuration path in which a transition is initially made to 

Config. 3 (the one-communication-satellite configuration) in order to reduce operational 

costs associated with carrying an unnecessary reconnaissance satellite capability given 

the relatively high probability that Environment 6 materializes again.  Configuration 3 is 

maintained in the following period, after which the reconnaissance satellite capability is 

redeveloped and the communications satellite capability is dropped, resulting in Config. 

2.  Due to the simulation setup, a configuration decision must be made in the final 

operational time period; since the cost of developing this final configuration will be 

incurred but no reward will be earned, Config. 1 (the “Nothing” configuration) is 

selected.  As the bottom left portion of Figure 26 shows, this particular path (denoted as 

[3 3 2 1], by the configuration decisions made at each step) is subject to a stochastically 

changing demand environment.  The size of each yellow dot indicates the likelihood of 

demand being in a particular state (on the y-axis) at a given time (on the x-axis); note that 

all simulations begin in Environment 6 at t = 0 years, as specified by the initial condition.  

The right-hand portion of Figure 26 indicates how per-period cost and performance vary 

over time.  Note that the per-period cost varies between $233 and $633 million, and 

number of demanded satellites available increases from zero to a mean of 0.77 in the final 

period.  The total expected cost for this path over the time horizon is $1.65 billion, and 

the total expected number of demanded satellites available is 1.57. 

As a theoretical note, it may be observed that the cumulative expected-value 

results for a given path can be easily computed, without Monte Carlo simulation, as a 

consequence of the special structure and assumptions of Eqs. (17)-(18).  First, note that 

once a path is chosen, cost in each period (and thus total cost) is fixed, and there is no 

variability due to future demand environment evolution.  Thus, total cost is determined 
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by adding the cost from the total cost transition matrix associated with each pre-specified 

configuration-to-configuration transition.  This is expressed in Eq. (19); note that, within 

the summation from τ = 2 to τ = T, the row index S(τ) is substituted with a(τ-1) due to the 

first equation of Eq. (17). 
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Second, the cumulative performance expectation can be computed analytically as 

detailed in Eq. (20).  In the first step of this short derivation, the expected-value operator 

is swapped with the period-by-period summation (since, in general, E(X+Y) = E(X) + 

E(Y)).  In the second step, the expected performance is expressed as the summation of the 

environment-conditional performance over all demand environments multiplied by their 

probabilities of occurrence at time indices τ.  Substituting a(τ-1) for S(τ) where 

appropriate due to the first equation of Eq. (17) yields the final line of Eq. (20).  Also 

note that this line includes a substitution for P(Y(τ) = y) based on the Chapman-

Kolmogorov equations [86] for a Markov chain, in which P(τ-1)
y(t0), y refers to the element 

in row y(t0) and column y of the transition matrix P that has been raised to the (τ-1) 

power.  Note that this simple Chapman-Kolmogorov substitution is valid because the 

evolution of the demand environment does not depend upon the configuration path. 
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Evolution of Path: S3  →  S3  →  S2 →  S1 
 

 
 Evolution of States Evolution of Objectives 

   
Figure 26.  Evolution of configuration path [3 3 2 1].  In the plots on the left, the size of circles 
indicates the relative number of Monte Carlo simulation cases that exist in a given configuration 

or demand environment state (on the y-axes) at a given time (on the x-axes).  The plots on the 
right indicate the associated evolution of per-period cost and performance.  In all plots, gray 
lines indicate transitions made in at least one simulation.  Note configuration and cost are 

deterministic, since a path is specified. 
 

Obtaining results like those in Figure 26 for each of the 6,561 possible paths in 

the example satellite application allows the total expected performance to be computed 

and plotted against total cost for each path as in Figure 27.  In this figure, each blue “x” 

represents the total cost and performance of one path.  Notice that, for the population as a 

whole, there is a general trend that, as more funds are invested, higher performance is 

expected.  However, it is important to recall that the decision-maker has a choice of 

which path to select.  As a result, if he or she cares primarily about total cost and 

expected total demanded services performed, it would make little sense to select a high-

cost, low-performance point toward the lower right of the cluster.  Rather, the decision-
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maker would prefer to choose among the set of nondominated points that comprise the 

Pareto frontier.  This Pareto frontier, shown in red in Figure 27, is composed of the set of 

possible configuration sequences for which one objective cannot be improved without the 

sacrifice of another.  In this application, the frontier is comprised of just 34 of the 6,561 

possible paths and helps to narrow the options considerably. 

Listed next to many of the Pareto-optimal points in Figure 27 are associated 

configuration paths.  Note that at the bottom left of the figure is the “do nothing” option 

in which Config. 1 is fielded for all time periods; this is cost-optimal but also provides 

the lowest possible performance.  At the other extreme is the Pareto-optimal highest-

performance option of fielding Config. 9, the two-communications-satellite and two-

reconnaissance-satellite option, for all time periods.  The Pareto-optimal solutions 

between these two extremes involve developing Configs. 1, 2, 3, 4, 5, 8, or 9, either 

immediately or after a delay.  Notably absent from the frontier are Configs. 5 and 7, each 

of which is defined by x2 = 2 reconnaissance satellites with fewer numbers of 

communications satellites; the implication of this is that any path that uses these 

configurations is suboptimal (i.e., is dominated by other paths that can perform at least as 

well for a cost at least as low). 

One additional use of the data in Figure 27 becomes evident when the sample path 

from Figure 26 is overlaid as the yellow square in Figure 27.  Here it can be seen that this 

path is dominated by solutions on the Pareto frontier.  For example, one path, [8 3 3 1], 

accumulates approximately 26% additional expected performance for a near-identical 

cost.  Another path, [2 3 3 1], accumulates near-identical performance for a 15% lower 

cost.  Thus, the exploration of the possible paths a(τ) as exemplified by Figure 27 permits 

candidate paths to be compared and quickly traded against others in terms of relevant 

figures of merit. 
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Figure 27.  Trade between total demanded services performed and total cost for all open-
loop paths.  Selected Pareto-optimal paths are identified by 4-period configuration sequences 

listed next to red circles. 
 

In summary, Step 4A of this framework has attempted to pose the multi-period 

planning problem of Eqs. (17)-(18) in the reasonable manner of asking:  What 

configuration should the decision-maker choose to develop at each time increment?  The 

answer to this question is in general not obvious, particularly since the demand 

environment evolves stochastically:  The decision-maker who wishes to be able to fulfill 

whatever demand the next period may bring would choose to build the most capable 

system possible, but this would come at substantial initial expense.  The decision-maker 

who would gamble that tomorrow’s demand will be the same as today’s would develop 

few or no new architectural components and in doing so save significant resources; 

however, this would come with the inability to perform if the next period’s demand 

materializes to require greater capability.  Furthermore, whether one period’s decision is 

best (e.g., high-reward or low-cost in the long run) is likely to be dependent on other 

decisions throughout the system lifetime.  In this problem of considering flexibility in 
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design, it is in general necessary to consider all future decisions within a given time 

horizon in order to judge the appropriateness of any single decision. 

This step has illustrated that a straightforward approach to addressing this 

problem is enumeration of the possible paths a(τ) over the given time horizon, simulation 

of these paths, and identification of Pareto-optimal paths in terms of relevant objectives.  

In the case where the expected values of cumulative cost and performance are of primary 

interest, this section has shown that analytic computations (see Eqs. (19)-(20)) can be 

substituted for simulation.  The results of this step will be further utilized in the final 

initial configuration selection step (Step 5). 

4.4.2. Find Pareto-Optimal “Closed-Loop” Policies 

While straightforward and conceptually similar to an optimization of typical long-

term scheduling and roadmapping efforts, the analysis presented in Step 4A has two 

principal disadvantages.  First, for applications with large numbers of configurations N 

and long time horizons T, it may not be practical to enumerate all NT possible paths.  

Second, and conceptually more important, assuming a set path a(τ) for the entirety of the 

system’s lifetime neglects the ability of the decision-maker to make choices mid-program 

in response to the evolution of the demand environment. 

The latter observation suggests that, for Step 4B, the function a is no longer 

simply one of time (i.e., a(·) ≠ a(τ only)), but rather also of state, i.e., a(·) = a(ξ, τ).  As 

this section will show, formulating the action set in this manner permits the state-space 

framework set forth in Steps 1-3 to be easily integrated and solved within a set of solution 

techniques for a class of stochastic control processes known as Markov decision 

processes (MDPs).  To begin, however, it is first necessary to define the components and 

solution procedure for a basic MDP. 
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4.4.2.1. Markov Decision Processes 

To define any MDP, it is necessary to first define (1) a set of states (or state 

space) Ξ that describes the system of interest for a given time period, (2) a set of 

decisions or actions Λ available from each state ξ, (3) transition probabilities p(j|ξ,a) 

given that a particular decision a is made while the system is in state ξ, and (4) expected 

per-period rewards η(ξ,a) associated with actions and/or states [86],[87],[92].  In the case 

of MDPs on a finite time horizon,* the objective is typically to select the decision policy 

a(ξ, τ) that maximizes expected total rewards†.  Unfortunately, the number of possible 

policies a(ξ, τ) can become much larger than the number of possible paths a(τ) discussed 

earlier, and thus enumeration and evaluation of all possible policies is often not practical 

(to be exemplified later).  However, such a problem can frequently be solved by 

exploiting the computational efficiency of dynamic programming, if the problem exhibits 

five particular characteristics [87]: 

 
1. The problem can be divided into periods τ with a decision or action a required 

in each period.   

2. Each period τ has a number of system states ξ associated with it.  It is 

desirable for the state to defined such that it contains all the information 

                                                        
* There exists some inconsistency in the literature on the definition of MDPs with regard to finite 

time horizons.  Winston [87] adopts the definition that “Infinite horizon probabilistic dynamic 

programming problems are called Markov decision processes”.  Puterman [92], on the other hand, 

devotes an entire chapter explicitly to finite horizon Markov decision processes.  This thesis 

adopts the latter convention, i.e., that it is the states, decision sets, transition probabilities, and 

rewards that fundamentally define an MDP and that the time horizon only governs the solution 

method (e.g., backward induction for the finite horizon problem vs. policy iteration or value 

iteration for the infinite horizon problem). 
† For practical reasons, the decision policies a(ξ,τ) considered in this thesis are deterministic, i.e., 

not random variables.  More generally, however, MDP formulations exist which can 

accommodate random policies. 
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needed to make a decision, since this permits the fourth characteristic to be 

met.  

3. The decision in any period describes how the state in the current period is 

transformed into the state in the next period. 

4. Given the current state, the optimal decision for each of the remaining periods 

does not depend on previously reached states or previous decisions.*  In other 

words, previous decisions and states must not directly influence the optimal 

path going forward.  This is clearly true, for example, when current rewards 

depend explicitly only on the current decision and/or current system state; and 

often this can be made true if the system state is properly defined.  In many 

cases such a characteristic is natural.  For example, one of the first lessons 

taught to every economics student is the irrelevance of sunk costs in future 

planning.  As another common example, the shortest route to travel from one 

city to another has no dependence on how one arrived in the first city. 

5. There must exist a recursion that relates the reward earned during periods τ, 
τ+1, …, T-1 to the reward earned during periods τ+1, τ+2, …, T.  In many 

problems this takes the additive form of Jτ = ητ + Jτ+1 , i.e., that the reward-to-

go J at the beginning of period τ is equal to the reward-to-go in the subsequent 

period plus the reward η earned in period τ itself. 

 
In the case of a multi-period problem exhibiting additive recursion, as more 

formally shown in Eq. (21), the reward-to-go J from state ξ at period τ is composed of 

two parts:  The first is the reward η earned during time period τ, which is a function of the 

system’s current state ξ and the current action a.  The second is the cumulative reward-to-

                                                        
* This is a restatement of Bellman’s Principle of Optimality:  “An optimal policy has the property 

that whatever the initial state and initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision.” [93] 
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go for all future periods, which is a function of the next-period state ξτ+1 that is implied by 

action a (see characteristic 3 above) as well as the policy of actions ατ+ that is adopted for 

all future states.  A discounting factor β can account for effects such as the time value of 

money or other resources, if an appropriate discount rate is available for use. 
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Unfortunately, unless there exist very few states, periods, and possible actions, 

Bellman’s “curse of dimensionality” [93] can make it very difficult to find an optimum 

specification of the policy α in Eq. (21) via full-factorial analysis or parametric search 

techniques.  However, the form of Eq. (21) permits an optimal policy to be found 

efficiently via backward induction, a traditional solution procedure for dynamic 

programming problems.  Backward induction begins with the simple problem of 

optimizing actions in the final period of a multi-period problem, recording the results, 

and repeating the procedure working backward in time (or other index) until the initial 

period is reached.  For instance, note that in the final period τ = T, by definition no 

rewards-to-go exist, and the optimal action in this period is specified by the simple 

problem defined in Eq. (22).  In all other periods, the optimization problem can be posed 

in Eq. (23) as the maximization over all current actions a and policies ατ+ of the 

expression in Eq. (21).  However, if future decisions have no influence on the current 

reward η, the only role of selecting ατ+ is to maximize the second term in the equation; 

the maximum possible value of this term at a given period and given state is noted with a 

hat (^) in Eq. (24).  Note that in the next-to-last time period τ = T-1, this second term is 

already known from the solution to Eq. (22).  Similarly, at τ = T-2, the second term is 

provided by the solution from τ = T-1.  This solution process, which continues until the τ 
= 1 period is reached, is backward induction.  
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In a case where uncertainties exist in state transitions (i.e., the transformations 

mentioned in characteristic 3 above), traditional probabilistic dynamic programming 

operates by considering the expected values (or functions thereof) of reward-to-go treated 

as a random variable as in Eq. (25).  Note that in Eq. (25), the discount factor β is 

assumed to be deterministic, as is the current-period reward η (although, without loss of 

generality, η can also be treated as the expected current-period reward).   
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An analog of the maximization of actions described by Eq. (23) is easily derived 

as the top line of Eq. (26).  However, in the probabilistic problem, note that the next-

period state ξτ+1(a) is itself a random variable.  The expected reward-to-go from period τ 
+1 can thus be expressed as in the second line of Eq. (26) via the conditioning formula 

E(X) = E(E(X|Y)) = Σ E(X|Y = y) P(Y = y).  The third line mirrors the final step from Eqs. 

(23) to (24), noting that the optimal policy to adopt for future periods (i.e., the 

specification of which action to take as a function of future state and time) does not 

depend on the current action a.  The result is again formulation that can easily adopt a 

backward induction solution procedure, starting at period τ = T. 
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As an example of a Markov decision process on a finite time horizon, consider a 

system consisting of three states (Ξ = {1, 2, 3}), each of which has two actions available 

(Λ = {1, 2}), and that rewards and probabilities of transition are as given in Table 12 and 

Table 13.  This system, depicted in Figure 28, simulates a revenue-generating machine 

with three states (excellent, average, and poor) and a decision-maker with options to 

operate the machine as usual (action 1) or repair it (action 2) at the beginning of each 

period.  If the machine is repaired from any state, it is instantaneously brought to 

excellent condition and $100 of revenue is generated for the period, partially offsetting a 

$200 repair cost for a net period reward of -$100.  A four-period time horizon (T = 4) is 

assumed, and executing the backward induction dynamic programming procedure results 

in the computations shown in Table 14.  Note that the last-period optimization is trivial; 

since gains from repair are only realized in the long term, it is not optimal to repair the 

system at the end of the time horizon.  As τ is incremented backward, the results of 

previously computed optimal actions and rewards-to-go are recorded in Table 15.  Note 

that this table indicates that the optimal action (e.g., to repair or not to repair) is a 

function not only of state but also of time; while it is not optimal to repair a machine in 

poor condition (ξ = 3) at τ = 3 or τ = 4, it is optimal to do so at τ = 1 and τ = 2.  It also 

indicates, for example, that the expected reward-to-go is a function of the system’s initial 

state; starting in excellent condition (ξ = 1) at τ = 1 entails a $295.76 cumulative expected 

reward if the optimal policy is followed, whereas starting in poor condition (ξ = 3) at τ = 
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1 entails only a $95.76 cumulative expected reward when the same optimal policy is 

followed. 

Before leaving this example, it is worthwhile to note the computational advantage 

of dynamic programming.  This small problem was solved by hand exactly as reproduced 

in Table 14, with 12 maximizations and 90 operations (addition or multiplication).  In 

contrast, a full factorial exploration of all possible policies would have required 

enumerating and evaluating all 212 = 4096 ways of filling out the right half of Table 15. 

 
Table 12.  Transition Probabilities for Notional MDP Example. 

Action 1  Action 2 

  To State    To State 

  1 2 3    1 2 3 

1 0.7 0.2 0.1  1 0.7 0.2 0.1 
2 0.0 0.5 0.5  2 0.7 0.2 0.1 
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m
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3 0.0 0.0 1.0  
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3 0.7 0.2 0.1 

 
 

Table 13.  Current-Period Reward Function for Notional MDP Example. 

  Action 

  1 2 

1 $100 -$100 
2 $50 -$100 
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te
 

3 $10 -$100 
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Figure 28.  Depiction of the state space, available actions, and action-dependent rewards 
and transition probabilities for the notional revenue-generating machine MDP example. 
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Table 14.  Backward Induction Calculations for Notional MDP Example. 

Period State Action Maximization Argument Optimal 
Action? 

τ = 4     
 ξ = 1    
  a = 1 $100.00 ← 

  a = 2 -$100.00  
 ξ = 2    
  a = 1 $50.00 ← 
  a = 2 -$100.00  
 ξ = 3    
  a = 1 $10.00 ← 
  a = 2 -$100.00  

τ = 3     

 ξ = 1    
  a = 1 $100 + 0.7 × $100 + 0.2 × $50 + 0.1 × $10 = $181.00 ← 
  a = 2 -$100 + 0.7 × $100 + 0.2 × $50 + 0.1 × $10 = -$19.00  
 ξ = 2    
  a = 1 $50 + 0.5 × $50 + 0.5 × $10 = $80.00 ← 
  a = 2 -$100 + 0.7 × $100 + 0.2 × $50 + 0.1 × $10 = -$19.00  
 ξ = 3    

  a = 1 $10 + 1.0 × $10 = $20.00 ← 
  a = 2 -$100 + 0.7 × $100 + 0.2 × $50 + 0.1 × $10 = -$19.00  

τ = 2     
 ξ = 1    
  a = 1 $100 + 0.7 × $181 + 0.2 × $80 + 0.1 × $20 = $244.70 ← 
  a = 2 -$100 + 0.7 × $181 + 0.2 × $80 + 0.1 × $20 = $44.70  
 ξ = 2    
  a = 1 $50 + 0.5 × $80 + 0.5 × $20 = $100.00 ← 

  a = 2 -$100 + 0.7 × $181 + 0.2 × $80 + 0.1 × $20 = $44.70  
 ξ = 3    
  a = 1 $10 + 1.0 × $20 = $30.00  
  a = 2 -$100 + 0.7 × $181 + 0.2 × $80 + 0.1 × $20 = $44.70 ← 

τ = 1     
 ξ = 1    
  a = 1 $100 + 0.7 × $244.7 + 0.2 × $100 + 0.1 × $44.7 = $295.76 ← 

  a = 2 -$100 + 0.7 × $244.7 + 0.2 × $100 + 0.1 × $44.7 = $95.76  
 ξ = 2    
  a = 1 $50 + 0.5 × $100 + 0.5 × $44.7 = $122.35 ← 
  a = 2 -$100 + 0.7 × $244.7 + 0.2 × $100 + 0.1 × $44.7 = $95.76  
 ξ = 3    
  a = 1 $10 + 1.0 × $44.7 = $54.70  
  a = 2 -$100 + 0.7 × $244.7 + 0.2 × $100 + 0.1 × $44.7 = $95.76 ← 
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Table 15.  Optimal Actions and Expected Rewards-to-Go for Notional MDP Example. 

Optimal Expected Reward-to-Go, dollars  Optimal Action 
  Time Period, τ    Time Period, τ 
  1 2 3 4    1 2 3 4 

1 295.76 244.70 181.00 100.00  1 1 1 1 1 

2 122.35 100.00 80.00 50.00  2 1 1 1 1 
S

ta
te

, ξ 
3 95.76 44.70 20.00 10.00  S

ta
te

, ξ 

3 2 2 1 1 

 

4.4.2.2. Unification of Flexibility and MDP Frameworks 

It may be evident after the above description of a Markov decision process that 

Steps 1-3 of the flexibility framework proposed in this thesis share many characteristics 

with an MDP problem.  As summarized in Figure 29, Steps 1 and 2 established relevant 

state spaces, Steps 1 and 3 established rewards (and costs), Step 2 established transition 

probabilities, and Step 1 established that configuration development options exist for the 

decision-maker at each point in time.  Each of these components – states, rewards, 

transition probabilities, and possible decisions – is required to define an MDP.  However, 

two slight adjustments must be made to frame the flexibility problem such that MDP 

solution techniques can be applied directly. 
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Figure 29.  Mapping of Flexibility Framework Components into a 
Markov Decision Process. 
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4.4.2.2.1. Definition of the Total State 

First, the framework of Steps 1-3 has introduced two separate state spaces.  Step 

1 introduced a configuration state space, and Step 2 introduced a demand environment 

state space.  To utilize an MDP formulation, the problem must be represented in a single 

state space.  It is proposed that a total state be defined as the combination of the 

configuration and demand states (Total State = {Configuration State, Demand State}, or ξ 
= { S, y}).  The total state space may be illustrated graphically as in Figure 30 as a three-

dimensional “spindle” of total states, in which each vertical layer represents a particular 

demand environment and each column represents a particular configuration.  Thus, it is 

possible for the fielded system to be in any configuration and operating in any demand 

environment at any particular point in time.  Since configuration is under the control of 

the decision-maker, he or she can choose to move to any vertical column of the spindle at 

any point in time (recognizing it takes one time step to make this move). 

However, the next-period demand environment is not under the control of the 

decision-maker.  Illustrated in Figure 30 is an instance where Config. 2 is operating in 

Demand Environment 1.  If the decision-maker chooses to develop Config. 7 for the next 

time period, he or she is assured to move to the column corresponding to Config. 7*; 

however, since the demand environment evolution is stochastic, the layer to which he or 

she moves is uncertain and depends on the evolution of the Markov chain specified by 

Step 2.  The probability of evolution to each next-period state ξ described in words above 

is described mathematically by Eq. (27), although it is worth pointing out that the right-

hand side of this equation can easily be modified to reflect more complex transition 

models.  Note that by convention for computer programming purposes, ξ = 1 is assigned 

                                                        
* The assumption implicit in this assurance is that the decision-maker will not by accident develop 

a configuration other than Config. 7, which is generally reasonable.  However, if this assumption 

is not reasonable and the distribution of probabilities that other configurations will be developed 

is known, this information may be easily incorporated. 
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to refer to {S = 1, y = 1}, ξ = 2 refers to {S = 2, y = 1}, ξ = N+1 refers to {S = 1, y = 2}, 

and so on through ξ = N×K referring to {S = N, y = K}.  Once the next-period demand 

environment materializes, the decision-maker finds himself or herself at one particular 

total state and makes another decision about which of the N configurations to select for 

the following period. 

 ( )   

 =====+        otherwise ,0

),mod( ,
,| //

1

kNjP
kaijP NjNi

ττ ξξ  (27) 

 

 

Figure 30.  “Spindle” of N × K Total States.  Each layer corresponds to one 
demand environment and each vertical column corresponds to one configuration.  
Arrows illustrate that, due to demand environment uncertainty, multiple possible 
total states are possible in the next period if a decision is made to transition from 

one configuration to another (e.g., Config. 2 to Config. 7). 
 

4.4.2.2.2. Objective Function Aggregation 

Second, in order to apply the MDP dynamic programming solution technique 

implied by Eq. (26), the multi-objective problem illustrated in Step 4 must be carefully 

converted to a single-objective problem.  To do this, the present framework proposes to 



90 

use the interpretation of the Pareto frontier as the set of optima for a weighted aggregate 

objective function over all possible weights.  Thus, it is proposed that the Pareto frontier 

be found by forming an aggregate weighted objective function, solving the MDP problem 

as usual using this single objective, and repeating the process for a wide range of weights.  

While a simple additive weighting function is an appealing aggregate function, it suffers 

from an inability to detect concave segments of Pareto frontiers.  To partially overcome 

this limitation, a heuristic technique (detailed in Appendix A) using the variable-power 

per-period aggregate objective function in Eq. (28) is used.  In this equation, Ω is the 

number of per-period objectives, wi is the weight on the i th objective, T is the total 

number of time periods in the time horizon, γi is per-period performance of the system in 

terms of the i th objective (normalized such that the sum of γi over all time periods cannot 

exceed unity or become negative, and such that higher values of γi are preferred), and n is 

the objective function power.  The conversions used in this application to normalize 

element cij of the cost matrix into γ1,ij and element uij of the performance matrix into γ2,ij 

are shown in Eq. (29). 
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4.4.2.3. Sample Results for Satellite Application 

Applied to the satellite example, this unification of flexibility and MDP 

frameworks can be applied to find optimal policies efficiently for a range of decision-

maker cost or performance preferences.  These policy solutions take the form of a matrix 

with N×K rows and T columns, where each element (ξ,τ) indicates which of N possible 

actions or decisions should be made given the system is in state ξ at time τ.  In the 

satellite example application, each policy matrix has dimensions 54 (total states) × 4 

(time periods), and 9 options exist for each element of the matrix.  If a full-factorial 

analysis of all possible policies were to be conducted (as was done for the simple case of 

paths in Step 4A), 9216 = 1.31×10206 simulations would need to be executed!  However, 

use of the structure of the problem as posed by Eq. (26) and scanning over weights and 

powers as suggested in Eq. (28) permits optimal policy solutions to be found within 

minutes on a standard desktop computer. 

Expected cost and performance results for policy solutions to the satellite example 

are shown by each blue “x” in Figure 31.  Among these, the nondominated (Pareto-

optimal) solutions are highlighted and connected in red.  Note that the minimum-cost and 

maximum-performance endpoints of the Pareto frontier are identical to those of the open-

loop full factorial analysis of Figure 27, and the shape of the frontier largely mirrors that 

of Figure 27.  However, several of the solutions on the frontier (particularly those on the 

convex portions of the frontier) outperform any that were possible via an open-loop 

policy, the reason for which is clear in viewing the example optimal policy solution in 

Figure 32.  Note here that the evolution of the configuration state no longer follows a 

deterministic path through time but rather changes to respond to the changing demand 

environment, per the optimal policy specified in Table 16 that provides an expected total 

performance of 0.57 satellites available for a low expected total cost of $663 million.  For 

example, Table 16 suggests that the decision-maker develop no satellites for the next 

period in the event that the current conflict environment is quiescent with full commercial 
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capability (Environment 6) since this environment demands no government capability for 

satellites and is very likely to continue into the next period.  On the other hand, if the 

current conflict environment is hostile and no commercial capacity is available 

(Environment 1), the underlying Markov chain reflects a 65% chance that the next-period 

demand environment will have use for at least one communications satellite, and Config. 

3 (the one-communications-satellite configuration) is suggested for development from 

three configurations within this environment.  Rule- or policy-based results such as this 

are impossible to capture using the fixed configuration paths of Step 4A. 

 

 

Figure 31.  Trade between total demanded satellites available and total cost for MDP policy 
solutions.  Policy identification numbers are indicated next to every fifth policy. 
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 Evolution of States Evolution of Objectives 

   
Figure 32.  Evolution of states and objectives for Pareto-optimal policy #14 (defined in 
Table 16).  In the plots on the left, the size of circles indicates the relative number of Monte 

Carlo simulation cases that exist in a given configuration or demand state (on the y-axes) at a 
given time (on the x-axes).  The plots on the right indicate the associated evolution of per-period 
cost and performance. In all plots, gray lines indicate transitions made in at least one simulation. 

 
Table 16.  Pareto-Optimal Policy #14 for Satellite Example. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. 0 8 16 24  

Total 
State Env. Config. 0 8 16 24 

1 -1- 1 3 3 3 1  28 -4- 1 3 3 3 1 
2 -1- 2 1 1 1 1  29 -4- 2 1 1 1 1 
3 -1- 3 3 3 3 1  30 -4- 3 3 3 3 1 
4 -1- 4 1 1 1 1  31 -4- 4 1 1 1 1 
5 -1- 5 1 1 1 1  32 -4- 5 1 1 1 1 
6 -1- 6 3 1 3 1  33 -4- 6 1 1 3 1 
7 -1- 7 1 1 1 1  34 -4- 7 1 1 1 1 
8 -1- 8 1 1 1 1  35 -4- 8 1 1 1 1 
9 -1- 9 1 1 1 1  36 -4- 9 1 1 1 1 
10 -2- 1 3 1 3 1  37 -5- 1 3 3 3 1 
11 -2- 2 1 1 1 1  38 -5- 2 1 1 1 1 
12 -2- 3 1 1 1 1  39 -5- 3 1 1 1 1 
13 -2- 4 1 1 1 1  40 -5- 4 1 1 1 1 
14 -2- 5 1 1 1 1  41 -5- 5 1 1 1 1 
15 -2- 6 1 1 1 1  42 -5- 6 1 1 1 1 
16 -2- 7 1 1 1 1  43 -5- 7 1 1 1 1 
17 -2- 8 1 1 1 1  44 -5- 8 1 1 1 1 
18 -2- 9 1 1 1 1  45 -5- 9 1 1 1 1 
19 -3- 1 1 1 1 1  46 -6- 1 1 1 1 1 
20 -3- 2 1 1 1 1  47 -6- 2 1 1 1 1 
21 -3- 3 1 1 1 1  48 -6- 3 1 1 1 1 
22 -3- 4 1 1 1 1  49 -6- 4 1 1 1 1 
23 -3- 5 1 1 1 1  50 -6- 5 1 1 1 1 
24 -3- 6 1 1 1 1  51 -6- 6 1 1 1 1 
25 -3- 7 1 1 1 1  52 -6- 7 1 1 1 1 
26 -3- 8 1 1 1 1  53 -6- 8 1 1 1 1 
27 -3- 9 1 1 1 1  54 -6- 9 1 1 1 1 
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Figure 31 also permits comparisons to be made with policies that might be 

brainstormed or proposed outside of the MDP solution procedure.  For example, one 

reasonable policy that might be proposed is to always develop and field the configuration 

that least expensively maximizes performance in the most likely next-period demand 

environment.*  The policy implied by this statement is provided in Table 17; for instance, 

if Config. 2 is currently operational in the Environment 1 (i.e., if the system is in total 

state 2), the most likely next-period demand environment according to Table 10 is 

Environment 4.  To least expensively fulfill the demands of this environment, one 

reconnaissance and one communications satellite would be developed and launched, 

which places the system into Config. 4.  Thus, as Table 17 shows, Config. 4 is the 

decision made from total state 2 at all except the final time period.† 

The performance of this next-period anticipatory policy is summarized by the 

yellow triangle in Figure 31, and two important points can be noted.  First, this policy is 

dominated by another discovered in the optimization process:  Pareto-optimal policy #40 

achieves a higher expected performance at a lower expected cost.  Second, even if this 

anticipatory were Pareto-optimal (as it nearly is), note that it is just one of a multitude of 

policy options; it might be tempting for a decision-maker to adopt this intuitive policy, 

but Figure 31 illustrates that doing so automatically fixes the long-term cost and 

performance and ignores a wide variety of options that can reduce cost by a factor of 5 

(with a certain trade in performance) or increase performance by a factor of 1.6 (with a 

certain trade in cost).  Thus, the search throughout the policy design space permitted by 

Step 4B allows the decision-maker to understand the cost and performance trades 

available and select a policy tailored to his or her preferences. 

                                                        
* In the event that multiple demand environments have the same probability of materializing next, 

the environment with the demand for more satellites is used. 

† The reason for the difference in the final time period decision is the same as discussed earlier in 

Section 4.4.1. 
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Table 17.  Anticipatory Policy for Satellite Example. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. 0 8 16 24  

Total 
State Env. Config. 0 8 16 24 

1 -1- 1 4 4 4 1  28 -4- 1 4 4 4 1 
2 -1- 2 4 4 4 1  29 -4- 2 4 4 4 1 
3 -1- 3 4 4 4 1  30 -4- 3 4 4 4 1 
4 -1- 4 4 4 4 1  31 -4- 4 4 4 4 1 
5 -1- 5 4 4 4 1  32 -4- 5 4 4 4 1 
6 -1- 6 4 4 4 1  33 -4- 6 4 4 4 1 
7 -1- 7 4 4 4 1  34 -4- 7 4 4 4 1 
8 -1- 8 4 4 4 1  35 -4- 8 4 4 4 1 
9 -1- 9 4 4 4 1  36 -4- 9 4 4 4 1 
10 -2- 1 2 2 2 1  37 -5- 1 2 2 2 1 
11 -2- 2 2 2 2 1  38 -5- 2 2 2 2 1 
12 -2- 3 2 2 2 1  39 -5- 3 2 2 2 1 
13 -2- 4 2 2 2 1  40 -5- 4 2 2 2 1 
14 -2- 5 2 2 2 1  41 -5- 5 2 2 2 1 
15 -2- 6 2 2 2 1  42 -5- 6 2 2 2 1 
16 -2- 7 2 2 2 1  43 -5- 7 2 2 2 1 
17 -2- 8 2 2 2 1  44 -5- 8 2 2 2 1 
18 -2- 9 2 2 2 1  45 -5- 9 2 2 2 1 
19 -3- 1 2 2 2 1  46 -6- 1 2 2 2 1 
20 -3- 2 2 2 2 1  47 -6- 2 2 2 2 1 
21 -3- 3 2 2 2 1  48 -6- 3 2 2 2 1 
22 -3- 4 2 2 2 1  49 -6- 4 2 2 2 1 
23 -3- 5 2 2 2 1  50 -6- 5 2 2 2 1 
24 -3- 6 2 2 2 1  51 -6- 6 2 2 2 1 
25 -3- 7 2 2 2 1  52 -6- 7 2 2 2 1 
26 -3- 8 2 2 2 1  53 -6- 8 2 2 2 1 
27 -3- 9 2 2 2 1  54 -6- 9 2 2 2 1 

 

4.5. Step 5:  Implications for Initial System Selection 

Recall that a major purpose of this framework is to inform initial system selection.  

The analysis of Step 4 has produced a large set of data on optimal paths and policies to 

follow for the entire system time horizon, and it is easy to lose track of the implications 

this has for the initial  system decision.  This final step of the framework builds upon the 

analysis results of Step 4 to provide implications for this decision.  Covered first are 

implications based on the expected-value Pareto frontiers of Step 4, followed by 

advanced topics that consider variations on these objectives and on the initial demand 

environment assumption. 

4.5.1. Implications based on the Expected-Value Pareto Frontier 

In the case of an open-loop path as discussed in Step 4, the initial decision is 

simply the first configuration in its associated configuration sequence.  In the case of a 
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policy, the initial decision is found by locating the initial condition in the row of the 

policy matrix and examining the element in the first column.  To facilitate this, the initial 

configurations specified by the Pareto-optimal paths and policies found in Step 4 may be 

identified explicitly and plotted as a function of decision-maker cost (or performance) 

preference. 

In the case of the satellite example, the initial configurations implied by the 

Pareto-optimal paths and policies of Figure 27 and Figure 31 are identified in Figure 33.  

Here, the Pareto frontier solutions of Figure 27 and Figure 31 are identified by their 

expected total cost on the x-axis.  On the y-axis are the initial configuration decisions 

called for by each Pareto-optimal path (yellow circles) or policy (blue squares).  Two 

particular observations can be made:  First, only six of the nine configurations appear 

among the optimal initial decisions.  All paths and policies with other initial decisions are 

dominated by paths and policies using these six configurations.  Second, the number of 

satellites involved in the initial configuration tends to increase as the expected total cost 

of the system increases.  For example, the optimal initial configuration tends to progress 

from no satellites (for a low budget) to one communications satellite (Config. 3) to a 

communications satellite and a reconnaissance satellite (Config. 4) to eventually two 

communications satellites and one reconnaissance satellite (Config. 8) and to two of each 

type of satellite (Config. 9).  The primary exception to this occurs in the medium-cost 

region in which the initial decision to develop the one-reconnaissance-satellite 

configuration (Config. 2) is associated with Pareto-optimal paths and policies.  Thus, for 

example, a decision-maker interested in minimizing cost without regard for performance 

would elect to develop Config. 1 or 3 initially, while a decision-maker interested in 

maximizing performance without regard for cost would opt for Config. 9 initially.  A 

decision-maker seeking a compromise between these extremes should opt for Configs. 2, 

4, or 8, but any other selection would result in a suboptimal long-term cost and 

performance result. 
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Also noted next to several paths and policies in Figure 33 and explicitly plotted in 

Figure 34 are the number of transitions Φ available from each initial configuration for the 

average per-period cost associated with each total cost.  As discussed in Step 1, this 

number Φ can be considered an indicator of flexibility, and it can be seen that more 

flexible initial configurations (e.g., Φ = 7) are selected at higher cost and performance 

preferences.  Thus, there exists some correlation between flexibility and performance on 

the Pareto frontier, which paves the way for an important discussion after the following 

section to conclude this theoretical discussion on the present framework for integrating 

flexibility into system design decisions. 

 

Figure 33.  Initial configurations for Pareto-optimal paths and policies as a 
function of expected path or policy total cost.  Also noted are the numbers of 
transitions available for several initial configurations at their path or policy’s 

average per-period budget requirements. 
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Figure 34.  Number of Available Transitions for Pareto-Optimal Initial Configurations. 
 

4.5.2. Accounting for Non-Expected-Value Objectives 

An important consideration for initial system selection is the fact that expected-

value objective functions of cumulative cost and performance metrics may not fully 

capture a decision-maker’s true objectives.  For example, in the case of one-of-a-kind 

engineering programs in which the large sample sizes do not exist for which expected-

value-based decisions would be most relevant, a decision-maker may have some interest 

in minimizing risks or deviations away from a central tendency measure of cost or 

performance. 

In the event that the decision-maker’s true objectives are not expected values of 

cumulative costs and performance metrics, all is not lost in the approach of Steps 1-4.  In 

fact, much is gained.  Recall that the policy trade-space (e.g., the 1.31×10206 ways that the 

policy matrices of Table 16 and Table 17 could be populated) can be astronomically 

large, but that MDP dynamic programming techniques can permit optimal policies to be 
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found quickly and efficiently over a wide range of decision-maker cost and performance 

preferences.  The dynamic programming technique’s limitation is that the objective 

function must take the form of a cumulative expected-value objective, but this can be 

valuable if the decision-maker is able to identify such an objective as an acceptable 

surrogate or starting point for an analysis such as one that is illustrated next. 

In the following analysis, a customized multi-objective genetic algorithm is 

employed to perturb each of the policies identified in Figure 31, simulate each new 

hybrid policy, and search for non-dominated solutions in terms of any combination of 

metrics that can be accounted for via simulation.  This genetic algorithm is customized in 

the sense that it is real-valued and not binary in order to avoid the need to represent each 

of the 9216 possible policies of the example application via a 685-bit binary string; 

instead, each member of the population is represented by its full policy matrix.  At each 

iteration, each member has a 10% probability of mutation, which is associated with a 

random change of approximately 10% of the member’s matrix elements.  In addition, at 

each iteration a 75% probability of crossover exists, which occurs via the two-point 

splicing of the matrix rows of each member with a randomly selected other member to 

form one new member of the population.  Elitism is employed to ensure the highest-

performing member of the population is retained from one generation to the next, and the 

initial guess is also retained in the population throughout.  The algorithm employs the 

infinity norm aggregate objective function (for rationale, see Appendix A) and sweeps 

across the range of weights to identify optimum solutions over a variety of decision-

maker preferences.  Note, however, that this particular selection of a genetic algorithm is 

meant only to illustrate how existing optimization and design space exploration 

techniques can be used to further explore the policy space introduced and efficiently 

solved for in Step 4B; a great deal of expansion and exploration of other algorithms is 

possible and warranted in the future. 
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The results of Figure 35 are produced by applying this policy exploration 

technique to the new metrics of 90th percentile (near-worst-case) total cost and 10th 

percentile (near-worst-case) total number of demanded satellites available, in addition to 

the expected-value versions of these metrics.  Of particular note in the Figure 35 

multivariate plot are four subplots:  First, the data in the subplot of the second row and 

first column shows the familiar expected-value cost and performance trade, with slightly 

better Pareto frontier performance due to the genetic algorithm’s search.  Second, the data 

in the subplot of the last row and second column shows the 10th percentile performance 

vs. the 90th percentile cost; the performance data in this subplot is noticeably more 

discrete since fractional numbers of available satellites are not possible in a simulation.  

Finally, the upper left and bottom right subplots show the correlations between the new 

percentile-based metrics and their expected-value counterparts.  In the cases of the cost 

subplot, linear correlation is particularly high (R² = 0.88) and strongly supports the use of 

expected value as a surrogate for optimizing the percentile-based metrics. 
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Figure 35.  Multivariate plot of multi-objective genetic algorithm policy results.  
Each data point indicates the performance of one policy result in terms of the four 

percentile-based and expected-value metrics of interest.  Data points are colored by 
their corresponding policy’s initial configuration decision.  

 

The usefulness of the multivariate plot of Figure 35 becomes more evident if cost 

or performance constraints are imposed by the decision-maker.  For example, suppose 

that this decision-maker has a $3 billion limit on the funds available for supporting this 

system over its time horizon.  If the decision-maker wishes to be 90% sure that this 

budget will not be breached, a $3 billion constraint may be imposed on the 90th percentile 

total cost metric.  This constraint eliminates many high-cost (and also high-performance) 

options that formerly fell into the high 90th percentile cost regions of the multivariate plot 
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that are now gray in Figure 36.  Similarly, the decision-maker may wish to have 90% 

confidence that at least one service will be performed over the system’s lifetime.  In this 

case an additional constraint may be imposed on the last row of subplots in Figure 36.  

Combined, these two constraints eliminate a large number of the policy options available.  

Furthermore, they limit the decision-maker’s options for which configuration to select 

initially.  In this case, options are limited to just Configs. 2, 4, and 8 (associated with 

policies colored cyan, magenta, and green).  While Figure 36 shows that all these initial 

configurations are associated with policies of equal 10th percentile performance, Config. 

4 tends to be associated with policies of higher long-term cost than Config. 2, and Config. 

8 is associated with policies across a range of long-term costs (both mean and 90th 

percentile).  Note that if a decision-maker wished to have more insight into the behavior 

of any given policy, the policies associated with each data point in Figure 36 could easily 

be simulated and visualized in a manner identical to the example of Figure 32.  In the 

end, in this notional scenario a recommendation for Configs. 2, 4, or 8 could be justified, 

depending on the cost and performance preferences of the decision-maker.  Importantly, 

through the use of this thesis’ framework, the majority of possible initial configurations 

have been eliminated, either due to long-term cost or performance constraints, or due to 

the Pareto sub-optimality of the policies with which they are associated. 
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Figure 36.  Multivariate plot of multi-objective genetic algorithm policy results with cost 
and performance constraints imposed.  Each data point indicates the performance of one 

policy result in terms of the four percentile-based and expected-value metrics of interest.  Data 
points are colored by their corresponding policy’s initial configuration decision.  Gray areas 

indicate regions of the space eliminated due to cost and performance constraints. 
 

4.5.3. Flexibility, Entropy, and Policy 

An interesting observation was made earlier regarding the fact that in the satellite 

program application there existed some correlation between the long-term performance 

and the flexibility Ф(b) of the initial configuration decision associated with the Pareto-

optimal policies.  This is natural for two reasons:  First, higher-performing configurations 
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are themselves often correlated with higher cost, and higher-cost configurations are 

themselves often correlated with lower switching costs (and thus higher numbers of 

available transitions, Ф).  Second, because higher-performing configurations are 

correlated with higher cost, the average per-period budget b used to calculate Ф(b) of the 

initial configurations is higher for these configurations.  Thus, this seemingly interesting 

question becomes somewhat less so in short order; however, a useful and very interesting 

question does present itself upon reflection of this previous question:  How does the 

optimal behavior with respect to flexibility vary as certainty about the demand 

environment changes? 

To address this empirically, consider the satellite example used throughout this 

chapter but with two new models for the demand environment.  The first, the low-

entropy-rate environment, is shown in Table 18 and has an entropy rate of 0.67 bits (for 

details on entropy rate, see the discussion in Step 2 and Eq. (16)).  The second, the 

medium-entropy-rate environment, is shown in Table 19 and has an entropy rate of 1.26 

bits.  The reference model used throughout the demonstration in Steps 1-5 is provided in 

Table 10 and has a relatively high 2.36 bit entropy rate.  Note that the lower the entropy 

rate of a Markov chain model is, the more deterministic it becomes. 

 
 

Table 18.  Low-Entropy-Rate Demand Markov Chain Transition Matrix (H ′=0.67 bits). 

  
To Demand Environment, Yj 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

- 1 -  Hostile, None 0.00 0.00 0.00 0.98 0.02 0.00 
- 2 -  Hostile, Some 0.07 0.00 0.00 0.00 0.85 0.07 
- 3 -  Hostile, Full 0.00 0.00 0.00 0.00 1.00 0.00 
- 4 -  Quiescent, None 0.04 0.00 0.00 0.48 0.48 0.00 
- 5 -  Quiescent, Some 0.00 0.08 0.00 0.01 0.89 0.01 F

ro
m

 D
e

m
a
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E
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t, Y
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- 6 -  Quiescent, Full 0.00 0.00 0.00 0.06 0.70 0.23 
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Table 19.  Medium-Entropy-Rate Demand Markov Chain Transition Matrix (H ′=1.26 bits). 

  
To Demand Environment, Yj 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

- 1 -  Hostile, None 0.00 0.02 0.00 0.92 0.06 0.00 

- 2 -  Hostile, Some 0.14 0.01 0.01 0.01 0.70 0.14 

- 3 -  Hostile, Full 0.00 0.02 0.00 0.00 0.97 0.00 

- 4 -  Quiescent, None 0.09 0.01 0.00 0.45 0.45 0.00 

- 5 -  Quiescent, Some 0.01 0.15 0.01 0.05 0.74 0.05 F
ro

m
 D

em
a

nd
 

E
nv

iro
nm

en
t, Y

i 

- 6 -  Quiescent, Full 0.00 0.01 0.01 0.12 0.59 0.28 

 

 
Executing the MDP optimization procedure of Step 4B for a range of decision-

maker cost and performance preferences results in a Pareto frontier and a set of suggested 

initial configuration decisions for each of the two new demand environment Markov 

chains.  Just as was done for the nominal (high entropy rate) case in Figure 34, for each 

of these chains the number of available transitions from each optimal policy’s initial 

configuration for the average per-period cost can be plotted.  These results are shown in 

Figure 37.  Surprisingly, despite the large differences in entropy rate among the three 

cases, the three plots look remarkably alike:  The number of available transitions spans 

from one at an expected total cost somewhat under $500 million to seven or eight at a 

cost between $3.5 and $4.0 billion, with a significant clustering of low-cost, low-

flexibility options. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



106 

 Low Entropy Rate Medium Entropy Rate High Entropy Rate 

 

Figure 37.  Ф of the Initial Configurations of Pareto-Optimal Policies for varying Demand 
Environment Entropy Rates. 

 

If flexibility of the optimum initial configuration does not distinguish high- from 

medium- and low-entropy-rate (i.e., more from less random) demand environments, then 

what does?  As the following discussion will highlight, the simple answer is policy.  

Policy specifies how a system’s flexibility is exercised, which changes significantly with 

the stochastic nature of the demand environment.  To this end, it is instructive to examine 

two special cases: 

Consider first a case in which demand evolves deterministically according to the 

transition matrix in Table 20.  In this matrix, Environments 4 and 5 are absorbing states, 

and Environment 5 is the state to which the system in the present simulation is absorbed 

(since the initial condition for this simulation is Env. 6).  Intuitively, one would expect 

that Pareto-optimal policy solutions in the presence of no uncertainty are paths, and this 

is exactly the case.  Figure 38 shows the Pareto frontier and the time-histories of 

configurations for the Pareto-optimal points for this deterministic case.  Depending on the 

l performance desired, Config 2 is fielded for a greater or fewer number of time periods.  

The optimal policy in a deterministic demand environment thus degenerates to a path. 
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Table 20.  Special Deterministic Markov Chain Transition Matrix (H ′=0 bits). 

  
To Demand Environment, Yj 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

- 1 -  Hostile, None 0 0 0 1 0 0 

- 2 -  Hostile, Some 0 0 0 0 1 0 

- 3 -  Hostile, Full 0 0 0 0 1 0 

- 4 -  Quiescent, None 0 0 0 1 0 0 

- 5 -  Quiescent, Some 0 0 0 0 1 0 F
ro

m
 D

e
m

a
nd

 
E

nv
iro

nm
en

t, Y
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- 6 -  Quiescent, Full 0 0 0 0 1 0 

 

 

Figure 38.  Trade between total demanded satellites available and total cost for MDP policy 
solutions subject to a deterministic (minimum entropy rate) demand environment Markov 

chain.  Configuration time histories for the optimal policies are overlaid. 
 

Consider second the case in which demand evolves uniformly randomly 

according to the transition matrix in Table 21.  In this extreme case, a decision-maker has 

decided to assume that he or she has no knowledge about the likelihood of any future 

demand environment.  Each environment is equally likely to occur in the future, and no 

knowledge about the current demand environment will improve knowledge about the 

likelihood of the next period’s environment.  In this case, since no information about 

demand evolution can be gained from the probability transition matrix, it may not be 
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immediately obvious what optimal policies may exist.  However, some suboptimal 

policies may be clear.  For example, a policy that guides the decision-maker to alternate 

between developing Config. 1 and 9 (the most and least capable configurations) would be 

particularly wasteful, since Config. 9 would need to be re-developed in each time period.  

This simple example thus illustrates, and Figure 39 confirms, the important point that 

Pareto-optimal policies exist even in a uniformly random (maximum entropy rate) 

demand environment.  This carries with it important implications for the usefulness of 

this thesis’ framework even in the presence of complete uncertainty in the transition 

probabilities of the demand environment. 

More importantly, what is the character of the Pareto-optimal policies in the case 

of the uniformly random demand environment?  In the same format as Figure 38, Figure 

39 shows the Pareto frontier as well as the time-histories of configurations for Pareto-

optimal points in the maximum-entropy-rate case.  Strikingly, most of these points (and 

in fact all of the points that fall on the convex portion of the frontier, which is known to 

contain the set of global optimum solutions) are actually paths.  Thus, the optimal policy 

in response to total uncertainty in the demand environment also tends to degenerate to a 

path.  In such an environment, the present contributes no information about the future, 

and no useful policy exists to specify how to adapt a system to future environment 

changes. 

 

Table 21.  Special Uniform Random Markov Chain Transition Matrix (H ′=2.58 bits). 

  
To Demand Environment, Yj 

 

- 1 - 
Hostile, 
None 

- 2 - 
Hostile, 
Some 

- 3 - 
Hostile, 

Full 

- 4 - 
Quiescent, 

None 

- 5 - 
Quiescent, 

Some 

- 6 - 
Quiescent, 

Full 

- 1 -  Hostile, None 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

- 2 -  Hostile, Some 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

- 3 -  Hostile, Full 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

- 4 -  Quiescent, None 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

- 5 -  Quiescent, Some 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 F
ro

m
 D

e
m

a
nd

 
E
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- 6 -  Quiescent, Full 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 
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Figure 39.  Trade between total demanded satellites available and total cost for MDP policy 
solutions subject to a uniformly random (maximum entropy rate) demand environment 

Markov chain.  Configuration time histories for several optimal policies are overlaid. 
 

In summary, despite the fact that the Pareto-optimal initial configurations for 

high-, medium-, and low-entropy-rate demand environments possessed similar flexibility 

Ф, this flexibility was used in very different ways: 

� In the low-entropy-rate case, this ability to change configurations was used to 

respond to environment changes known to the decision-maker in advance, 

making this case akin to a traditional optimization problem in the sense that 

the influence of uncertainties over time need not be accounted for.  More 

precisely, in this case the path (not necessarily the configuration) was 

optimized. 

� In the high-entropy-rate case, a similar path was set in advance since, 

although the future was evolving stochastically, minimal or no information 
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about the future could be gleaned from the present environment.  This case is 

thus more akin to the concept of robustness in the sense that the selected 

sequence of configurations is able to perform well in whatever future 

environments materialize, but that no actions are intended to be taken to 

respond to these future environments.  To be precise, the path (as opposed to 

the configuration) was made robust. 

� In the medium-entropy-rate case, flexibility can be utilized to its fullest extent.  

In such a case, the Pareto-optimal policies are no longer paths but rather are 

true policies or “playbooks” that indicate to the decision-maker what action to 

take (i.e., configuration to develop) given future environment and 

configuration states.  These policies take advantage of information gained 

about the future evolution of demand from knowledge of the present state. 

These observations thus highlight the fundamental fact that although flexibility 

may exist in many systems, it is only when a mix of certainty and uncertainty in future 

environments exists that this flexibility will result in non-path policies.  Only between the 

extremes of a deterministic and uniformly random demand environments will the ability 

of a system to be modified in response to changes in environments or requirements be 

exercised.  That is, only between these entropy rate extremes is flexibility usefully 

exercised. 

The observations of this section also emphasize where flexibility exists in the 

analyses of Step 4 that produced Pareto frontiers in terms of performance and cost 

objectives:  While flexibility itself is not an explicit objective (cf. Section 2.5), it exists 

implicitly in the search for policies, particularly non-deterministic (non-path) policies.  

The ability of a system to be modified in response to changing environments or 

requirements (i.e., flexibility) is inherently linked to the rules that govern its modification 

response (i.e., policy), whether those rules are themselves explicit or implicit.  This thesis 
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advances work on flexibility by making explicit these system modification policies in a 

unification of traditional two-period state-centric concepts of flexibility with multi-period 

decision analysis techniques.  As a result, policies governing how system flexibility is 

used are not only explicit and transparent, but can be traded and optimized to match a 

decision-maker’s cost and performance preferences. 

4.6. Summary 

In a methodical manner, this chapter began from a foundational two-period state-

centric concept of flexibility and showed how, through interpretation of this concept for 

space systems and linkage to the environments in which these systems may be required to 

operate, it can be unified with existing formulations and optimization techniques for 

Markov decision processes.  Throughout the five-step framework developed here, several 

insightful analyses were developed.  For example, in Step 1 the number of available 

transitions from a given configuration state at a given budget Фi(b) was developed as a 

surrogate metric for flexibility.  Step 4 made the important distinction between paths and 

policies; while paths are a more traditional method of planning (e.g., laying out a set of 

actions to execute in future years), they preclude a decision-maker from considering the 

full “playbook” of if-then possibilities when making his or her decisions.  Step 5 

illustrated how the complicated policy (and, to some extent, path) results of Step 4 can be 

distilled into information that a decision-maker can use to make an initial system 

selection.  For the more advanced practitioner, Step 5 addressed how the expected-value 

optima of Step 4 can be used as reasonable initial guesses for more local design space 

searches in the case that decision-makers have non-expected-value or non-cumulative 

objectives in mind.  Finally, Step 5 also addressed the intriguing point that flexibility has 

a particular niche in environments of neither very high nor very low uncertainty, but 

rather in environments in which the present gives just some information about future 
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demand.  Emphasized was the inherent link between flexibility and policy, which 

specifies the conditions under which a system’s flexibility is exercised. 

This chapter has thus established the theoretical foundations of the present thesis.  

The following two chapters illustrate how this framework can be applied to problems of 

current interest to the space industry.  First, in Chapter 5 comes a direct application to a 

relevant defense-related problem motivated by recent fractionation efforts of the Defense 

Advanced Research Projects Agency (DARPA).  Second, in Chapter 6 is a significant 

extension of the basic framework presented in Chapter 4 to address decision-making for 

NASA human space exploration architecture planning. 
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CHAPTER 5 

APPLICATION TO DISTRIBUTED- OR MULTI-PAYLOAD 
SATELLITE DESIGN DECISIONS 

In July 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) 

released a Broad Agency Announcement soliciting proposals for development of System 

F6 (Future Fast, Flexible, Fractionated, Free-Flying Spacecraft united by Information 

eXchange) [92].  DARPA’s goal for F6 is ultimately a flight demonstration of an 

architecture in which the functionality of a traditional “monolithic” satellite is fulfilled 

with a fractionated cluster of free-flying, wirelessly interconnected modules.  One special 

reference case defined in the context of fractionated spacecraft studies is that of a 

distributed-payload monolith satellite, in which payloads but not subsystems are 

distributed among free-flying modules (e.g., see Refs. [95]-[97]).  To illustrate this thesis’ 

framework in a step-by-step manner for a realistic application of intra-mission flexibility 

[28], this chapter poses an example in which design decisions must be made for a 

hypothetical multi-payload Department of Defense satellite system motivated by such a 

distributed-payload monolith concept.  Of particular interest is the answer to the 

following question:  How can a systems engineer or analyst select the design of the 

satellite system initially such that it can optimally (or Pareto-optimally) respond to the 

uncertain future demands that may be placed upon it? 

Recall that this thesis’ framework consists of five basic steps, outlined in Figure 

12.  First, system configuration options are identified and costs of switching from one 

configuration to another are compiled into a cost transition matrix.  Second, probabilities 

that demand on the system will transition from one mission to another are compiled into a 

mission demand Markov chain.  Third, one performance matrix for each design objective 

is populated to describe how well the identified system configurations perform in each of 

the identified mission demand environments.  Fourth, possible future sequences of 
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system configurations are simulated and sequences that are Pareto-optimal in terms of the 

decision-maker’s objectives are identified.  In a complementary approach, the system 

decision problem is formulated as a multi-objective variant of a Markov decision process, 

and Pareto-optimal decision policies are identified.  Finally, the paths and policies from 

the latter step are synthesized into a set of data to inform initial system selection. 

 

Figure 12.  Five major steps of this thesis’ framework. 
 
 

5.1. Step 1:  Define Configuration Options and the Cost Transition Matrix 

As noted in Section 2.2, in 1984 economists Jones and Ostroy [51] suggested, 

“Flexibility is a property of initial positions.  It refers to the cost, or possibility, of 

moving to various second period positions.”  Step 1 of this proposed framework begins 

by defining:  What are the possible “positions”, or engineering configurations, of this 

multi- or distributed-payload satellite system? 
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5.1.1. Defining the Configuration Space 

In this application, suppose that the decision-maker has the option of inserting up 

to three specific payloads in any current or future system designs.  One payload (PL1) 

provides detection of distress transmissions, another (PL2) provides high-bandwidth 

communications, and a third (PL3) provides high-resolution imagery.  Assumptions for 

mass, power, and pointing requirements for these payloads are shown in Table 22.*  

Considering that these three payloads can be distributed among up to three on-orbit 

modules and that not all three payloads need be included in the system design (i.e., that 

omitting payloads is a valid consideration), there exist 15 distinct configuration options.  

These configurations are represented graphically in Figure 40 and, as noted in previous 

work [95], can be decomposed into subsets of configurations described by Bell numbers.  

Starting from the bottom, configurations 11-15 represent all possible ways of distributing 

three payloads among between one and three modules (i.e., from monolithic to fully 

fractionated).  Configurations 5-10 cover all possible ways of distributing combinations 

of two payloads among up to two modules.  Configurations 2-4 are the single-payload 

satellite system options, and Configuration 1 indicates the option to field no system at all. 

 
 

Table 22.  Assumed payload characteristics for example design. [98]-[102] 

Payload 
No. 

Payload 
Description 

Flight 
Heritage 

Mass 
(kg) 

Power 
Requirement (W) 

Pointing 
Requirement 

(deg.) 
1 Search & Rescue Repeater NOAA-N 24.0 53 1.00 
2 LEO Transponders Orbcomm 8.4 10 5.00 
3 High Resolution Imager NigeriaSat-2 41.0 55 0.01 

 

 

                                                        
* This list of payloads is limited to three for demonstration purposes only and can easily be 

increased if a decision-maker wishes to consider additional candidate payloads. 
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PL12
PL23
PL34

PL1 PL25
PL1 PL36
PL2 PL37

PL2PL18
PL3PL19

10 PL2 PL3

PL1 PL2 PL311
PL2 PL3PL112

PL2 PL1 PL313
PL3 PL1 PL214

PL3PL1 PL215

1 Nothing

 

Figure 40.  Possible system configurations.  Each distinct 
rectangular block represents a free-flying module.  The payloads 

inside each module are indicated in green. 
 
 

Even at this early point in the process, enumeration of the designs within the 

configuration space reveals two extremes in approaches for evolving the system to meet 

future needs:  The most modular (but in the long term, potentially costly) approach would 

be to launch new single-payload modules as new payloads are needed.  A robust (but in 

the short term, potentially wasteful) approach would be to launch a single spacecraft with 

all three payloads, betting that all capabilities will eventually be required.  A number of 

approaches fall between these extremes, and an important goal is to find the best possible 

sequence of configurations over the system’s time horizon, given the uncertainty in future 

demand or requirements.  One of the most important results of this search is eventual 

identification of the best possible initial design (i.e., what the decision-maker should 

build at the start of the program). 
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5.1.2. Defining the Cost Transition Matrix 

With possible system configurations defined, it is next necessary to compile 

development and operations transition cost information.  In this application, operations 

costs refer to the total costs required to operate the currently-fielded configuration over 

the coming time period.  Development costs refer to the total costs required to design, 

develop, produce, and launch the components needed to transition from the current 

configuration to a new configuration over the coming time period. 

In this application, suppose the decision-maker encounters a decision point every 

30 months.  At these points, a decision must be made regarding which of the 15 system 

configurations to develop and then field 30 months later.  Demand for payload services in 

each 30-month operations period is uncertain a priori and materializes after development, 

with the possibility that it will then change in subsequent period (see Figure 41).  

 

 

Figure 41.  Planning periods and decision points for the 
distributed-payload satellite example. 

 

Thus, the decision-maker has control over the system configuration but not the 

demand environment at each time step. However, at each decision point, the control that 

the decision-maker chooses to exercise comes at a certain cost.  For example, if the 
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decision-maker is at the second decision point and has Config. 2 already on-orbit, in 

order to transition to Config. 8 he/she would need to expend the appropriate resources to 

develop and launch a new module.  In addition, he/she must simultaneously pay for the 

operation of the current on-orbit system.   

These transition costs can be represented in matrix form.  First, a development (or 

nonrecurring) cost matrix Cdev accounts for the one-time costs required to develop and 

produce one system given that another system already exists.  This cost, which can also 

be considered a switching cost, is the cost most central to the notion of flexibility and 

may be computed through application-specific cost estimating relationships.  In this case, 

application of the GT-FAST fractionated architecture synthesis tool [95],[103] using the 

payload assumptions of Table 22 for a 10-year design lifetime in a 410 km circular orbit 

produces the transition cost estimates in Table 23.  These costs include appropriate 

spacecraft subsystem development and first-unit production, program management and 

systems engineering, software, ground segment development, launch, and assembly, test, 

and launch operations (ATLO). 

 
Table 23.  Development cost transition matrix, Cdev (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 169 131 184 175 200 189 197 252 212 204 257 228 258 280 

2 0 0 36 89 80 105 94 36 89 117 109 94 134 163 117 
3 0 75 0 89 80 105 94 75 158 89 109 163 105 163 158 
4 0 75 36 0 80 105 94 103 75 36 109 163 134 80 103 
5 0 75 36 89 0 105 94 103 158 117 109 163 134 89 186 
6 0 75 36 89 80 0 94 103 158 117 109 163 36 163 186 
7 0 75 36 89 80 105 0 103 158 117 109 75 134 163 186 
8 0 0 0 89 80 105 94 0 89 89 109 94 105 163 89 

9 0 0 36 0 80 105 94 36 0 36 109 94 134 80 36 
10 0 75 0 0 80 105 94 75 75 0 109 163 105 80 75 
11 0 75 36 89 80 105 94 103 158 117 0 163 134 163 186 
12 0 0 36 89 80 105 0 36 89 117 109 0 134 163 117 
13 0 75 0 89 80 0 94 75 158 89 109 163 0 163 158 
14 0 75 36 0 0 105 94 103 75 36 109 163 134 0 103 
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15 0 0 0 0 80 105 94 0 0 0 109 94 105 80 0 
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Importantly, note that Table 23 accounts for the fact that free-flying modules for 

the next-period architecture need not be developed or produced if they exist already 

within the on-orbit cluster.  The most obvious manifestation of this is that the diagonal of 

matrix Cdev consists entirely of zeros; this signifies the intuitive fact that it costs nothing 

to develop configuration i given that configuration i already exists.  Similarly, note that 

no development costs are required to downgrade a configuration, such as a transition 

from Config. 15 (which, as shown in Figure 40, includes three single-payload modules) 

to Config. 2 (which consists of only the PL1 single-payload module).  This highlights a 

simplifying assumption within the data of this particular matrix that the cost to shut down 

or decommission a module is zero; however, given proper decommissioning cost models, 

this information could easily be included in Cdev. 

Second, a recurring cost matrix Crec shown in Table 24 accounts for operations 

and any production beyond the first unit.*  In this example application, first-unit 

production costs are the only applicable production costs, so the costs within this matrix 

are functions only of the row, i.e., the configuration that is operational over the length of 

the coming 30-month time period.  These costs are also estimated using the GT-FAST 

tool, which draws upon a publicly-available NASA mission operations cost model [104]. 

 
 
 
 
 
 
 
 
 
 
 

                                                        
* In some instances, the analyst may wish to account for all of production within the recurring 

cost matrix, since even one-time production for a unique flight unit is traditionally bookkept as a 

recurring cost.  In the present application, one-time module production costs are considered more 

closely related to the one-time development costs and are accounted for in the development cost 

matrix. 
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Table 24.  Recurring cost transition matrix, Crec (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
3 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
4 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 
5 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 
6 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
7 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 
8 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
9 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 

10 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 
11 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 
12 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 
13 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 
14 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 
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15 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 
 

Summing Cdev and Crec from Table 23 and Table 24 yields the total cost transition 

matrix C in Table 25 Each element ci,j of this matrix specifies the total cost incurred over 

a subsequent 30-month period as the result of the decision to transition from developing 

configuration i to developing configuration j.  For example, to transition from Config. 2 

to Config. 8 requires developing, producing, and launching the module containing PL2 as 

well as operating the current Config. 2, for a total transition cost c2,8 = $56 million. 

Table 25.  Total cost transition matrix, C (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 169 131 184 175 200 189 197 252 212 204 257 228 258 280 

2 20 20 56 110 101 126 115 56 110 138 130 115 154 184 138 
3 16 91 16 106 97 122 111 91 174 106 125 179 122 180 174 
4 22 96 58 22 102 127 116 124 96 58 131 184 155 102 124 
5 21 96 57 110 21 126 115 123 178 138 130 184 155 110 207 
6 23 98 59 113 104 23 118 126 181 141 133 186 59 187 209 
7 22 97 58 112 103 128 22 125 180 140 131 97 156 186 208 
8 23 23 23 113 104 129 118 23 113 113 132 118 129 187 113 

9 29 29 65 29 109 134 123 65 29 65 138 123 162 109 65 
10 25 99 25 25 105 130 119 99 99 25 134 187 130 105 99 
11 24 98 60 113 104 129 118 126 181 141 24 186 157 187 209 
12 29 29 65 118 109 135 29 65 118 147 138 29 163 193 147 
13 26 101 26 116 107 26 121 101 184 116 135 189 26 190 184 
14 29 104 65 29 29 135 124 132 104 65 138 192 163 29 132 
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15 31 31 31 31 112 137 126 31 31 31 141 126 137 112 31 
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5.1.3. Analyzing the Cost Transition Matrices 

The data represented by the cost transition matrices can be analyzed, visualized, 

and related to flexibility in several useful ways.  First, the relative trade between system 

initial costs and the switching costs (or one-time development costs) of Table 23 can be 

visualized as in Figure 42. In this figure, each vertical line indicates the range of 

switching costs from a given configuration, defined by the rows of Table 23.  Solid dots 

indicate minimum and maximum values, and triangles indicate median values.  Each 

vertical line is located horizontally at the cost needed to develop the configuration from 

scratch (in this case, Config. 1).  For example, if no system currently exists and a 

decision-maker chooses to develop Config. 5 (involving a single module with PL1 and 

PL2 on board), a cost of $175 million is incurred (on the x-axis), and the cost to switch 

configurations in the future varies from $0 to $186 million, depending on which future 

configuration is chosen.  In contrast, if the decision-maker instead chooses to develop 

Config. 15 (involving three payloads among three modules), a cost of $280 million is 

initially incurred, and the cost to switch configurations in the future varies from $0 to 

$109 million.  Thus, to some extent Figure 42 empirically confirms the intuitive trend 

that future switching costs can often be reduced by earlier investments. 
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Figure 42.  Switching cost vs. initial cost from Config. 1.  Vertical lines 
indicate ranges of switching costs from each configuration; some overlap.  Solid 

dots indicate minima and maxima, and triangles indicate median values. 
 

Second, the data from the total cost transition matrix (Table 25) can be visualized 

directly in the context of the two-period state-centric notion of flexibility mentioned 

earlier.  For this visualization see Figure 43.  Here, each node in each of the three plots 

represents one of the configurations considered in the design space.  Each node is named 

SX, where X is the configuration number from Figure 40, and has a color indicative of the 

number of on-board payloads (consistent with the colors of Figure 42).  Above each of 

the three plots is a budget, and for every element of the total cost transition matrix less 

than or equal to the given budget, a directed link is drawn.  In cases where the total cost 

on the diagonal of the matrix is less than or equal to the budget, a dark circle is drawn 

around the appropriate node.  For example, the middle plot of Figure 43 shows that, if the 

currently-fielded architecture is Config. 12, a $50 million budget for a given 30-month 

period would allow the decision-maker to transition to Configs. 1, 2, or 7, or to remain in 

Config. 12. In cases where no links or dark circles are associated with a configuration, the 

available budget is insufficient even to support operation of the current configuration into 

the next period. 
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 Transitions Available for $25M Transitions Available for $50M Transitions Available for $100M 

    

Figure 43.  Available transitions for three example 30-month budgets.  Self-transitions are 
available if a dark ring circles a given node. Colors indicate each configuration’s number of 

payloads (0 = blue, 1 = green, 2 = red, 3 = cyan, consistent with Figure 42).   
   

A natural observation from Figure 43 is that, as budget is increased, more links 

become available.  The total number of links in the graphs of Figure 43 increases from 23 

at the $20 million budget to 47 at the $50 million budget and 78 at the $100 million 

budget.  Eventually, at a large enough budget, all 225 links would appear.  Linking this to 

the two-period state-centric concept of flexibility, a clear indicator of the flexibility of a 

given configuration i is the number of links or transitions available to it for a given 

budget b (the number of “outs” available, denoted Φi(b) ). 

This indicator is plotted in Figure 44.  The figure shows the number of available 

transitions as a function of available budget, where data for each configuration is 

represented by a single line.  For example, the figure illustrates that for a per-period 

budget of $50 million, Config. 1 (the “nothing” configuration) has Φ = 1 transition 

available, Configs. 2-7 and 11 each have Φ = 2 available transitions, Configs. 8-10 and 

12-14 each have Φ = 4 available transitions, and Config. 15 has Φ = 8 available 

transitions. It also shows that by a budget of $300 million, any configuration can be 

reached from any other configuration since all configurations have 15 available 

transitions. 
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Figure 44.  Available configuration transitions as a function of the 
available 30-month budget. 

 
 

Figure 44 highlights a few interesting transition characteristics for the 

configurations in the design space defined in Figure 40.  If the quantity Φ is interpreted as 

a surrogate measure of flexibility, then it is easily seen that Config. 1 is significantly less 

flexible than any other configuration over most of the budget range plotted in Fig. 9.  For 

Config. 1, the first available transition to another configuration occurs at $131 million; 

for the same budget, other configurations can already make between 9 and 13 transitions.  

This occurs because Config. 1 has no capabilities that it can leverage to easily transition 

to other configurations, and all capabilities must be developed from scratch.  It is also 

relevant to note that the three-payload monolith, Config. 11, which has no modules in 

common with other configurations, tends to have fewer transitions available than most 

other configurations at most budget levels.  On the other hand, Config. 15 (the fully 

fractionated design) very quickly attains a large number of available transitions as budget 

increases; this configuration is the first to reach 8 transitions and the first to attain the 

ability to make all 15 available transitions.  This occurs because Config. 15 consists of 

three single-payload modules that can easily be used as pieces of other configurations; 
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from Config. 15, the only modules that must be developed to reach other configurations 

are the two- or three-payload modules. 

In terms of number of transitions, the other configurations within the design space 

generally fall between the bounds of Configs. 1 and 15.  All illustrate that Φ is a 

monotonically increasing function of budget, which implies that any given 

configuration’s flexibility increases with available budget.  However, examples also can 

be found to illustrate that the relative flexibility between configurations is also a function 

of available budget.  For example, at a budget of $25 million, Config. 8 has four available 

transitions while Config. 15 has none.  In other words, at a budget of $25 million, it is 

reasonable to make the statement that Config. 8 is more flexible than Config. 15.  

However, at a budget of $50 million, Config. 8 still has four available transitions while 

Config. 15 can make eight transitions.  At this budget level, Config. 15 is more flexible 

than Config. 8, and the relative flexibility of these configurations has reversed.  The 

reason for this “flexibility reversal” becomes evident when it is recalled that the cost 

transition matrix accounts for both development and recurring operations costs:  When 

budget resources are scarce, operating a high-capability configuration (like Config. 15) 

consumes funds that would otherwise be available for developing the components needed 

to transition to another configuration.  However, as financial resources become more 

abundant, more capable configurations become more flexible because they already 

possess capabilities transferrable toward the development of other configurations. 

5.2. Step 2:  Define Markovian Demand Environment Evolution 

While Step 1 focused on defining the available configuration states for the 

distributed-payload satellite application of interest, the environment in which the system 

will operate has not yet been discussed.  Step 2 fills this gap by proposing a model for the 

evolution of the environment.  Unlike the configuration state, which is under the control 

of the decision-maker, the environment state will characterize the demands placed on the 
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system at any given time, which inherently is not under the control of the decision-maker 

and evolves stochastically. 

As mentioned in Section 5.1.1, up to three specific payloads are available for any 

current or future designs of the distributed-payload satellite system.  One payload (PL1) 

provides detection of distress transmissions, another (PL2) provides high-bandwidth 

communications, and a third (PL3) provides high-resolution imagery.  In terms of 

defining the demand environment, it is reasonable to expect that future demand may exist 

for the satellite system to provide any combination of these three services.  For example, 

in one time period, only high-bandwidth communications may be required, and in 

another, both high-resolution imagery and high-bandwidth communications may be 

needed.  Thus, there exist eight distinct demand environment states, indicated by the axes 

in Table 26.  Note that these environment states are mutually exclusive and, for example, 

“1” should be interpreted as “1 only” and “1+2” should be interpreted as “1+2 only”. 

It is also reasonable to expect that the evolution of demand for these services 

through time is unlikely to be properly modeled by a time series of independent random 

demand environments.  Rather, a subsequent period’s demand likely depends at least in 

part upon the current demand, a dependence that can be captured using a Markov chain. 

stochastic model with an associated probability transition matrix.  The particular 

probability transition matrix assumed for this example is shown in Table 26.  Ideally, this 

matrix would be populated using a set of expert judgements regarding future demand 

behavior or, if they exist, probabilities based on historical data.  In this notional example, 

the author’s judgement was used to select values that reflected a high likelihood that a 

current demand would be maintained (e.g., if high-resolution imagery is demanded in the 

current period, it would be likely to also be demanded in the next period) and tended to 

place lower probabilities on the need for dedicated distress transmission detection 

services.  The probabilities in Table 26 also reflect an assumed conditional independence 

in the evolution of demand for each individual service; for example, the probability of 
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demand evolving for all three services (1+2+3) in a subsequent period is equivalent to the 

product of three underlying probabilities that are conditional on demand in the current 

period and reflect the likelihood that demand evolves to each of the services individually.  

It is important to emphasize, however, that the particular probabilities in Table 26 are 

illustrative and can easily be substituted with if more data or other expert judgements 

become available. 

 
 

Table 26.  Assumed demand environment transition probability matrix.  
Note that, in the demand environment naming convention, 1 indicates demand for 

distress transmission detection , 2 indicates demand for high-bandwidth 
communications, and 3 indicates demand for high-resolution imagery services. 

To Demand Environment  
None 1 2 3 1+2 1+3 2+3 1+2+3 

None 0.30 0.05 0.13 0.30 0.02 0.05 0.13 0.02 
1 0.20 0.15 0.09 0.20 0.06 0.15 0.09 0.06 
2 0.10 0.02 0.23 0.15 0.05 0.03 0.35 0.07 
3 0.10 0.08 0.07 0.23 0.05 0.19 0.16 0.12 

1+2 0.05 0.07 0.20 0.03 0.28 0.05 0.13 0.19 
1+3 0.05 0.05 0.05 0.20 0.05 0.20 0.20 0.20 
2+3 0.05 0.04 0.12 0.12 0.09 0.09 0.27 0.22 
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1+2+3 0.02 0.02 0.08 0.08 0.08 0.08 0.32 0.32 
 
 
 

The Markov chain of Table 26 can be visualized as a set of demand environment 

states as in Figure 45.  In this figure, high-probability transitions are represented as thick 

dark links and low-probability transitions are represented as thin light links.  The 

likelihood of self-transitions (along the diagonal in Table 26) are indicated by the 

darkness and thickness of rings around each state.  Thus, for example, this figure 

immediately allows identification of the highest-probability and lowest-probability 

transitions in the Markov chain and demand environment evolution.  
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Figure 45.  Visualization of the demand environment 
Markov chain described by Table 26. 

 

5.3. Step 3:  Define State-Dependent Performance Matrix 

Linking the on-orbit configuration to the demand environment is a matrix that 

specifies the amount of reward (e.g., revenue or accumulated performance measure) 

earned in each time period as a function of the demand environment and system 

configuration in that period.  The application here uses the matrix in Table 27, which 

specifies the number of demanded services that are performed given a particular 

configuration operating in a particular demand environment.  For example, if the demand 

in one time period is for imagery and communications (column 7) and the vehicle on-

orbit is in Config. 15 (the 3-payload fully-fractionated option, row 15), the decision-

maker accumulates the successful performance of two demanded services.  As a result, 

the decision-maker is incentivized to place payloads in orbit that will meet demand for 

services. 

It is also worth noting that, although the present application adopts just one 

performance metric (and thus one performance matrix), multiple such matrices can be 

defined for any cumulative performance metrics of interest to the decision-maker.  For 

example, a decision-maker may also be interested in a cumulative binary metric that 

indicates a 1 or 0 in each time period depending on whether performance demands were 
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fully met; over the long term, such a metric would indicate the percentage of time that the 

system fully meets the demands placed upon it. 

 
 

Table 27.  Performance matrix quantifying the number of 
demanded services performed in a given time period. 

  Demand Environment State 

  None 1 2 3 1+2 1+3 2+3 1+2+3 

1 0 0 0 0 0 0 0 0 
2 0 1 0 0 1 1 0 1 
3 0 0 1 0 1 0 1 1 

4 0 0 0 1 0 1 1 1 
5 0 1 1 0 2 1 1 2 
6 0 1 0 1 1 2 1 2 
7 0 0 1 1 1 1 2 2 
8 0 1 1 0 2 1 1 2 
9 0 1 0 1 1 2 1 2 

10 0 0 1 1 1 1 2 2 
11 0 1 1 1 2 2 2 3 

12 0 1 1 1 2 2 2 3 
13 0 1 1 1 2 2 2 3 
14 0 1 1 1 2 2 2 3 
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15 0 1 1 1 2 2 2 3 
 
 
 

5.4. Step 4:  Decision Support Analysis 

With configuration transitions, demand environment transitions, and a 

performance matrix defined, there now exists enough information to begin to answer the 

question of what is the “best” initial configuration the decision-maker can choose.  Using 

Figure 41 as a framework for a simulation timeline, one time period before a 

configuration is fielded (in this distributed-payload satellite example, at t = -2.5 years), a 

decision-maker must choose which system configuration to initially design, develop, and 

produce.  At t = 0, the system that had been developed over the previous time period is 

fielded, and a demand environment materializes.  At this point, the system operator must 

make use of the currently operational system in attempting to fulfill the current demand.  

Meanwhile, the decision-maker must choose which configuration to design, develop, and 
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produce over the coming period.  The cycle then repeats for as many periods as fills the 

time horizon under consideration.  In this case, the time horizon of interest is 10 years of 

operation. 

The decision support analysis in this step is divided into two complementary 

analysis options.  The first option, in which Pareto-optimal paths are identified, is simpler 

to implement and conceptually similar to long-term scheduling and roadmapping 

analysis.  The second option, in which Pareto-optimal policies are identified, is a more 

complete consideration of the problem and is akin to developing an optimal “playbook” 

of what actions to take given all possible future evolutions of the environment. 

5.4.1. Find Pareto-Optimal “Open-Loop” Paths 

One question that Figure 41 prompts is:  What configuration should the decision-

maker choose to develop at each time increment?  In other words, what configuration 

should be selected for each of the yellow design and development blocks in Figure 41?  

The answer is not obvious, especially since the demand environment evolves 

stochastically.  For example, the decision-maker who wishes to be able to fulfill whatever 

demand the next period may bring would choose to build the most capable system 

possible, but this may come at substantial initial expense.  The decision-maker who 

would gamble that tomorrow’s demand will be the same as today’s would develop few or 

no new architectural components and in doing so save significant resources; however, 

this may come with the inability to perform if the next period’s demand materializes to 

require greater capability.  Furthermore, whether one period’s decision is best (e.g., high-

reward or low-cost in the long run) is likely to be dependent on other decisions 

throughout the system lifetime.  In the flexibility problem, it is in general necessary to 

consider all future decisions within a given time horizon in order to judge the 

appropriateness of any single decision.  While this presents a unique difficulty within the 

realm of space system conceptual design, once complete it presents an automatic solution 
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to the question of which configuration to select initially:  The appropriate configuration 

to select initially is the first configuration decision from the “best” time-ordered sequence 

of decisions. 

In this example, posing the problem such that we wish to find the optimal 

sequence of the four development decisions (each decision of which implies a selection 

among the 15 configuration options) means that there exist 154  = 50,625 possible 

sequences (or paths).  Since the configurations on these paths are identified by the time 

on the clock at which they are chosen, this type of specification will be referred to as an 

open-loop path. 

Assuming an initial condition at t = -2.5 years in which the operational 

configuration is nothing (Config. 1) and there is demand for none of the services (the 

“None” environment), one approach to solving this problem is to simulate all 50,625 

paths subject to the stochastically-changing demand environment and identify which 

produces the “best” combination of performance and cost.  Thus, for each of the paths, 

1000 Monte Carlo simulations are run.  At each time step of a simulation, the following 

events and computations occur: 

 
1. Mission demand evolves stochastically according to the Markov chain 

estimate of Table 26.   

2. The operator of the currently operational configuration attempts to use this 

system to fulfill the new mission demand, earning credit according to the 

performance matrix. 

3. The decision-maker chooses which configuration to develop in the current 

time period and field in the next time period, incurring a cost according to the 

cost transition matrix.  An available choice in any time period is to retain the 

current configuration, which requires no additional development resources. 

 
 



132 

A sample set of Monte Carlo simulation results is shown in Figure 46.  This figure 

shows the result of adopting a path representing an incremental buildup of capability in 

which Config. 4 (the PL3-only configuration) is fielded initially.  In the next time period, 

a new module containing PL1 is launched, and PL2 is added in the third time period.  The 

cluster of three modules operates until the end of the 10-year time horizon.  Due to the 

simulation setup, a configuration decision must still be made in the final operational time 

period; since the cost of developing this final configuration will be incurred but no 

reward will be earned, Config. 1 (the “Nothing” configuration) is selected.  As the bottom 

left portion of Figure 46 shows, this particular path (denoted as [4 9 15 15 1], by the 

configuration decisions made at each step) is subject to a stochastically changing demand 

environment.  The size of each yellow dot indicates the likelihood of demand being in a 

particular state (on the y-axis) at a given time (on the x-axis); note that all simulations 

begin in the “None” demand environment at t = -2.5 years, as specified by the initial 

condition.  The right-hand portion of Figure 46 indicates how per-period cost and 

performance vary over time.  Note that the per-period cost decreases from $184 million 

for the initial investment to $31 million in the final operations period, and number of 

demanded services performed per period increases from zero to a mean of 1.67 in the 

final period.  The total expected cost for this path over the time horizon is $407 million*, 

and the total expected number of demanded services performed is 4.69. 

 
 
 
 
 
 
 
 
 
 
 
 

                                                        
* Note that once a path is chosen, cost is fixed.  As a result, the expected cost is equivalent to the 

minimum, maximum, and median costs across all path-based Monte Carlo simulations. 
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Evolution of Path:       PL3PL3  → PL3PL1 PL3PL3PL1PL1  → PL3PL1 PL2 PL3PL3PL1PL1 PL2PL2  → PL3PL1 PL2 PL3PL3PL1PL1 PL2PL2  → Nothing 
 

 
 Evolution of States Evolution of Objectives 

   
Figure 46.  Evolution of configuration path [4 9 15 15 1], representative of an incremental 
capability buildup.  In the plots on the left, the size of circles indicate the relative number of 
Monte Carlo simulation cases that exist in a given configuration or demand environment state 
(on the y-axes) at a given time (on the x-axes).  The plots on the right indicate the associated 

evolution of per-period cost and performance.  In all plots, gray lines indicate transitions made in 
at least one simulation.  Note configuration and cost are deterministic, since a path is specified. 

 
 
 

Obtaining results like those in Figure 46 for each of the 50,625 possible paths 

allows the total expected performance to be computed and plotted against total cost for 

each path as in Figure 47.  In this figure, each blue “x” represents the total cost and 

performance of one path*.  Notice that, for the population as a whole, there is a general 

trend that, as more funds are invested, higher performance is expected.  However, it is 

important to recall that the decision-maker has a choice of which path to select.  As a 

                                                        
* These totals are taken over the t = -2.5 year period (at which there is zero performance due to 

the initial condition) and the four subsequent periods. 
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result, if he or she cares primarily about total cost and expected total demanded services 

performed, it would make little sense to select a high-cost, low-performance point toward 

the lower right of the cluster.  Rather, the decision-maker would prefer to choose among 

the set of nondominated points that comprise the Pareto frontier.  This Pareto frontier, 

shown in red in Figure 47, is composed of the set of possible configuration sequences for 

which one objective cannot be improved without the sacrifice of another.  In this 

application, the frontier is comprised of just 12 of the 50,625 possible paths and helps to 

narrow the options considerably. 

Listed next to each of the Pareto-optimal points in Figure 47 is its associated 

configuration path.  Note that at the bottom left of the figure is the “do nothing” option in 

which Config. 1 is fielded for all time periods; this is cost-optimal but also provides the 

lowest possible performance.  At the other extreme is the Pareto-optimal highest-

performance option of fielding Config. 11, the three-payload monolithic satellite, for all 

time periods.  The Pareto-optimal solutions between these two extremes involve 

developing Configs. 3, 5, 7, or 11, either immediately or after a 1-2 period delay.  

Notably absent from the frontier are the higher-cost multiple-module configurations. 

One use of the data in Figure 47 becomes evident when the sample path from 

Figure 46 is overlaid as the yellow square in Figure 47.  Here it can be seen that the 

incremental path [4 9 15 15 1] is dominated by solutions on the Pareto frontier.  In fact, 

one particular path, [1 11 11 11 1], accumulates near-identical performance for a total 

cost about $131 million (32%) lower.  In this Pareto-optimal path, detailed in Figure 48, 

the three-payload monolithic satellite is fielded after a one-period wait, during which 

time demand evolves toward an environment in which multiple services are demanded.  

Unlike the incremental path in Figure 46, which exhibits a gradual decrease in per-period 

cost, the Pareto-optimal path in Figure 48 exhibits an initial $204 million spike followed 

by $24 million in operations costs for three periods.  As a result, this cost profile results 

in significant savings, and the system still performs well since all three payloads are 
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available to fulfill all requested services at times in the future in which the environment 

has evolved to one in which multiple services tend to be demanded. 

 
 

 

Figure 47.  Trade between total demanded services performed and total cost for all open-
loop paths.  Pareto-optimal paths are identified by 5-period configuration sequences listed next 

to red circles. 
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Evolution of Path:       Nothing  →  PL1 PL2 PL3PL1 PL2 PL3   →  PL1 PL2 PL3PL1 PL2 PL3   →  PL1 PL2 PL3PL1 PL2 PL3   →  Nothing 
 

 
 Evolution of States Evolution of Objectives 

   
Figure 48.  Evolution of configuration path [1 11 11 11 1], a Pareto-optimal path. In the plots 
on the left, the size of circles indicate the relative number of Monte Carlo simulation cases that 

exist in a given configuration or demand environment state (on the y-axes) at a given time (on the 
x-axes).  The plots on the right indicate the associated evolution of per-period cost and 

performance.  In all plots, gray lines indicate transitions made in at least one simulation.  Note 
configuration and cost are deterministic, since a path is specified. 

 
 

5.4.2. Find Pareto-Optimal “Closed-Loop” Policies 

While straightforward and conceptually similar to an optimization of typical long-

term scheduling and roadmapping efforts, the analysis presented in Step 4A has two 

principal disadvantages.  First, for applications with large numbers of configurations and 

long time horizons, it may not be practical to enumerate all possible paths.  For example, 

if the number of time periods in the present application were doubled, the number of 

possible paths would increase from 50,625 to over 2.6 billion and take several years of 

run time on a standard desktop computer.  Second, assuming a set path for the entirety of 
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the system’s lifetime neglects the ability of the decision-maker to make choices mid-

program in response to the evolution of the demand environment. 

To overcome these limitations, Step 4B presents a complementary analysis that 

draws on the unification of flexibility and Markov decision process (MDP) frameworks 

discussed in depth in Section 4.4.2.2.  To proceed with this analysis, the configuration 

and environment state spaces of Steps 1 and 2 are combined into a single total state space 

(i.e., Total State = {Configuration State, Demand State}).  In this distributed-payload 

satellite example, there are 15 configuration states × 8 environments = 120 total states, 

which Figure 49 illustrates graphically.  In this three-dimensional “spindle” of total 

states, each vertical layer represents a particular demand environment and each column 

represents a particular configuration.  Thus, it is possible for the fielded system to be in 

any configuration and operating in any demand environment at any particular point in 

time.  Since configuration is under the control of the decision-maker, he or she can 

choose to move to any vertical column of the spindle at any point in time (recognizing 

that it takes one time step to make this move).  However, the demand environment is not 

under the control of the decision-maker.  Illustrated in Figure 49 is an instance where 

Config. 15 is operating in Demand Environment 1.  If the decision-maker chooses to 

develop Config. 10 for the next time period, he or she is assured to move to the column 

corresponding to Config. 10*; however, since the demand environment evolution is 

stochastic, the layer to which he or she moves is uncertain and depends on the evolution 

of the Markov chain specified by Step 2.  Once the demand environment materializes, the 

decision-maker finds himself or herself at one particular total state and makes another 

decision about which of the 15 configurations to select for the following period. 

                                                        
* The assumption implicit in this assurance is that the decision-maker will not by accident 

develop a configuration other than Config. 10, which is considered reasonable in this application. 
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Figure 49.  “Spindle” of Total States.  Each layer corresponds to one demand environment and 
each vertical column corresponds to one configuration.  Environments 4-7 are not depicted.  

Arrows illustrate that, due to demand environment uncertainty, multiple possible total states are 
possible in the next period if a decision is made to transition from one configuration to another 

(e.g., Config. 15 to Config. 10). 
 
 

Accounting for probabilities of transitions within the total state space, 

configuration decisions from each state, and per-period cost and performance aggregation 

as detailed in Section 4.4.2.2, the solutions for Pareto-optimal decision policies take the 

form of a matrix with 120 rows and 5 columns, where each element (ξ,τ) indicates which 

of the 15 available configurations be developed next given the system is in state ξ at time 

period τ.  If a full-factorial analysis of all possible policies were to be conducted (as was 

done for the simple case of paths in Step 4A), 15600 = 10706 simulations would need to be 

executed!  However, use of the structure of the problem as posed in Section 4.4.2.2 

permits optimal policy solutions to be found within hours or minutes on a standard 

desktop computer. 

Expected cost and performance results for policy solutions to the distributed-

payload satellite system application are shown by each blue “x” in Figure 50.  Among 
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these solutions, the nondominated (Pareto-optimal) solutions are highlighted and 

connected in red.  Note that the minimum-cost and maximum-performance endpoints of 

the Pareto frontier are identical to those of the open-loop full factorial analysis of Figure 

47, and the shape of the frontier largely mirrors that of Figure 47.*  However, an 

interesting solution with performance superior to any available from an open-loop path is 

visible at an expected total cost of $40 million.  Depicted in Figure 51 in the same format 

as the open-loop results earlier, it can be seen that this policy solution is nearly the same 

as the “do nothing” policy but with one exception:  As the top left plot shows, at the t = 0 

time period the policy occasionally (in 14.5% of cases) calls for a decision to develop and 

subsequently field the three-payload monolith.   Whether decision is made is governed by 

the demand environment, as the policy indicates in Table 28.  In this table, the policy 

solution itself is shown, and the action specified by the policy is provided for a system in 

any state s (the row) at any time t (the column).  Looking only at the eight total states that 

are associated with Config. 1 (i.e., total states 1, 16, 31, 46, 61, 76, 91, and 106), it can be 

seen that the decision to develop Config. 11 rather than Config. 1 at t = 0 occurs only in 

total states 91 and 106, which correspond to a situation in which either the 2+3 or 1+2+3 

demand environment exists.  In other words, this policy achieves a low expected cost and 

an appreciable expected performance by only developing the three-payload monolith if a 

substantial demand for services materializes early during the program.  Such a result is 

impossible to capture using the fixed configuration paths of Step 4A. 

 

                                                        
* The sparsity of points on this frontier is largely due its concavity:  Only four of the frontier 

points could be found using n = 1 in Eq. (28).  The heuristic method adopted for improving the 

frontier estimate by increasing n beyond unity was only partially successful in identifying the full 

frontier, and this is thus a clear area for future development. 
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Figure 50.  Trade between total demanded services performed and 
total cost for MDP policy solutions. 

 
  

 Evolution of States Evolution of Objectives 

   
Figure 51.  Evolution of states and objectives for Pareto-optimal policy #3 (defined in Table 

28). In the plots on the left, the sizes of circles indicate the relative number of Monte Carlo 
simulation cases that exist in a given configuration or demand state (on the y-axes) at a given 

time (on the x-axes).  The plots on the right indicate the associated evolution of per-period cost 
and performance. In all plots, gray lines indicate transitions made in at least one simulation. 
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Table 28.  Pareto-optimal policy #3. Configuration decisions for a 
system in state s at time t are indicated by matrix elements shaded in gray. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. -2.5 0 2.5 5 7.5  

Total 
State Env. Config. -2.5 0 2.5 5 7.5 

1 None 1 1 1 1 1 1  61 1+2 1 11 1 1 1 1 
2 None 2 11 12 1 1 2  62 1+2 2 11 12 8 8 1 
3 None 3 11 11 3 1 3  63 1+2 3 11 11 3 3 3 
4 None 4 14 10 4 4 1  64 1+2 4 14 14 14 10 4 
5 None 5 14 5 5 5 1  65 1+2 5 5 5 5 5 5 
6 None 6 13 13 6 6 6  66 1+2 6 13 13 13 13 6 
7 None 7 7 7 7 7 1  67 1+2 7 7 7 7 7 7 
8 None 8 11 8 8 8 1  68 1+2 8 11 8 8 8 2 
9 None 9 15 15 9 9 4  69 1+2 9 15 15 15 15 9 
10 None 10 10 10 10 10 10  70 1+2 10 14 10 10 10 3 
11 None 11 11 11 11 11 11  71 1+2 11 11 11 11 11 1 
12 None 12 12 12 12 12 2  72 1+2 12 12 12 12 12 1 
13 None 13 13 13 13 13 6  73 1+2 13 13 13 13 13 6 
14 None 14 14 14 14 14 1  74 1+2 14 14 14 14 14 4 
15 None 15 15 15 15 15 2  75 1+2 15 15 15 15 15 15 
16 1 1 11 1 1 1 1  76 1+3 1 11 1 1 1 1 
17 1 2 11 11 2 2 2  77 1+3 2 11 12 12 2 2 
18 1 3 11 11 3 1 3  78 1+3 3 11 11 11 3 1 
19 1 4 14 14 4 4 4  79 1+3 4 14 14 10 4 1 
20 1 5 11 5 5 5 1  80 1+3 5 14 14 5 5 5 
21 1 6 13 13 6 6 1  81 1+3 6 13 13 13 6 6 
22 1 7 7 7 7 7 7  82 1+3 7 7 7 7 7 7 
23 1 8 11 8 8 8 2  83 1+3 8 11 11 8 8 8 
24 1 9 15 15 15 9 1  84 1+3 9 15 15 15 9 9 
25 1 10 10 10 10 10 10  85 1+3 10 10 10 10 10 1 
26 1 11 11 11 11 11 1  86 1+3 11 11 11 11 11 11 
27 1 12 12 12 12 12 2  87 1+3 12 12 12 12 12 12 
28 1 13 13 13 13 13 3  88 1+3 13 13 13 13 13 3 
29 1 14 14 14 14 14 1  89 1+3 14 14 14 14 14 5 
30 1 15 15 15 15 15 9  90 1+3 15 15 15 15 15 4 
31 2 1 11 1 1 1 1  91 2+3 1 11 11 1 1 1 
32 2 2 11 11 8 1 1  92 2+3 2 11 11 12 2 2 
33 2 3 11 11 3 3 1  93 2+3 3 11 11 3 3 3 
34 2 4 14 10 10 4 1  94 2+3 4 14 14 10 4 4 
35 2 5 11 5 5 5 1  95 2+3 5 14 5 5 5 5 
36 2 6 13 13 13 6 1  96 2+3 6 13 13 13 6 1 
37 2 7 7 7 7 7 1  97 2+3 7 7 7 7 7 7 
38 2 8 11 8 8 8 8  98 2+3 8 11 8 8 8 2 
39 2 9 15 15 15 9 1  99 2+3 9 15 15 15 9 4 
40 2 10 10 10 10 10 4  100 2+3 10 10 10 10 10 4 
41 2 11 11 11 11 11 11  101 2+3 11 11 11 11 11 1 
42 2 12 12 12 12 12 2  102 2+3 12 12 12 12 12 12 
43 2 13 13 13 13 13 1  103 2+3 13 13 13 13 13 13 
44 2 14 14 14 14 14 4  104 2+3 14 14 14 14 14 4 
45 2 15 15 15 15 15 8  105 2+3 15 15 15 15 15 15 
46 3 1 11 1 1 1 1  106 1+2+3 1 11 11 1 1 1 
47 3 2 11 11 12 2 2  107 1+2+3 2 11 11 12 8 2 
48 3 3 11 11 3 3 1  108 1+2+3 3 11 11 11 3 3 
49 3 4 14 14 10 4 1  109 1+2+3 4 14 14 10 10 1 
50 3 5 14 5 5 5 1  110 1+2+3 5 11 14 5 5 5 
51 3 6 13 13 13 6 6  111 1+2+3 6 13 13 13 13 6 
52 3 7 7 7 7 7 7  112 1+2+3 7 7 7 7 7 1 
53 3 8 11 8 8 8 3  113 1+2+3 8 11 11 8 8 8 
54 3 9 15 15 15 9 9  114 1+2+3 9 15 15 15 15 4 
55 3 10 10 10 10 10 4  115 1+2+3 10 10 10 10 10 3 
56 3 11 11 11 11 11 1  116 1+2+3 11 11 11 11 11 11 
57 3 12 12 12 12 12 1  117 1+2+3 12 12 12 12 12 2 
58 3 13 13 13 13 13 6  118 1+2+3 13 13 13 13 13 3 
59 3 14 14 14 14 14 5  119 1+2+3 14 14 14 14 14 1 
60 3 15 15 15 15 15 10  120 1+2+3 15 15 15 15 15 15 
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Figure 50 also permits comparisons to be made with policies that might be 

brainstormed or proposed outside of the MDP solution procedure.  For example, one 

reasonable policy that might be proposed is to always develop and field the configuration 

that least expensively maximizes performance in the most likely next-period demand 

environment.*  The policy implied by this statement is provided in Table 29; for instance, 

if Config. 2 (the PL1-only configuration) is currently operational in the “1+2” demand 

environment (i.e., if the system is in total state 62), the most likely next-period demand 

environment according to Table 26 is also the “1+2” demand.  To least expensively fulfill 

both the PL1 and PL2 functions demanded in this environment, a single PL2-only module 

would be developed and launched, which places the system into Config. 8.  Thus, as 

Table 29 shows, Config. 8 is the decision made from total state 62 at all except the final 

time period.† 

The performance of this next-period anticipatory policy is summarized by the 

yellow triangle in Figure 50 and detailed in Figure 52.  Figure 50 in particular illustrates 

two interesting and important points regarding this anticipatory policy:  First, this policy 

is dominated by others discovered in the optimization process:  Both policies 9 and 10 on 

the Pareto frontier perform, on average, more demanded services at a lower cost.  Second, 

this anticipatory policy is just one of many options; even if it were nondominated, 

selection of this particular policy carries with it no options regarding cost and 

performance preferences.  In contrast, a search throughout the policy design space (as 

was completed in order to produce Figure 50) allows the decision-maker to understand 

the cost and performance trades available and select a policy according to his or her 

preferences. 

                                                        
* In the event that multiple demand environments have the same probability of materializing next, 

the environment with the demand for more services is used. 

† The reason for the difference in the final time period decision is the same as discussed earlier in 

Section 5.4.1. 
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 Evolution of States Evolution of Objectives 

   
Figure 52.  Evolution of states and objectives for an anticipatory policy (defined in Table 

29). In the plots on the left, the size of circles indicate the relative number of Monte Carlo 
simulation cases that exist in a given configuration or demand state (on the y-axes) at a given 

time (on the x-axes).  The plots on the right indicate the associated evolution of per-period cost 
and performance.  In all plots, gray lines indicate transitions made in at least one simulation. 
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Table 29.  Anticipatory Policy.  Configuration decisions for a system in 
state s at time t are indicated by matrix elements shaded in gray. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. -2.5 0 2.5 5 7.5  

Total 
State Env. Config. -2.5 0 2.5 5 7.5 

1 None 1 4 4 4 4 1  61 1+2 1 5 5 5 5 1 
2 None 2 4 4 4 4 1  62 1+2 2 8 8 8 8 1 
3 None 3 4 4 4 4 1  63 1+2 3 8 8 8 8 1 
4 None 4 4 4 4 4 1  64 1+2 4 5 5 5 5 1 
5 None 5 4 4 4 4 1  65 1+2 5 5 5 5 5 1 
6 None 6 6 6 6 6 1  66 1+2 6 13 13 13 13 1 
7 None 7 7 7 7 7 1  67 1+2 7 12 12 12 12 1 
8 None 8 4 4 4 4 1  68 1+2 8 8 8 8 8 1 
9 None 9 4 4 4 4 1  69 1+2 9 8 8 8 8 1 
10 None 10 4 4 4 4 1  70 1+2 10 8 8 8 8 1 
11 None 11 11 11 11 11 1  71 1+2 11 11 11 11 11 1 
12 None 12 7 7 7 7 1  72 1+2 12 12 12 12 12 1 
13 None 13 6 6 6 6 1  73 1+2 13 13 13 13 13 1 
14 None 14 4 4 4 4 1  74 1+2 14 5 5 5 5 1 
15 None 15 4 4 4 4 1  75 1+2 15 8 8 8 8 1 
16 1 1 4 4 4 4 1  76 1+3 1 11 11 11 11 1 
17 1 2 4 4 4 4 1  77 1+3 2 12 12 12 12 1 
18 1 3 4 4 4 4 1  78 1+3 3 13 13 13 13 1 
19 1 4 4 4 4 4 1  79 1+3 4 14 14 14 14 1 
20 1 5 4 4 4 4 1  80 1+3 5 14 14 14 14 1 
21 1 6 6 6 6 6 1  81 1+3 6 13 13 13 13 1 
22 1 7 7 7 7 7 1  82 1+3 7 12 12 12 12 1 
23 1 8 4 4 4 4 1  83 1+3 8 15 15 15 15 1 
24 1 9 4 4 4 4 1  84 1+3 9 15 15 15 15 1 
25 1 10 4 4 4 4 1  85 1+3 10 15 15 15 15 1 
26 1 11 11 11 11 11 1  86 1+3 11 11 11 11 11 1 
27 1 12 7 7 7 7 1  87 1+3 12 12 12 12 12 1 
28 1 13 6 6 6 6 1  88 1+3 13 13 13 13 13 1 
29 1 14 4 4 4 4 1  89 1+3 14 14 14 14 14 1 
30 1 15 4 4 4 4 1  90 1+3 15 15 15 15 15 1 
31 2 1 7 7 7 7 1  91 2+3 1 7 7 7 7 1 
32 2 2 7 7 7 7 1  92 2+3 2 7 7 7 7 1 
33 2 3 10 10 10 10 1  93 2+3 3 10 10 10 10 1 
34 2 4 10 10 10 10 1  94 2+3 4 10 10 10 10 1 
35 2 5 14 14 14 14 1  95 2+3 5 14 14 14 14 1 
36 2 6 13 13 13 13 1  96 2+3 6 13 13 13 13 1 
37 2 7 7 7 7 7 1  97 2+3 7 7 7 7 7 1 
38 2 8 10 10 10 10 1  98 2+3 8 10 10 10 10 1 
39 2 9 10 10 10 10 1  99 2+3 9 10 10 10 10 1 
40 2 10 10 10 10 10 1  100 2+3 10 10 10 10 10 1 
41 2 11 11 11 11 11 1  101 2+3 11 11 11 11 11 1 
42 2 12 7 7 7 7 1  102 2+3 12 7 7 7 7 1 
43 2 13 13 13 13 13 1  103 2+3 13 13 13 13 13 1 
44 2 14 14 14 14 14 1  104 2+3 14 14 14 14 14 1 
45 2 15 10 10 10 10 1  105 2+3 15 10 10 10 10 1 
46 3 1 4 4 4 4 1  106 1+2+3 1 11 11 11 11 1 
47 3 2 4 4 4 4 1  107 1+2+3 2 12 12 12 12 1 
48 3 3 4 4 4 4 1  108 1+2+3 3 13 13 13 13 1 
49 3 4 4 4 4 4 1  109 1+2+3 4 14 14 14 14 1 
50 3 5 4 4 4 4 1  110 1+2+3 5 14 14 14 14 1 
51 3 6 6 6 6 6 1  111 1+2+3 6 13 13 13 13 1 
52 3 7 7 7 7 7 1  112 1+2+3 7 12 12 12 12 1 
53 3 8 4 4 4 4 1  113 1+2+3 8 15 15 15 15 1 
54 3 9 4 4 4 4 1  114 1+2+3 9 15 15 15 15 1 
55 3 10 4 4 4 4 1  115 1+2+3 10 15 15 15 15 1 
56 3 11 11 11 11 11 1  116 1+2+3 11 11 11 11 11 1 
57 3 12 7 7 7 7 1  117 1+2+3 12 12 12 12 12 1 
58 3 13 6 6 6 6 1  118 1+2+3 13 13 13 13 13 1 
59 3 14 4 4 4 4 1  119 1+2+3 14 14 14 14 14 1 
60 3 15 4 4 4 4 1  120 1+2+3 15 15 15 15 15 1 
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5.5. Step 5:  Implications for Initial System Selection 

The analysis of Step 4 has produced a large set of data on optimal paths and 

policies to follow for the entire system time horizon, and it is easy to lose track of the 

implications this has for the initial  system decision.  This final step of the framework 

builds upon the analysis results of Step 4 to provide implications for this decision. 

5.5.1. Implications based on the Expected-Value Pareto Frontier 

In the case of a path, the initial decision is simply the first configuration in its 

associated configuration sequence.  In the case of a policy, the initial decision is found by 

locating the initial condition in the row of the policy matrix (in this distributed-payload 

satellite application, at total state 1, which corresponds to the “nothing” configuration 

fielded and no services demanded) and examining the element in the first column (in this 

case, the t = -2.5 year column).  To facilitate this, the initial configurations specified by 

the Pareto-optimal paths and policies found in Figure 47 and Figure 50 are identified in 

Figure 53.  In this figure, the Pareto frontier solutions of Figure 47 and Figure 50 are 

identified by their expected total cost on the x-axis.  On the y-axis are the initial 

configuration decisions called for by each Pareto-optimal path (yellow circles) or policy 

(blue squares).  Two particular observations can be made:  First, only three 

configurations (Configs. 1, 3, and 11) appear among the optimal initial decisions.  All 

paths and policies with other initial decisions are dominated by paths and policies using 

these three configurations.  Second, the size of the initial configuration tends to increase 

as the expected total cost of the system increases.  For example, only the “Nothing” 

configuration (Config. 1) appears as an optimal initial decision for total expected budgets 

under $195 million; these solutions tend to be either policies that wait until sufficient 

demand materializes to justify the expenditure of funds or paths  that tend to delay initial 

operational capability until demand evolves substantially beyond the initial “None” 

environment.  At the highest expected total cost is the decision to initially develop the 
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three-payload monolith (Config. 11), which is the least expensive method to ensure 

complete capture of all possible future demand for services. 

Also noted next to several paths and policies in Figure 53 are the number of 

transitions Φ available from each initial configuration (1, 3, or 11) for the average per-

period cost associated with each total cost.  As discussed in Step 1, this number Φ is an 

indicator of flexibility, and it can be seen that more flexible initial configurations  (Φ = 2 

or Φ = 3) are selected at higher cost and performance preferences.  Thus, there exists 

some correlation between flexibility and performance.  However, the maximum-

performance (and maximum-cost) Config. 11 initial decision is far from the most flexible 

for its average $60 million per-period budget; Figure 44 illustrates that the fully-

fractionated three-payload configuration (Config. 15) has Φ = 8 transitions available for 

the same budget.  Thus, this example illustrates that maximization of performance does 

not necessarily translate into maximization of the flexibility of a system’s configuration. 
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Figure 53.  Initial configurations for Pareto-optimal paths and policies as a function of 
expected path or policy total cost.  Also noted are the numbers of transitions available for 

several initial configurations at their path or policy’s average per-period budget requirements. 
 

 

 5.5.2. Accounting for Non-Expected-Value Objectives 

A final relevant consideration for initial system selection is the fact that expected-

value objective functions for the cumulative cost and performance metrics may not fully 

capture a decision-maker’s true objectives.  Use of these expected-value objectives 

enables the use of MDP dynamic programming techniques to efficiently explore the 

astronomically large policy trade-space; however, in the case of one-of-a-kind satellite 

programs a decision-maker may also be interested in minimizing risks associated with a 

given expected level of cost or performance. 
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Operating under the assumption that the expected-value optima discovered in Step 

4 are reasonable initial guesses for desirable policies, a multi-objective genetic algorithm 

may be employed to perturb each of the policies identified in Figure 50, simulate each 

new hybrid policy, and search for non-dominated solutions in terms of any combination 

of metrics that can be accounted for via simulation.  The results of Figure 54 are 

produced by applying this technique to the new metrics of 90th percentile (near-worst-

case) total cost and 10th percentile (near-worst-case) total number of demanded services 

performed, in addition to the expected-value versions of these metrics.  Of particular note 

in the Figure 54 multivariate plot are four subplots:  First, the data in the subplot of the 

second row and first column shows the familiar expected-value cost and performance 

trade, with slightly better Pareto frontier performance due to the genetic algorithm’s 

search.  Second, the data in the subplot of the last row and second column shows the 10th 

percentile performance vs. the 90th percentile cost; the performance data in this subplot is 

noticeably more discrete since fractional numbers of services performed are not possible 

in a simulation.  Finally, the upper left and bottom right subplots show the correlations 

between the new percentile-based metrics and their expected-value counterparts.  In the 

cases of both subplots, linear correlation is quite strong (R² = 0.85 and 0.88) and supports 

the use of expected value as a surrogate for optimizing the percentile-based metrics. 

Also of note in Figure 54 is that each data point, which represents a particular 

policy result, has a color that corresponds to the initial configuration decision implied by 

its associated policy.  Of particular note is that these initial decisions differ little from 

those implied by the original path- and MDP-policy-based results in Figure 53.  Use of 

Config. 1 initially is still associated with low cost and performance; use of Config. 3 is 

associated with medium values for both objectives; and Config. 11 is associated with the 

highest levels of cost and performance.  The primary difference is the introduction of 

Config. 13 as an initial decisions, which has performance and cost levels that are 

generally competitive with Config. 11. 



149 

The usefulness of the multivariate plot of Figure 54 becomes more evident if cost 

or performance constraints are imposed by the decision-maker.  For example, suppose 

that this decision-maker has a $500 million limit on the funds available for supporting 

this system over its time horizon.  If the decision-maker wishes to be 90% sure that this 

budget will not be breached, a $500 million constraint may be imposed on the 90th 

percentile total cost metric.  This constraint eliminates many high-cost (and also high-

performance) options that formerly fell into the high 90th percentile cost regions of the 

multivariate plot that are now gray in Figure 55.  Similarly, the decision-maker may wish 

to have 90% confidence that more than one service will be performed over the system’s 

lifetime.  In this case an additional constraint may be imposed, represented by the 

horizontal gray stripe in the subplots of the last row in Figure 55.  Combined, these two 

constraints eliminate a large number of the policy options available.  As Figure 55 shows, 

no policy options remain for which the “Nothing” configuration is acceptable.  

Furthermore, in both the expected-value-based and percentile-based performance vs. cost 

subplots, policies involving the three-payload monolith (Config. 11) as an initial 

configuration exhibit lower cost for the same (or better) performance as those that 

involve Config. 13.  As a result, the decision is narrowed to one of whether to select a 

policy that suggests Config. 11 as an initial decision (at an expected and 90th percentile 

total cost of $300 million, with 5.6 expected services performed and 3 services performed 

in the 10th percentile) or, instead, Config. 3 (at an expected $285 million and 90th 

percentile $331 million total cost, with 3.8 expected services performed and 2 services 

performed in the 10th percentile).  While no objectively correct decision exists, it is likely 

that the small ($15 million, or 5%) difference in expected cost and large (1.8 services, or 

38%) difference in performance between the options would compel many decision-

makers to accept the slightly higher budget for such a significant performance increase. 
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Figure 54.  Multivariate plot of multi-objective genetic algorithm policy results.  
Each data point indicates the performance of one policy result in terms of the four 

percentile-based and expected-value metrics of interest.  Data points are colored by 
their corresponding policy’s initial configuration decision. 
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Figure 55.  Multivariate plot of multi-objective genetic algorithm policy results 
with cost and performance constraints imposed.  Each data point indicates the 

performance of one policy result in terms of the four percentile-based and expected-
value metrics of interest.  Data points are colored by their corresponding policy’s 
initial configuration decision.  Gray areas indicate regions of the space eliminated 

due to cost and performance constraints. 
 

 

5.6. Summary 

First and foremost, this chapter has demonstrated how the theoretical framework 

posed in Chapter 4 can be applied to a class of problem directly relevant to the space 

industry today.  This chapter began with definition of a problem in which a hypothetical 

Department of Defense decision-maker was faced with a decision about what 
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combination of payloads to launch upon potentially multiple distributed, free-flying 

satellites.  Population and analysis of cost transition matrices revealed information about 

the flexibility of various configuration options.  For example, the three-payload fully-

fractionated configuration (Config. 15) has significantly more next-period transition 

options than any other configuration just above a 30-month budget of $31 million and 

retains a high number of available transitions for even higher budgets; below this budget 

it has no options because of its high operations costs.  The three-payload monolith, on the 

other hand, tends to have fewer available transitions than most other configurations at 

most budget levels since it has no modules in common with other configurations. 

Population of a Markov chain representing the evolution of the demand for 

payload services and population of a performance matrix representing the number of 

demanded services performed by a given configuration in a given demand environment 

enabled Steps 4A and 4B of the framework to find Pareto-optimal decision paths and 

policies.  Step 4A returned the interesting result that just 12 of the 50,625 possible paths 

for this four-period decision problem were Pareto-optimal, and only four configurations 

(Configs. 3, 5, 7, and 11) appeared within these paths.  Perhaps more interesting was the 

identification of a path with a one-period delay followed by the fielding of the three-

payload monolith that dominated a strategy of incremental capability buildup.  Step 4B 

illustrated how Markov decision process techniques were able to efficiently find a Pareto 

frontier of policies more intricate than a simple path.  Illustrated was one case in which 

the MDP solution procedure found an optimal compromise between maximum 

performance and minimum cost by identifying a policy which only developed the three-

payload monolith if an appropriate level of demand for particular payloads materialized 

early during the program.  Furthermore, the MDP solution procedure was shown to 

identify policies that dominated an anticipatory policy that a human might have proposed 

as a reasonable policy. 
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In the application of Step 5 of this thesis’ framework to the distributed- or multi-

payload satellite problem, initial decisions were objectively narrowed to just four 

configurations:  Configs. 1, 3, 11, and 13.  Imposing 90th percentile budget and 10th 

percentile performance constraints narrowed the list down to three, and the existing 

trades would likely compel most decision-makers toward selection of Config. 11, the 

three-payload monolith, as the initial configuration.  This selection is an interesting 

result, particularly since Config. 11 is one of the least flexible options as identified in 

Step 1. 

Notably, the selection of this relatively inflexible configuration is not 

contradictory to this thesis’ framework.  As emphasized in Section 2.5, it is a tenet of this 

work that a decision-maker cares about flexibility principally because of cost and 

performance benefits it may enable in the future.  Thus, this example highlights the fact 

that finding a minimum-cost, maximum-performance solution in a changing demand 

environment may not be equivalent to finding a solution with maximum flexibility.  

However, until the proper analysis and optimization is run to account for the ability of the 

system to change over time, this equivalence cannot be known.  In fact, the particular 

result that favors the monolith can only be said to hold for the numerical inputs assumed 

in this chapter.  Future investigations are encouraged to modify these inputs to explore 

under what circumstances monolithic and fractionated spacecraft are favored as solutions. 
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CHAPTER 6 

ADVANCED APPLICATION:  NASA HUMAN EXPLORATION 
ARCHITECTURE DECISION-MAKING 

Richard Bellman prefaced his original 1957 book on dynamic programming [93] 

by observing that “in modern life, in economic, industrial, scientific and even political 

spheres, we are continually surrounded by multi-stage decision processes.  Some of these 

we treat on the basis of experience, some we resolve by rule-of-thumb, and some are too 

complex for anything but an educated guess and a prayer.” 

While realistic and reasonably complex, the space system planning applications in 

Chapters 4-5 have been intended mainly to demonstrate the core concepts of this thesis’ 

framework.  In the present chapter, a major current systems planning challenge within the 

National Aeronautics and Space Administration is selected to illustrate the applicability 

and utility of this new framework for problems that might otherwise be well beyond the 

complexity threshold for even an educated guess or a prayer.  This particular example 

will illustrate the framework for inter-mission flexibility applications [28]. 

As described in Chapter 1, the Review of U.S. Human Spaceflight Plans 

Committee (Augustine Committee) was formed in 2009 to assess the status and direction 

of NASA’s human spaceflight program.  One of the viable exploration programs the 

committee proposed was a “flexible path” involving the development of systems to 

enable mission options for a variety of inner solar system destinations, including the lunar 

vicinity, Earth-Moon and Sun-Earth Lagrange points, near-Earth objects, Mars vicinity, 

and the moons of Mars.  This new approach is distinct in that, instead of focusing on a 

single path to a single destination, it focuses on providing options to allow the human 

space program to adapt to changing expectations or demands as exploration progresses.  

Since 2009, the Flexible Path strategy has made a substantial impact and has been largely 

adopted in the formulation of architecture plans within NASA. 
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However, due perhaps in part to time constraints, the Augustine Committee’s 

justification for naming this approach the Flexible Path was qualitative.  No attempt 

appears to have been made to quantitatively compare the flexibility of the Flexible Path 

approach to the flexibility of the other approaches (Mars First and Moon First) that the 

committee presented.  As demands upon NASA evolve over the coming few decades, the 

question remains:  What architectural components should the agency develop today so 

that, in the long run, it is able to minimize the total cost of the human spaceflight program 

and maximize total return in an environment of changing mission expectations? 

The aim of the present chapter is twofold:  First, with the help of probability, 

schedule, and cost estimates obtained through extensive interaction with NASA 

personnel, it is intended that this advanced application will shed light on and inform 

decision-making for the present NASA architecture decision-making challenge.  Second, 

in the process of realistically addressing this challenge, several advances to this thesis’ 

methodology are introduced: 

 
� Large Configuration State Space.  In the previous applications in Chapters 4-

5, the configuration state space consisted of on the order of ten candidate 

configurations.  This NASA application illustrates how the present 

framework, when supplied appropriate computing power, can be used even for 

state spaces with thousands of configuration options.  In order to handle this 

large state space, a computer code is developed to automatically create the 

necessary cost transition matrices based on the component-by-component 

configuration definitions.  All relevant costs are accounted for, including 

development and first unit, production, mission and ground operations, 

program management and systems engineering, and program termination and 

shutdown costs. 
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� Intermediate Development Architectures, Operations Architectures, and 

Memory Architectures.  In the previous applications, it was assumed that the 

demand environment would be relatively constant during the development of 

a new architecture.  Further, it was taken for granted that the configuration 

developed during the one period would always become the configuration 

fielded (or operated) in the subsequent fielded.  While convenient for 

demonstrating the fundamentals of this thesis’ framework, these assumptions 

are not required.  In the NASA example, the very real possibility of demand 

changing mid-development is modeled, as are the options to cancel a program 

in mid-development and to not utilize all components of an architecture just 

developed.  This is accomplished by introducing intermediate architectures 

representing systems that are not operational but which are partially 

developed.  The introduction of these intermediate architectures subsequently 

requires defining the configuration state by three elements:  the development 

architecture, operations architecture, and memory architecture. 

� Configuration-Dependent Demand.  The previous applications have 

effectively assumed that the environment described by the mission demand 

Markov chain evolves independently of the configuration that the decision-

maker selects to respond to this demand.  In some situations, such as if there 

exist many actors responding to the same environment (as in a scenario of 

perfect competition in economics), this independence may be a realistic 

approximation.  If there exist relatively few actors (in economics, for example, 

an oligarchy), it may be more appropriate to consider the influences of 

decision-maker choices on future demand.  NASA falls into this latter 

category, as the demands that are placed upon it are at least partially 

dependent on whether it is achieving its currently demanded mission.  The 
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capability to handle this interaction between configuration and environment is 

demonstrated here. 

� Elicitation of Expert-Opinion Markov Chain Probabilities.  In the absence of 

sufficient historical data for inner solar system destination demand, this 

application takes the step of eliciting expert opinion for the probabilities of 

demand transition.  To permit this data to be extensible to analyses of different 

timesteps, the data is elicited as a continuous-time Markov chain and then 

discretized to the proper step.  Expert opinion also contributes to the selection 

of the mission return (or performance) figure of merit. 

� Endogenous Schedule-Slippage Uncertainties.  To account for the existence 

of endogenous uncertainty unrelated to exogenous mission demand changes, a 

basic probabilistic model is incorporated to model the probability of 

development program schedule slippage. 

� Exploration of High-Performing Policies in terms of Non-Cumulative as 

well as Non-Expected-Value Objective Functions.  In the final step of 

previous applications, exploration of non-expected-value objective functions 

focused on measures of dispersion of the original cumulative objective 

functions.  In the NASA application, exploration among non-cumulative 

objectives is included. 

 
Recall that this thesis’ framework consists of five basic steps, outlined in Figure 

12.  First, system configuration options are identified and costs of switching from one 

configuration to another are compiled into a cost transition matrix.  Second, probabilities 

that demand on the system will transition from one mission to another are compiled into a 

mission demand Markov chain.  Third, one performance matrix for each design objective 
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is populated to describe how well the identified system configurations perform in each of 

the identified mission demand environments.  Fourth, possible future sequences of 

system configurations are simulated and sequences that are Pareto-optimal in terms of the 

decision-maker’s objectives are identified.  In a complementary approach, the system 

decision problem is formulated as a multi-objective variant of a Markov decision process, 

and Pareto-optimal decision policies are identified.  It is worth noting that, due to the 

large configuration state space of the NASA problem, the traditional Step 4A full-

factorial search paths becomes infeasible and the Markov decision process approach will 

be used exclusively.  Finally, the paths and policies from the latter step are synthesized 

into a set of data to inform initial system selection. 

 
 

 

Figure 12.  Five major steps of this thesis’ framework. 
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6.1. Step 1:  Define Configuration Options and the Cost Transition Matrix 

As in the previous examples, the fundamental question for the first step of this 

framework is:  What are the relevant “positions”, or the configurations, that the system in 

question can take?  Subsequently, what are the costs of transitioning between any two of 

these configurations? 

It is also important to define up-front the duration of the period (or time step) of 

interest.  For the human spaceflight architecture decision problem, this period will be set 

at two years in duration.  This duration corresponds to the U.S. Congressional election 

cycle as well as one-half the length of the U.S. presidential election cycle and historically 

one-half the median time between appointments of new NASA administrators [105].  The 

implication of this period selection is an assumption that decision points, at which 

architecture selections are either re-confirmed or changed in response to mission demand 

changes, occur once per new Congress and twice per Presidential and, on average, NASA 

administration. 

6.1.1. Defining the Configuration Space 

As suggested in Chapter 4, the specific system configurations relevant for this 

problem of interest originate from the definition of a morphological matrix as shown in 

Table 30.  Each row denotes a particular defining attribute of an architecture, which in all 

cases is the number of architecture components (e.g., launch vehicles, crew vehicles, in-

space propulsion stages, landers, and other systems) that will be developed and produced 

during a particular two-year increment.  Possible values for each attribute are listed as 

options.  For example, the second row indicates that an engineer might consider fielding 

architectures that require zero, three, four, six, eight, ten, or twelve heavy-lift launch 

vehicles over a two-year period.*  Since an architecture is defined once one attribute 

                                                        
* In theory, any integer value for this attribute is acceptable; for brevity, the morphological matrix 

shown here only lists the values that will be used in later architecture definitions. 
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value is selected from each row, it can be easily computed that in this simple 

morphological matrix there exist over 6.58 billion possible architectures.  However, some 

of these architectures make little practical sense.  For example, one option within these 

6.58 billion is to develop and produce 12 heavy-lift launch vehicles (HLVs) and no other 

systems or capabilities (i.e., select zero for all attributes other than HLVs); such an 

architecture would not be able to achieve any missions asked of it since no in-space 

elements or capabilities exist. 

 
 

Table 30.  Morphological Matrix for the Human Spaceflight Architecture Application. 

Attribute Relevant Options 

No. of Crew Launch Vehicles (CLVs) 0 4      

No. of Heavy Lift Launch Vehicles (HLVs) 0 3 4 6 8 10 12 

No. of Commercial Cargo Launch Vehicles (CCLVs) 0 6      

No. of Multi-Purpose Crew Vehicles (MPCVs) 0 1 2 4    

No. of Commercial Cargo Logistics Modules (CCLMs) 0 6      

No. of Small Chemical Stages 0 1 2     

No. of Medium Chemical Stages 0 1 2 3 4 6 8 

No. of Large Chemical Stages 0 2 4 6 8   

No. of Deep-Space Habitation Modules 0 1 2     

No. of Lunar Landers 0 8      

No. of Mars Landers 0 2      

No. of Multi-Mission Pressurized Rovers 0 1 2 8    

No. of Unpressurized Rovers 0 2 4     

No. of Science Rovers 0 2 4     

No. of Surface Habitats 0 1      

No. of Logistics Modules 0 2 4     

No. of Power Generation and Storage Units 0 1 2     

No. of ISRU Systems 0 2      

No. of Surface Extravehicular Activity (EVA) Suits 0 10 20     

No. of In-Space Extravehicular Activity (EVA) Suits 0 8 12     

No. of Supporting Communications/Navigation Satellites 0 1      
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One way to overcome this limitation as well as restrict the architectures 

considered to a manageable number is to use the morphological matrix to assist in 

brainstorming themed configuration options [77].  In this application, a reasonable theme 

to select is the architecture’s intended mission destination, which drives mission duration 

and spacecraft velocity change (∆V) requirements that subsequently suggest certain 

numbers of stages and launch vehicles as well as habitat and excursion vehicles.  With 

the assistance of NASA Johnson Space Center personnel, the ten themed architectures 

defined in Table 31 are selected, based largely on recent studies of the agency-wide 

Human Exploration Framework Team (HEFT) and Human Spaceflight Architecture 

Team (HAT).  Note that eight of these architectures are directly themed upon destinations 

suggested by the Augustine Committee, and Architectures 1 and 10 in some respects 

bound the configuration space:  Architecture 1 is the option to develop nothing, and the 

“Deep Space” themed Architecture 10 is the option to develop and produce the maximum 

of the number of components specified by Architectures 3, 4, 6, 7, and 8.  Also note that, 

to avoid confusion with the demand environments in Step 2 and beyond, these 

architectures may in general be referred to by their architecture numbers (1-10).  Finally, 

the reader may note in Table 31 that four engines are listed as architectural components 

but are not parts of the morphological matrix in Table 30.  These numbers of engines are 

not user-defined but are directly dependent other components in an architecture; for 

example, there exist five RS-68-class engines for each heavy-lift launch vehicle. 
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Table 31.  Architecture Definitions for the Human Space Exploration Application. 

  Architecture:  Number, Theme, and Icon 

 
 

-1- 
Nothing 

-2- 
LEO 

-3- 
GEO 

Servicing 

-4- 
Lunar 
Orbit 

-5- 
Lunar 

Surface 

-6- 
Sun-Earth 

L2 

-7- 
Near-
Earth 
Object 

-8- 
Mars 
Moon 

-9- 
Mars 

Surface 

-10- 
Deep 
Space 

Architecture Components 
 

  
 

    
  

1. Crew Launch Vehicles (CLVs)  -  4  -  - - - - - - - 
2. Heavy Lift Launch Vehicles (HLVs) - - 3 4 12 8 6 4 10 8 
3. Commercial Cargo Launch Vehicles (CCLVs) - 6 - - - - - - - - 
4. Multi-Purpose Crew Vehicles (MPCVs) - 4 2 4 4 2 2 1 1 4 
5. Commercial Cargo Logistics Modules (CCLMs) - 6 - - - - - - - - 
6. Small Chemical Stages - - - - - 2 - - 1 2 
7. Medium Chemical Stages - - 3 4 8 4 6 2 1 6 
8. Large Chemical Stages - - - - - - - 2 6 4 
9. Deep-Space Habitation Modules - - 1 - - 2 2 1 1 2 

10. Lunar Landers - - - - 8 - - - - - 
11. Mars Landers - - - - - - - - 2 - 
12. Multi-Mission Pressurized Rovers - - 1 - 8 2 2 2 2 2 
13. Unpressurized Rovers - - - - 4 - - - 2 - 
14. Science Rovers - - - - 4 - - - 2 - 
15. Surface Habitats - - - - - - - - 1 - 
16. Logistics Modules - - 2 - 4 2 2 - - 2 
17. Power Generation and Storage Units - - - - 2 - - - 1 - 
18. ISRU Systems - - - - 2 - - - 2 - 
19. Surface Extravehicular Activity (EVA) Suits - - - - 20 - - - 10 - 
20. In-Space Extravehicular Activity (EVA) Suits - 8 8 8 - 8 8 12 - 12 
21. Supporting Communications/Navigation Satellites - - - - 1 - - - 1 - 

22. RS-68-Class Engine - - 15 20 60 40 30 20 50 40 
23. J-2X-Class Engine - 4 6 8 24 16 12 8 20 16 
24. RL-10B-2-Class Engine - - 6 8 56 12 12 14 44 36 
25. AJ-10-Class Engine - 4 2 4 4 2 2 1 1 4 
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Can this architecture space be visualized?  In this application, each architecture in 

Table 31 is described by a vector of 25 variables and can be accurately visualized only in 

a 25-dimensional hyperspace.  In this hyperspace, similar architectures would be 

separated by smaller distances and dissimilar architectures would be separated by larger 

distances.  While it is not possible to display these 25 dimensions graphically on a two-

dimensional page, it is possible to preserve much of this distance property by solving for 

two-dimensional coordinates for which pairwise Euclidean distances minimize the sum of 

the squared errors with the true 25-dimensional Euclidean distances.  This is expressed in 

Eq. (30), where xi and yi indicate the abscissa and ordinate, respectively, of architecture i 

in the two-dimensional Euclidean space, Ai indicates the true coordinates of architecture i 

in the 25-dimensional space, and λ is a free scaling factor. 
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For the architectures in Table 31, the two-dimensional architecture space in 

Figure 56, with architecture coordinates listed in Table 32, results.*  These coordinates 

make some intuitive sense:  Note that architectures 3, 4, 6, 7, 8, and 10, which are 

characterized by similar beyond-LEO but non-surface destination requirements, are 

grouped together.  Architectures 1 and 2 (the “Nothing” and “LEO” themed 

architectures) are somewhat separated and toward the right of the graphic, while the 

architectures intended for lunar and Mars surface destinations are significantly separated 

toward the upper left of the graphic. 

                                                        
* Minor adjustments have been made to the true minimum solution to prevent state circles from 

overlapping.  The set of solution coordinates have also been normalized to span the range of zero 

to unity. 
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Figure 56.  Architectural Projection for the Human Space Exploration Application 
 
 

Table 32.  Architectural Projection Two-Dimensional Coordinates. 

Arch. 
x-coordinate 
(abscissa) 

y-coordinate 
(ordinate) 

1 0.7871 0.0000 
2 1.0000 0.3686 
3 0.5962 0.2025 
4 0.6728 0.3563 
5 0.3942 0.8000 
6 0.3271 0.0963 
7 0.4385 0.2073 
8 0.5156 0.0353 
9 0.0000 0.5158 
10 0.1560 0.1097 

 

At this point, it may be noted that the word “architecture” has been used instead 

of “configuration” when describing the ten sets of components in Table 31.  The primary 

reason for this is that the two-year timestep of the present application requires a 

distinction between an architecture and the full decision available to the decision-maker 

at any point in time (i.e., the “configuration”):  Because development will span multiple 

two-year time periods,* it is inappropriate to assume the decision-maker will field the 

                                                        
* In this application, the development of each architecture (except for the “Nothing” architecture) 

is approximated as nominally taking eight years (four periods).  This is in agreement with 

timelines for crew exploration vehicle, crew launch vehicle, lunar lander, heavy-lift launch 
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previously-developed architecture in the current period since in many cases development 

of that architecture is not yet finished.  As a result, at any given decision point the 

decision-maker must choose what architecture to operate in addition to what architecture 

to develop or continue to develop.  Furthermore, in a later development period it may be 

necessary for the decision-maker to keep in memory an architecture that had been current 

when development had started, since this would affect whether certain development costs 

need to be incurred. 

Thus, this {Development, Operations, Memory} architecture triplet will define a 

configuration for the purposes of this application.  A notional four-period sequence of 

configurations (architecture triplets) that a decision-maker could choose is depicted in 

Figure 57.  Reading this sequence from left to right, in the first two-year period 

development for the near-Earth object (NEO) themed architecture is begun while 

operation of the low-Earth-orbit (LEO) themed architecture continues and the capabilities 

of a previous lunar surface themed architecture are in memory.  In the second period, 

NEO architecture development continues into its second phase, as does operation of the 

LEO architecture.  The third and fourth periods see continuation of the NEO architecture 

                                                                                                                                                                     
vehicle, Earth departure stage, and lunar surface systems development from the 2005 ESAS 

report, which were there all baselined on 7-9 year schedules [29].  This is justified historically, 

for example, by the Space Shuttle Orbiter, for which authority to proceed was obtained in August 

1972 and for which mating to its Solid Rocket Boosters and External Tank in preparation for its 

first flight occurred in November 1980, just over eight years later [106]. Even on the accelerated 

Apollo program, the time between selection of North American Aviation as the prime contractor 

for the Apollo Command and Service Module in November 1961 [107] and the first successful 

manned flight of the program in October 1968 was nearly seven years.  (It deserves note that 

Apollo Spacecraft 012, assigned to the crew of Apollo 1, was received at Kennedy Space Center 

in August 1966 [108].  However, the 113 engineering orders not accomplished at the time of 

delivery and 623 engineering changes ordered subsequent to delivery [108], in addition to the fire 

that took the lives of astronauts Grissom, White, and Chaffee, suggest that the five-year 

development implied by the 1966 delivery date would not be appropriate.) 
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development to completion but discontinuation of LEO operation (with a substitution of 

operation of the Nothing architecture).  Throughout all periods, the lunar surface 

architecture capability is retained in memory. 

Two fundamental observations can be made from the example sequence of 

configurations in Figure 57:  First, each configuration (or architecture triplet) represents a 

decision over which an appropriate decision-maker is assumed to have direct influence.  

It is within the decision-maker’s prerogative whether to continue to develop a current 

development architecture or to develop a new architecture instead*; it is within the 

decision-maker’s prerogative whether to continue or discontinue operations of an 

architecture; and it is within the decision-maker’s prerogative to hold or not hold within 

institutional memory the capabilities associated with a previous architecture. Second, 

there are many possible configurations, even for only the ten architectures defined in 

Table 31.  Considering that nine of these architectures have four-period developments 

(the exception is Architecture 1), there are in theory (9×4 + 1) × 10 × 10 = 3,700 

configurations.  Each may be assigned an identification number, as are the four 

configurations in Figure 57.  In practice, however, there are somewhat fewer than 3,700 

relevant configurations – only 3,286 – because of some practical considerations 

concerning relevant and allowable states and transitions detailed next. 

                                                        
* This highlights the present assumption that only one architecture is assumed to be under 

development at a time.  If a future analyst wishes to apply this technique to options in which 

multiple architectures can be under development at once, he or she need only to define a new 

architecture for each multi-architecture option under consideration. 
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Development 
Architecture

Operations 
Architecture

Memory 
Architecture

Config. 1399 Config. 1400 Config. 1365 Config. 1366  

Figure 57.  Notional Sequence of Configurations (Architecture Triplets). 
 
 

6.1.2. Defining the Cost Transition Matrix 

A key component of Step 1 of this framework is the definition of transition costs 

among configurations.  To accomplish this, a cost model is necessary.  While the cost 

transition matrices of the previous examples in Chapters 4 and 5 consisted of 81 and 225 

elements, respectively, and in the absence of an automated cost model may have been 

estimable manually by an experienced cost analyst, the same cannot be said about the 

present application.  With 3,286 configurations, the cost transition matrix for the NASA 

human space exploration application consists of nearly 10.8 million elements, without 

question requiring an automated model.  This model, developed specifically for this 

application from publicly-available data, is discussed in detail in Appendix B and 

summarized in brief via Figure 58.  The model takes as inputs the architecture definitions 

of Table 31 and, coupled with mass estimates for each architecture component (also 

documented in Appendix B) and the definitions of each configuration (or architecture 

triplet, as described in Section 6.1.1), combines estimates of development, production, 

management and systems engineering, operations, retirement, and termination liability 

costs to produce an estimate for the total cost required to transition from one 
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configuration to another over a two-year time step.  The model has components coded in 

MATLAB (outlined in orange in Figure 58) and in Microsoft Excel and Visual Basic 

(outlined in green in Figure 58); once executed with a given set of inputs, it is able to 

populate a full cost transition matrix within 25 minutes on a standard desktop computer.   

 

Transition Cost Model
for Human Space Exploration Configurations
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Configuration State-
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Figure 58.  Transition Cost Model for Human Space Exploration Configurations. 
 

In the previous examples of Chapters 4 and 5, any configuration could be reached 

from any other configuration given a sufficient expenditure of resources.  However, with 

the introduction of intermediate architectures in this new configuration state space, it 

becomes be evident that some transitions will no longer make logical sense.  For 

example, it should not be possible to skip phases of development (see Rule 3 to follow).  

Other transitions violate cost model assumptions.  For example, a four-period 

(eight-year) development is costed to include production of the flight units necessary for 

the first period of operation as listed in Table 31; for each period in which a configuration 

is not in the final phase of architecture development, production costs are estimated for 

the continuation of operations of the current operations architecture into the next period.  
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Applying this costing assumption, it would not be consistent to allow a current operations 

architecture to be used in a subsequent configuration if the current development 

architecture is in its final phase, since production has been accounted only for fielding of 

the new development architecture (see Rule 5 below). 

These disallowed transitions are summarized by the six restrictions below, which 

are correlated with the illustrations in Figure 59: 

 
1. Improper Program Initiation.  Development of an architecture may only be 

initiated into phase 1. 

2. Premature Operations Initiation.  An architecture may not be placed into 

operation if it had not been in the final phase of development in the previous 

period (or, alternatively, if it or an architecture of which it is a subset had not 

been in operation in the previous period). 

3. Premature Advancement.  Development of an architecture may not advance 

more than one phase in one time period. 

4. Unavailable Memory Architecture.  An architecture that is not a subset of the 

current operations architecture, memory architecture, or just-completed 

development architecture may not be placed into memory. 

5. Unavailable Operations Architecture.  If development has just completed on 

a particular architecture, an architecture that is not the same as or a subset of 

this architecture can not be placed into operation.  If an architecture is in mid-

development, the next-period operations architecture must be the same as or a 

subset of the current operations architecture. 

6. Stagnation and Partial Backtracking.  If a particular architecture remains in 

development between periods, it must either progress in development phase or 
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restart in phase 1.  Stagnation and partial backtracking (e.g., remaining in 

phase 4, or backtracking from phase 3 to 2) is not permitted.* 

 
In concert with the recognition of disallowed configuration transitions, several 

configurations themselves become evident as unnecessary:  For example, since the 

memory architecture is only useful in reducing costs only if it differs from the operations 

architecture or from a completed (phase 4) development architecture, configurations with 

the same architecture in memory as in operation (excluding those with both the 

“Nothing” architecture in memory and operation) can be removed from the state space.  

This first filter removes 333 configurations from the theoretical 3,700.  Second, 81 

configurations with the same architecture in memory as in completed (phase 4) 

development are removed from the state space.  In total, 414 unnecessary configurations 

are removed, bringing the total number of configurations in this application’s state space 

to 3,286. 

 

 
 
 
 
 
 

                                                        
* That this rule should be important is not intuitive and is related to the fact that the underlying 

cost models distribute both development and first-period production costs based on historical data  

[98] over the four-period development timeframe.  Prior to its implementation, the dynamic 

programming optimization algorithm in Step 4 cleverly found solutions in which an architecture 

could be developed to phase 4, for example, and remain in phase 4 development indefinitely 

while continuing to field operational flight units at a fraction of the cost that would normally be 

required to produce the full set of flight units if not distributed over the four-period development.  

Note also that this rule only applies to the decision to proceed in developing an architecture.  It 

will be possible, as will be described in Section 6.4, for stagnation to occur in the final period of 

development, but only as a result of probabilistic schedule slippage and not as a result of a choice 

on the part of the decision-maker. 
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Figure 59.  Illustrations of Disallowed Transition Rules. 
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While the resulting 3,286 × 3,286 cost transition matrix is too large to reproduce 

here as it was in the examples of Chapters 4-5, it is visualized in part via Figure 60.  On 

the left in this figure, all matrix elements representing transitions not excluded by the 

transition rules are marked in black or gray; the darker the element, the lower the cost of 

transition.  In this matrix, 453,007 elements (4.2% of the 10.8 million total matrix 

elements) have costs associated with them; the remaining elements are excluded due to 

the transition rules.  On the right in this figure is the distribution of these per-period costs.  

Note that many (approximately 41%) of these costs are at or below the $12.9 billion 

budget obtained when the NASA FY11 authorization for exploration plus non-

International-Space-Station operations [109] is doubled to obtain an appropriate budget 

estimate for a two-year period length.  Other transition costs are quite high; later in this 

analysis we will consider the ability of this framework to exclude consideration of 

transitions that are too costly in the short run.  This per-period cost limitation will be 

implemented, in effect, as a seventh transition rule. 

 

  

Figure 60.  Cost Transition Matrix Visualization (left) and Distribution of Costs (right). 
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6.1.3. Analyzing the Cost Transition Matrix 

As in the previous examples of Chapters 4-5, the data represented by the cost 

transition matrix can be analyzed, visualized, and related to flexibility in several useful 

ways.  Covered for this application are (1) visualization of transitions available through 

the configuration and architecture state spaces and (2) analysis of available transitions 

from various configuration states as a function of budget (i.e., Φi(b)). 

6.1.3.1. Visualization of State Space Transitions 

In the previous satellite examples of Chapters 4-5, the configuration state spaces 

were small enough to allow relatively uncomplicated visualizations of available 

transitions (as links) between configuration states (as nodes) for given budgets in the 

context of the two-period state-centric notion of flexibility.  While in principle the same 

visualizations can be created for large configuration state spaces, some care must be 

taken to reduce the large volume of data (in this case, for a 3,286-configuration state 

space) to an interpretable form.  In support of this goal, this subsection presents two 

views of configuration or architecture state space transitions:  The first view, most 

analogous to those in Chapters 4-5, deals with the configuration state space and deals 

with transitions available among all 3,286 configurations in the configuration state space 

over the two-year time increment selected for the NASA application.  The second view 

presents a less complicated view of transition options among architectures (not 

configurations), with the disadvantage that only time-independent costs can be 

considered. 

6.1.3.1.1. Configuration State Space Transitions 

With the cost transition matrix for a two-year time increment defined, 

visualization of available transitions in the configuration state-space also requires a 

definition of the arrangement of the configuration nodes.  While there exist many 
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arrangements (for example, the example of Chapter 4 used a euclidean space defined by 

the two design variables, and that of Chapter 5 chose a circular arrangement since a 

single cardinal or ordinal design variable was not as clearly defined), perhaps the most 

intuitive choice for visualization of the NASA example is to match the {Development, 

Operations, Memory} architecture triplet itself to three orthogonal axes in a euclidean 

space.  Visualization based on this choice of a configuration node arrangement is shown 

in Figure 61 through Figure 65. 

In Figure 61 through Figure 65, each of the 3,286 configurations exists as one of 

the gray points, plotted by its development, operations, and memory architectures.  Recall 

that 10 architectures are considered in this example (see Table 31), and each (except for 

Architecture 1, the “Nothing” architecture) has four phases of development.  Thus, the 

operations and memory architecture axes take values from one to ten, and the 

development architecture axes of the figures are labeled alphanumerically, where the 

initial number indicates the architecture number and the letter indicates the phase of 

development (e.g., development architecture 5c in these plots refers to the third phase of 

development of Architecture 5). 

Each of the figures is labeled with a particular budget, and a link is drawn 

between two configurations in a figure for every element of the total cost transition 

matrix with a value less than or equal to the given budget.  The color of the link indicates 

the cost of the transition:  Blue indicates a low cost and bright orange indicates a high 

cost relative to the budget.  As a consequence of this relative color selection, as budget is 

increased through the figures, the bright orange links are those that have been just 

enabled by the increased budget.  Gray links throughout indicate transitions that “retreat” 

to the configuration with the “Nothing” architecture in development, operations, and 

memory. 

The most clear observation from these figures is the dramatic increase in available 

transitions as budget increases from low levels and the apparent leveling off at higher 
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budget levels (the difference in the number of transitions available between $5 billion and 

$12.9 billion is not as visually apparent as between $500 million and $5 billion, for 

example).  Particularly at low budget levels, it may be noted that the available transitions 

have points near the origin (i.e., “Nothing” as the development, operations, and memory 

architecture) in common; if directed arrows were placed on each link it would be seen 

that most available transitions at these levels are “retreating” towards lower capabilities at 

low budget levels.  However, at the lowest budget level, it is notable that many 

configurations have no options at all due, for example, to shutdown costs that exceed the 

allowed budget.  At the $500 million budget level, only configurations with either the 

LEO-themed architecture or nothing in operation have any options at all.  As in the 

previous examples, this visualization illustrates that the number of transitions available to 

a system can be a strong (and nonlinear) function of available resources or budget. 

 

 

Figure 61.  Available configuration transitions for a $500 million 2-year budget. 
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Figure 62.  Available configuration transitions for a $1 billion 2-year budget. 
 

 

Figure 63.  Available configuration transitions for a $2 billion 2-year budget. 
 

 

Figure 64.  Available configuration transitions for a $5 billion 2-year budget. 
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Figure 65.  Available configuration transitions for a $12.9 billion 2-year budget. 
 
 

6.1.3.1.2. Transitions for Time-Independent Costs in the Architecture Space 

While Figure 61 through Figure 65 are comprehensive and precise in visually 

recording all transitions available for a given budget among all 3,286 available system 

configurations over the two-year time increment for the human space exploration 

application, they provide so much data that some trends and insight may be easily lost.  

To partially overcome this limitation, the following brief analysis reverts to the simpler 

visualization of the architecture space in Figure 56.  In this visualization, the ten 

architectures under consideration from Table 31 are projected onto a two-dimensional 

plane such that similar architectures are grouped together and dissimilar architectures are 

placed farther apart.  While the following analysis has the limitation that it does not 

consider certain costs, it lends some helpful insight into the set of architectures under 

consideration and the relative costs of switching between them. 

In the following analysis, the transition cost model for human space exploration 

configurations described in Appendix B is applied to estimate only the “time-

independent” costs of DDT&E, DDT&E-related program management and systems 

engineering, and retirement.  Unlike production, operations, and termination liability 

costs, which depend directly on a decision-maker’s choices regarding whether to extend 
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or shorten the duration of a program, these time-independent costs define a minimum 

bound for total costs incurred to successfully transition from the development and 

operation of one architecture to another.  These costs are shown in Table 33, which has 

properties similar to those of development cost matrices of the examples in Chapters 4-5.  

Notably, the diagonal consists entirely of zeros, signifying that it costs nothing to develop 

architecture i given that architecture i already exists; and since architecture i is desired 

next, neither are any retirement costs required.  Similarly, the elements in the first row 

(from the “Nothing” architecture) are the highest costs in any given column; based 

directly on the data in this matrix, Figure 66 adds further empirical confirmation to the 

expectation that greater initial investment in an architecture tends to result in lower future 

switching costs.  However, unlike the previous examples of Chapters 4-5, note that the 

first column of this matrix does not consist entirely of zeros.  This is due to the retirement 

costs accounted for in the transition cost model (for details, see Appendix B), which in 

Step 4 of this framework will impose an additional barrier to changing architectures and 

in effect add inertia toward the continuation of current program plans as a consideration 

in the search for optimal policies. 

 
Table 33.  Time-Independent Architecture Transition Costs (in $FY11B). 

  Architecture 

 
 

-1- 
Nothing 

-2- 
LEO 

-3- 
GEO 

Servicing 

-4- 
Lunar 
Orbit 

-5- 
Lunar 

Surface 

-6- 
Sun- 
Earth  
L2 

-7- 
Near-
Earth 
Object 

-8- 
Mars 
Moon 

-9- 
Mars 

Surface 

-10- 
Deep 
Space 

-1- Nothing 0.00 26.15 60.93 44.15 70.12 64.09 60.93 61.73 95.88 68.17 
-2- LEO 0.41 0.00 47.84 31.07 57.44 51.01 47.84 48.64 83.20 55.08 
-3- GEO Servicing 0.79 13.49 0.00 0.29 19.21 3.16 0.00 4.16 38.72 7.24 
-4- Lunar Orbit 0.61 13.30 16.78 0.00 26.38 19.94 16.78 17.57 52.14 24.02 
-5- Lunar Surface 0.90 14.00 10.17 0.83 0.00 13.33 10.17 14.29 36.37 17.41 
-6- Sun-Earth L2 0.82 13.52 0.08 0.33 19.26 0.00 0.08 4.21 35.55 4.08 
-7- Near-Earth Object 0.79 13.49 0.00 0.29 19.21 3.16 0.00 4.16 38.72 7.24 
-8- Mars Moon 0.80 13.50 3.37 0.30 22.55 6.54 3.37 0.00 34.57 6.44 
-9- Mars Surface 1.14 14.26 4.25 1.12 10.94 4.21 4.25 0.92 0.00 4.17 

A
rc

hi
te

ct
ur

e
 

-10- Deep Space 0.86 13.56 0.15 0.38 19.32 0.09 0.15 0.13 31.48 0.00 
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Figure 66.  Switching cost vs. initial cost from Architecture 1.  Vertical lines indicate ranges 
of switching costs from each configuration; some overlap.  Solid dots indicate minima and 

maxima, and triangles indicate median values. 
 
 

Using the cost matrix in Table 33 to draw available transitions as links between 

the architectures in the projection of Figure 56 results in the visualization of Figure 67.  

Each node in Figure 67 represents an architecture in the architecture space.  Each node is 

named AX, where X is the configuration number from Table 33, and has a color indicative 

of the initial cost to develop the architecture from the “Nothing” architecture 

(Archictecture 1); blue indicates an architecture with a low initial investment cost (e.g., 

the “Nothing” or LEO-themed architectures), while bright orange indicates an 

architecture with a high initial investment cost (e.g., the Mars-Surface-themed 

architecture).  In these projections, the lower-initial-cost architectures tend to appear 

toward the bottom right, while the high-initial-cost architectures tend to appear toward 

the upper left.  Above each of the plots is a budget, and a directed link is drawn for every 

element of the cost transition matrix less than or equal to the given budget.  In this 

particular matrix, the diagonal consists of zeros, so a dark ring encircles every node to 

indicate that self-transitions are possible for any budget. 
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As usual, Figure 67 illustrates that higher budgets permit more transitions, and 

again illustrated is how the increase in number of transitions can be highly nonlinear with 

budget.  For example, substantially more transitions become visible in the budget 

increase from $500 million to $5 billion than in the even greater budget interval from $5 

billion to $10 billion. 

More interesting, however, is where the transitions appear, which could not be 

easily ascertained from the large configuration-space plots in Section 6.1.3.1.1.  Note that 

at the low $500 million budget level, many transitions are available; however, as Figure 

67 shows, these are all local transitions.  Recall that the architectures in Figure 67 are 

arranged such that physically similar architectures are located nearer to each other, while 

physically dissimilar architectures are located farther from each other.  The $500 million 

budget plot shows that Architectures 3, 4, 6, 7, 8, and 10, which are characterized by 

similar sets of components intended for beyond-LEO but non-surface destinations, have 

some flexibility to transition to each other, but not to architectures outside their local 

group – not even to the “Nothing” architecture (Architecture 1), which would require 

retirement costs higher than the $500 million budget.  As the budget is increased, the 

ability to transition between distant groups also increases, at first in the “retreating” or 

“shutdown” direction toward the lower-cost architectures at the bottom right and then in 

both directions.  If the budget were raised to the $96 billion maximum of the matrix, all 

pairwise links would appear. 

In summary, while this analysis was prefaced with the acknowledgement that it 

neglects some of the costs incurred to a decision-maker, it is illustrative in that it 

highlights the particular influence of shutdown costs and the relationship between the 

physical similarity of architectures and costs of transition.  In considering the ten human 

space exploration architectures of Table 31 throughout the rest of this chapter, it may be 

helpful to refer back to this simple set of data and analysis for physical understanding of 

the architectures under consideration. 
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 $500M Budget $1B Budget 

   

 $5B Budget $10B Budget 

   

 $15B Budget $20B Budget 

   

Figure 67.  Available architecture transitions for $0.5, 1, 5, 10, 15, and 20 billion budgets. 
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6.1.3.2. Architecture and Configuration Transitions vs. Budget 

As in Chapters 4-5, it is possible to extend the concept of the state-space 

visualizations from the previous analyses to consider a continuum of budgets with the 

goal of better understanding the sensitivity of transition options to available resources. 

6.1.3.2.1. Architecture Transitions vs. Time-Independent Budget 

Prior to considering the full costs of transition, it is instructive to begin with the 

analysis of the time-independent costs that allowed the view of available transitions in the 

architecture space in Section 6.1.3.1.2.  Here, as in the examples of previous chapters, the 

per-period budget may be increased on a continuum and the number of available 

transitions away from a given node (or architecture) may be tracked.  Since there are ten 

architectures in each of the plots in Figure 67, there are ten such values to be tracked, 

each of which is plotted as a function of budget in Figure 68. 

Note that each line in Figure 68 is a monotonically increasing function of budget, 

but that each rises at a different overall rate.  For example, note that Architecture 10 (the 

general Deep Space architecture) rises quickly to seven available transitions at a budget 

of less than $1 billion, while it takes Architecture 1 (the “Nothing” architecture) a budget 

of over $64 billion to reach the same number of options.  In general, Figure 68 suggests 

that this availability of transitions for low budgets is a property of the number and type of 

components in an architecture:  Architectures 1 and 2 have few or no components in 

common with other architectures and thus incur large costs to transition to any others, 

whereas Architectures 3, 7, 8, 9, and 10 (and especially Architecture 10) have many 

components in common with other architectures and incur smaller transition costs*.  Note 

                                                        
* This explains the common coupling of the concepts of modularity and flexibility.  In the 

transition cost model used to the generate the data in Figure 68, development costs were additive 

by component, and this modularity-representative modeling structure produced benefits when 

existing components needed not be re-developed for the fielding of a new system.  However, it 
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also that since Architectures 3 and 7 require the development of all the same components 

(albeit that they require different production numbers of each component), their time-

independent transition characteristics overlap and only Architecture 7’s characteristic is 

seen in Figure 68. 

It may further be seen in Figure 68 that the rapid rise in the number of links in 

Figure 67 between $0 and $10 billion can be easily observed as steep increases for many 

of the architecture transition lines.  The gradual taper in the increase in number of links in 

Figure 67 at high budgets can also be observed as each of the lines in Figure 68 tends to 

plateau as it approaches the ten-transition maximum.   
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Figure 68.  Available architecture transitions vs. available time-independent budget. 

                                                                                                                                                                     
should be recognized that the results of Figure 68 can be produced no matter what modeling 

structure applies to a given problem of interest, and it is conceivable that other strategies could 

also produce flexibility.  Thus, while modularity may in general be an important and common 

means to achieving flexibility, it neither guarantees flexibility in every situation, nor is it 

necessarily the only way to achieve flexibility. 
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6.1.3.2.2. Configuration Transitions vs. Full Per-Period Budget 

In the context of understanding the scope of transition options for resources 

available in a given timeframe, it is most meaningful to conduct a continuum budget 

analysis for the full cost of transition (rather than only the time-independent costs, as in 

Section 6.1.3.2.1). 

Thus, plotting the number of available transitions from each of the 3,286 nodes in 

Figure 61 through Figure 65 as a function of available per-period budget yields the result 

in Figure 69.  Since there exist 3,286 configurations from which transitions can be made, 

there also exist 3,286 lines in Figure 69.  Note that, as is typical in these transition vs. 

budget plots, all lines are monotonically increasing, indicating that the number of 

transitions available from (or, approximately speaking, the flexibility of) a given 

configuration cannot decrease with increasing budget.   

To better facilitate analysis, each line in Figure 69 is colored by its corresponding 

operations architecture.  This reveals, for example, that configurations with Architecture 

10 in operation are distinguished by high numbers of transitions whereas configurations 

with Architecture 1 in operation tend to have low numbers of available transitions.  This 

correlation with operations architecture can be attributed to the fact, for example, that the 

presence of a high-capability operations architecture does not only enable the operation 

or placement into memory of any lower-capability architecture in the following period, 

but makes less costly the development of subsequent architectures with common 

components.  

One difference that Figure 69 exhibits when compared to other transition vs. 

budget plots in this thesis is that the lines representing each configuration no longer 

plateau at the same maximum Φ value.  This is a consequence of the transition rules 

introduced in Section 6.1.2, and thus Figure 69 no longer solely conveys information 

about which configurations have more options than others, but it also contains 

information about the maximum potential a configuration has to gain options with any 
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amount of budgetary resources.  For example, Figure 69 shows that many of the 

configurations with Architecture 10 in operation plateau at between Φ = 400 and Φ = 600 

transitions, while those with Architecture 1 in operation plateau at less than Φ = 100 

transitions.  Interestingly, the black dashed line in Figure 69 indicates an approximation 

for the current configuration of NASA’s human space exploration development efforts, 

with a LEO-themed architecture in the second phase of development and no relevant 

exploration architectures in operations or memory (in shorthand notation, [2b 1 1]).  This 

serves as a clear example of a configuration with few options even at high per-period 

budgets:  As Figure 69 shows, this configuration plateaus at a value of just Φ = 11 

available transitions by a budget of $22 billion. 

 

 

Figure 69.  Number of available transitions vs. available budget over two years.  
Lines are colored by operations architecture, and the black dashed line indicates the 

characteristic for an approximation of NASA's present configuration: [2b 1 1]. 
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One observation made earlier regarding the data in Figure 69 was that 

configurations with Architecture 10 in operation are distinguished by high numbers of 

transitions whereas configurations with Architecture 1 in operation tend to have low 

numbers of available transitions.  While this statement appears substantially justified by 

observation of Figure 69 itself, some additional exploration is warranted. 

Figure 70 and Figure 71 show cross-sections of Figure 69 taken at budget levels 

of $12.9 billion and $25 billion, respectively.  Each histogram in the figures shows the 

distribution of the number of available transitions for configurations with given 

operations architectures.  The histogram x-axis range internal to each of Figure 70 and 

Figure 71 is consistent and marked on the bottom plot, and thus the central tendencies 

and dispersion of Φ for different operations architectures (due to the fact that Φ is 

determined not only from a configuration’s operations architecture, but also from its 

development and memory architecture) can be compared visually.  Of particular note is 

the fact that the mean of the distribution for Architecture 10 in Figure 70 is about 28% 

higher than the next-highest mean, while the mean of the Architecture 10 distribution in 

Figure 71 is 137% higher that the next-highest mean.  In other words, the budget level of 

interest affects the relative flexibility of one configuration (or the central tendency for an 

architecture) over another.  In the case of Architecture 10, at a low enough budget level it 

would not be accurate to say that as an operational architecture it distinguishes 

configurations as substantially more flexible (or having substantially more options) than 

others. 
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Figure 70.  Distributions of number of available transitions for $12.9B 
per two-year period, by operations architecture.  Colors correspond to 

those used to represent architectures A1 – A10 in Figure 69. 
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Figure 71.  Distributions of number of available transitions for $25B 
per two-year period, by operations architecture.  Colors correspond to 

those used to represent architectures A1 – A10 in Figure 69. 
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To conclude this analysis associated with the Step 1 cost transition matrix, Figure 

72 shows an example in which the relative flexibility of two configurations reverses at a 

particular budget level (termed a “flexibility reversal” in Section 4.1.3.2).  In this case, 

the blue line indicates a low-capability configuration of a LEO-themed architecture in the 

third phase of development with nothing in operation or memory, and the green line 

indicates a contrasting high-capability configuration of a Mars-surface-themed 

architecture in its first phase of development with a lunar-surface-themed architecture in 

operation and nothing in memory.  While the high-capability configuration plateaus at a 

higher number of transitions, it also requires at least $4.9 billion to make its first 

transition because of commitments in the form of, at a minimum, termination liability and 

system retirement costs.  This further highlights the importance of considering available 

resources (such as budget) when characterizing the flexibility of a space system; in this 

particular case, options exist over a substantial budget range with a lower-capability 

configuration that do not exist with a higher-capability configuration. 
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Figure 72.  Example of a "Flexibility Reversal" in the NASA Application. 
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6.2. Step 2:  Define Markovian Demand Environment Evolution 

As in the examples of Chapters 4-5, Step 1 here has focused on defining the 

available configuration states for the system of interest, in this case comprised of 

development, operations, and memory architectures for the NASA human space 

exploration application.  However, yet to be discussed is the demand environment in 

which the system will operate.  Step 2 fills this gap with a model for the evolution of the 

state of the demand environment which, unlike the configuration state, evolves 

stochastically and is largely not under the control of the decision-maker. 

In terms of the Flexible Path approach proposed by the Review of U.S. Human 

Spaceflight Plans Committee in 2009 (for details, see Section 1.3.3 or Ref. [34]), the 

mission demand environment can largely be classified in terms of mission destination.  

The committee’s report [34] mentions that the Flexible Path approach is designed, for 

example, to allow decision-makers to respond to future circumstances calling for 

exploration of the surface of the Moon or Mars, or calling for the mounting of 

destination-oriented missions in response to discoveries such as life on Mars or near-

Earth object threats.  Additional factors influencing mission destination changes could 

include changes in political will that cause the reduction in scope of missions to 

destinations near Earth, the emergence of technological challenges from other nations 

that expand the scope of missions toward the Moon or beyond, and the successful (or 

failed) achievement of current goals in space which could have the effect of reducing or 

expanding the scope of mission destinations.  Thus, in this human space exploration 

architecture application, inner solar system destination is used to characterize the mission 

demand state as either (1) Nothing, (2) Low Earth Orbit (LEO), (3) Geosynchronous 

Earth Orbit (GEO) Servicing, (4) Lunar Orbit, (5) Lunar Surface, (6) Earth-Moon L1, (7) 

Sun-Earth L2, (8) Venus Orbit, (9) Near-Earth Object, (10) Mars Orbit, (11) Martian 

Moon, or (12) Mars Surface.  Note that, while some of the architectures in Table 31 are 
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themed around some of these destinations, there does not exist a one-to-one 

correspondence. 

Appendix C extensively details the derivation of a Markovian demand 

environment evolution model structured around these twelve mission destinations, based 

upon a survey of primarily NASA experts with substantial experience in the field of 

human space exploration.  A key difference, however, between this model and the models 

in the examples of Chapters 4-5 is that it includes two conditional probability transition 

matrices:  The first matrix, shown in Table 34, indicates probabilities of demand 

evolution given that current demand is fulfilled.  The second matrix, shown in Table 35, 

indicates of probabilities of demand evolution given that current demand is not fulfilled.  

The separation of these matrices thus allows for modeling of configuration-dependent 

demand, or the reality that human space exploration mission demand does not evolve 

completely independently of NASA system decisions.  Both matrices in Table 34 and 

Table 35 express transition probabilities over the two-year time step corresponding to the 

period length set at the initiation of the discussion in Section 6.1. 

 
 

Table 34.  Discrete-time Markov chain probability transition matrix for median expert 
inputs and ∆t = 2 years, for the condition that current mission demand is fulfilled. 

  To 

 Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar 
Orbit 

Lunar 
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus 
Orbit 

Near- 
Earth 
Object 

Mars 
Orbit 

Mars 
Moon 

Mars 
Surf. 

Nothing 0.5180 0.2447 0.0301 0.0311 0.0928 0.0308 0.0027 0.0001 0.0372 0.0043 0.0037 0.0045 
LEO 0.0192 0.6784 0.0340 0.0577 0.1028 0.0395 0.0039 0.0002 0.0475 0.0060 0.0052 0.0057 
GEO Servicing 0.0261 0.0489 0.5192 0.0776 0.1483 0.0479 0.0157 0.0002 0.0598 0.0246 0.0190 0.0126 
Lunar Orbit 0.0101 0.0326 0.0266 0.3771 0.2868 0.0709 0.0295 0.0003 0.0664 0.0389 0.0338 0.0270 
Lunar Surface 0.0005 0.0046 0.0079 0.0080 0.8261 0.0195 0.0136 0.0002 0.0278 0.0240 0.0231 0.0447 
Earth-Moon L1 0.0095 0.0346 0.0223 0.0435 0.1491 0.5733 0.0259 0.0003 0.0522 0.0278 0.0255 0.0360 
Sun-Earth L2 0.0022 0.0439 0.0325 0.0466 0.1089 0.0448 0.4550 0.0005 0.1057 0.0637 0.0363 0.0598 
Venus Orbit 0.0018 0.0248 0.0201 0.0290 0.0957 0.0690 0.0447 0.2647 0.1950 0.0826 0.0568 0.1157 
Near-Earth Object 0.0006 0.0094 0.0076 0.0138 0.0431 0.0181 0.0141 0.0047 0.7242 0.0540 0.0453 0.0651 
Mars Orbit 0.0005 0.0106 0.0014 0.0024 0.0295 0.0207 0.0171 0.0006 0.0442 0.6123 0.0760 0.1846 
Mars Moon 0.0006 0.0100 0.0012 0.0020 0.0290 0.0187 0.0133 0.0007 0.0273 0.0439 0.6133 0.2400 

F
ro

m
 

Mars Surface 0.0021 0.0011 0.0006 0.0009 0.0213 0.0068 0.0057 0.0039 0.0267 0.0025 0.0185 0.9099 
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Table 35.  Discrete-time Markov chain probability transition matrix for median expert 
inputs and ∆t = 2 years, for the condition that current mission demand is not fulfilled. 

  To 

 Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar 
Orbit 

Lunar 
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus 
Orbit 

Near- 
Earth 
Object 

Mars 
Orbit 

Mars 
Moon 

Mars 
Surf. 

Nothing 0.1417 0.5730 0.0495 0.0515 0.1171 0.0256 0.0029 0.0000 0.0284 0.0050 0.0029 0.0024 
LEO 0.0104 0.8055 0.0209 0.0405 0.0575 0.0234 0.0031 0.0000 0.0270 0.0063 0.0034 0.0019 
GEO Servicing 0.0151 0.1183 0.5203 0.0799 0.1572 0.0471 0.0072 0.0000 0.0436 0.0048 0.0030 0.0035 
Lunar Orbit 0.0009 0.0617 0.0267 0.5249 0.2376 0.0523 0.0197 0.0000 0.0417 0.0189 0.0093 0.0062 
Lunar Surface 0.0003 0.0221 0.0120 0.0291 0.8297 0.0220 0.0074 0.0000 0.0292 0.0180 0.0131 0.0170 
Earth-Moon L1 0.0009 0.0589 0.0269 0.0508 0.1273 0.6136 0.0104 0.0001 0.0501 0.0226 0.0098 0.0287 
Sun-Earth L2 0.0015 0.0813 0.0497 0.0687 0.1126 0.0757 0.3716 0.0001 0.1022 0.0509 0.0380 0.0475 
Venus Orbit 0.0015 0.0879 0.0429 0.0542 0.1325 0.0882 0.0441 0.1356 0.2076 0.0752 0.0521 0.0783 
Near-Earth Object 0.0004 0.0267 0.0145 0.0217 0.0608 0.0199 0.0088 0.0001 0.7579 0.0315 0.0267 0.0310 
Mars Orbit 0.0004 0.0281 0.0103 0.0219 0.0439 0.0305 0.0097 0.0002 0.0584 0.6743 0.0537 0.0688 
Mars Moon 0.0003 0.0297 0.0074 0.0094 0.0459 0.0094 0.0016 0.0005 0.0619 0.0168 0.6470 0.1701 

F
ro

m
 

Mars Surface 0.0002 0.0192 0.0044 0.0093 0.0258 0.0110 0.0065 0.0037 0.0413 0.0179 0.0356 0.8252 

 
 

To visualize the conditional Markov chains in Table 34 and Table 35 as is done 

for the Markov chains in the examples of Chapters 4-5, it is helpful to project them over 

more than one two-year time increment.  Note that the probabilities on the diagonals of 

these matrices tend to quite high due to this short time step (naturally, as the time step of 

becomes smaller and smaller, the probability in remaining in a particular state would be 

expected to approach closer and closer to unity), and thus a visualization of the Markov 

chain on the two-year step would reveal only the obvious tendency for the system to stay 

in its current demand state over the coming period.  Extending the time increment to an 

eight-year step for the purposes of visualization (by raising each matrix to the fourth 

power, or by using the uniformization procedure detailed in Appendix C) yields the 

diagrams in Figure 73 and Figure 74.  In these figures, as in those depicting Markov 

chains in Chapters 4-5, high-probability transitions are represented as thick dark links and 

low-probability transitions are represented as thin light links.  Also, from each demand 

state, a green link identifies the highest-probability transition; and if different from the 

green link, a red link identifies the highest probability transition given departure from a 

given demand state. 
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Thus, for example, several differences can be noticed between Figure 73 and 

Figure 74, which themselves represent the difference in demand evolution experts 

believed would exist if demand itself were fulfilled (in the case of Figure 73) versus not 

fulfilled (in Figure 74).  Whereas the most likely transition from LEO is to a Lunar 

Surface demand if LEO demand is fulfilled, it is to remain in LEO if that demand is not 

fulfilled.  Whereas the most likely transition from a Venus Orbit demand is to Mars 

Surface if demand is fulfilled, it is to the less ambitious Lunar Surface mission if that 

demand is not fulfilled; and similarly, if Mars Orbit demand is not fulfilled, the most 

likely demand is to continue Mars Orbit missions rather than progress to Mars Surface 

missions.  It might also be noticed that the red link from the Lunar Surface mission (the 

second most likely next demand) leads to a Near-Earth Object mission rather than a Mars 

Surface mission in the event that the Lunar Surface demand is not being met in the 

current period.  These examples illustrate the general characteristic of the model that the 

condition of demand being fulfilled favors progression of demand toward missions aimed 

at more ambitious destinations that are generally farther away from Earth; conversely, the 

condition of demand not being fulfilled tends to favor a constancy or sometimes 

regression of demand toward less ambitious destinations closer to Earth. 

Figure 73 and Figure 74 also reveal that the mission destinations of LEO, Lunar 

Surface, and Mars Surface, and to a somewhat lesser degree Near-Earth Objects, form a 

set of long-term “sinks” for mission demand in the opinion of the expert participants.  In 

both figures, these destinations have high probabilities of remaining in their present state 

and also have many high-probability incoming transitions.  In contrast, mission demands 

like Venus Orbit, Sun-Earth L2, and Nothing tend to act almost as transient states for 

which demand is rare and, when it does exist, is fleeting. 
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Figure 73.  Visualization of the Markov chain of median expert inputs for the condition that 
current mission demand is fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 
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Figure 74.  Visualization of the Markov chain of median expert inputs for the condition that 
current mission demand is not fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 
 

 
 
 

6.3. Step 3:  Define State-Dependent Performance Matrix 

With the set of possible engineering configurations defined in Step 1 and the set 

of mission demand environments defined in Step 2, the role of Step 3 is to link the 

configuration state to the environment state in each period with one or more quantitative 

performance measures.  Taking the form of a matrix, each measure must inherently 

accumulate over time to match the formulation of Chapter 4. 
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6.3.1. Selecting the Performance Metric 

Appendix C describes in detail the results of a survey of experts with substantial 

experience in the field of human space exploration.  The first part of this survey requested 

that participants rate the relative importance of 17 candidate figures of merit for human 

spaceflight architecture evaluation.  Four figures of merit in particular earned both the 

highest median score and lowest interquartile range (i.e., highest consistency) of scores 

among the participants:  Integrated Program Lifecycle Cost, Total Spending on 

Production Activities, Date of First Mission to Leave LEO, and Time Between Missions. 

In deciding which of these four figures of merit to use in the analysis that follows 

in Steps 4-5, it may be recalled that total program costs (expressed through the 

importance of the Integrated Program Lifecycle Cost and Total Spending on Production 

Activities figures of merit) will already be considered via the transition cost matrices 

defined in Step 1.  Thus, in terms of performance, the relevant metrics to consider 

including are Date of First Mission to Leave LEO and Time Between Missions.  

Unfortunately, neither of these metrics is cumulative.  For example, the Date of First 

Mission to Leave LEO metric tracks the occurrence of the single event in a timeline and 

provides no performance credit for achievements (or even the same achievement) at 

earlier or later times.  For instance, this metric would not distinguish between a timeline 

involving sustained missions to the Moon in 2020 and a timeline involving a single 

mission to the Moon in 2020 followed by missions to LEO for the rest of the decade. 

In contrast, the Time Between Missions metric is less myopic.  The consistency 

with which it was rated with high importance by the expert survey participants is likely 

driven by the priority the participants placed on maintaining the skills of the human 

spaceflight engineering workforce and maintaining public interest through high flight 

rates.  Furthermore, while this Time Between Missions metric itself does not accumulate 

over time, a surrogate for it does.  If this metric is interpreted as an average time between 

missions, then for a given timeline it would be computed as the total number of missions 
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(a cumulative metric) divided by the duration of the time horizon.  Throughout the 

analyses in Steps 4-5, the total time will be fixed at a twenty-year horizon length, and 

thus a reasonable surrogate for this metric is the total number of missions flown.  More 

specifically, the metric tracked through the performance matrix developed in Step 3 will 

be the Number of Missions to Demanded Destinations.  To account for the fact that 

decision-makers may wish to place some value on missions flown to non-demanded 

destinations, an additional “Mission Ratio” figure of merit defined as the ratio of Number 

of Missions to Demanded Destinations to total missions, along with the Date of First 

Mission to Leave LEO metric, are considered in the genetic algorithm exploration in Step 

5. 

6.3.2. Populating the Performance Matrix 

Thus, in Step 4 for this framework applied to the NASA human space exploration 

example, the objectives of interest will be Integrated Program Lifecycle Cost (to be 

abbreviated as “Total Cost”) and Number of Missions to Demanded Destinations.  The 

performance matrix linking the configuration state to the environment state will have 

dimensions 3,286 rows × 12 columns since there exist 3,286 configurations (defined in 

Step 1) and 12 environments (defined in Step 2).  However, since the number of missions 

that can be flown to a demanded destination in a given period depends only upon the 

operations architecture available in that period, an abbreviated version of the performance 

matrix using as rows the 10 operations architectures will serve for display and 

explanation for the remainder of this step. 

To populate the abbreviated 10 × 12 performance matrix, each of the ten 

architectures in Table 31 must be compared to mission requirements for each of the 

twelve mission demand environments.  If an architecture has insufficient components to 
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meet the requirements of a mission,* it will be assumed that the mission cannot be flown.  

Conversely, it will be assumed that the operator of the architecture will use the 

components present to either meet the present demand if possible or, if not possible, 

maximize the number of missions flown to the presently demanded destination.  The 

assumed mission requirements for the mission demand environments, populated 

concurrently with those in Table 31, are shown in Table 36.  Note that each demand 

environment is also associated with a particular mission rate:  The LEO, GEO, and Lunar 

Orbit missions are associated with a demanded mission rate of four per period (two per 

year); the Mars missions are associated with a mission rate of one every two years; and 

all others except for the Nothing mission demand is associated with a rate of two 

missions per period (one per year). 

 

                                                        
* As will be soon described, substitutions are allowed.  For example if an architecture is missing a 

required small chemical stage but has an extra large chemical stage, the mission can still be 

performed. 
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Table 36.  Demand Environment Component Requirement Definitions for the Human Space Exploration Application. 

   Demand Environment 

  
 Noth. LEO 

GEO 
Serv. 

Lunar 
Orbit 

Lunar 
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus 
Orbit 

Near- 
Earth 
Object 

Mars 
Orbit 

Mars 
Moon 

Mars 
Surf. 

 

 
Representative Mission Rate 
(missions per 2-year period) 

0 4 4 4 2 2 2 2 2 1 1 1 

1. Crew Launch Vehicles (CLVs)  -  4  -  - - - - - - - - - 
2. Heavy Lift Launch Vehicles (HLVs) - - 3 4 12 3 8 8 6 4 4 10 
3. Commercial Cargo Launch Vehicles (CCLVs) - 6 - - - - - - - - - - 
4. Multi-Purpose Crew Vehicles (MPCVs) - 4 2 4 4 2 2 2 2 1 1 1 
5. Commercial Cargo Logistics Modules (CCLMs) - 6 - - - - - - - - - - 
6. Small Chemical Stages - - - - -  -  2 - - - - 1 
7. Medium Chemical Stages - - 3 4 8  3  4 4 6 2 2 1 
8. Large Chemical Stages - - - - -  -  - 4 - 2 2 6 
9. Deep-Space Habitation Modules - - 1 - - 1 2 2 2 1 1 1 

10. Lunar Landers - - - - 8 - - - - - - - 
11. Mars Landers - - - - - - - - - - - 2 
12. Multi-Mission Pressurized Rovers - - 1 - 8 - 2 - 2 - 2 2 
13. Unpressurized Rovers - - - - 4 - - - - - - 2 
14. Science Rovers - - - - 4 - - - - - - 2 
15. Surface Habitats - - - - - - - - - - - 1 
16. Logistics Modules - - 2 - 4 2 2 - 2 - - - 
17. Power Generation and Storage Units - - - - 2 - - - - - - 1 
18. ISRU Systems - - - - 2 - - - - - - 2 
19. Surface Extravehicular Activity (EVA) Suits - - - - 20 - - - - - - 10 
20. In-Space Extravehicular Activity (EVA) Suits - 8 8 8 - 8 8 8 8 8 12 - 
21. Supporting Communications/Navigation Satellites - - - - 1 - - - - - - 1 

22. RS-68-Class Engine - - 15 20 60 15 40 40 30 20 20 50 
23. J-2X-Class Engine - 4 6 8 24 6 16 16 12 8 8 20 
24. RL-10B-2-Class Engine - - 6 8 56 6 12 28 12 14 14 44 
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25. AJ-10-Class Engine - 4 2 4 4 2 2 2 2 1 1 1 
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To compute the abbreviated performance matrix in Table 37, an algorithm 

compares each operations architecture to each set of mission demand requirements on a 

capability by capability basis.  First, launch capability is compared, with the assumption 

that an architecture possessing more heavy-lift launch vehicles than are required for a 

given mission demand can use them to fulfill any deficit in crew launch vehicles.   

Second, commercial cargo logistics module requirements are considered, with the 

assumption that any of an architecture’s logistics modules, MPCVs, and multi-mission 

pressurized rovers that are not explicitly required for the current mission demand can be 

readily outfitted to fulfill the role as a commercial cargo module if necessary.  Third, 

chemical stage capability is compared.  It is assumed that each large chemical stage not 

explicitly required by the current mission demand can be used to fulfill the function of a 

medium or small chemical stage; similarly, it is assumed that each medium chemical 

stage of an architecture can fulfill the function of small chemical stage.  Fourth, 

extravehicular activity (EVA) suit requirements are checked, with the assumption that 

surface EVA capability in an architecture can be used to fulfill in-space needs; however, 

the opposite is not assumed to hold.  Fifth, all components other than those listed here are 

checked on a one-to-one basis with the assumption that no relevant substitutions are 

available with other components.  Given these comparisons, the algorithm identifies 

whether the full number of demanded missions in the column can be fully achieved with 

the architecture in the row; and if not, the algorithm determines the maximum integer 

number of missions that can be flown to the demanded destination using the available 

components in the architecture. 

Although the resulting performance matrix in Table 37 by definition does not take 

cost into account, it is worth observing that some architectures, such as Architectures 6, 

7, and 10 (the Sun-Earth L2, Near-Earth Object, and Deep Space architectures) perform 

well in a variety of mission demand environments.  In contrast, architectures like 
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Architectures 2 and 4 (the LEO and Lunar Orbit architectures) are highly specialized and 

are unable to meet demands except in the environments for which they were designed. 

 
Table 37.  Performance matrix (abbreviated in rows by operational architecture, rather 

than configuration) quantifying the number of missions flown to the demanded destination 
in a given time period. 

  Demand Environment 

  Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

-1- Nothing 0 0 0 0 0 0 0 0 0 0 0 0 
-2- LEO 0 4 0 0 0 0 0 0 0 0 0 0 
-3- GEO Servicing 0 0 4 2 0 2 0 0 1 0 0 0 
-4- Lunar Orbit 0 0 0 4 0 0 0 0 0 0 0 0 
-5- Lunar Surface 0 4 0 4 2 0 0 0 0 0 0 0 
-6- Sun-Earth L2 0 0 4 2 0 2 2 0 1 0 0 0 
-7- Near-Earth Object 0 0 4 2 0 2 1 0 2 0 0 0 
-8- Mars Moon 0 0 0 1 0 0 0 1 0 1 1 0 
-9- Mars Surface 0 0 0 1 0 0 0 1 0 1 0 1 O
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-10- Deep Space 0 0 4 4 0 2 2 2 2 1 1 0 
 
 

6.3.3. Populating the Boolean Demand Fulfillment Matrix 

An additional useful piece of information may be gathered from the data 

computed for Table 37.  If the data in the table is converted from an integer to a Boolean 

(i.e., zero or one) representation, the matrix indicates whether a given operations 

architecture (in the row) fulfills a given demand environment (in the column).  The 

conversion is largely trivial; every zero in Table 37 remains zero in Table 38, and all 

other elements become unity.  The only exception is the first column, which becomes 

comprised entirely of ones since every architecture has the ability to fulfill the “Nothing” 

demand.  This Boolean demand fulfillment matrix will become necessary in the 

definition of the modified function in Step 4 that defines the probability of transition 

among total states; Step 2 introduced configuration-dependent demand, and Table 38 will 

provide the information needed to allow selection of the proper probability transition 

matrix (Table 34 or Table 35, respectively a Boolean one or zero in Table 38) as a 

function of the current total state. 
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Table 38.  Boolean demand fulfillment matrix (abbreviated in rows by operational 
architecture, rather than configuration). 

  Demand Environment 

  Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

-1- Nothing 1 0 0 0 0 0 0 0 0 0 0 0 
-2- LEO 1 1 0 0 0 0 0 0 0 0 0 0 
-3- GEO Servicing 1 0 1 1 0 1 0 0 1 0 0 0 
-4- Lunar Orbit 1 0 0 1 0 0 0 0 0 0 0 0 
-5- Lunar Surface 1 1 0 1 1 0 0 0 0 0 0 0 
-6- Sun-Earth L2 1 0 1 1 0 1 1 0 1 0 0 0 
-7- Near-Earth Object 1 0 1 1 0 1 1 0 1 0 0 0 
-8- Mars Moon 1 0 0 1 0 0 0 1 0 1 1 0 
-9- Mars Surface 1 0 0 1 0 0 0 1 0 1 0 1 O
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-10- Deep Space 1 0 1 1 0 1 1 1 1 1 1 0 
 
 

6.4. Step 4:  Decision Support Analysis 

Defined through Steps 1, 2, and 3 have been the set of available configurations 

and associated transition costs, the set of possible mission demand environments and 

associated transition probabilities, and the performance accumulated as a consequence of 

a given configuration operating in a given demand environment.  With these components 

defined, as in the previous examples of Chapters 4-5, there now exists enough 

information to begin to answer the question of what is the “best” initial configuration 

and, furthermore, the “best” decision policy the decision-maker can choose. 

Figure 75 shows a version of the assumed Figure 25 simulation timeline that has 

been modified to reflect the architecture triplet definition of a configuration posed in 

Section 6.1.1.  Figure 75 also incorporates the approximation discussed in Section 

6.1.3.2.2 regarding the present NASA human space exploration configuration (a LEO-

themed architecture in the second phase of development and no relevant exploration 

architectures in operations or memory) and the approximation that the immediate demand 

is for LEO missions.  These approximations define the initial condition of the 

configuration and demand environment states at t = 0.  Also marked in Figure 75 are the 

two-year time increments up to the 18-year mark.  Since the last period is of a two-year 
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length, the total horizon length over which cost and performance measures accumulate 

will be 20 years (or ten periods).  In each period, the decision-maker must decide which 

configuration (i.e., which architecture triplet) to select such that its implementation might 

begin at the start of the subsequent period.  A second distinction with Figure 25, notated 

by the wavy arrows in Figure 75 and explained in further detail in Section 6.4.2, is that 

the translation of a configuration decision to an operational configuration will be modeled 

as probabilistic to account for the endogenous possibility of schedule slippage. 
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Figure 75.  Visualization of Configuration Decisions and Demand Environment Evolution 
over Multiple Time Periods for the NASA Human Space Exploration Application. 
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6.4.1. Preclusion of Open-Loop Path Analysis 

Unlike the previous examples in Chapters 4-5, as a matter of practicality this 

example foregoes the explicit identification of Pareto-optimal paths (Step 4A).  In the 

cost matrix developed in Step 1, all rows possessed at least 10 transitions not restricted by 

the transition rules of Figure 59.  With ten periods in the time horizon under 

consideration, this implies that there exist at least 1010 (10 billion) possible full-factorial 

paths, which is nearly 200,000 times more paths than were considered in the example of 

Chapter 5.  However, this number is itself misleadingly low; some rows in the cost 

transition matrix have as many 600 allowable transitions, and thus an upper bound on this 

number is 60010 (about 6×1027, or 6 octillion).  To rigorously enumerate all these possible 

paths, all 328610 (about 1.5×1035, or 150 decillion) possible paths would need to be 

enumerated and then filtered according to the transition rules.  Given these computational 

demands, only the Step 4B analysis option is utilized, employing Markov decision 

process techniques to preferentially identify a set of Pareto-optimal decision policies. 

6.4.2. Timeline Assumptions and Expanded Probability Definitions 

As in the previous examples of Chapters 4-5, the timeline depicted in Figure 75 

can be modeled as occurring in the following steps (e.g., at each time step of a 

simulation): 

 
1. Mission demand evolves stochastically according to the Markov chain 

estimate, conditioned on whether previous demand had been met.   

2. The operator of the currently operational architecture attempts to use this 

architecture to fulfill the new mission demand, earning credit according to the 

performance matrix. 

3. The decision-maker chooses what architectures to develop, operate, and put 

into memory next, paying according to the cost transition matrix.  If schedule 

slip does not occur, this selection becomes the next-period configuration. 
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These three steps repeat at each time increment, and cost and performance 

accumulate at each increment.*  In the descriptions of these three steps, however, two 

items have not been substantially discussed in prior chapters’ Step 4 coverage and require 

additional clarification.  First, as introduced in Section 6.2, since the demand 

environment no longer evolves independently of decisions, the probability transition 

matrix used to describe the evolution of the demand environment is selected as a function 

of whether a current configuration meets current demand.  Second, a model for schedule 

slippage has been implemented, which describes an assumed endogenous uncertainty.  

This schedule slippage model is based upon the results of Dubos, Saleh, and Braun [110], 

who model the probabilistic schedule slippage experience of previous NASA programs as 

a function of Technology Readiness Level (TRL).  For programs characterized by initial 

TRLs of 6, used in this thesis as an approximation for the initial aggregate system TRL of 

a human space exploration development program,† the regression model of Ref. [110] 

suggests that mean relative schedule slippage will be 28.5%.  For reference, Table 39 

reproduces the mean relative schedule slippage results for other TRLs.  As a 

consequence, for a planned eight-year program starting at a TRL of 6, schedule slippage 

will, on average, account for approximately an additional two years of development.  To 

approximate typical experiences of schedule slippage occurring toward the end of 

development as components must be aligned in schedule and integrated, this schedule 

slippage is modeled to occur probabilistically only for configurations in which 

development is in its final phase.  Thus, to match the expected two-year relative schedule 

                                                        
* In this particular setup, the performance tracked at each period is the performance earned in the 

current period.  The cost tracked at each period is the cost committed for the next period 

(equivalent to tracking in each period the necessary next-period budget that must be requested, 

maintained, or paid forward). 
† This use of TRL 6 assumes adherence to U.S. Government Accountability Office recommended 

practices for the initiation of space system development. [111] 
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slippage, a 50% endogenous progression probability (i.e., a 50% probability that 

development will finish and permit operations) is implemented for configurations in 

which development is in its fourth and final phase.* 

 
Table 39.  Mean relative schedule slippage  as a function of 

TRL, from the model of Ref. [110]. 

Initial 
System TRL 

Mean Relative 
Schedule Slippage, percent 

4 87.7 
5 50.0 
6 28.5 
7 16.3 
8 9.3 

 
 

In terms of the Total State = {Configuration State, Demand State} unification of 

the flexibility and Markov decision process frameworks (see Section 4.4.2.2.1), both the 

configuration-dependent demand evolution and probabilistic schedule slippage can be 

integrated into the definition of the decision-dependent transition probability:  Given any 

two total states ξ1 and ξ2 and action a taken from state ξ1, the probability of reaching ξ2 

from ξ1 in the next time increment is described by Figure 76.  The flowchart in this figure 

illustrates how the combination of the configuration and environment in state ξ1 

determine, based on an expanded version of the the Boolean demand fulfillment matrix in 

Table 38, whether demand environment transition probabilities from Table 34 or from 

Table 35 form a basis for the total-state-to-total-state transition probabilites. 

                                                        
* This implementation clearly demonstrates the ability of the present framework to account for 

endogenous uncertainties such as schedule slippage, although there exist some impediments to 

modeling arbitrary schedule slippage time distributions.  In particular, the distribution of project 

completion times is naturally geometric.  In this particular application, the authors of Ref. [110] 

suggest a normal distribution for relative schedule slippage, while the present implementation is 

necessarily a geometric distribution (but with a matched mean).  This limitation can be overcome, 

however, if enough additional states are added to allow tracking of schedule slippage history. 
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The flowchart also shows the logic that by default assigns these transition 

probabilities values of zero unless they involve a state ξ2 with an associated configuration 

that matches either the decision or the “slip configuration” from the configuration 

corresponding to state ξ1.  This slip configuration is a configuration to which one 

configuration will transition in the event that schedule slippage occurs, and it is 

predefined for each configuration that has a development architecture in a final 

development phase.  By definition, a configuration’s slip configuration will have an 

identical development and memory architecture; however, since costing assumptions for 

the final period of development do not involve continued production of the operations 

architecture (see Section B.3), the operations architecture for the slip configuration is 

Architecture 1 (the “Nothing” architecture). 

The probability associated with transitioning to a slip configuration, or the 

probability of schedule slip, is defined by the complement of the progression probability 

(50%, as discussed above).  Assuming independence between the endogenous schedule 

slippage and exogenous demand environment evolution, the total transition probability 

between two total states ξ1 and ξ2, given action a, is computed as the product of the 

appropriate exogenous environment transition and endogenous schedule slip or 

progression probabilities.  As a result, Figure 76 provides a means of integrating both 

exogenous and endogenous uncertainties into the optimal policy solution (and ultimately 

optimal initial system selection) process by capitalizing on the definition of the total state 

as the combination of both configuration and environment state.* 

                                                        
* This definition could be further capitalized upon, for example, if future data suggest the need to 

relax the independence assumption.  Since the total state contains information about both the 

configuration and environment state, all that is necessary to relax the independence assumption is 

an appropriate model for the probability dependence between the exogenous (which tend to be 

environment-related) and endogenous (which tend to be configuration-related) uncertainties. 
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Figure 76.  Flowchart describing the effective total-state-to-total-state transition probability 
prob  used in the Markov decision process solution procedure for the NASA human space 
exploration application.  Note that, due to the sixth transition rule in Section 6.1.2, the third to 

last conditional action (using the “AND” statement) is present only for probabilistic 
completeness.  Since stagnation is not an allowed decision option, these two conditions never 
coincide in the present application; however, if the sixth transition rule were removed, this 

flowchart would still be valid. 
 
 

6.4.3. Computational Resources and Implementation 

In the examples of Chapters 4-5, the total state spaces consisted of at most 120 

states over 5 time periods.  In contrast, the present application involves 3,286 

configurations × 12 environments = 39,432 states for a total of 10 time periods.  The 

policy matrices for which the Markov decision process dynamic programming algorithms 
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will be searching thus consist of 394,320 elements, which is of a size nearly 660 times 

larger than the policy matrices in Chapter 5 (e.g., Table 28).  Initial attempts to use the 

same MATLAB-based computer code as in Chapters 4-5 on the present NASA human 

space exploration example resulted in run time estimates on the order of 250,000 hours 

(nearly 30 years!) if executed serially.  While execution on several machines in parallel 

was considered, use of all available MATLAB licenses in the Flight Mechanics 

Laboratory to which the author was granted access at NASA Johnson Space Center 

would reduce this time only to 19,000 hours (over 2 years), and order of magnitude 

improvements beyond this were required. 

To solve this computational run time issue, the core MATLAB finite time horizon 

Markov decision process dynamic programming code was converted to Fortran and 

utilized the OpenMP interface to enable parallel processing among the multiple threads 

and processors of a single computer.  Parallelization of the code is possible for 

computations within a given time period, since the action taken from one state at time τ 
has no effect on the optimal selection of the action from another state at the same time τ.  
Since, as discussed in Section 4.4.2.2.2, optimizations are performed for a range of 

weights and objective function powers to ensure satisfactory identification of the Pareto 

frontier, multiple instances of the code were able to be executed in parallel on each of 

approximately 40 eight-core, sixteen-thread, 2.93 GHz HP DL360 G6 computing nodes 

in the Flight Mechanics Laboratory at NASA Johnson Space Center.  In the primary 

results that follow, weights were varied from zero to unity in increments of 0.025, and the 

objective powers used were 1, 2, 4, and infinity.  The time required to execute a full set of 

these primary runs was approximately 50 hours, a significant improvement (by a factor of 

5,000!) from the 250,000 hour estimate prior to the Fortran conversion and 

parallelization. 
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6.4.4. Primary Results:  The Potential of an Unconstrained Per-Period Budget 

As in the previous examples of Chapters 4-5, the dynamic programming solution 

to the present problem posed as a Markov decision process permits the identification of 

Pareto-optimal decision policies.  However, unlike the previous examples of Chapters 4-

5, in which the policies could each be displayed in tabular form on a single page, each of 

the optimal policies in the NASA human space exploration example is defined by a 

matrix of nearly 400,000 elements and would require several hundred pages to display.  

In lieu of identifying policies in this unwieldy form, each policy will be identified simply 

by the weight placed on cost and the objective function power used to obtain it as a 

solution (e.g., W0.1-N4 refers to the policy solution to use of a 0.1 weighting on cost, 0.9 

weighting on performance, and power 4 objective function).  Each such identification 

number has a single optimal policy associated with it, and the number itself contains 

some information about the character of the policy solution; for example identification 

numbers with high weights on cost will be associated with low-cost policies, and those 

with large objective function powers will have a tendency to fall away from the convex 

portion of the Pareto frontier.  The one exception to this notation will be a notional 

anticipatory policy, a seemingly sensible but suboptimal policy that will illustrate the 

benefits of exploring the policy space. 

 6.4.4.1. Definition of an Anticipatory Reference Policy 

Before proceeding to the full results of the MDP policy optimization, it is 

instructive to consider the time histories of states, costs, and system performance that 

may be obtained if a reasonable pre-specified policy is run through the simulation 

described via the steps of Section 6.4.2.  As in the previous examples of Chapters 4-5, 

this policy will be named an anticipatory policy for the reason that it simulates the logic a 

decision-maker might normally follow to plan for anticipated future demands without the 

benefit of the techniques proposed by the current thesis.  This anticipatory policy will be 
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defined by the three basic rules below, governing conditions for transitioning 

development, operations, and memory architectures: 

 
1. Development begins or continues for the architecture that most closely 

corresponds to most likely next demand after a typical development 8-year 

period.  This most likely next demand is obtained from the appropriate 

conditional probability transition matrix projected over eight years (i.e., the 

two-year matrices in Table 34 and Table 35 raised to the fourth power).  In 

most cases, the architecture that most closely corresponds to each demand 

environment shares the same name as the demand environment; based on the 

component demands, Architecture 3 is assigned as most closely corresponding 

to the Earth-Moon L1 demand, Architecture 10 is assigned to the Venus Orbit 

demand, and Architecture 8 is assigned to the Mars Moon demand.  To be 

competitive with the optimal finite-horizon policies for which the MDP 

algorithm solves, no new development projects are started within four periods 

of the end of the simulation since these projects will not result in a fielded 

operations architecture with performance benefits. 

2. Operations continue with the previous operations architecture unless the prior 

configuration involved a development architecture in its final phase, in which 

case the just-finished development architecture is placed into operation.  To be 

competitive with the optimal finite-horizon policies for which the MDP 

algorithm solves, costs are reduced by selecting in the final period the action 

not to continue operations into the next period. 

3. Previous memory architectures are retained unless a configuration is in the 

last phase of development for another architecture, in which case the current 

operations architecture is placed in memory. 
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Simulation of this anticipatory policy produces the time history results in Figure 

77, shown in a format similar to those used in the state and objective time histories shown 

for the examples in Chapters 4-5.  In the plots on the left in Figure 77, the size of each 

yellow dot indicates the likelihood of a configuration or demand being in a particular 

state (on the y-axis) at a given time (on the x-axis); here, the configuration itself is 

decomposed into its component architectures for clarity.  The plots on the right indicate 

the evolution of per-period cost and performance metrics. 

Starting from the first time step (approximated as the year 2011), all simulations 

utilize the same initial decision to continue with development of the LEO architecture 

since all simulations start at the same initial configuration and demand environment 

defined at the beginning of Section 6.4.  This decision is based on the anticipation, from 

the Markov chain visualization in Figure 74, that lack of fulfillment of the current LEO 

mission demand will lead to stagnation of the demand environment and continuation of 

the LEO demand in the future.  Development of the LEO architecture continues through 

its third and fourth phases until, in some simulations, it is fielded as the operations 

architecture in the year 2017.  At this point the first missions to demanded destinations 

can be flown to LEO, which by 2017 continues to characterize mission demand in 56% of 

simulations.  Due to schedule slippage, fielding of the LEO architecture is delayed in 

some simulations, and by 2021 the LEO architecture is operational in 70% of 

simulations. 

Once the LEO configuration is fielded and, in many cases, begins to meet mission 

demand, Figure 73 suggests to the decision maker that the lunar surface mission is the 

most likely next demand.  Thus, in many simulations the lunar surface architecture is 

developed throughout the early 2020s and fielded in the late 2020s.  As anticipated, by 

2029 the demand environment has shifted much more in favor of the lunar surface 

missions, with 33% of simulations exhibiting Lunar Surface demand in 2029 and only 

15% of simulations exhibiting LEO mission demand.  Over the total ten-year time span 
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of the simulation, the expected total cost of this anticipatory policy is $179.9 billion for 

an expected 7.1 missions to demanded destinations. 

 
 Evolution of States Evolution of Objectives 

  

Figure 77.  Evolution of states and objectives for the anticipatory reference policy.  In the 
plots on the left, the size of circles indicates the relative number of Monte Carlo simulation cases 
that exist in a given configuration or demand environment state (on the y-axes) at a given time 

(on the x-axes).  The configuration state at each time is decomposed into its development, 
operations, and memory architectures.  The plots on the right indicate the associated evolution of 
per-period cost and performance.  In all plots, gray lines indicate transitions made in at least one 

simulation. 

6.4.4.2. Pareto Frontier of Policies 

Figure 78 shows the performance of the anticipatory reference policy, marked as a 

yellow triangle, in comparison with the performance of the full set of 63 available Pareto-

optimal policies obtained from the dynamic programming optimization procedure.  The 
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Pareto frontier in particular is of interest to decision-making because it comprises the set 

of policies for which performance cannot be increased without increasing cost, or for 

which cost cannot be decreased without sacrificing performance.  Especially interesting 

on a Pareto frontier are regions of steep or shallow slopes, which indicate regions of 

compelling trades.  Figure 78 shows that, for the NASA human space exploration 

application, the frontier is nearly linear and quite shallow above a total cost of $50 billion 

(regressing, with an R² value of 0.97, to an average slope of 0.009 missions to demanded 

destinations per billion dollars added) and substantially steeper below the $50 billion total 

cost.  As a result, optimal performance at the $35 billion total cost level entails an 

average cost of $6.2 billion per mission to demanded destination, a value that grows 

substantially to $8 billion per mission at the $50 billion total cost level, $18 billion per 

mission at the $124 billion total cost level, and $28 billion per mission at the $226 billion 

total cost level. 

The overlay of the anticipatory policy performance on the same plot as the Pareto 

frontier is of interest because doing so reveals not only that the anticipatory policy is 

dominated by others discovered in the MDP optimization process, but also that the 

anticipatory policy is just one of many options; even if it were nondominated, selection of 

this particular policy carries with it no options regarding cost and performance 

preferences. 

Also marked in Figure 78 are three policies of likely interest to a decision-maker, 

details of which are provided next.  Covered first is policy W0.125-N1, a policy that 

attains both substantially lower cost and higher performance than the anticipatory policy.  

Covered next is policy W0.050-N2, the highest-performance (and highest-cost) Pareto-

optimal policy in Figure 78.  The final policy examined in detail in W0.600-N∞, a policy 

that has an expected total cost on par with NASA’s current non-International-Space-

Station human space exploration budget projected over twenty years. 
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Figure 78.  Trade between expected total missions to demanded destinations and expected 
total cost for MDP policy solutions.  Marked on the plot are three policies of varying long-term 

cost and performance, as well as a vertical line representing a reasonable long-term budget 
expectation for human space exploration activities. 

 
 

6.4.4.2.1. Policy W0.125-N1:  Dominating the Anticipatory Policy 

Shown in Figure 79 are the time histories of states and objectives for policy 

W0.125-N1, which provides 7% more expected performance than the anticipatory 

reference policy for 12% less expected cost.  A clear example of a policy that dominates 

the anticipatory policy, Figure 79 provides some clue about why this is the case:  Figure 

79 shows no development of the Mars Surface, Mars Moon, or Near-Earth Object themed 

architectures, which stands in contrast to the anticipatory policy of Figure 77.  Instead, 

the policy of Figure 79 favors greater focus on development of the core LEO and Lunar 

Surface themed architectures, with occasional (in less than 6% of simulations) focus on 

developing the Deep Space architecture starting in 2017, depending on the evolution of 

the demand environment early during the timeline.  Among all simulations, this policy 
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begins operations of the LEO themed architecture no earlier than 2017, the Lunar Sruface 

themed architecture no earlier than 2023, and the Deep Space architecture no earlier than 

2025.  The expected total cost of policy W0.125-N1 is $158.8 billion for an expected 7.6 

missions to demanded destinations. 

 
 
 Evolution of States Evolution of Objectives 

  

Figure 79.  Evolution of states and objectives for policy W0.125-N1.  In the plots on the left, 
the size of circles indicates the relative number of Monte Carlo simulation cases that exist in a 

given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  
The configuration state at each time is decomposed into its development, operations, and memory 

architectures.  The plots on the right indicate the associated evolution of per-period cost and 
performance.  In all plots, gray lines indicate transitions made in at least one simulation. 
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6.4.4.2.2. Policy W0.050-N2:  Maximizing Performance 

Also of some interest in Figure 78 is the highest-performance policy at the upper 

right of the Pareto frontier.  This policy, W0.050-N2,* has state and objective time 

histories shown in Figure 80.  A variation on Figure 79, policy W0.050-N2 shares the 

predominant characteristic of continued LEO architecture development, followed by 

fielding of the same LEO architecture in 2017 and subsequent development and fielding 

of the Lunar Surface themed architecture as early as 2023.  Compared to policy W0.125-

N1, this policy exhibits a greater focus on developing the Deep Space architecture, 

starting as early as 2015 with operations starting as early as 2023.  By 2029, the Deep 

Space architecture is operational in 8% of simulations, the Lunar Surface themed 

architecture is operational in 68% of simulations, the LEO themed architecture is 

operational in 23% of simulations, and no architecture (the “Nothing” architecture) is 

operational in the remaining 1% of simulations.  Interestingly, in the year 2023 the Deep 

Space architecture is used in 2% of simulations as a starting point for development of the 

GEO Servicing themed architecture, and at the same point in 8% of simulations the Lunar 

Surface themed architecture is used as a starting point for development of the Lunar Orbit 

themed architecture; however, these architectures never see operation because of their 

development late in the simulation. The expected total cost of policy W0.050-N2 is 

$226.1 billion for an expected 8.0 missions to demanded destinations. 

The results associated with this highest-performance policy also reveal some 

fundamental insights regarding the evolution of human space exploration capabilities and 

                                                        
* As is evident in Figure 78, there is significant clustering of candidate MDP policy solutions near 

the maximum-performance point of the frontier, and all have nearly identical performance.  The 

reason for a 0.05 weighting rather than a 0.00 weighting achieving the distinction of the 

maximum-performance policy can be reasonably attributed to numerical sensitivity associated 

with using a Monte Carlo simulation to generate cost and performance results for the near-

equivalent policies in this region. 
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architectures.  First, the fact that the policy of Figure 80 maximizes performance 

indicates that, despite the materialization of a substantial Mars Surface mission demand 

in many (at least 10% of) simulations, development and fielding of the Mars Surface 

themed architecture is never an optimal use of time to maximize the number of missions 

flown to demanded destinations.  This is due in part to the low mission rate of the Mars 

Surface mission, in part to the existence of the Deep Space architecture as an option, and 

in part to the transience of the Mars Surface mission demand:  As detailed in Table 37, 

the maximum number of missions that can be achieved in a given time period in an 

environment of Mars Surface mission demand is one.  If, once a Mars Surface mission 

demand materializes, the time that might intuitively be spent developing a Mars Surface 

architecture is instead spent developing the Deep Space architecture, up to four times as 

many missions could be flown per period in the reasonably likely event that future 

demand shifts to a different mission before development finishes.*  This example thus 

illustrates that the transience (or stability) of a current mission demand is an important 

consideration in system decision-making. 

Second, both policies W0.050-N2 and W0.125-N1 respond to strong demands for 

LEO and Lunar Surface missions with, predominantly, sequential development and 

operation of LEO and Lunar Surface themed architectures.  The Lunar Surface themed 

architecture development is able to capitalize upon the previous development of the 

Multi-Purpose Crew Vehicle (MPCV) from the LEO-themed architecture to reduce 

development costs.  This progression is intuitive but is also supported by the fact, as 

illustrated in Table 37, that the Lunar Surface themed architecture has the ability to 

operate missions in the LEO demand environment as well as the Lunar Surface demand 

environment. 

                                                        
* From Figure 74 and from the matrix of Table 35 raised to the fourth power, the 8-year (4-

period) probability of remaining in the Mars Surface demand environment while demand is not 

being fulfilled is approximately 50%. 
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Third, as alluded to in the first point, this performance-optimal policy involves 

notable development of the Deep Space architecture (by 2029, operational in 8% of 

simulations) to allow non-LEO and non-Lunar-Surface mission demands to be met in 

cases where demand for such missions can be planned for with reasonable confidence 

(for example, in cases where demand early in a simulation evolves to an ambitious deep 

space mission and is likely to remain within the family of deep space missions).  These 

non-LEO and non-Lunar-Surface mission demands particularly tend to occur toward the 

end of simulation timelines, collectively with a high probability; however, since no single 

deep space mission carries enough probability to justify development of a dedicated 

architecture, development of the Deep Space architecture provides a means of meeting 

mission demands for a wide variety of deep space mission expectations.  To a substantial 

degree this idea is similar to that of the Review of U.S. Human Spaceflight Plans 

Committee (Augustine Committee); however, it is worth emphasis that in Figure 80, the 

presence of the Deep Space architecture is notable but not predominant.  This optimal-

performance policy calls for the Deep Space architecture’s development only in special 

situations and, as mentioned in the previous paragraph, calls predominantly for the 

development of LEO and Lunar Surface themed architectures. 
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 Evolution of States Evolution of Objectives 

  

Figure 80.  Evolution of states and objectives for policy W0.050-N2.  In the plots on the left, 
the size of circles indicates the relative number of Monte Carlo simulation cases that exist in a 

given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  
The configuration state at each time is decomposed into its development, operations, and memory 

architectures.  The plots on the right indicate the associated evolution of per-period cost and 
performance.  In all plots, gray lines indicate transitions made in at least one simulation. 
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6.4.4.2.3. Policy W0.600-N∞:  Matching an Expected Long-Term Budget 

A final policy of particular interest from Figure 78 involves an expected 6.9 

missions to demanded destinations and lies at a total expected cost of $124.1 billion, just 

below the $128.7 billion budget that is obtained when the NASA FY11 authorization for 

exploration plus non-International-Space-Station operations [109] is projected over a 20-

year time span.  The history of states and objectives from this policy, shown in Figure 81, 

reveals that the Pareto-optimal policy for this budget involves substantially less focus on 

non-LEO architecture operations, although there is an increase in focus toward 

development and operations of the Deep Space architecture that also translates into 

operations of the Near-Earth Object architecture (since this is a subset of the Deep Space 

architecture).  Interestingly, coupled with the observations in Section 6.4.4.2.2, this 

would suggest that the case for the Deep Space architecture and the Augustine 

Committee’s flexible path recommendation becomes stronger at lower budgets. 

Predominantly, however, it should be emphasized that the shift in development 

focus following completion of LEO-themed architecture development is toward no 

development project at all.  As a result, the majority of simulations describe a scenario in 

which development of the LEO-themed architecture is completed and the same LEO-

themed architecture is subsequently operated for the remainder of the timeline.  By 2029, 

the Deep Space architecture is operational in 15% of simulations, the Near-Earth Object 

themed architecture is operational in 2% of simulations, the Lunar Surface themed 

architecture is operational in 10% of simulations, the LEO themed architecture is 

operational in 67% of simulations, and no architecture is operational in 6% of 

simulations.  In a negligible 0.2% of simulations each, the Sun-Earth L2 and GEO 

Servicing architectures were also operational. 
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 Evolution of States Evolution of Objectives 

  

Figure 81.  Evolution of states and objectives for policy W0.600-N∞.  In the plots on the left, 
the size of circles indicates the relative number of Monte Carlo simulation cases that exist in a 

given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  
The configuration state at each time is decomposed into its development, operations, and memory 

architectures.  The plots on the right indicate the associated evolution of per-period cost and 
performance.  In all plots, gray lines indicate transitions made in at least one simulation. 

 
 

6.4.5. Implications of a Per-Period Budget Constraint 

As introduced in Section 6.4.4.2.3, W0.600-N∞ presents a policy option with an 

expected long-term cost commensurate with a reasonable long-term NASA human space 

exploration budget expectation.  However, examination of Figure 81 produces the 

disconcerting revelation that in many simulations (including in the mean and median cost 

profiles across all simulations), the $12.9 billion per-period budget assumed to be allotted 
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to the agency for this human space exploration program is breached.  As a result, even 

though this policy has long-term costs that match agency budget expectations, per-period 

budget constraints make this policy unreasonable. 

To ascertain whether there exist policies that do not overspend on a per-period 

basis, a seventh transition rule is added to the existing set of six (see Section 6.1.2).  This 

rule prevents a configuration transition from being considered if it costs more than the 

$12.9 billion per-period budget.  As a result, 59% of the transitions previously possible in 

the cost transition matrix discussed in Section 6.1.2 are no longer allowed. 

The Pareto-optimal policies that result for this new, constrained condition are 

summarized by performance in Figure 82.  Most noticeable in Figure 82, in comparison 

with Figure 78, is the limited extent of the Pareto frontier.  While the frontier in Figure 78 

extends well past $200 billion expected costs and to expected missions to demanded 

destinations numbering near 8, the frontier in Figure 82 extends to under $70 billion and 

expected missions to demanded destinations numbering less than 6.6.  If the maximum-

performance and maximum-cost point on the new frontier is compared to policy W0.600-

N∞ from Section 6.4.4.2.3, which is targeted for spending at the expected long-term 

budget level, Figure 82 illustrates a performance gap of 0.3 expected missions and 

moreover, a cost gap of about $60 billion.  This cost gap is of particular interest:  At an 

approximately constant budget of $12.9 billion per period, $129 billion will be allocated 

and presumably spent on human space exploration programs over the ten-period 

simulation.  However, the existence of the per-period budget constraint results in a 

situation whereby no Pareto-optimal policies exist that spend the entire $129 billion 

budget; that is, while it is certainly possible to identify inefficient policies for spending 

these funds toward the goal of accumulating missions to demanded destinations, there 

exist policies that achieve the same performance at lower total costs.  The cost gap of $60 

billion pointed out in Figure 82 thus highlights the total amount of funds that would be 

used inefficiently by virtue of a constant use-or-lose $12.9 billion per-period budget. 
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Figure 82.  Trade between expected total missions to demanded destinations and expected 
total cost for MDP policy solutions subject to a $12.9 billion per-period budget constraint.  
Marked on the plot is the long-term budget expectation and W0.600-N∞ policy from Figure 78, 

which serves as a reference for assessing the impacts of the per-period budget constraint. 
 
 

What do time histories of states and objectives for policies on this new Pareto 

frontier look like?  As an example, plotted in Figure 83 are the probabilistic time histories 

for the maximum-performance point in Figure 82, corresponding to a $66.5 billion 

expected total cost and an expected 6.55 missions to demanded destinations.  The plots 

on the left in the figure illustrate the magnitude of the restriction that the per-period cost 

constraint places on system development:  In contrast with the time histories displayed 

throughout Section 6.4.4.2, which focus initially on LEO-themed architecture 

development but then diversify to Lunar-Surface-themed and other architecture 

development projects, the optimal performance available in the case of the per-period 

budget constraint concludes development of the LEO-themed architecture and replaces it 

with no development project at all.  Instead, the optimal action (from a now very limited 

set of actions) is found to be to devote available budget resources toward continuation of 
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LEO-themed architecture operations into the foreseeable future.  In doing so, demand for 

exploration beyond Earth orbit cannot be met, but the substantial probability of LEO 

mission demand that exists even ten periods into the future allows substantial 

accumulation of missions to this demanded destination.  Moreover, as the plots on the left 

in Figure 83 illustrate, per-period spending remains in all simulations and in all time 

periods below the critical $12.9 billion cap.   

 
 Evolution of States Evolution of Objectives 

  

Figure 83.  Evolution of states and objectives for maximum-performance policy in the 
presence of a per-period cost constraint.  In the plots on the left, the size of circles indicates the 
relative number of Monte Carlo simulation cases that exist in a given configuration or demand 

environment state (on the y-axes) at a given time (on the x-axes).  The configuration state at each 
time is decomposed into its development, operations, and memory architectures.  The plots on the 

right indicate the associated evolution of per-period cost and performance.  In all plots, gray 
lines indicate transitions made in at least one simulation. 
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6.5. Step 5:  Implications for Initial System Selection 

While the analysis of Step 4 has produced a large set of important and necessary 

data on optimal policies to follow for the entire system time horizon, the most relevant 

information to a decision-maker from this data set is likely to be the optimal decision to 

make at the initial  time step.*  To address this question, Step 5 builds upon the analysis 

results of Step 4 to provide tools and data to support this decision. 

6.5.1. Implications based on the Expected-Value Pareto Frontier 

As described in Sections 4.5.1 and 5.5.1, the initial decision implied by a policy is 

identified by locating the initial condition state in the row of the policy matrix and 

examining the element in the first column.  In the case of the NASA human space 

exploration application, the initial condition corresponds to Config. 3 (a LEO-themed 

architecture in the second phase of development and no relevant exploration architectures 

in operations or memory) and the approximation that the immediate demand is for LEO 

missions.  This converts to Total State 3,289 of the 39,432 total states that the system can 

take at any given time.  Since the optimal policy depends upon a decision-maker’s 

relative cost vs. performance preference along the Pareto frontier of Figure 78, the 

optimal initial configuration decision is a function of an appropriate coordinate along the 

Pareto frontier.  The initial configurations thus found from the Pareto-optimal policies in 

Figure 78 are identified in Figure 84.  In this figure, each initial configuration solution is 

                                                        
* In cases where the time step of interest is very short compared to the time required to conduct 

the analysis suggested by this framework, decisions over multiple future time steps may have 

particularly great value.  In emphasizing the likely interest in the initial decision over others, it is 

assumed that the time required to implement this analysis (e.g., to assemble all tools, gather all 

cost, probability, and performance data, run the dynamic programming optimization codes, and 

analyze all results; likely on the order of weeks or months, depending on the availability of data, 

number and experience of personnel implementing the process, and number of configurations and 

environments considered) is shorter than the time step of interest. 
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decomposed into its architecture triplet components, which are displayed on the y-axes of 

the three separate plots of Figure 84 and identified by the policy’s expected total cost on 

the x-axis.  Since 63 Pareto-optimal policies exist in Figure 78, 63 yellow circles exist in 

each of the three plots of Figure 84 to identify the architectures corresponding to each 

policy’s initial configuration.  In the case of the development architecture, each yellow 

circle contains a number identifying the next phase of development selected for the 

architecture. 

As Figure 84 makes evident, from the present configuration and demand 

environment for the human space exploration application there exists an initial 

configuration decision (for the next two-year time increment) that is consistent for nearly 

all long-term cost and performance preferences.  This initial configuration involves 

continuation into the third phase of development of the LEO-themed architecture and 

operations and retention in memory of no architecture (since none exists yet to operate or 

retain in memory).  Considering in combination (1) that the stochastic demand 

environment model of Figure 74 indicates substantial stability of the initial LEO mission 

demand and (2) that the performance matrix of Table 37 indicates the LEO-themed 

architecture can permit a high number of missions to be flown to LEO in response to this 

demand, this initial decision to continue LEO-themed architecture development rather 

than incur the termination liability penalty of switching to a different and likely lower-

performing architecture makes sense.  The only initial decision that differs exists at a 

small $660 million cost, which involves cancellation and payment of termination liability 

for the remainder of the LEO-themed architecture development in favor of developing no 

architecture at all.   
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Figure 84.  Initial architectures of configurations implied by Pareto-optimal 
policies as a function of expected policy total cost. 
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6.5.1.1. Cost-Constrained Policies 

For completeness, Figure 85 shows initial configuration decisions implied by the 

per-period cost constrained Pareto-optimal policies of Figure 82.  As might be expected 

from the example time histories shown in Figure 83, these initial decisions in almost all 

cases favor the continuation of LEO-themed architecture development.  As in Figure 84, 

the one exception to this is the lowest-cost (and lowest-performance) option, which 

involves cancellation and payment of termination liability for the remainder of the LEO-

themed architecture development in favor of developing no architecture at all.  The 

implications of this result for the favored continued development of a LEO-themed 

configuration over most cost and performance preferences are thus nearly identical to 

those seen in the unconstrained results of Figure 84. 
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Figure 85.  Initial architectures of configurations implied by Pareto-optimal 
policy solutions subject to a $12.9 billion per-period cost constraint as a 

function of expected policy total cost. 
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6.5.1.2. Cost-Constrained Policies using a Nondominated Expert Demand Model 

Another relevant question regarding the results of Figure 84 and Figure 85 is 

whether the same initial decisions (predominantly to continue LEO-themed architecture 

development) are optimal under different assumptions for the demand environment 

model, which had been based upon a central tendency of expert probability estimates and 

may be a source of uncertainty.  To address this question, the central tendencies of 

probability estimates from a particular subset of the original expert population are used to 

produce a new model and a corresponding new set of optimal policies.  As discussed 

extensively in Appendix C, the experts chosen for inclusion in this subset are those who 

qualified as non-dominated within the total set of survey participants based on their 

number of years of experience in the four relevant experience metrics of interest. 

When the model based on this uniquely experienced set of experts is substituted 

and carried through the analysis process of Steps 3-4 of this thesis’ framework subject to 

a $12.9 per-period cost constraint, the Pareto frontier of Figure 86 results.  Note that the 

frontier is similar in shape to Figure 82 but with substantial vertical stretching due to, as 

noted in Section C.2.3.2.2, the fact that this set of experts on average assigns a 

substantially higher probability of continuing demand for missions to LEO in the event 

that current mission demand is fulfilled (85.7% vs. 67.8% in Table 34), resulting in a 

longer maintenance for LEO mission demand and a higher number of missions 

accumulated to demanded destinations when the LEO-themed architecture enters into 

operation.  As Figure 87 shows, however, the modified demand model has minimal 

impact on the optimal initial configuration decisions in comparison to Figure 84 and 

Figure 85:  With the exception of the lowest-cost option to cancel all future development, 

all other policies are in agreement to initially continue development of the LEO-themed 

architecture. 
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Figure 86.  Trade between expected total missions to demanded destinations and expected 
total cost for MDP policy solutions subject to a $12.9 billion per-period budget constraint 

and subject to a demand model based on the central tendency of the non-dominated expert 
probability estimates.  Marked on the plot is an appropriate long-term budget expectation and 

the gap that exists between it and the highest Pareto-optimal method of spending. 
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Figure 87.  Initial architectures of configurations implied by Pareto-optimal 
policy solutions subject to a $12.9 billion per-period cost constraint and 

subject to a demand model based non-dominated expert probability 
estimates as a function of expected policy total cost. 
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6.5.2. Accounting for Non-Expected-Value Objectives 

As discussed in previous chapters, a final relevant consideration for initial system 

selection is the fact that expected-value objective functions for the cumulative cost and 

performance metrics may not fully capture a decision-maker’s objectives.  While use of 

these cumulative expected-value objectives enables the use of MDP dynamic 

programming techniques to efficiently explore the astronomically large policy trade-

space, consideration must in general be accorded to other objectives as well.  Applying to 

the NASA human space exploration example the genetic algorithm developed and used in 

Chapters 4-5 yields the more extensive set of multi-objective optimal policy solutions 

presented here. 

In addition to appending the 90th percentile (near-worst-case) total cost and 10th 

percentile (near-worst-case) performance metrics as in Chapters 4-5, this section adds 

two metrics (in both their mean and near-worst-case dispersion senses) implied as a result 

of the the figure of merit portion of the survey sent to human space exploration experts 

discussed in Appendix C and Section 6.3.  The first metric is the date of the first mission 

to leave low-Earth orbit, intended for minimization.  The second metric is the ratio of the 

number of missions flown to demanded destinations to the total number of missions 

flown over the simulation timeline, in short designated as “Mission Ratio”.  Both metrics 

employ an assumption, consistent with production costing assumptions detailed in 

Appendix B, that in states and times when a current operations architecture is unable to 

fulfill current mission demand (i.e., the Boolean zero elements of Table 38), the 

architecture can be and is flown on the missions and corresponding mission rates to 

which it is themed*.  The mission ratio metric captures the efficiency with which 

missions are targeted toward demanded destinations and is intended for maximization 

(with a maximum possible value of unity).  It also serves to capture the fact that the 

                                                        
* In the case of the Deep Space architecture, it is flown on the Mars Moon missions and rates. 
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original survey’s figure of merit suggestion neglected the demanded destination 

distinction in the figure of merit definition, and thus in combination with the Number of 

Missions to Demanded Destinations metric allows for a measure of the total expected 

number of missions flown, including those to destinations that may not have been 

demanded or expected. 

Applying the genetic algorithm described in Chapters 4-5 using each policy 

identified in Figure 78 as an initial member of the genetic algorithm population and 

searching for multi-objective optima in terms of each of the eight objectives described 

above (i.e., the original two cumulative objectives of Figure 78, the two new objectives 

described in the above paragraph, and their corresponding 90th or 10th percentile near-

worst-case dispersions) yields the results of Figure 88.  Each subplot in Figure 88 shows 

a cross-section of the the performance of the policy solutions, each of which is displayed 

as a data point colored by its implied initial configuration decision, in terms of two 

objectives.  While in many cases the policy solutions show little variation in performance 

according to the percentile metrics (indicating that the near-worst-case results may be 

difficult to influence), the means tend to show substantial variation.  For example, the 

leftmost subplot that is second from the bottom in Figure 88 shows that the expected date 

of the first mission beyond low-Earth orbit can be made as early as 2025 with sufficient 

expenditure of funds,* corresponding to policies with initial decisions to switch 

immediately to development of the Lunar Surface themed architecture (the light blue 

points in the subplots).  As the subplot two above this subplot illustrates, these same 

policies also result in the highest mission ratios of about 0.6. 

As the colors of the data points in Figure 88 emphasize, only five initial 

configuration decisions are identified among the Pareto-optimal policies in the genetic 

                                                        
* In simulations for some policies, no missions beyond LEO are ever flown.  In such simulations, 

the date for the first beyond-LEO mission is recorded as 2031, which is one time step beyond the 

simulation time horizon.  This explains the plateau for this subplot at low cost levels. 
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algorithm search.  The blue and red points represent the Config. 1 and 4 options seen in 

the optimal expected-value analysis of Section 6.5.1 to either shift to no development or 

continue into the next phase of LEO themed architecture development.  The green points 

indicate the option to restart development of the LEO themed architecture, the light blue 

points indicate the option to shift immediately to development of the Lunar Surface 

themed architecture, and the purple point indicates the option to shift immediately to 

development of the Mars Moon themed architecture.  While, as mentioned earlier, the 

Lunar Surface themed architecture options provide clear benefits in terms of speeding the 

process of leaving low-Earth orbit and increasing the ratio of demanded to total missions 

flown, the second row in Figure 88 shows that continuation of LEO-themed architecture 

development (Config. 4) provides high numbers of missions to demanded destinations for 

both low mean and 90th percentile costs. 

The usefulness of the multivariate plot of Figure 88 becomes even more evident if 

constraints are imposed by the decision-maker.  For example, suppose that a decision-

maker wishes to be 90% certain that the $128.7 billion long-term human space 

exploration budget projection used earlier in this analysis will not be breached by the 

policy he or she adopts.  Imposing this constraint eliminates many high-cost (and also 

high-performance) options that formerly fell into the high 90th percentile cost regions of 

the multivariate plot that are now gray in Figure 89.  Among these eliminated options are 

the policies with Lunar Surface themed architectures as an initial development decision.  

Consequently, with the clear advantage in terms of number of missions to demanded 

destinations and mission ratio for over most of the cost range of interest (and little 

remaining variation available in terms of the first beyond-LEO mission date), policies 

with continuation of LEO-themed architecture development (Config. 4) are largely 

supported by these results, in basic agreement with the findings of Section 6.5.1. 

 



237 

 

Figure 88.  Multivariate plot of multi-objective genetic algorithm policy results.  Each data point indicates the performance of one policy 
result in terms of the eight percentile and expected-value metrics.  Data points are colored by their policy’s initial configuration decision. 
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Figure 89.  Multivariate plot of multi-objective genetic algorithm policy results with 90th percentile cost constraint imposed.  Each data 
point indicates the performance of one policy result in terms of the eight percentile and expected-value metrics.  Data points are colored by their 

policy’s initial configuration decision.  Gray areas indicate regions of the space eliminated due to the cost constraint. 
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6.6. Summary 

This chapter has covered in substantial detail how the core theoretical framework 

proposed in Chapter 4 of this thesis can be extended and applied to address long-term 

program planning for the course of NASA’s human space exploration efforts.  The 

application has illustrated the ability of this framework to accommodate large 

configuration spaces of hundreds or thousands of candidate engineering configurations.  

To accommodate this, an automated cost model accounting for development, production, 

mission and ground operations, program management and systems engineering, and 

program termination and retirement costs was developed to facilitate population of a 

large (10.8 million element) cost transition matrix.  The application has also illustrated 

the ability of the framework to model multi-period development, which introduced the 

need to use configuration state definitions accounting for development and operations 

architecture decisions as well as memory.  Furthermore, the ability of the framework to 

model dependence between the effects of previous system configuration decisions and 

the demand environment was demonstrated, and an extensive survey distributed to 

individuals with human space exploration and systems engineering experience 

demonstrated how such a configuration-dependent Markovian demand model can be 

aggregated from multiple expert probability estimates.  The ability of the framework to 

accommodate endogenous uncertainties, here in the form of schedule slippage, was 

demonstrated, as was the ability of the framework in its fifth step to account for non-

cumulative objective functions. 

In terms of practical implications and insights for human space exploration, 

implementation of the framework in this chapter has provided several:  Step 1 illustrated 

that existence of the Deep Space architecture as a configuration’s operations architecture 

is associated with a very high number of available transitions (i.e., options or, roughly, 

flexibility) with respect to other architectures at high per-period budget levels but not at 
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low budget levels.  Since the Deep Space architecture is to a large degree representative 

of the Review of U.S. Human Spaceflight Plans Committee’s “Flexible Path” approach, 

the practical implication of this observation is that the flexibility of this (or any other) 

approach or configuration in comparison to its alternatives may be a strong function of 

available budget resources.  In this context, Step 1 also illustrated that NASA’s current 

human space exploration configuration is starkly inflexible in the context of the candidate 

architectures and configurations in the state space of interest, with relatively few 

transition options even at high budgets over the coming two-year period.   

Implementation of Steps 2 and 3 of the framework involved eliciting expert 

opinions regarding mission demand environment evolution and figure of merit 

importance.  The resulting Markovian demand environment model shows a general 

progression in demand toward the Martian surface, on the condition that mission demand 

is fulfilled, with secondary demands (or “sinks”) at the Lunar Surface and Low-Earth 

Orbit and tertiary demand at Near-Earth Objects.  Progression toward the Martian 

Surface demand is less likely under the condition that mission demand is not fulfilled, 

and the model exhibits the general characteristic that the condition of demand being 

fulfilled favors progression toward missions aimed at more ambitious destinations that 

are farther away from Earth; conversely, the condition of demand not being fulfilled 

tends to favor constancy or sometimes regression of demand toward less ambitious 

destinations closer to Earth.  In terms of the figures of merit, consistently high-scoring 

metrics from the survey results lead to use of Integrated Program Lifecycle Cost and 

Number of Missions to Demanded Destinations as two objectives for exploration and 

optimization. 

Step 4 identified Pareto-optimal policies over a range of long-term cost and 

performance preferences.  Considering initially the case of no per-period budget 

constraints, it was shown first that an anticipatory reference policy was dominated by 

others that could perform at higher numbers of missions to demanded destinations at 
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lower long-term costs.  Among the Pareto-optimal policies it was shown that, due in part 

to the transience of the Mars Surface demand, development of the Mars Surface themed 

architecture was, interestingly, never optimal.  Instead, in scenarios where demand 

evolved to ambitious destinations, many high-performing policies favored development 

of the Deep Space architecture.  The main exceptions appeared to be development of the 

LEO and Lunar Surface themed architectures, which dominated development and 

operations plans for most policies due principally to the predominant progression of the 

demand environment, the fact that LEO development is partially complete as an initial 

condition, and the fact that the Lunar Surface themed architecture has the ability to 

operate missions in the LEO demand environment as well as the Lunar Surface demand 

environment.  In the three Pareto-optimal policies examined in detail, no missions away 

from LEO started earlier than 2023. 

The second case considered in Step 4 involved the implementation of a $12.9 

billion per-period budget constraint representative of a doubling (due to a two-year period 

length for ths present application) of the NASA FY11 authorization for exploration plus 

non-International-Space-Station operations.  This constraint severely limited solution 

options, and the highest-performing Pareto-optimal solution involved continuation of 

development of the LEO-themed architecture until completion and subsequent transition 

to LEO-themed architecture operation with cessation of any new development.  

Compared to the per-period budget-unconstrained Pareto-optimal solution at the long-

term budget level, the highest-performance constrained solution exhibits a 0.3 expected 

mission performance gap and, moreover, a cost gap of about $60 billion.  This cost gap 

indicates the total amount of funds that, by the performance measure used in this work, 

would be used inefficiently by virtue of a constant use-or-lose $12.9 billion per-period 

budget. 

The first segment of Step 5 examined the policy solutions of Step 4 in terms of 

their implied initial decisions and found agreement over the vast range of cost and 



242 

performance preferences that the optimal initial decision is to continue development of 

the LEO-themed architecture into its third development phase.  Only the lowest-cost 

option involved cancellation of this architecture’s development (and replacement with no 

development at all).  These conclusions were found to hold even under an alternative 

demand environment model.  In considering the implications of non-expected-value and 

non-cumulative objectives, the second segment of Step 5 confirmed these conclusions 

under the constraint that a decision-maker wishes to adopt a policy that meets a $128.7 

billion 20-year program cost with 90% probability. 

In this way, Steps 1-5 provide a set of information to the decision-maker not only 

about the best immediate decision (in this case, to continue development of the LEO 

themed architecture), but also a cost- and performance-tailored policy and a 

corresponding outlook for the future.  As new information becomes available or as 

questions arise, the approach used here also provides the analyst and decision-maker with 

the ready ability to modify inputs and test the robustness of his or her results to changing 

numerical assumptions. 
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CHAPTER 7 

CONCLUSION AND AVENUES FOR FUTURE WORK 

7.1. Summary 

At the outset in Chapters 1-3 of this thesis, a review of the state of the art and 

practice in aerospace engineering revealed that, at present, there exists no comprehensive 

quantitative, stochastic, multi-objective, and multi-period framework for integrating 

flexibility into space system design decisions.  Moreover, it was recognized that a 

substantial need for such a framework exists:  Flexibility is well-recognized as important 

to space system success, to the extent that DARPA and NASA have in recent years 

proposed flexible spacecraft and flexible paths, respectively, as future program directions 

with substantial budgetary and resource implications.  Because this property of flexibility 

is by definition linked to the ability of a decision-maker to make choices in response to 

[typically uncertain] changing environments or requirements over multiple periods, a 

framework that considers the integration of flexibility into decision-making must be both 

stochastic and multi-period in nature.  Because most engineering applications involve 

trades among multiple objectives, such a framework must be multi-objective in order to 

completely consider the breadth of decision-maker interests.  Finally, to permit the use of 

objective performance metrics as opposed to unitless subjective ratings, such a 

framework must also be quantitative. 

The framework that this thesis introduces in Chapter 4 consists of five practical 

steps intended for implementation by engineering systems analysts, the first three of 

which focus on defining and characterizing a set of state spaces representing system 

options and environment demands.  The fourth step employs multi-period decision 

analysis techniques, including Markov decision processes from the field of operations 

research, to find Pareto-optimal paths and policies a decision-maker may follow in a 
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stochastically changing demand environment.  With a set of full Pareto-optimal multi-

period decision paths policies thus identified, the final step examines the implications of 

these paths and policies for the selection of an initial system.  The end product is a 

quantitative, stochastic, multi-objective, and multi-period framework for integrating 

flexibility into space system design decisions.  This thesis, moreover, illustrates that not 

only is the two-period state-centric notion of flexibility prevalent in the literature 

compatible with a comprehensive decision support framework, but that it is naturally 

adapted for use with Markov decision process solution techniques from the operations 

research community. 

Three examples have been used to illustrate the application of this framework to 

space systems decision-making.  The first and simplest example in Chapter 4 presented a 

scenario in which decisions were to be made regarding numbers of communications and 

reconnaissance satellites to be fielded to meet future national needs.  This example was 

used as a means for exploring the present thesis’ framework in great depth:  The chapter 

began with a foundational two-period state-centric concept of flexibility from the 

economics literature and showed how, through the proper interpretation of this concept 

for space systems and linkage to the environments in which these systems may be 

required to operate, it can be unified with powerful dynamic programming techniques 

already in existence to solve Markov decision process problems.  Along the way, several 

additional insightful analyses were developed, particularly in Step 1, in which the number 

of available transitions from a given configuration state at a given budget Фi(b) was 

developed as a surrogate metric for flexibility.  In particular, it was illustrated that 

“flexibility reversals” are possible due to interactions between existing capabilities, 

existing commitments, and available resources.  In these situations, more transitions are 

available from Configuration i than Configuration j at a budget level b1, but fewer 

transitions are available from Configuration i than Configuration j at a higher budget 

level b2 (i.e., that Фi(b1)>Фj(b1) but Фi(b2)<Фj(b2)). 
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Later in Chapter 4, Step 4 made the important distinction between paths and 

policies; while paths are a more traditional method of planning and consist of the simpler 

task of laying out a set of actions to execute in future years, they preclude a decision-

maker from considering the full “playbook” of if-then possibilities when making his or 

her decisions.  Step 5 illustrated how the complicated policy (and, to some extent, path) 

results of Step 4 can be distilled into information that a decision-maker can use to make 

an initial system selection.  Step 5 addressed how the expected-value optima of Step 4 

can be used as reasonable initial guesses for more local design space searches in the case 

that decision-makers have non-expected-value or non-cumulative objectives in mind.  

Finally, Step 5 also addressed the intriguing point that flexibility has a particular niche in 

environments of neither very high nor very low uncertainty, but rather in environments in 

which the present gives just some information about future demand.  Emphasized was the 

inherent link between flexibility and policy, which specifies the conditions under which a 

system’s flexibility is exercised. 

The example of Chapter 5 demonstrated how the theoretical framework posed in 

Chapter 4 can be applied to a problem motivated by recent DARPA fractionated 

spacecraft development efforts.  This chapter defined a scenario in which a hypothetical 

Department of Defense decision-maker was faced with a decision about what 

combination of payloads to launch upon potentially multiple distributed, free-flying 

satellites.  Step 1 of this analysis illustrated how the number of available transitions 

metric Φ clearly captured the relatively high flexibility of a three-payload fully-

fractionated configuration over a three-payload monolith over most budget levels.  Step 4 

of the analysis revealed examples in which, subject to a notional demand environment 

evolution model, an optimal path involved a one-period delay prior to fielding of a three-

payload monolith and an optimal policy identified an efficient compromise between 

maximum performance and minimum cost by only developing the three-payload 

monolith if an appropriate level of demand for particular payloads materialized early 



246 

during the program timeline.  These examples illustrated the ability of this thesis’ 

approach to identify non-intuitive high-performing, low-cost paths and policies that 

might otherwise be overlooked.  Step 5 of this DARPA-motivated application objectively 

narrowed initial system selection decisions to just four candidate configurations, and the 

imposition of budget and performance constraints strongly suggested selection of the 

three-payload monolith as the initial configuration.  This result highlighted the important 

conceptual point that finding a minimum-cost, maximum-performance solution in a 

changing demand environment may not be equivalent to finding a solution with 

maximum flexibility. 

Chapter 6 presented the extension of the basic theoretical framework in Chapter 4 

toward addressing long-term program planning for NASA’s human space exploration 

efforts.  New elements addressed included incorporating a large state space of thousands 

of configurations, multi-period development and associated operations and memory 

architecture decisions, configuration-dependent demand modeling, elicitation of expert-

opinion Markov chain probabilities, incorporation of endogenous schedule-slippage 

uncertainties, and exploration of non-cumulative as well as non-expected-value 

objectives.  Results of this chapter provided several practical implications and insights for 

human space exploration.  For example, implementation of Step 1 within this chapter 

illustrated that the relative flexibility of a configuration utilizing a Deep Space 

architecture in operations can be a strong function of available budget resources.  Thus, 

the availability of these resources must be considered prior to classifying a configuration 

or approach as more flexible than, less flexible than, or equally flexible as its alternatives.  

Step 1 also illustrated that NASA’s current human space exploration configuration is 

starkly inflexible in the context of the candidate architectures and configurations in the 

state space of interest, with relatively few transition options even at high budgets over the 

coming two-year period.   
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Using a Markovian demand environment model derived from the central tendency 

of expert probability inputs describing human space exploration mission demand 

evolution, Step 4 within Chapter 6 identified Pareto-optimal policies over a range of 

long-term cost and performance preferences.  Interestingly, among the Pareto-optimal 

policies it was shown that due in part to the transience of the Mars Surface demand, 

development of the Mars Surface themed architecture was never optimal.  Instead, in 

scenarios where demand evolved to ambitious destinations, many high-performing 

policies favored development of the Deep Space architecture.  However, in most 

scenarios, demand remained at less ambitious missions and prompted development of the 

LEO and Lunar Surface themed architectures.  Also considered within Step 4 of Chapter 

6 was implementation of a $12.9 billion per-period budget constraint.  This constraint 

was found to severely limit solution options, and the highest-performing Pareto-optimal 

solution given the constraint involved continuation of development of the LEO-themed 

architecture until completion and subsequent transition to LEO-themed architecture 

operation with cessation of new architecture development.  Compared to the per-period 

budget-unconstrained Pareto-optimal solution at the long-term budget level, the highest-

performance constrained solution exhibited a cost gap of about $60 billion which, by the 

performance measures used in this work, would be used inefficiently by virtue of a 

constant use-or-lose $12.9 billion per-period budget.  However, regardless of whether a 

constrained or unconstrained per-period budget assumption was used, and even with the 

inclusion of additional non-cumulative and non-expected-value metrics, the initial system 

decision analysis of Step 5 supported for virtually all long-term cost and performance 

levels continuation of present LEO-themed architecture development as an immediate 

next step for human space exploration. 

Overall, the applications of this thesis’ framework demonstrated throughout the 

preceding pages have not only fulfilled the framework’s intent of informing initial system 

selection, but also have provided (1) cost- and performance-tailored policies and a 



248 

corresponding outlooks for future costs and utilization, (2) insights regarding future 

options and flexibility, (3) useful models for examining demand evolution, and (4) the 

ability to re-execute the quantitative analysis and examine decision, cost, or performance 

sensitivity (or robustness) as assumptions change or new information becomes available. 

7.2. Contributions 

Summarized, the main contribution of this thesis is a quantitative, stochastic, 

multi-objective, and multi-period framework for integrating flexibility into space system 

design decisions.  While Chapter 2, and particularly Table 1, note that some of the 

individual elements of this framework have been suggested at various times and by 

various analysts and engineers in the aerospace industry over the past decade, no works 

to date have unified them in a way to enable the comprehensive analysis, trade-space 

exploration, and decision-making capability demonstrated within this thesis. 

More specifically, this main contribution is enabled by several component 

contributions, including (1) formulation of the two-period state-centric notion of 

flexibility as a formal configuration-state-based concept for space system analysis and 

design, (2) formulation of a state-centric stochastic multi-period model capable of 

describing evolution of the demand environment in which an engineering system 

operates, and (3) incorporation of system modification policy into initial system selection 

by using the above formulation to pose integration of flexibility in design as a solvable 

sequential decision-making problem. 

A fourth component contribution is the implementation and demonstration of the 

utility of solving for the Pareto-optimal sequential decisions enabled by flexibility, 

including optimal “open loop” sequential system configuration paths and “closed loop” 

system configuration policies.  Enabling tools utilized from the operations research 

community are the formulation and probabilistic dynamic programming solution 

techniques for Markov decision processes.  In addition, Appendix A contributes a new 
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heuristic technique for identifying concave portions of Pareto frontiers in dynamic 

programming problems.  Fifth, these Pareto-optimal configuration paths and policies are 

used systematically to recommend initial system configuration decisions. 

The final component contribution of this thesis is the application and illustration 

of this framework to relevant space system design problems using the examples of (1) 

communications and reconnaissance satellite system selection, (2) multiple- or 

distributed-payload satellite selection, and (3) NASA human space exploration 

architecture selection.  A requirement for execution of these examples is the development 

of transition cost and stochastic demand environment evolution models, contributed for 

the NASA example in Appendices B and C. 

7.3. Avenues for Future Work 

As noted in Section 7.2, the main contribution of this thesis is a framework for 

integrating flexibility into space system design decisions.  Despite its positive qualities 

and advances over previous work, however, it would be naïve to claim this is the 

framework for integrating flexibility into space system design decisions.  By necessity, 

this framework approximates the true systems, environments, and selection process that a 

decision-maker must consider.  With this in mind, the contributions of this thesis should 

be viewed in two contexts:  First, in the form presented in this thesis, this framework is a 

powerful tool for informing design decisions.  The ultimate choice remains with the 

decision-maker, who may consider and trade the full set of factors, effects, and 

constraints (technical, programmatic, political, or otherwise) for a design problem; 

however, as an approximation to the full problem, this framework may still (1) reveal 

high-performance and/or low-cost policy solutions that would otherwise be nonintuitive, 

(2) support or challenge the performance, cost, and approximate optimality of 

hypothesized policies, and/or (3) allow investigation into why certain paths and policies 

perform well or poorly.  Moreover, beyond its computational capability to examine the 
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optimality of paths and policies, the framework provides a set of concepts useful in 

framing decision-making thought on flexibility. 

Second, this thesis’ contributions provide a step forward, upon which future 

investigators may build to improve modeling detail and realism, in the consideration of 

flexibility in the design of space and other engineering systems.  To this end, the 

following discussion identifies several interesting questions and avenues for future work 

that engineers and anlysts may choose to investigate in the future. 

7.3.1. Multi-Period Expansion of the Φ Transition Metric 

Introduced as an element in the analysis of the cost transition matrices generated 

in Step 1 of this thesis’ framework, the metric Фi(b) expresses the number of 

configuration transitions available from Configuration i given budget b.  This metric has 

a physical meaning and shares conceptual similarities with the idea of flexibility.  

However, as noted in Section 4.1.4, it is limited in that it accounts only for transitions one 

period into the future.  An expansion of this metric is certainly possible and of interest for 

future investigation.  Such a metric (e.g., Φ') could be defined recursively in terms of the 

simple two-period versions Φ as in Eq. (31).  Here, b(τ) represents a schedule of budget 

levels b1, b2, b3, …, bT in T total periods, and Φ' expresses the total number of transitions 

accessible in the T-period tree originating from Configuration i in the first period.  This 

metric is clearly just a start to tracking multi-period transition availability, and variant 

metrics might also be proposed, for example, to distinguish between options that involve 

expansion or downscaling of configurations. 
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7.3.2. Decision-Makers with Authority Limitations 

In many scenarios, particularly for complex and high-value systems under 

consideration by modern republics, there may exist a practical difficulty in identifying a 

single decision-maker or decision-making body.  Instead, the decision-making process 

might be more accurately approximated as one in which a particular decision-making 

body has the ability to decide to pass a decision input to one or more other decision-

making bodies.  This input may then be used by the receiving decision-making bodies to 

produce inputs or recommendations for additional bodies, perhaps in iteration with the 

first decision-making body, until a final decision is reached.  This chain of decision 

inputs, in which no one decision-maker has complete control over the final configuration 

decision but each has influence, might well be termed as a negotiation process.  If 

elements of the negotiation process (e.g., the preferences of members of the other 

decision-making bodies) are uncertain, then to any individual decision-maker the 

transformation from one’s own configuration recommendation to the final decision might 

appear probabilistic.  In this case, the framework provided by this thesis already provides 

a means to model this scenario, provided that the decision-maker can provide an estimate 

of the probability that a particular final decision will be made given that his 

recommendation is for a given configuration (similar in implementation to the use of 

endogenous schedule slippage probabilities for the human space exploration example in 

Chapter 6).  Given the complexities that exist in the flow of recommendations among 

decision-making bodies in governments and other organizations, the rigorous estimation 

of these probabilities may prove a rich and fruitful avenue for future research.  

Ultimately, correctly modeling this effect could permit decision-makers to maximize 

their influence on the choices of decision-making bodies utilizing their recommendations. 
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7.3.3. Robustness to Changing Decision-Makers 

Another intriguing area for future work originates from a paradox of the 

flexibility sequential decision-making problem.  As described in this thesis, the selection 

of the best initial configuration must consider decision options and demand evolution 

through future periods.  This is central to the study of flexibility, since the existence of 

options and choices over multiple time periods distinguishes the flexibility problem from 

related problems of robustness and optimization.  However, over a long enough time 

horizon, tomorrow’s decision-maker will be different from – and have different 

preferences from – today’s decision-maker.  Thus, while today’s decision-maker may be 

able to solve for the Pareto-optimal decision policy over a long time horizon through 

Steps 4 and 5 of this framework, he or she may not be around to implement this policy in 

the future.  It may be, therefore, that this decision-maker can only count on being able to 

influence today’s decision. 

In such a scenario, the decision-maker would be interested in making a strategic 

choice of system or architecture configuration initially such that performance remains 

high and cost remains low regardless of the preferences of future decision-makers.  This 

consideration may serve to reduce the likelihood of costly program cancellations and 

major redirections at the appointment of new decision-makers.  Future work examining 

this area of future work may be enabled by the formulation of the flexibility problem 

presented here and may begin by examining not only Pareto-optimal paths and policies 

from Steps 4 and 5 of the framework, but also near-optimal sequences and policies.   

Somewhat related to this area of future work is additional development of 

strategies to update and maintain probability, cost, and performance model information as 

time passes.  The thrust of such development would be to allow a decision-maker to use 

this thesis’ framework to make decisions at multiple future time periods without the need 

to repeat the entire analysis process from scratch. 
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7.3.4. Additional Theory and Algorithm Investigations 

Some additional areas for further theory and algorithm development have arisen 

during discussions throughout this thesis and merit note here.  First, with the exception of 

the brief coverage in Section 4.1.3.2.2, the uncertainties considered in this thesis have 

been aleatoric rather than epistemic.  That is, the uncertainties in demand environment 

evolution and schedule slippage are not considered to exist due to cost or performance 

modeling limitations but rather due to inherent uncertainties in how events in the world 

will unfold in the future.  This thesis has generally considered, for example, that the cost 

and performance matrices are associated with negligible uncertainty.  Future 

development may consider methods for assessing the impacts of parameter uncertainties 

or the impacts of investments intended to change model parameters (for example, 

technology investments to reduce launch vehicle production costs) on optimal system 

decision results. 

Second, future algorithm development is invited in two areas.  Further algorithm 

development toward the goal of seeking concave Pareto frontiers for multi-objective 

dynamic programming problems (see Appendix A) would improve the quality of Pareto 

frontiers for applications with concave frontiers.  Furthermore, if such a method could 

guarantee the identification of all Pareto-optimal policies it may eliminate the need for 

Step 4A of this framework, since the paths sought by Step 4A are special cases of the 

policies sought by Step 4B.  In addition, algorithm development toward the goal of 

perturbing the Pareto-optimal cumulative expected-value objective policies in order to 

discover efficient policies in terms of non-cumulative, non-expected-value objectives is 

another area in which this thesis has only scratched the surface. 

7.3.5. Additional Application-Specific Questions 

Finally, some practical questions have arisen in the execution or discussions of 

the example applications in Chapters 5 and 6 that are beyond the scope of the present 
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investigation but worth consideration in future studies.  In the distributed payload versus 

monolithic satellite trade study of Chapter 5, for example, an interesting and open 

question remains of what combination of cost, performance, and probability inputs are 

required to favor monolithic versus fractionated spacecraft as optimal initial 

configuration solutions. 

In the NASA human space exploration example of Chapter 6, a number of 

interesting variations on the basic study performed in this thesis could be performed, 

including (1) gradual tightening or relaxation of the $12.9 billion per-period cost 

constraint to study properties of the resulting Pareto-optimal solutions, (2) use of 

“personalized” rather than central-tendency expert probability estimates to examine the 

Pareto-optimal system implications of each expert’s views of future mission demand 

evolution, and (3) implementation of discounting at various rates to simulate preferences 

for current over future cost and performance.  Ideally, studies like this would be 

performed with decision-maker interaction to provide an understanding of how (or 

whether) changing assumptions changes the optimal initial system decision. 

Additionally, the configuration and demand environment definitions of the NASA 

application may be modified as different problem scopes become of interest, candidate 

systems change, or other updated information becomes available.  For example, in the 

time since work on the NASA application for this thesis was initiated, developments in 

the commercial space sector have driven NASA toward use of commercial systems only 

for International Space Station resupply (rather than a combination of commercially- and 

traditional government-developed systems).  In this context of largely decoupled LEO 

and beyond-LEO human spaceflight programs, a reasonable modification to the scope of 

the human exploration application may be consideration of only beyond-LEO activities, 

which would involve not only removal of the LEO-themed configuration and LEO 

demand environment from Steps 1 and 2 of the application, but also subtraction from the 

available budget the funds that NASA plans to devote to commercial flights to the 
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International Space Station.  Recent developments have also seen a change in NASA’s 

heavy-lift launch vehicle of choice from the Ares V to the Space Launch System, and 

additional destinations of interest within the Earth-Moon system have arisen, both of 

which could be accounted for with minor modifications to configuration costing 

assumptions and demand environment definitions. 

Future advanced development of the NASA example might include consideration 

of (1) any costs associated with the retention of architectures in memory, (2) development 

time benefits associated with the existence of already-developed components, (3) 

additional commonality benefits below the level considered in this thesis (e.g., below the 

level of treating stages, crew vehicles, landers, rovers, etc. as basic components), and (4) 

demand evolution that is not only dependent on the current operations architecture’s 

interaction with the current demand environment, but also dependent on the current 

development and/or memory architecture’s interaction with the current demand 

environment.  Finally, a potentially useful and complementary approach to this thesis’ 

use of the substantial computing power described in Section 6.4.3 would be to re-execute 

the NASA analysis using an 8-year time step, sacrificing the modeling of multi-period 

development but gaining the ability to analyze many more (on the order of several 

hundred, rather than the ten in Table 31) architectures in order to seek potentially non-

intuitive architectural solutions. 

7.4. Closing Remarks 

This thesis began with the 40-year-old story of Skylab and the Apollo program’s 

largely accidental flexibility.  With any luck, the pages of this thesis have conveyed that 

there now exist the tools necessary to analyze flexibility and, where appropriate, select 

space system designs, tailored to a decision-maker’s cost and performance preferences, 

that have the flexibility to suitably respond to uncertain and changing future 

environments and requirements.  Ideally, the concepts and techniques provided by this 
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thesis will make flexibility stories like Skylab – where flexibility existed but was 

accidental, or worse, where flexibility might have been desirable but was unattainable –

relics for the history books.  

Following these final remarks is a quote that Charles Darwin never said, but 

perhaps that he might have said* given the ideas in On the Origin of Species.  A reflection 

on the ability of a species to survive, the excerpt conveys that a species’ ability to adapt 

to change is of paramount importance toward its survival.  This is an interesting and 

important closing thought to bear in mind.  However, an equally important distinction 

exists between Darwin’s natural world and the engineering world:  In the world of natural 

selection, no species – and certainly no individual – has control over its genetic 

predisposition to adapt to new or changing climates, floods, famines, droughts, diseases, 

or predators.  However, in the world of engineering systems, humans control the “genes” 

(or design variables) of the system.  Engineering decision-makers have always had 

control not only of physical properties of engineering systems, but also of the inherent 

flexibility these systems have to adapt to the changing environments in which they find 

themselves.  With this fundamental degree of control, it is the responsibility of space 

system engineers, analysts, and decision-makers now and in the future to continue to 

develop and utilize decision-making tools that will allow the engineering of the best 

possible “genetics” into tomorrow’s space systems. 

 

                                                        
* Versions of this particular saying are, in fact, so widely quoted and misattributed to Darwin that 

even the California Academy of Sciences had it etched on the floor of its San Francisco museum. 
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According to Darwin’s Origin of Species, it is not the most intellectual of 
the species that survives; it is not the strongest that survives; but the 
species that survives is the one that is able best to adapt and adjust to the 
changing environment in which it finds itself. 
 

Leon C. Megginson, Ph.D., Capt. USAAF (Fmr.), 1963 
Southwestern Social Science Quarterly, Vol. 44, No. 1 
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APPENDIX A 

A HEURISTIC METHOD FOR IDENTIFYING CONCAVE PARETO 
FRONTIERS IN MULTI-OBJECTIVE DYNAMIC PROGRAMMING 

PROBLEMS 

A.1. Introduction 

The past few decades have seen a significant rise in the use of Pareto frontiers in 

aiding aerospace system decision-making.  Defined as the set of non-dominated design 

solutions, or the set of solutions for which one design objective cannot be improved 

without the sacrifice of another (e.g., see Refs. [87] and [91]), the concept of the Pareto 

frontier has for many become a cornerstone of aerospace systems analysis, both in theory 

and in practice.  The fundamental advantage of the Pareto frontier is that it allows an 

analyst to objectively identify inferior design points without the need for information 

from a decision-maker on the relative priority of one design objective over another. 

Frequently, obtaining a Pareto frontier requires only a representative scan of a 

problem’s design space, or the space spanned by the range of a problem’s input variables 

or options.  During this design space exploration, the performance of each candidate 

design among the multiple metrics of interest is tracked, and the Pareto frontier can be 

identified by eliminating (filtering [112]) dominated designs from consideration.  

However, this procedure can be computationally intractable for applications in which the 

design space is very large, leading to the need for methods that are able to preferentially 

seek out Pareto frontiers (e.g., see Refs. [113]-[115]). Conceptually the simplest method 

for accomplishing this relies on an alternative interpretation of the Pareto frontier as the 

set of optimal designs over all possible decision-maker preferences.  In short, this 

translates into weighting and aggregating all Ω objectives of interest into a single 

objective function J (often a simple additive weighting, such as in Refs. [116]-[122]), 

finding the optimum design(s) with respect to this function, changing the weights wi, and 

repeating this process over the entire (or a representative) set of possible weights. 
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While this alternative interpretation is largely correct, a body of literature with its 

origins as early as the 1970s recognizes that a simple additive weighting aggregate 

objective function will fail to capture concave portions of a Pareto frontier [123]-[130]. 

This is illustrated in Figure 90 through Figure 92 and Eq. (A1).   Figure 90 shows an 

example of an objective space defined by incommensurate objectives Γ1 and Γ2.  Both Γ1 

and Γ2 are normalized on a scale from zero to unity, such that larger values of both 

objectives are preferred.  The Pareto frontier is clearly concave with respect to the origin.  

If the iterative procedure described in the previous paragraph is employed using a simple 

additive weighting objective function (i.e., Eq. (A1) where n = 1), only convex portions 

of the frontier are identified, as shown at the left in Figure 91.   If the same procedure is 

applied but with an objective function of increasing order (e.g., n = 2 and n = 4), the 

concave Pareto frontier is captured more fully [123].  If the Tchebycheff norm is used, 

denoted in this work as n = ∞, all Pareto-optimal points may be captured [127]-[128], 

limited in resolution only by the discrete weightings considered. 
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The dependence on n in an aggregate objective function’s ability to capture the 

Pareto frontier can be explained graphically via Figure 92.  Contours in Figure 92 

represent values of the aggregate objective function J as n is increased.  Notice how the 

maximum curvature of each contour increases as n is increased:  At n = 1 there exists no 

curvature, and by n = ∞, there exists a point of infinite curvature on each contour.  In 

effect, as n is increased, each contour penetrates more deeply toward the concave portion 

of the Pareto frontier.  As weights wi on each objective are varied (Figure 92 illustrates 

only the case w1 = w2 = ½), the relative location of the point of maximum curvature 

changes, and different points on the concave frontier maximize J and are recorded as 

Pareto-optimal. 
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Figure 90.  Example of an objective space with a concave frontier of 
nondominated points. 
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Figure 91.  Nondominated solutions identified via the aggregate objective function 
of Eq. (A1) for varying n. 
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Figure 92.  Contours of the aggregate objective J (see Eq. (A1)) as n increases.  Γ1 
and Γ2 are weighted equally. 
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A.2. Application to Dynamic Programming 

Many aerospace applications make use of dynamic programming as an efficient 

optimization procedure for multi-stage decision problems.  First introduced in the 1950s 

by Bellman [93],[131], dynamic programming takes advantage of the recursive structure 

of many multi-stage objective functions in order to decompose the optimization problem 

into a series of more tractable single-stage optimization problems.  Commonly, the 

recursion in dynamic programming problems takes the form of stage-to-stage addition.  

That is, the objective Γ is comprised of summed single-stage γτ objective functions as in 

Eq. (A2).  Alternatively (but nearly equivalently), Γ may be comprised of an objective 

function derivative dΓ/dt integrated over time as in Eq. (A3).  In both cases, Bellman’s 

principle of optimality forms the basis for efficient optimization.  This fundamental 

principle states that “an optimal policy has the property that whatever the initial state and 

initial decision are, the remaining decisions must constitute an optimal policy with regard 

to the state resulting from the first decision.” [93] 
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A subtle difficulty exists when applying dynamic programming to multi-objective 

problems.  A computationally appealing method for solving these problems is to 

aggregate the multiple objectives into a simple additive objective function in each stage, 

apply single-objective dynamic programming algorithms as usual, and then scan over the 

possible aggregating weights to identify the Pareto frontier.  The aggregate objective 

function for this method is shown in Eq. (A4) (or in Eq. (A5) for the continuous-time 

case).  Note that η indicates the aggregate objective function at each stage (i.e., the per-

stage version of J), and it is assumed the sum of all weights wi is unity. 
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A property of this simple additive weighting form of η is that it sums (or 

integrates) to J as defined in Eq. (A1) for n = 1, as shown in Eqs. (A6)-(A7).  However, 

as a consequence, the technique suffers from the limitation that it cannot detect concave 

portions of Pareto frontiers. 
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An appealing solution to this problem is the application of a higher-order 

aggregate objective function, per the observations in Section A.1.  Unfortunately, this 

solution has a problem since, in general, summing a per-stage or integrating a time-

derivative objective function η of this form (see Eqs. (A8)-(A9)) does result in the total 

objective function J (see Eqs. (A10)-(A11)).  Thus, use of this per-stage objective 

function η in a standard single-objective dynamic programming algorithm will not 

properly represent the objective to be maximized or minimized. 
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However, one motivating observation can be made.  In cases where the 

normalized objective γi (or its counterpart, dΓi/dt) is small compared to 1/T and where the 

normalized objective Γi is small compared to unity, the binomial approximation can be 

applied to Eqs. (A10) and (A11) to show (in Eqs. (A12)-(A13)) that the sum of the 

individual per-stage aggregate objective functions of order n nearly equals the total 

aggregate J, multiplied by a correction factor.  In other words, using a nonlinear power-n 

per-stage aggregate objective function will properly sum to the power-n cumulative 

objective function and thus permit detection of a concave Pareto frontier in the region of 

the objective space where designs perform poorly (e.g., near the coordinate Γ1 = Γ2 = 0 in 

Figure 90). 

At first glance, this observation appears to have limited utility, since poorly 

performing designs are generally of little interest.  However, consider a simple two-

dimensional concave Pareto frontier consisting of three points:  (0,1), (ε, ε), and (1,0), 

where ε << 1.  The point that produces the frontier’s concavity, namely (ε, ε), is indeed 

poorly performing and thus might be accurately be identified using η of the form in Eqs. 

(A8)-(A9).  While this example is extreme, it highlights the fact that when searching for 

concave Pareto frontiers, poor (but nondominated) designs are still of interest.  In this 

example, for instance, finding that (ε, ε) is indeed on the frontier would provide the 

decision-maker critical information about the available trades.  In this case, the decision-

maker would almost certainly choose the single-objective maximum (1,0) or (0,1), rather 

than spend additional time and resources attempting to identify compromise solutions. 
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A.3. A Heuristic Method for Identifying Pareto-Opti mal Solutions 

In many cases, concave Pareto frontiers will not be as sharply defined as the (ε, ε) 
example earlier, and thus it would be incorrect to claim that applying per-stage aggregate 

objective functions of the form in Eqs. (A8)-(A9) will always result in the intended 

quantity J being maximized.  However, this appendix’s proposed method is motivated by 

the hypothesis that applying such an objective function can provide a greater likelihood 

of finding concave Pareto frontiers in such multi-objective dynamic programming 

problems. 

The proposed method is summarized in Figure 93.  In the first step, the objectives 

for the problem of interest must be identified and normalized such that the cumulative 

totals Γi are each no less than zero and no greater than unity.  Implicitly, each of these 

objectives is additive such that Eqs. (A2)-(A3) hold.  Secondly and thirdly, a set of 

powers n is selected and a set of weights {w1, w2, …, wΩ} is selected for testing.  The set 

of weights is used to scan for Pareto-optimal points across a representative set of possible 

decision-maker preferences, and the set of powers is selected to increase the likelihood 

that concave portions of the Pareto frontier will be identified. 

For each combination of the power n and set of weights, an aggregate per-stage 

objective function η is used, as specified in Eqs. (A8)-(A9).  This approach of converting 

the multi-objective problem into a single-objective problem permits the use of traditional 

single-objective dynamic programming algorithms.  Once such an algorithm is applied, 

the design variables leading to the optimum solution for this set of n and {w1, w2, …, wΩ} 
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are recorded, and the process repeats for a new set of weights and/or a new power n.  

These recorded designs are the candidate Pareto-optimal solutions. 

In the penultimate step, each of the candidate solutions is evaluated in terms of 

each of the Ω objectives of interest.  As expressed in Eqs. (A10)-(A11), in general the 

sum of power-n aggregate per-stage objectives η (the quantity optimized) is not equal to 

the power-n aggregate of the cumulative objectives Γi (the quantity that would ideally 

find points on concave portions of the Pareto frontier, for n > 1).  As a result, some of 

these candidate solutions are likely to be dominated solutions.  Thus, the final step of this 

method is the discarding of dominated points to find the final estimate of the problem’s 

Pareto frontier. 
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Figure 93.  Flowchart for this appendix’s heuristic multi-objective 
optimization algorithm. 
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A.4. Example Application 

To demonstrate this method on a relevant and illustrative multi-objective dynamic 

programming problem, the following scenario is selected:  A stealth aircraft loaded with 

enough ordnance to neutralize five hostile targets is to be flown across unfriendly 

territory, starting at a friendly airfield at coordinates (0, 100) and ending at a second 

friendly airfield at coordinates (500, 100) miles.  The 500-mile stretch between the two 

fields is divided into five zones of equal length and each with breadth 200 miles.  In 

sequence, one target in each of the five zones is to be neutralized.  Each target has a 

particular strategic value (for example, measured in number of weapons or vehicles 

rendered inoperative), and it is desirable to maximize the total value of all sites 

neutralized during the mission.  However, it is also desirable for the aircraft to minimize 

the total distance it travels during the mission (for example, to minimize its time at risk).  

Thus, this is a five-stage problem with two incommensurate objectives.  Coordinates of 

candidate targets are listed in Table 40, and corresponding target values are listed in 

Table 41. 

 
 

Table 40.  Target Coordinates for Example Application. 

Target Coordinates (miles) Target 
No. Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

1 (55.2, 114.0) (179.7, 193.6) (260.5, 177.5) (390.0, 186.5) (457.9, 181.4) 
2 (87.1, 113.3) (191.8, 151.9) (299.8, 161.1) (312.9, 128.1) (479.6, 164.2) 
3 (12.3, 81.9) (120.8, 125.4) (232.9, 155.2) (308, 124.1) (486.6, 146.8) 
4 (61.8, 78.2) (137.9, 106.1) (276.3, 123.5) (349.2, 62.3) (416.3, 46.1) 
5 (26.8, 68.3) (171.0, 53.9) (268.0, 90.6) (398.8, 56.6) (462.4, 27.2) 
6 (68.8, 42.3) (124.3, 19.6) (214.8, 76.5) (388.5, 36.7) (464.0, 7.4) 
7 (75.1, 7.0) (166.4, 13.8) (221.9, 48.8) (300.8, 19.9) (403.3, 5.7) 
8 (13.7, 4.7) (148.4, 8.3) (282.6, 44.9) (354.6, 9.8) (443.9, 4.5) 
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Table 41.  Target Values for Example Application. 

Target Value Target 
No. Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

1 1 80 1 95 1 
2 1 42 4 25 6 
3 7 18 5 20 12 
4 10 1 13 1 69 
5 18 16 30 1 83 
6 38 33 48 6 98 
7 65 35 83 10 99 
8 67 38 88 12 100 

 
 
 

A.4.1. Full-Factorial Pareto Frontier 

In this case, the problem is small enough to permit use of a computer to 

enumerate and evaluate all 85 = 32,768 possible routes (in general, such enumeration may 

not be practical, but this small example is selected to allow comparisons between the 

heuristically-generated and true Pareto frontiers).  Distances between sites in sequential 

zones (as well as between the start and end sites and their neighboring zones) are 

precomputed and stored in an 8 × 8 × 6 array.  In total, the full factorial evaluation of all 

possible routes requires 393,216 array lookups.  The results of this evaluation are 

visualized in Figure 94, with the Pareto frontier outlined in dark gray.  The frontier 

consists of 58 points and extends from a total distance of 524.5 miles and total target 

value of 189 (the distance optimal solution, shown as the black circle) to a total distance 

of 1006.8 miles and total target value of 430 (the value optimal solution, shown as the 

light gray triangle).  Note that the frontier has two major concave segments, in the 600-

750 mile range as well as the 800-1000 mile range.  Three smaller concave segments 

exist within the 530-600 mile range.  Also marked on the chart is an example 

compromise solution which attains a total value score of 302 with a 596-mile traverse. 

Figure 95 graphically illustrates the locations and values of the targets listed in 

Table 40 and Table 41 as well as the physical solutions implied by the three solutions 
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marked in Figure 94.  Darker sites indicate sites of higher value.  Notice that the distance 

optimal solution (black) takes the most direct route across the map but neglects high-

value targets at the map’s edges.  On the other hand, the target value optimal solution 

(light gray) visits the highest-value targets in each zone but must fly in a costly and risky 

zig-zag pattern.  The example compromise solution (dark gray) is similar to the distance 

optimal solution but deviates to visit high-value targets toward the bottom of the map. 

 
 

 

Figure 94.  Performance trades and the full frontier for the example application. 
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Figure 95.  Graphical representation of the targets listed in Table 40 and Table 41.  Darker 
sites indicate sites of higher value, and three sample paths are shown that correspond in 

color to the distance optimal solution (black), target value optimal solution (light gray), and 
an example compromise solution (dark gray) in Figure 94. 

 
 

A.4.2. Heuristically-Generated Pareto Frontier 

Approaching this example in the manner outlined in Section A.3 illustrates 

several advantages of this appendix’s heuristic method.  To begin the process, in this 

application the precomputed distance array is negated and subsequently offset and scaled 

such that the smallest element (previously the greatest distance) is zero and the sum of 

the maximum distances in each zone transition is unity.  The target value matrix is offset 

and scaled such that the smallest elements (those with values of 1 in Table 41) are zero 

and the sum of the maximum target values in each zone is unity.   

Following the remainder of the process outlined in Section A.3, the solid black 

line in Figure 96 shows the result for the selection n = {1, 2, 150, ∞} and weights w1 = 

{0, 10-8, 10-6, 10-4, 10-2, 0.04, 0.08, 0.12, …, 0.88, 0.92, 0.96, 0.99, 0.9999, 1 – 10-6, 1 – 

10-8, 1.00}, with w2 = 1 – w1.  Note that the resulting frontier (in black) closely 

approximates the true frontier (in dark gray).  In particular, the existence of both major 

concave segments is captured, as are the three smaller concave segments identified 

earlier.  Also visible in the plot are candidate solutions (black triangles) from the heuristic 
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algorithm that were not Pareto optimal when evaluated with respect to the true, rather 

than power-n, objective functions. 

 

 

Figure 96.  Comparison of Pareto frontiers generated using heuristic 
and full factorial methods. 

 
 
 

Table 42 provides a useful comparison of the accuracy and efficiency of the three 

methods discussed in this appendix in the context of this example application.  Accuracy 

is tracked here by two statistics.  The first, which is the value of the coefficient of 

determination (R²), indicates the degree to which the interpolated approximate frontiers 

explain the variations exhibited in the interpolated true frontier.  While the simple 

additive weighting method achieves an R² value of 0.9389, the heuristic method performs 

significantly better with an R² value of 0.9899.  The second measure numerically 

integrates the absolute value of the difference between the target value metric for each of 

the interpolated approximate frontiers and the target value metric for the true frontier 

over the range of the true frontier.  Normalized such that the area between the simple 
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additive weighting frontier and the true frontier is unity, this metric illustrates that the 

geometric area discrepancy is improved by more than a factor of three when the heuristic 

method is used in place of the simple additive weighting method. 

In terms of efficiency, Table 42 highlights that the heuristic method requires less 

than 23% as many function calls (here measured in terms of the number of table or array 

lookup operations required) as the full factorial analysis for this example.  Furthermore, 

32% of the points identified from the heuristic method are nondominated, in contrast with 

the 0.18% ratio for the full factorial analysis.  In this sense, the heuristic method is 

efficient in preferentially seeking points on the Pareto frontier.  Furthermore, it might be 

reasonably hypothesized based on the advantages that dynamic programming provides 

that these indicators would more highly favor the heuristic method as the size of the 

problem (number of zones and number of sites per zone) increases.  In terms of the 

simple additive weighting technique, it is notable that this method requires only about 

19% as many function calls as the heuristic method and has 100% success in identifying 

Pareto-optimal points (in the sense that all points it identifies are Pareto-optimal).  

However, this metric does not reflect the number or importance of Pareto-optimal points 

on concave segments that the simple additive weighting method omits. 

 
 

Table 42.  Comparison of Pareto Frontier Search Methods in the Example Application. 

Pareto Frontier Search Method 

Metric Full 
Factorial 
Analysis 

Simple Additive 
Weighting (Dynamic  

Programming) 

Heuristic Approach  
(Dynamic 

Programming) 

Accuracy    
Coefficient of Determination (R²) 1.00a 0.9389 0.9899 

Integrated Area Discrepancy (normalized) 0.00a 1.00 0.3136 

Efficiency    

Number of Function Calls (array lookups) 393,216 17,164 89,936 

Ratio of Non-dominated to Total Points Evaluated 0.0018 1.00 0.3167 
a By definition 
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A.5. Summary 

In summary, this appendix has presented a heuristic method for identifying 

concave Pareto frontiers in multi-objective dynamic programming problems that employ 

additive recursion.  Using a power-n (instead of simple additive weighting) per-stage 

aggregate objective function, the method possesses an important advantage of being 

easily integratable with existing single-objective dynamic programming algorithms; that 

is, only definition of the per-stage objective function need be modified, eliminating the 

need for a unique multi-objective dynamic programming algorithm.  Because simple 

additive weighting is a special case of this method (the case n = 1), this heuristic 

method’s results are at least as (and generally more) capable of identifying concave 

segments of Pareto frontiers, and in theory the technique becomes better able to identify 

points on concave frontiers as overall concavity of the frontier increases. 

The example aircraft route selection application shown in this appendix illustrates 

how the heuristic method can substantially increase the accuracy of the detected Pareto 

frontier over simple additive weighting.  Furthermore, the R² = 0.9899 coefficient of 

determination for the detected Pareto frontier is obtained with 4.4 times fewer function 

calls than required for the full factorial analysis. 

It may be reasonably hypothesized that the computational advantage of this 

approach over full factorial analysis substantially increases as the number of fully 

enumerated paths increases.  In the aircraft route selection application demonstrated here, 

the 32,768 paths could be enumerated, evaluated, and compared by a standard desktop 

computer within about one-half of a second.  However, had the number of zones and 

available sites per zone each doubled, the number of paths would have increased to 1.10 

trillion (a factor of 33 million greater!).  In the full factorial approach, all these paths 

must be evaluated, potentially at a large expense of time and computational resources, 

because there exists no a priori knowledge about which paths are likely to be Pareto-

optimal.  In contrast, the number of function evaluations required by this appendix’s 
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heuristic method is controlled largely by the user’s selections of sets of trial weights and 

powers, and in all cases the algorithm preferentially searches for Pareto-optimal 

solutions.  As a result, although the ideal combination of power and weight sets cannot be 

known in advance, for large problems the computational expense of sweeping through a 

wide range of possible sets may easily be more efficient than the full factorial analysis.  

For example, using the extended w1 weight set {1, 2, 3, …, 148, 149, 150, ∞} in this 

appendix’s example application produces a nearly exact match to the true frontier, 

improving the fit of the detected frontier to an R² value of 0.9969. 

This method is termed heuristic in the sense that no formal proof assures that the 

true Pareto frontier will be converged upon, even if the power and weight sets are 

increased infinitely in range and resolution.  While the method is motivated by 

fundamental properties of the per-stage objective function η (noted in Sections A.1 and 

A.2), the fact that convergence tends to occur has only been observed empirically.  

Furthermore, the astute reader may notice two additional details which contribute to this 

heuristic characterization: 

First, the definition of J in Eq. (A1) for n = ∞ is not the true limit of the n < ∞ 

expression as n → ∞; for this to be true, the summation within the n < ∞ expression 

would need to be raised to the power 1/n.  However, this modification would nullify the 

theoretical accuracy for highly concave frontiers noted at the end of Section A.2, since 

the derivation of this property required the exchange of the per-stage and per-objective 

summations.  Thus, strictly speaking, the utility of selecting n = ∞ as weighting is itself 

heuristic in nature. 

Second, the large finite powers n (e.g., 150) used in the weighting sets for the 

example application present numerical difficulties since they are applied to aggregate 

objective functions η which are normalized to fall between zero and unity.  When the 

resulting very small numbers, which can differ by many orders of magnitude, are added 

during the operation of the dynamic programming algorithm, some fall below computer 
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numerical precision limits.  When this occurs, it is possible for several next-stage 

alternatives to tie as optimum, in which case logic must exist to select among these 

equivalent alternatives.  Rather than default to logic that selects the tied alternative which 

happens to appear first in the array, this appendix’s implementation selects at random 

among the tied alternatives.  Because different weight sets frequently result in identical 

optimal solutions, this randomization has the effect of diversifying the set of candidate 

Pareto-optimal solutions that are detected.  Thus, the logic that handles selection among 

tied next-stage alternatives within the selected dynamic programming algorithm is also a 

heuristic element. 

These components, which characterize this appendix’s method as heuristic, are all 

worthy of future investigation and improvement.  In the interim, it is hoped that the 

method presented here will contribute to theory and practice in multi-objective dynamic 

programming applications within the aerospace and broader system design and 

optimization communities. 
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APPENDIX B 

TRANSITION COST MODEL FOR HUMAN SPACE 
EXPLORATION CONFIGURATIONS 

Section 6.1.2 of this thesis describes how a custom cost model is used to estimate 

transition costs within Step 1 of the NASA human space exploration application.  

Described in its final form in this appendix, this transition cost model for human space 

exploration configurations was developed from publicly-available information and cost 

models over a period of approximately six months, the last two of which were spent 

obtaining feedback from systems engineers and cost analysts at NASA Johnson Space 

Center. 

The cost model described here has the ultimate purpose of converting an input of 

two configurations (a “from” configuration and a “to” configuration) to a one-period 

transition cost.  As described in Section 6.1.2, each configuration is a {Development, 

Operations, Memory} architecture triplet; and as described in Section 6.1.1, each 

architecture is defined by a set of components.  Each period in the NASA application is 

assigned a duration of two years, and thus the cost model translates a decision to move 

from one {Development, Operations, Memory} architecture set to another into a two-year 

cost. Repeated use of this model over all possible pairwise combinations of 

configurations permits the population of the cost transition matrix for Step 1 of this 

thesis’ framework.   

As shown in Section 6.1.2, Figure 58 summarizes the tools utilized and types of 

cost estimated by this model.  The model has components coded in MATLAB 

(approximately 830 lines; outlined in orange in Figure 58) and in Microsoft Excel 

(approximately 260 lines of which are in Visual Basic; outlined in green in Figure 58). 

Once executed with a given set of inputs, the model can populate a full cost transition 

matrix within 25 minutes on a standard desktop computer. 
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Figure 58.  Transition Cost Model for Human Space Exploration Configurations. 

 
 

In terms of the cost components estimated by this model (i.e., development, 

production, operations, program management and systems engineering, retirement, and 

termination liability), this appendix is organized to cover each in detail.  Each of the 

following sections addresses one of these components in terms of (1) the core models 

upon which the parametric estimates are based and (2) any additional logic built in to the 

model to enforce consistency in assumptions.  At the conclusion of the appendix, a 

validation is presented showing satisfactory results against a set of 121 cost transition 

estimates independently generated by NASA cost analysts in 2010. 

B.1. Development and First-Period Production Costs 

The most complex segment of the transition cost model is the portion that 

involves the estimation of development and first-period production costs.  Although 

conceptually separable, these development and first-period production costs are covered 

within the same section in this appendix because both are assumed to be distributed, 

based on historical data [98],[132], over the entirety of a four-period (eight-year) 
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development.  Thus, estimating these costs involves (1) estimating the total development 

and production costs and (2) estimating the distribution of these costs among each of the 

four development periods.  In addition, logic is included to account for the fact that 

existing components need not be re-developed. 

B.1.1. Total Development and First-Period Production Cost Estimation 

Total development and first-period production costs are based upon core estimates 

for design, development, test, and evaluation (DDT&E) and theoretical first unit (TFU) 

costs for each of the 25 architectural components listed in Table 31.  With a few 

exceptions, these core DDT&E and TFU estimates are based directly upon the publicly-

available NASA JSC Spacecraft/Vehicle Level Cost Model (SVLCM) [133], which 

outputs total DDT&E and TFU estimates as a function of system Earth weight wvehicle for 

several different classes of space vehicles and hardware.  Of particular interest for this 

application are the liquid rocket engine, manned spacecraft, unmanned planetary 

spacecraft, and launch vehicle stage classes.  The equations used to produce these 

estimates (in $FY11M) are given in Eqs. (B1) and (B2), and the a and b coefficients for 

these equations as a function of vehicle or hardware class are provided in Table 43.  Note 

that the TFU cost equation includes a qTFU  term accounting for the production of 

multiple units; with the exception of two solid rocket boosters on the side of the assumed 

heavy-lift launch vehicle, two satellites per communication/navigation satellite pair, and 

two mobile power units included with the power generation and storage units, the per-

TFU quantity qTFU = 1.  In all cases, LC is taken to equal unity (i.e., no substantial 

learning effects, in part due to the findings of the validation discussed in Section B.6). 

 EDDTb
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Table 43.  Coefficients for Eqs. (B1) and (B2) as a function of Vehicle/Hardware Class. 

Vehicle/Hardware Class aDDT&E bDDT&E aTFU bTFU 

Liquid Rocket Engine 24.039 0.550 0.121 0.662 
Manned Spacecraft 15.089 0.550 0.435 0.662 
Unmanned Planetary Spacecraft 10.152 0.550 0.674 0.662 
Launch Vehicle Stage 5.951 0.550 0.129 0.662 

 
 

The vehicle masses used as inputs to Eqs. (B1) and (B2) for each individual 

component of an architecture are provided in Table 44.  Note that in many cases, an 

architecture component is itself comprised of multiple vehicles (e.g., multiple stages, 

multiple manned spacecraft modules), the costs of which are combined to produce a 

single DDT&E cost estimate and TFU cost estimate for the component.   

Vehicle mass inputs are based on several sources.  The crew launch vehicle 

component is modeled after the LV 13.1 option (approximately the Ares I) from the 

ESAS report [29], and the heavy lift launch vehicle is modeled after the LV 27.3 with 

EDS option (approximately the Ares V) from the ESAS report [29].  Masses for a 

representative deep-space habitation module, multi-purpose crew vehicle, lunar lander, 

multi-mission pressurized rover, and chemical stages are based on inputs from the NASA 

Human Exploration Framework Team (HEFT) and Human Spaceflight Architecture 

Team (HAT) [134]-[136].  The Mars lander is based on previous NASA design reference 

architecture planning [137]-[138], and the unpressurized rover, surface habitat, and ISRU 

systems are each based on mass assumptions within the ESAS report [29].  The logistics 

module is based upon the ESAS report [29] with a gross-to-dry-mass correction based on 

the Italian Space Agency’s Multi-Purpose Logistics Modules [139].  The power 

generation and storage unit includes a component based upon the ESAS report’s surface 

outpost primary power source [29] plus two mobile power units based upon Ref. [140].  

The Mars Science Laboratory rover [141] is used as a representative science rover, the 

Mars Reconnaissance Orbiter (MRO) [99] is used as a representative communications 
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and navigation satellite*, and space suits are approximated as Apollo lunar space suits 

[143].  Engine masses are obtained from Refs. [144]-[147]. 

As noted by the two architectural components with no mass estimates in Table 44, 

the DDT&E and TFU estimates for the the Commercial Cargo Launch Vehicle and 

Commercial Cargo Logistics Module are not obtained from SVLCM but rather from 

representative NASA investment in commercial cargo vehicle development [148] 

(commercial launch vehicle development costs are assumed to be borne by the industry) 

and for SpaceX Falcon launch prices and Dragon per-flight contract rates [149]-[150]. 

While the NASA JSC SVLCM provides total DDT&E and TFU costs, it does not 

provide a breakdown of how those costs are spent by year.  To accomplish this for the 

multi-period developments considered in the NASA application, an accepted historical 

model for the time spreading of program costs provided by the standard Space Mission 

Analysis and Design (SMAD) reference [98],[132] for conceptual design is discretized.  

As Figure 97 shows, the resulting distribution of costs among a four-period development 

is unimodal, with about 19% of costs incurred in the first period, 41% in the second 

period, 32% in the third period, and 8% in the fourth period. 

 

Figure 97.  Normalized and four-period discretized development and first-period 
production cost distribution. [98],[132] 

                                                        
* Added to the communications and navigation satellite cost are two $100 million launch costs, 

representative for MRO’s launch aboard an Atlas V 401 [142]. 
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Table 44.  Architectural Component Weight Assumptions and DDT&E and TFU Cost Outputs. [29],[99],[134]-[150]  

 

 

Manned 
Spacecraft 

Dry Weight (lb) 

Unmanned 
Planetary 
Spacecraft 

Dry Weight (lb) 

Launch Vehicle Stage 
Dry Weight (lb) 

Architecture Components 

Liquid 
Rocket Engine 
Dry Weight (lb) 

SC #1 SC #2 SC #1 SC #2 Stage #1 Stage #2 Stage #3 

Total 
DDT&E 

($FY11M) 

Total TFU 
($FY11M) 

1. Crew Launch Vehicle (CLV)            188049 39572  6746.4 544.5 

2. Heavy Lift Launch Vehicle (HLV)           221234 120617 31745 10670.0 1316.9 

3. Commercial Cargo Launch Vehicle (CCLV)         0.0 56.6 

4. Multi-Purpose Crew Vehicle (MPCV)  30159       4388.6 401.3 

5. Commercial Cargo Logistics Module (CCLM)         846.0 76.8 

6. Small Chemical Stage           34746     1871.2 131.3 

7. Medium Chemical Stage           39682     2013.0 143.3 

8. Large Chemical Stage           55119     2411.7 178.2 

9. Deep-Space Habitation Module   46680             5580.4 535.9 

10. Lunar Lander   4024 5810     11091     4222.0 302.3 

11. Mars Lander   9714       94578 18464   6920.6 530.6 

12. Multi-Mission Pressurized Rover   10095             2403.8 194.5 

13. Unpressurized Rover   551             485.7 28.4 

14. Science Rover       1709         608.8 93.0 

15. Surface Habitat   33069             4616.7 426.5 

16. Logistics Module   6842             1940.9 150.3 

17. Power Generation and Storage Unit       25353 3404       3573.5 848.5 

18. ISRU Systems       7937         1417.0 257.2 

19. Surface Extravehicular Activity (EVA) Suits   147             235.0 11.8 

20. In-Space Extravehicular Activity (EVA) Suits   147             235.0 11.8 

21. Supporting Communications/Navigation Satellites       2273         712.3 424.0 

22. RS-68-Class Engine 14876               4740.1 70.0 
23. J-2X-Class Engine 5450               2728.6 36.0 
24. RL-10B-2-Class Engine 610               818.2 8.5 
25. AJ-10-Class Engine 275               527.9 5.0 
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B.1.2. Development and First-Period Production Cost Estimation Logic 

The NASA JSC SVLCM and SMAD data provide the building blocks around 

which a basic logic can be structured to provide cost estimation for development and 

first-period production, taking into account any pre-existing capabilities from the 

starting-point configuration.  This logic is summarized in Figure 98:  Given a transition 

from one configuration to another (each of which is itself an architecture triplet), checks 

are first performed to ensure that transition rules are not violated (for details, see Section 

6.1.2).  Provided that the transition is allowed, the logic proceeds through each of the 

twenty-five components listed in Table 31, checking first to see if the component is 

needed in the development architecture of the new configuration.  If so, the previous 

configuration is examined to ascertain whether the component existed in operations 

memory, or in a just-completed phase of development (if applicable).  If so, DDT&E 

costs need not be incurred since the component has already been developed; only first-

period production (TFU) costs are incurred and spread appropriately according to the 

particular period of development and the distribution in Figure 97.  If the component does 

not exist in previous memory, operations, or just-completed development, it must be 

developed, and DDT&E costs are incurred as well (and distributed according to Figure 

97).  If the component does not exist in the new development architecture, no cost is 

incurred for development or first-period production.  All component DDT&E and TFU 

and costs are drawn directly from the last two columns of Table 44, and production 

learning effects are assumed to be negligible (in part due to the findings of the validation 

in Section B.6). 

The basic consequence of this development and first-period production cost 

estimation logic is that any components that exist in operations, memory, or just-

completed development of a current configuration need not be re-developed if 

development in the next period calls for them.  As a result, this allows the modeling of 
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cost benefits that may incurred as a consequence of incremental development or the 

selection of architectures with common components from period to period. 
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Figure 98.  Summary of Development and First-Period Production Cost Estimation Logic. 
 
 

B.2. Program Management and Systems Engineering Costs 

Added to the development effort cost estimates is an estimate for accompanying 

program management and systems engineering costs based on historical data.  This cost 

estimating relationship, based on the mean of historical data [151], adds 40.8% to the 

DDT&E and TFU costs incurred in a given period to a system in development and 
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includes the sum of ground support equipment (GSE), integration, assembly, and 

checkout (IACO), launch and orbital operations support (LOOS), program management 

(PM), systems engineering and integration (SE&I), and system test operations (STO). 

B.3. Recurring Production Costs 

Beyond development and first-period production costs, the transition cost model 

estimates the costs of recurring production of operations architectures.  This production is 

estimated directly from the component TFU costs of Table 44 and is assumed to occur for 

each component of the next operations architecture (i.e., to allow this architecture to 

continue operation into the following period, if the decision-maker chooses to do so) 

unless the development architecture is in the fourth and final phase of development.  As 

in the case of the estimation of first-period production, learning effects are assumed to be 

negligible. 

B.4. Ground and Mission Operations Costs 

Also included in the transition cost estimates are the costs of ground and mission 

operations.  These costs are estimated using the parametric NASA JSC Mission 

Operations Cost Model (MOCM) [152], which takes as an input system investment 

(DDT&E + TFU) cost cinv and outputs an annual estimate cops,annual for the sum of ground 

and mission operations costs.  Modified such that it is anchored to the Space Shuttle’s 

$33.9 billion (in FY11 dollars; or $5.97 billion in 1972 dollars [153]) investment cost and 

average annual $2.43 billion ground and mission operations cost (averaged from the 

years 2001-2003 and 2007-2010 [154], with production activities excluded from the 

average), the equation for this model, with inputs and outputs in millions of FY11 dollars, 

is provided in Eq. (B3).  

 
785.0

, 676.0 invannualops cc =  (B3) 
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To apply this model to a given configuration transition, the DDT&E and TFU 

costs of each component in the new operations architecture are summed and used as the 

investment cost input to Eq. (B3).  The annual operations cost output, shown for each 

operations architecture in Table 45, is multiplied by the two-year duration of the period 

and output as a contribution to the total cost in the cost transition matrix. 

 
Table 45.  Operations cost model inputs and outputs for each 

operations architecture. 

Operations 
Architecture 

System 
Investment Cost 
(cinv, $FY11B) 

Annual  
Operations Cost 

(cops,annual, $FY11B) 

Per-Period  
Cost, 

$FY11B 

-1- Nothing 0.0 0.00 0.00 
-2- LEO 16.6 1.39 2.78 
-3- GEO Servicing 38.9 2.71 5.42 
-4- Lunar Orbit 28.1 2.10 4.12 
-5- Lunar Surface 45.8 3.08 6.16 
-6- Sun-Earth L2 40.9 2.82 5.64 
-7- Near-Earth Object 38.9 2.71 5.42 
-8- Mars Moon 39.4 2.74 5.48 
-9- Mars Surface 62.4 3.92 7.85 
-10- Deep Space 43.5 2.96 5.92 

 

B.5. Shutdown Costs 

The final component of the transition cost model for the NASA application 

estimates costs in the event that a transition decision is made that involves either the 

retirement of a current operations architecture or the termination of an architecture 

program in mid-development.  Though in general these costs have seen the least attention 

in the field of parametric cost modeling, considering them in a decision model helps to 

simulate the effect of program inertia that is observable (at least anecdotally) in many 

applications. 

B.5.1. Retirement Costs 

The first type of shutdown cost is incurred for components in the operations 

architecture of a current configuration that are not required at all in the operations 

architecture of a subsequent configuration.  In such a situation, it is assumed that a certain 
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retirement cost is incurred in the coming period (e.g., to shut down production lines, safe 

remaining flight hardware, and close out contracts).  With limited data and no parametric 

models available to NASA cost analysts to address this cost, for the purposes of the 

present cost model this cost is modeled as a Shuttle-program-derived percentage of the 

total MOCM operations cost estimate for the components being retired.  That is, the total 

investment cost of all components being retired in a given period are input in Eq. (B3), 

and based on the total projected post-2011 Space Shuttle expenditures [109] as a 

percentage of the average Shuttle annual ground and mission operations cost, 29.2% of 

the MOCM estimate is accounted as the applicable retirement cost. 

B.5.2. Termination Liability Costs 

The second type of shutdown cost is incurred for development projects that are 

terminated prior to reaching the final phase of development.  This occurs in the case 

where the development architecture for a present configuration is not in the final phase of 

development and the development architecture for the next configuration does not require 

components from the present configuration.  In such a case, component development 

programs have been terminated premature to their completion, and government agencies 

typically incur termination liability costs.  These costs cover contract requirements and 

damages that accrue from the cancellation of contracts.  Although practices vary with 

specific programs (and again, no parametric models exist), typical rules of thumb are that 

10% of to-go program costs are bookkept termination liability costs [155]-[156].  This is 

the guideline used for the present transition cost model:  In the situation where 

development has been terminated, 10% of the remaining planned development cost-to-go 

(i.e., the out-years in Figure 97) is incurred in the next period for each terminated 

component. 
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B.6. Validation 

To validate results of the NASA JSC SVLCM in the present application, the 

architectural component mass estimates of Table 44 are used to replicate an 11 × 11 cost 

transition matrix that was manually populated by an experienced NASA JSC cost analyst 

in August 2010 for 11 architectures (many of which were precursors to those considered 

in Table 31) on four-year development timelines over four-year period lengths.  The only 

common assumptions between the current transition cost model and the JSC cost 

analyst’s estimation process are the definitions of the names and numbers of the 

components in each architecture; cost estimating techniques differ (in general, the JSC 

cost analyst’s techniques can be regarded as higher-fidelty and non-parametric), and 

vehicle-specific mass and other assumptions are independently estimated. 

Results from the JSC cost analyst account only for development and production 

costs and assume no learning effects after production of the first unit; as a result of the 

latter assumption, the best match in results under the standard learning curve paradigm is 

found to occur under the assumption of negligible learning effects.  Also, the results from 

the JSC cost analyst are provided in a normalized form, and thus one explicit degree of 

freedom exists in the scaling factor required to match the dollar-valued transition costs 

from the present model to the normalized JSC estimates.  To accomplish this, the value of 

the units scaling factor is selected such that the sum of the squared errors between the 

elements of the model-calculated cost transition matrix and the scaled JSC cost transition 

matrix is minimized.  The resulting element-by-element percent discrepancies (model-

predicted minus actual JSC estimate, normalized to the JSC estimate) are shown in Table 

46, and the distribution of the absolute values of these errors is shown in Figure 99.  Note 

that nearly 75 percent of these errors fall below 20%, and all fall below 34.9%.  

Considering the application of this cost model toward conceptual phases of planning (and 

the level of independence in the formation of these cost estimates), this level of 

agreement is considered acceptable. 
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Table 46.  Discrepancies, expressed in percent, between the transition cost model with a 
best-fit single scaling factor and a JSC cost analyst’s manual estimate for transition costs 

among 11 reference architectures.  Positive values indicate model overprediction relative to the 
prediction of the JSC cost analyst.  Both the model and analyst agreed that the first column of the 
matrix consists of zeros, and thus this is bookkept as 0% error rather than a divide-by-zero error. 

 
 Validation Architecture 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 
V1 0.0% -7.8% 25.2% -5.7% 1.3% 2.7% -3.6% 1.7% 23.0% 22.9% 11.9% 
V2 0.0% -34.9% 32.7% -6.3% -2.1% 0.7% -4.9% 1.7% 27.8% 27.7% 17.5% 
V3 0.0% -22.8% -0.3% -16.5% -19.8% -11.9% -22.0% -13.6% 13.5% 1.8% -0.9% 
V4 0.0% -29.6% 0.7% -17.6% -21.8% -13.0% -20.9% -12.0% 16.8% 17.3% 8.1% 
V5 0.0% -30.8% -0.3% -18.5% -27.0% -16.6% -25.5% -15.5% 16.0% 17.9% 7.0% 
V6 0.0% -30.8% 5.4% -16.8% -23.4% -19.5% -29.5% -18.4% 18.2% 20.2% 8.0% 
V7 0.0% -22.8% 5.4% -15.0% -19.7% -16.1% -29.5% -18.4% 18.2% 18.5% 8.0% 

V8 0.0% -22.8% 5.4% -15.0% -19.7% -16.1% -29.5% -18.4% 18.2% 18.5% 8.0% 
V9 0.0% -22.8% -0.3% -16.7% -23.2% -16.1% -29.5% -18.4% 15.4% 15.8% 6.2% 

V10 0.0% -22.8% -0.3% -17.5% -23.2% -16.1% -29.5% -18.4% 15.4% 16.0% 6.3% 
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V11 0.0% -21.7% 0.7% -9.2% -22.6% -15.6% -28.9% -17.9% 16.0% 16.5% 14.9% 

 

 

Figure 99.  Histogram of absolute value of discrepancies from 
Table 46.  Vertical gray lines indicate locations of 50th, 75th, 90th, 

95th, and 100th percentile errors. 
 

 
 

It should further be noted that an in-depth discussion with the JSC cost analyst 

who produced the full set of 121 manual estimates indicated that different equipment 

commonality assumptions had been used in the costing of architectures destined for Mars 
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(in the validation here, this corresponds to architectures V9, V10, and V11).  Motivated 

by this and the fact that the V9, V10, and V11 columns of Table 46 have development 

and production costs that are systematically overestimated by the present model, it is of 

some relevance to consider solving for two (instead of just one) best-fit scaling 

parameters.  Applying the first parameter to the first eight columns and the second 

parameter to the last three columns produces the new percent discrepancies in Table 47 

and the absolute value distribution in Figure 100.  Note that the new distribution in 

general has substantially smaller errors; for example, about 95 percent of transition cost 

matrix elements agree within 20%.  This suggests even more strongly that the present 

transition cost model is appropriate for the conceptual phases of program planning for 

which it is used in this thesis. 

 
 
Table 47.  Discrepancies, expressed in percent, between the transition cost model with two 
best-fit scaling factors and a JSC cost analyst’s manual estimate for transition costs among 

11 reference architectures.  Positive values indicate model overprediction relative to the 
prediction of the JSC cost analyst.  Both the model and analyst agreed that the first column of the 
matrix consists of zeros, and thus this is bookkept as 0% error rather than a divide-by-zero error. 

 
 Validation Architecture 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 
V1 0.0% 4.2% 41.4% 6.6% 14.5% 16.1% 8.9% 14.9% 8.1% 8.0% -1.7% 
V2 0.0% -26.5% 49.9% 5.9% 10.6% 13.8% 7.5% 14.9% 12.3% 12.2% 3.2% 
V3 0.0% -12.8% 12.7% -5.7% -9.3% -0.4% -11.9% -2.4% -0.2% -10.6% -13.0% 
V4 0.0% -20.5% 13.8% -6.9% -11.7% -1.7% -10.6% -0.6% 2.7% 3.1% -5.0% 
V5 0.0% -21.8% 12.7% -7.8% -17.5% -5.7% -15.9% -4.6% 1.9% 3.6% -6.0% 
V6 0.0% -21.8% 19.1% -5.9% -13.4% -9.0% -20.3% -7.8% 3.9% 5.6% -5.1% 
V7 0.0% -12.8% 19.1% -3.9% -9.2% -5.2% -20.3% -7.8% 3.9% 4.1% -5.1% 
V8 0.0% -12.8% 19.1% -3.9% -9.2% -5.2% -20.3% -7.8% 3.9% 4.1% -5.1% 
V9 0.0% -12.8% 12.7% -5.8% -13.2% -5.2% -20.3% -7.8% 1.4% 1.8% -6.7% 

V10 0.0% -12.8% 12.7% -6.7% -13.2% -5.2% -20.3% -7.8% 1.4% 2.0% -6.6% 
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Figure 100.  Histogram of absolute value of discrepancies from 
Table 47.  Vertical gray lines indicate locations of 50th, 75th, 90th, 

95th, and 100th percentile errors. 
 
 

B.7. Summary 

One assumption that this thesis makes is that an appropriate cost model exists via 

which a cost transition matrix may be populated.  However, in many applications, this 

may not be true, and substantial work may need to occur to create such a model.  This 

appendix has described the construction of a transition cost model for the human space 

exploration example discussed in Chapter 6 of this thesis.  With the purpose of 

converting an input of two configurations (a “from” configuration and a “to” 

configuration) to a one-period transition cost, this particular model includes estimation of 

the costs of development, production, operations, program management and systems 

engineering, retirement, and termination liability.  Also included in this appendix has 

been a discussion of the results of a validation against independently-generated NASA 

transition costs. 
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It should be mentioned that several challenges were encountered in the creation of 

this model.  In particular, while parametric cost models for space vehicle development 

and production have received substantial attention in the space industry, few such models 

were found for other relevant costs.  For example, recommended future investigations 

would include reexamination of the NASA MOCM’s structure that uses system 

investment cost as a sole input for the estimation of operations costs.  Such a structure 

does not allow the possibility, for instance, that a system decision-maker can implement 

design options that result in high development and low operations costs or vice versa.  

While far more detailed operations cost models do exist (for example, the Exploration 

Architecture Operations Cost Model developed by the NASA Jet Propulsion Laboratory 

[157]-[158]), the time, personnel resources, and large number of data inputs required to 

produce an estimate using a detailed costing tool tend not to be conducive to rapid 

parametric analysis.  A need appears to exist for a fidelity level between these extremes 

in operations cost modeling.  However, perhaps the most obvious gap in cost modeling 

capability exists for shutdown costs, both in terms of retirement and termination liability 

costs.  In the present cost model, both were estimated based on limited historical data and 

rules of thumb.  Clearly this is an area in need of future work for the cost estimation 

community, as these high costs (or avoidance of these high costs in favor of alternatives) 

produce an inertia to continue with current programs that is not negligible in decision-

making. 

As developments continue in the areas of cost estimation identified above, 

relevant components of the cost model developed here can be updated and re-applied to 

the analysis in Chapter 6 of this thesis to continually improve the quality of human space 

exploration system analysis and decision-making.  Overall, the capabilities provided by 

this transition cost model are intended to permit estimation of the elements of the cost 

transition matrix required by Step 1 of this thesis’ framework to a level of accuracy and 

comprehensiveness appropriate for conceptual design and program planning. 
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APPENDIX C 

EXPERT INPUTS FOR HUMAN SPACE EXPLORATION 
STOCHASTIC SYSTEM DECISION MODELING 

Two assumptions inherent to the framework proposed in this thesis are that (1) 

meaningful quantitative figures of merit (or surrogate figures of merit) exist for the 

decision problem of interest and (2) it is possible to meaningfully specify the probability 

transition matrix of the underlying Markov chain for demand environment evolution.  

While step 1 of the framework relies only upon the relatively mature discipline of cost 

estimation, the remainder of the framework cannot be applied without these two 

elements.  The following appendix describes a substantial effort undertaken in the course 

of this work to address and obtain information and estimates for these elements in the 

context of the NASA human space exploration application. 

C.1. Survey Description 

The two assumptions above are inherently related to the preferences and 

perspectives of the decision-making body.  For example, there is no single objectively 

“correct” figure of merit.  In the case of the Markov chain probabilities, although they 

may be considered objective quantities when enough historical data exists, in many 

applications the lack of sufficient historical data must be substituted with expert 

estimates. 

To address these two assumptions for the NASA exploration application, a survey 

was distributed to a group of 21 personnel with substantial experience in the field of 

human space exploration.  This group was intended to simulate the opinions, beliefs, and 

preferences of a senior NASA decision-making body.  As detailed in Table 48 and Figure 

101, these individuals represented a total of 8 NASA centers plus one external 

organization; particularly high representation was accorded to Johnson Space Center due 

to its specialization in human spaceflight activities. 
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Table 48.  Survey Invitee Affiliations. 

NASA Center Affiliation 
No. of 

Invitees 
Percent 
of Total 

Headquarters (HQ) 2 9.5% 

Johnson Space Center (JSC) 9 42.9% 

Marshall Space Flight Center (MSFC) 1 4.8% 

Langley Research Center (LaRC) 2 9.5% 

Glenn Research Center (GRC) 1 4.8% 

Goddard Space Flight Center (GSFC) 1 4.8% 

Ames Research Center (ARC) 2 9.5% 

Jet Propulsion Laboratory (JPL) 2 9.5% 

Non-NASA 1 4.8% 

TOTAL 21 100.0% 

 

 

Figure 101.  Geographic view of invitee NASA center affiliations. 
 
 

The survey was distributed to these invitees via a recruitment E-mail that 

contained a link to a central website (http://www.flexibility.gatech.edu).  At this website, 

invitees found instructions on downloading and later submitting the survey in the form of 

a Microsoft Excel file.  The survey itself asked participants to consider NASA’s need to 

decide which space systems to develop to meet potential future human spaceflight 

mission demands or expectations.  After documenting their consent to voluntarily 

participate in the study, participants were asked to provide specific inputs on (1) the 

relevance of various figures of merit and (2) the likely evolution of future mission 

demands.  The estimated time required to complete the survey was 55 minutes, and upon 

completion the participants were directed to submit their completed Excel file through an 

anonymous online web form at http://www.flexibility.gatech.edu/submit.php. 
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As detailed in Table 49, the process of obtaining the appropriate human subjects 

research training, applying for the needed web domain, and preparing the survey 

materials began in April 2011.  The intended final version of the survey was submitted to 

the Georgia Institute of Technology Institutional Review Board (IRB) on May 31.  The 

anonymity of the survey permitted the protocol to be approved and classified as exempt 

from further IRB review on June 23.  Survey invitations were sent via E-mail on June 27-

28, a reminder E-mail was sent on July 12, and surveys were compiled for analysis on 

July 15. 

 
Table 49.  Survey Activity Timeline. 

Date Event 

April 12, 2011 CITI Human Subjects Training Completed 

April 19, 2011 Survey Domain Assigned (http://www.flexibility.gatech.edu) 

May 15, 2011 First Draft of Survey and Website Completed 

May 31, 2011 Survey Protocol Submitted to Georgia Tech IRB 

June 23, 2011 Protocol Approved (Protocol No. H11172) 

June 27-28, 2011 Survey Invitations Sent 

July 12, 2011 Survey Reminder Sent 

July 15, 2011 Survey Deadline 

 

 
The recruitment and reminder E-mails to participants are copied below, as are 

screenshots from the submission website (Figure 102 and Figure 103) and the survey 

Excel file (Figure 104 through Figure 107).  Also included (Figure 108 and Figure 109) 

are screenshots of dialog boxes intended to assist participants in filling out the demand 

evolution section of the survey.  The dialog box in Figure 108 is activated upon clicking 

the “Use Wizard Assistance for Part I” button in Figure 106, and the dialog box in Figure 

109 is activated upon clicking the “Use Wizard Assistance for Part II” button in Figure 

106.  Supporting these dialog boxes and Excel sheets are approximately 700 lines of 

Visual Basic source code.  The survey download and submission website is supported by 

approximately 600 lines of HTML and PHP source code. 
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Recruitment E-mail (June 27-28) 
 

Subject: Expert Inputs for Human Space Exploration Stochastic Decision Modeling 

From: Jarret Lafleur (jarret.m.lafleur@gatech.edu) 

 

Greetings, 

 

Based on your experience and expertise in NASA human spaceflight program planning and systems 

engineering, I would like to formally invite you to take part in a survey being conducted by the Space 

Systems Design Laboratory at the Georgia Institute of Technology.  This survey asks you to consider 

NASA's need to decide which space systems to develop in order to meet potential future human spaceflight 

mission demands or expectations.  In particular, you will be asked about the relevance of various figures of 

merit as well as the likely evolution of future mission demands.  The results collected will be used toward an 

example application in the development of a new approach to integrating flexibility in space system design 

decisions. 

 

Personally identifiable information is not collected in the course of the survey, and your identity will not be 

associated with any results you submit.  The total time to complete the survey is estimated at 55 minutes; 

note, however, that you will be able to save your work for completion among multiple time increments if 

necessary. 

 

Your participation would be very much appreciated.  If you choose to participate, please navigate to the 

following Internet URL by July 15:  http://www.flexibility.gatech.edu/ 

 

Thank you in advance.  If you have any questions, please feel free to contact me at 

jarret.m.lafleur@gatech.edu. 

 

Sincerely, 

 

Jarret Lafleur 

jarret.m.lafleur@gatech.edu 

 

Ph.D. Candidate 

School of Aerospace Engineering 

Georgia Institute of Technology 
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Reminder E-mail (July 12) 

 

Subject: Reminder: July 15 Deadline for Human Space Exploration Decision Modeling Survey 

From: Jarret Lafleur (jarret.m.lafleur@gatech.edu) 

 

All, 

 

About two weeks ago, you may have received an invitation to participate in a survey regarding human space 

exploration figures of merit and the evolution of possible exploration mission demands. 

 

To those who have already submitted survey responses, thank you very much.  For those who are 

interested in participating but have not yet submitted a survey, your response would be much appreciated by 

the end of the day this Friday, July 15.  While the survey submission site will remain up and running, surveys 

received after this date are not guaranteed to be incorporated into the results. 

 

Personally identifiable information is not collected in the course of the survey, and your identity will not be 

associated with any results you submit.  The total time to complete the survey is estimated at 55 minutes, 

and you will be able to save your work for completion among multiple time increments if necessary. 

 

If you choose to participate, please navigate by July 15 to:  http://www.flexibility.gatech.edu/ 

 

Thank you in advance.  As before, if you have any questions, please feel free to contact me at 

jarret.m.lafleur@gatech.edu. 

 

Sincerely, 

 

Jarret Lafleur 

jarret.m.lafleur@gatech.edu 

 

Ph.D. Candidate 

School of Aerospace Engineering 

Georgia Institute of Technology 
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Figure 102.  Screen Shot of Main Survey Website (http://www.flexibility.gatech.edu). 

 

 

 

Figure 103.  Screen Shot of Survey Submission Website 
(http://www.flexibility.gatech.edu/submit.php). 
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Figure 104.  Consent Form (Worksheet #1) from Survey Excel File. 
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Figure 105.  Figures of Merit Section (Worksheet #2) from Survey Excel File. 
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Figure 106.  Demand Evolution Section (Worksheet #3) from Survey Excel File. 
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Figure 107.  Final Submission Instructions (Worksheet #4) from Survey Excel File 
 

 

Figure 108.  Dialog Box for Part I of Worksheet #3. 
 

 

Figure 109.  Dialog Box for Part II of Worksheet #3. 
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C.2. Results 

In total, nine responses were received.  The results, here presented in aggregate 

form, reveal several interesting insights for human space exploration planning.  This 

section presents the results in the order in which they were requested of the participants, 

starting with an analysis of participant experience, continuing with an analysis of figure 

of merit importance, and ending with the analysis of the expert-elicited demand evolution 

Markov chains. 

C.2.1. Participant Experience 

To understand the experience level of the survey participants, four questions were 

asked regarding their years of experience in various areas.  Aggregate responses in the 

form of histograms are shown in Figure 110.  Overlaid on each histogram is a box and 

whisker plot, where the yellow box indicates the interquartile range and the whiskers 

extend to the minimum and maximum values of the population.  The location of the 

median is indicated on each plot by a vertical black line, and the mean is indicated by a 

vertical gray line.  The maximum discrepancy between the means and medians agreed in 

all cases within 9%, suggesting symmetry to the distributions.  In summary, the average 

survey participant possessed about 30 years of experience in the aerospace industry, 25 

years of experience at NASA and in human spaceflight activities, and 20 years of 

experience in systems engineering activities*. 

                                                        
* Particularly notable variability exists in terms of participants’ systems engineering experience, 

which shows an interquartile range of 18.8 years. 
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Figure 110.  Distributions of Participant Years of Experience. 
 

 
Figure 111 shows a multivariate plot to illustrate any existing pairwise 

correlations between participant years of experience in each of the categories in Figure 

110.  Each dot on each graph indicates one participant’s set of experiences, and the gray 

line indicates the best-fit least-squares regression line through the point.  The 

corresponding linear equation and coefficient of determination (R²) value is indicated in 

the upper left corner of each graph.  In most cases, correlations are weak though 

generally positive (as expected).  The notable exception is the correlation between years 

of experience at NASA and years of experience in human spaceflight activities, which 

has an R² value of 0.74 and suggests that the average participant has nearly 9 years of 

human spaceflight experience for every 10 years of NASA experience.  The implication 



304 
 

of this correlation is that survey participants within NASA were successfully targeted 

from within the human spaceflight domains of expertise. 

Also shown in Figure 111 are four large dots of different colors which will have 

bearing on later analysis.  If it is accepted that the ideal participant, given the information 

available from the survey, would have the maximum amount of experience (here, 40 

years) in each category, then a set of experts with non-dominated sets of experience can 

be attained by applying a Pareto filter.  In the application of this filter, each participant is 

compared with each other participant.  If, in these comparisons, one participant has fewer 

years of experience in every category than a second, then the first is filtered out and does 

not become part of the non-dominated set of experts.  The result is a set of four experts, 

three of whom are part of the set because they possess the maximum years of experience 

in one or more categories.  The fourth represents a non-dominated balance of experience 

(35 years in the aerospace industry, 20 years at NASA, 5 years in systems engineering, 

and 23 years in human spaceflight).  While the vast majority of the analysis presented 

will aggregate the inputs of all survey participants, a small portion of the analysis will 

examine differences between the overall results and those from the non-dominated set of 

experts. 
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Figure 111.  Multivariate Plot Illustrating Years of Experience Correlations. 
 
 

C.2.2. Figures of Merit 

The first major section of the survey requested that participants rate the relative 

importance of 17 candidate figures of merit for human spaceflight architecture 

evaluation.  For each figure of merit, participants were given the option to rate its 

importance on a 5-level Likert scale with levels labeled “Negligible”, “Low”, “Medium”, 

“High”, and “Paramount”.  The aggregate results are shown with box-and-whisker plots 

in Figure 112.  In this figure, each figure of merit is associated with a single yellow box 
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and set of black whiskers.  Each box represents the interquartile range and each whisker 

extends to the minimum and maximum range of the responses.  The median responses are 

indicated by vertical red lines, and the means are indicated by vertical gray lines; in cases 

where no gray line is visible, the mean response is identical to the median. 

Several interesting observations can be made regarding these results.  First, 

although the responses for the first four cost metrics possess varying interquartile ranges, 

all have a median rating of High importance.*  The fifth metric (Costs Previously 

Incurred to Develop Systems not Useful toward Current Mission) is scored consistently at 

Low Importance, which is reasonable given that this is a sunk cost metric.  In this 

context, however, it is interesting that the conceptually similar sixth metric (Costs Saved 

by Reusing Existing Systems for Current Mission), scored at High Importance in the 

median.  It is also notable that the final five metrics, themed around quantifiable science 

performance and crew productivity and time metrics, exhibited substantial variability of 

expert opinions.  Interquartile ranges for all five of these metrics are greater than one 

rating level; for example, the range of responses the Mass of Extraterrestrial Material 

Samples Returned to Earth metric spans the entire available range of Negligible to 

Paramount. 

To analyze the figure of merit results further, Figure 113 summarizes the 

interquartile ranges and median ratings from Figure 112.   In this plot, each figure of 

merit is represented by a single point, and the figure of merit identification number(s) 

                                                        
* One puzzling detail regarding the cost metric ratings is one participant’s rating of Integrated 

Program Lifecycle Cost as Low importance and the other three cost metrics as Moderate or High 

importance.  While this participant left no comments explaining his or her rationale, the 

implication for this response would seem to be that the sum of development, production, and 

operations costs is less important than any of these individual costs (colloquially, the whole is less 

important than any of its parts).  However, this view appears to be an outlier in the sense that all 

other participants rated Integrated Program Lifecycle Cost at least as important as the least-

important component cost. 
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corresponding to each point are listed below and to the right of each.  Of particular 

interest in this figure are metrics with high median ratings and low interquartile ranges, as 

these characteristics indicate metrics that are rated as high importance consistently among 

the survey participants.  Figure 112 shows that the maximum importance rating (4, or 

“High”) and minimum interquartile range (0.25) coincide for four figures of merit:  

Integrated Program Lifecycle Cost, Total Spending on Production Activities, Date of 

First Mission to Leave LEO, and Time Between Missions.  Thus, in summary these 

results support the prioritization of these four figures of merit over others within the 17 

metrics considered. 

To complete the discussion of the figures of merit section, it should be noted that 

one of the nine participants left remarks in the “Additional Comments” portion of this 

section (see the bottom of Figure 105).  These remarks are reproduced below, unedited.  

In some respects, this comment well characterizes the goal of this part of the survey to 

understand which objective or objectives are most consistently agreed upon as high in 

priority.  As the comment suggests, however, the figure of merit results of this survey 

predominantly reflect the preferences of NASA space system decision-makers. 

 “The hierarchy of priorities is not dictated by any one group, but rather a 

consolidated set of often disparate stakeholder demands (WH, Congress, 

Industry, Int'l community).   Thus, there are often multiple high priorities despite 

a constraints in resources and capabalities.   As such, we are optimizing and 

preserving a flexible, open, SOS architecture.” 
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Figure 112.  Aggregate Figure of Merit Rating Results.  Yellow boxes 
represent interquartile ranges and whiskers extend to the minima and 
maxima.  Red lines indicate medians and gray lines indicate means. 
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Figure 113.  Summary of Figure of Merit Response Interquartile 
Ranges and Medians. Corresponding figure of merit identification 

number(s) are listed to the bottom and to the right of each point. 
 

C.2.3. Markov Chain Estimates 

The second major section of the survey requested that participants provide 

information regarding the likely evolution of human space exploration mission demands.  

The section consisted of two parts.  In the first part, participants were asked to estimate 

the amount of time he or she might expect demand for each of twelve mission 

destinations to last, depending on whether the mission is or is not being achieved at some 

arbitrary point in the future.  The second part is complementary to the first and asked 

participants to populate two matrices, estimating in each element of each matrix the 

probability that the next mission demand will be for the destination in the column given 

that the current mission demand is the destination in the row and given whether or not the 

current demand is being achieved (one matrix corresponded to each of these binary 

achievement possibilities).  Graphical user interfaces (see Figure 108 and Figure 109) 

were available to guide the participants through each input.  In effect, when a participant 

had completed these 288 inputs, he or she had populated the transition rates and 
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probability transition matrices of two continuous-time Markov chains describing mission 

demand evolution, each conditional on whether or not current demand is met.* 

C.2.3.1. Result Statistics 

Aggregated results are shown in Figure 114 and Figure 115.  These figures plot 

the histograms of participant responses to both Parts I and II of this section; the 

histograms on the diagonal of each figure indicate the expected time responses, and all 

other histograms indicate the probability responses.  The probability responses shown 

have been normalized for each participant such that the sum of each row of the 

participant’s matrix adds to unity.† Thus, the range of all subplot abscissae is zero to 

unity, except for subplots on the diagonal, which have a range of 0 to 30 years.  The color 

of each subplot indicates the relative amount of variability in the responses, as measured 

by the interquartile range, with red being high and green being low.  The difference 

between Figure 114 and Figure 115 is that Figure 114 is associated with the condition 

that current mission demand is fulfilled, whereas Figure 115 is associated with the 

condition that the current mission demand is not being fulfilled. 

 

 

 

 

 

                                                        
* Given that Markov chains are not covered in the curricula of many engineering degree programs 

and that the survey participants were not likely to be familiar with them, the term “Markov chain” 

was not used in the survey. 

† As Figure 106 indicates, participants were told that each row of probabilities should add to 

100%, but that they were not required to spend excessive time attempting to meet this constraint 

precisely.  As a result, normalization was required in post-processing for most rows of participant 

probability inputs. 
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Figure 114.  Summary of probability transition matrix and expected time responses, conditioned on current demand being fulfilled. The 
range of all subplot abscissae is zero to unity, except for subplots on the diagonal, which have a range of 0 to 30 years.  The color of each subplot 

indicates the relative amount of variability in the responses, as measured by the interquartile range, with red being high and green being low. 
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Figure 115.  Summary of probability transition matrix and expected time responses, conditioned on current demand not being fulfilled. 
The range of all subplot abscissae is zero to unity, except for subplots on the diagonal, which have a 0-30 year range.  The color of each subplot 
indicates the relative amount of variability in the responses, as measured by the interquartile range, with red being high and green being low. 
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As the colors of the subplots in Figure 114 and Figure 115 indicate, response 

agreement is generally high.  Figure 116 quantifies this:  The histograms on the left in 

Figure 116 indicate that among all the non-diagonal subplots of Figure 114 and Figure 

115, the median interquartile range is 7.7% and the 90th percentile interquartile range is 

15.6%.  The histograms on the right in Figure 116 indicate that among all the diagonal 

subplots of Figure 114 and Figure 115, the median interquartile range is 3-4 years and the 

90th percentile interquartile range is 11-12 years.  Consistent between Figure 114 and 

Figure 115 is that the elements with the highest variability are the “Nothing” to “LEO” 

mission destination transition probability and the expected duration of the “Mars 

Surface” mission demand. 

 

 

Figure 116.  Aggregated Interquartile Range Statistics from Figure 114 and Figure 115.  Yellow lines 
indicate medians, solid gray lines indicate 90th percentile statistics, and dashed gray lines indicate 95th 

percentile statistics. 
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C.2.3.2. Conversion to a Markov Chain Model 

As suggested at the start of this appendix, the primary aim in gathering the data 

summarized in Figure 114 and Figure 115 is the population of a probability transition 

matrix for a Markov chain describing the evolution of the demand environment for the 

NASA human space exploration application.  In particular, the Markov chain required by 

the framework proposed by the current thesis is a discrete-time Markov chain.  Thus, two 

challenges exist given the data in Figure 114 and Figure 115:  First, the data represents 

multiple expert opinions and must be reduced into a single representative model.  Second, 

recalling that the diagonal of Figure 114 and Figure 115 represents expected time 

responses, the data is in the form of a continuous-time Markov chain rather than a 

discrete-time Markov chain, and a conversion must be made. 

Treating the second challenge first, the conversion of a continuous-time to a 

discrete-time Markov chain is known as uniformization [86] and has a known solution 

given by Eqs. (C1) and (C2).  In Eq. (C1), PCTMC and vCTMC are the probability transition 

matrix and transition rate vector for the continuous-time Markov chain.  In this 

application, PCTMC and vCTMC are gathered directly from the data provided from the 

survey; in the case of the rate vector, it is the inverse of the vector of expected times 

between transitions.  The number v in principle can be any rate such that v ≥ vi ∀i.  Since 

the rates of interest in this application are central tendencies and no mean or median 

numbers of expected years fell below 1 year (and thus vi ≥ 1 yr-1 ∀i), v for this 

application is selected as v = 1 yr-1.  The intermediate matrix P* is then converted 

through Eq. (C2) to an equivalent discrete-time Markov chain probability transition 

matrix P referenced to any desired time step ∆t that is longer in duration than 1/v.  

Although Eq. (C2) technically requires an infinite sum, in this application acceptable 

results (specifically, all rows of the resulting transition matrix adding to within 10-6 or 

less of unity) were observed by summing to k = 10. 
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With a conversion from a continuous-time to a discrete-time Markov chain now 

available, the question remains:  Which continuous-time Markov chain should be 

converted?  Since many experts contributed to the results of Figure 114 and Figure 115, 

at least one representative model must be selected to carry forward.  In this thesis, results 

are presented for two different models that represent two different sets of the sample 

population.  The first, on which the primary results of the thesis are based, is based upon 

a central-tendency model for entire population of expert participants.  The second, which 

is treated in a sensitivity study in Section 6.5, considers a central-tendency model only for 

the non-dominated experts discussed in Section C.2.1. 

C.2.3.2.1. Central Tendency Model for All Experts 

In seeking a model to describe the central tendency of the probabilities and 

expected times to transition in Figure 114 and Figure 115, the two most obvious metrics 

to consider are median and mean.  While there is no objectively correct choice to describe 

the central tendency of the expert opinions, the median (50th percentile) measure 

possesses a certain property of fairness that the mean does not.  That is, while an 

exaggerated individual input might highly skew the results of a mean measurement 

(especially in the case of a small sample), the same is not true for a median measurement.  

In using the median, each participant is given an equal influence on the determination of 

the central tendency measure, and for this reason it is selected as the central tendency 

measurement of choice for this application.  For the sake of comparison, however, this 
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section will also show some results that would have been obtained if the mean had been 

chosen in lieu of the median. 

Taking the median values each result represented by a histogram in Figure 114 

and Figure 115 and normalizing the probabilities by row forms two versions of PCTMC and 

vCTMC , one version which corresponds to the case in which current demand is fulfilled 

and the other which corresponds to the case in which current demand is not fulfilled.  

Applying ∆t = 2 years in Eq. (C2) yields the transition matrices in Table 34 and Table 35. 

 
Table 34.  Discrete-time Markov chain probability transition matrix for median expert 

inputs and ∆t = 2 years, for the condition that current mission demand is fulfilled. 

  To 

 
Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

Nothing 0.5180 0.2447 0.0301 0.0311 0.0928 0.0308 0.0027 0.0001 0.0372 0.0043 0.0037 0.0045 
LEO 0.0192 0.6784 0.0340 0.0577 0.1028 0.0395 0.0039 0.0002 0.0475 0.0060 0.0052 0.0057 
GEO Servicing 0.0261 0.0489 0.5192 0.0776 0.1483 0.0479 0.0157 0.0002 0.0598 0.0246 0.0190 0.0126 
Lunar Orbit 0.0101 0.0326 0.0266 0.3771 0.2868 0.0709 0.0295 0.0003 0.0664 0.0389 0.0338 0.0270 
Lunar Surface 0.0005 0.0046 0.0079 0.0080 0.8261 0.0195 0.0136 0.0002 0.0278 0.0240 0.0231 0.0447 
Earth-Moon L1 0.0095 0.0346 0.0223 0.0435 0.1491 0.5733 0.0259 0.0003 0.0522 0.0278 0.0255 0.0360 
Sun-Earth L2 0.0022 0.0439 0.0325 0.0466 0.1089 0.0448 0.4550 0.0005 0.1057 0.0637 0.0363 0.0598 
Venus Orbit 0.0018 0.0248 0.0201 0.0290 0.0957 0.0690 0.0447 0.2647 0.1950 0.0826 0.0568 0.1157 
Near-Earth Object 0.0006 0.0094 0.0076 0.0138 0.0431 0.0181 0.0141 0.0047 0.7242 0.0540 0.0453 0.0651 
Mars Orbit 0.0005 0.0106 0.0014 0.0024 0.0295 0.0207 0.0171 0.0006 0.0442 0.6123 0.0760 0.1846 
Mars Moon 0.0006 0.0100 0.0012 0.0020 0.0290 0.0187 0.0133 0.0007 0.0273 0.0439 0.6133 0.2400 

F
ro

m
 

Mars Surface 0.0021 0.0011 0.0006 0.0009 0.0213 0.0068 0.0057 0.0039 0.0267 0.0025 0.0185 0.9099 

 
 

Table 35.  Discrete-time Markov chain probability transition matrix for median expert 
inputs and ∆t = 2 years, for the condition that current mission demand is not fulfilled. 

  To 

 
Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

Nothing 0.1417 0.5730 0.0495 0.0515 0.1171 0.0256 0.0029 0.0000 0.0284 0.0050 0.0029 0.0024 
LEO 0.0104 0.8055 0.0209 0.0405 0.0575 0.0234 0.0031 0.0000 0.0270 0.0063 0.0034 0.0019 
GEO Servicing 0.0151 0.1183 0.5203 0.0799 0.1572 0.0471 0.0072 0.0000 0.0436 0.0048 0.0030 0.0035 
Lunar Orbit 0.0009 0.0617 0.0267 0.5249 0.2376 0.0523 0.0197 0.0000 0.0417 0.0189 0.0093 0.0062 
Lunar Surface 0.0003 0.0221 0.0120 0.0291 0.8297 0.0220 0.0074 0.0000 0.0292 0.0180 0.0131 0.0170 
Earth-Moon L1 0.0009 0.0589 0.0269 0.0508 0.1273 0.6136 0.0104 0.0001 0.0501 0.0226 0.0098 0.0287 
Sun-Earth L2 0.0015 0.0813 0.0497 0.0687 0.1126 0.0757 0.3716 0.0001 0.1022 0.0509 0.0380 0.0475 
Venus Orbit 0.0015 0.0879 0.0429 0.0542 0.1325 0.0882 0.0441 0.1356 0.2076 0.0752 0.0521 0.0783 
Near-Earth Object 0.0004 0.0267 0.0145 0.0217 0.0608 0.0199 0.0088 0.0001 0.7579 0.0315 0.0267 0.0310 
Mars Orbit 0.0004 0.0281 0.0103 0.0219 0.0439 0.0305 0.0097 0.0002 0.0584 0.6743 0.0537 0.0688 
Mars Moon 0.0003 0.0297 0.0074 0.0094 0.0459 0.0094 0.0016 0.0005 0.0619 0.0168 0.6470 0.1701 

F
ro

m
 

Mars Surface 0.0002 0.0192 0.0044 0.0093 0.0258 0.0110 0.0065 0.0037 0.0413 0.0179 0.0356 0.8252 
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In order to visualize the conditional Markov chains in Table 34 and Table 35 as is 

done for the Markov chains in the examples of Chapters 4-5 of this thesis, it will be 

helpful to extend them over more than one two-year time increment.  Note that the 

probabilities on the diagonals of these matrices tend to quite high due to this short time 

step (naturally, as the time step of becomes smaller and smaller, the probability in 

remaining in a particular state would be expected to approach closer and closer to unity), 

and thus a visualization of the Markov chain on the two-year step would only reveal the 

obvious tendency for the system to stay in its current demand state over the coming 

period.  Extending the time increment to an eight-year step for the purposes of 

visualization yields the diagrams in Figure 73 and Figure 74.  In these figures, as in those 

depicting Markov chains in Chapters 4-5, high-probability transitions are represented as 

thick dark links and low-probability transitions are represented as thin light links.  Also, 

from each demand state, a green link identifies the highest-probability transition; and if 

different from the green link, a red link identifies the highest probability transition given 

departure from a given demand state. 

Thus, for example, several differences can be noticed between Figure 73 and 

Figure 74, which themselves represent the difference in demand evolution experts 

believed would exist if demand itself were fulfilled (in the case of Figure 73) versus not 

fulfilled (in Figure 74).  Whereas the most likely transition from LEO is to a Lunar 

Surface demand if LEO demand is fulfilled, it is to remain in LEO if that demand is not 

fulfilled.  Whereas the most likely transition from a Venus Orbit demand is to Mars 

Surface if demand is fulfilled, it is to the less ambitious Lunar Surface mission if that 

demand is not fulfilled; and similarly, if Mars Orbit demand is not fulfilled, the most 

likely demand is to continue Mars Orbit missions rather than progress to Mars Surface 

missions.  It might also be noticed that the red link from the Lunar Surface mission (the 

second most likely next demand) leads to a Near-Earth Object mission rather than a Mars 

Surface mission in the event that the Lunar Surface demand is not being met in the 
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current period.  These are a few examples that illustrate the general characteristic of the 

model that the condition of demand being fulfilled favors progression of demand toward 

missions aimed at more ambitious destinations that are generally farther away from 

Earth; conversely, the condition of demand not being fulfilled tends to favor a constancy 

or sometimes regression of demand toward less ambitious destinations closer to Earth. 

 

 

Figure 73.  Visualization of the Markov chain of median expert inputs for the condition that 
current mission demand is fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 
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Figure 74.  Visualization of the Markov chain of median expert inputs for the condition that 
current mission demand is not fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 
 
 

For comparison, Figure 117 and Figure 118 show the eight-year visualizations of 

the Markov chains that would have resulted had the mean (instead of the median) been 

used as the measure of central tendency.  While there exist some differences in 

comparison with Figure 73 and Figure 74, the models share many similarities.  In 

particular, the most-likely and second-most-likely (green and red) transitions in the 

figures are nearly identical.  In the case that demand is fulfilled (i.e., comparing Figure 73 

and Figure 117), the main exceptions are the Nothing, LEO, and GEO demand states.  In 

the case of the mean, the most likely next-period demand is for the LEO and GEO states 

to remain in LEO and GEO, respectively; however, the second-most-likely links from 
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these states match exactly the most likely links from the median case.  In the case that 

demand is not fulfilled (i.e., comparing Figure 74 and Figure 118), the main exceptions 

are that in the mean, the most likely transition from the Martian Moon mission demand is 

to remain in the same demand (with transition to Mars Surface demand ranking second, 

instead of first as in the median case), and that in the mean, the second most likely 

transition from the Mars Surface mission demand is to the Lunar Surface mission instead 

of to the Near-Earth Object mission. 

 
 

 

Figure 117.  Visualization of the Markov chain of mean expert inputs for the condition that 
current mission demand is fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 

 



321 
 

 

Figure 118.  Visualization of the Markov chain of mean expert inputs for the condition that 
current mission demand is not fulfilled, with ∆t = 8 years.  High-probability transitions are 

represented as thick dark links and low-probability transitions are represented as thin light links.  
From each state, a green link identifies the highest-probability transition.  If different from the 

green link, a red link identifies the highest probability transition given departure from that state. 
 
 

As discussed in Section 4.2.2, the stationary distribution of a Markov chain can 

provide the analyst helpful intuition regarding the direction toward which the demand 

will eventually tend as a consequence of the probability transition matrix.  Toward this 

end, Figure 119 and Figure 120 provide the stationary distributions for the Markov chains 

in Table 34 and Table 35, respectively.  Each figure compares the result of using the 

median central tendency measure (in red) to using the mean central tendency measure (in 

blue); note the general agreement.  The most distinctive difference between the two 

central tendency measures in the long-term stationary sense is that the mean models a 

somewhat lower probability of running Mars Surface missions and a higher probability of 
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running LEO missions; in this sense it is recognized that the median model is somewhat 

more optimistic about the demand for Mars Surface missions conditioned on other 

missions’ success.  However, conditioned on lack of mission success, Figure 120 shows 

that the models agree quite well. 

The most distinctive difference between the stationary distributions of either 

central tendency model in Figure 119 and Figure 120 is the much lower Mars Surface 

mission demand probability in Figure 120.  This, a result of the experts’ judgements 

regarding the consequences of not fulfilling mission demand, is accompanied by rises in 

the probabilities of mission demand for Lunar Surface and LEO missions.  In general, 

these three mission destinations of LEO, Lunar Surface, and Mars Surface, and to a 

somewhat lesser degree Near-Earth Objects, can be seen to form a set of long-term 

“sinks” for mission demand in the opinion of the expert participants.  Not only do these 

destinations have long-term demand probabilities significantly higher than others, but 

Figure 73, Figure 74, Figure 117, and Figure 118 tend to show these destinations as states 

with consistently high-probabiliy incoming transitions and consistently high probabilities 

of remaining in their present demand state.  In contrast, mission demands like Venus 

Orbit, Sun-Earth L2, and Nothing tend to act almost as transient states for which demand 

is rare and, when it does exist, is fleeting. 

Before concluding this discussion of stationary probabilities, it should be 

emphasized that each of the Markov chains in Table 34 and Table 35 is conditioned on 

mission achievement.  Thus, in a sequence of events it is unlikely mission demand will be 

always fulfilled or never fulfilled, and the true stationary distribution (which could in 

theory be obtained once a decision policy is defined) will fall between the extremes of 

Figure 119 and Figure 120.  
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Figure 119.  Stationary distribution of Markov chain model (both median and mean 

versions compared), for the condition that current mission demand is always fulfilled. 
 

 

Figure 120.  Stationary distribution of Markov chain model (both median and mean 
versions compared), for the condition that current mission demand is never fulfilled. 

 
 

C.2.3.2.2. Central Tendency Model for Non-Dominated Experts 

Also considered in this thesis is a Markov chain demand model derived from a 

subset of the expert participants of the survey.  Described in Section C.2.1 as a set of four 

experts who are non-dominated based on their number of years of experience in the 
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relevant experience metrics of interest, this subset of results is used to produce two 

conditional median Markov chains in the same manner as those described in Section 

C.2.3.2.1.  The result for the ∆t = 2 year time step is shown in Table 50 and Table 51.  

Visualizations of these chains over ∆t = 8 year time steps are shown in Figure 121 and 

Figure 122, and the stationary distributions are shown in Figure 123 and Figure 124.  

Note that there exist relatively few qualitative differences between this model and that of 

Section C.2.3.2.1:  For example, the relative strengths of the links in the Markov chain 

diagrams are largely the same (the green and red links are nearly all identical), and the 

probabilities of the stationary distributions all agree within 5.5%.  The most significant 

difference, which is likely responsible for differences in the results observed when this 

model is applied to assess sensitivity of the results, is that the non-dominated experts 

assign a noticeably higher probability of continuing demand for missions to LEO in the 

event that current mission demand is fulfilled (85.7% in Table 50 vs. 67.8% in Table 34 

for the same two-year time increment).  Adoption of this model over the general model of 

Section C.2.3.2.1 will tend to encourage an optimal decision-maker to adopt a policy that, 

at least in the short term, develops systems oriented more toward this high-likelihood and 

easy-to-fulfill LEO objective. 

 
Table 50.  Discrete-time Markov chain transition matrix for median non-dominated expert 

inputs and ∆t = 2 years, for the condition that current mission demand is fulfilled. 

  To 

 
Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

Nothing 0.3716 0.4635 0.0262 0.0342 0.0495 0.0323 0.0008 0.0000 0.0119 0.0046 0.0026 0.0030 
LEO 0.0087 0.8568 0.0131 0.0280 0.0390 0.0161 0.0006 0.0000 0.0260 0.0067 0.0022 0.0027 
GEO Servicing 0.0307 0.0324 0.5145 0.1039 0.1465 0.0465 0.0025 0.0000 0.0670 0.0233 0.0208 0.0120 
Lunar Orbit 0.0001 0.0143 0.0001 0.5165 0.2248 0.0371 0.0119 0.0002 0.0681 0.0437 0.0407 0.0425 
Lunar Surface 0.0000 0.0065 0.0001 0.0057 0.8232 0.0177 0.0098 0.0003 0.0269 0.0354 0.0247 0.0498 
Earth-Moon L1 0.0001 0.0110 0.0001 0.0409 0.1228 0.6741 0.0091 0.0002 0.0467 0.0414 0.0229 0.0309 
Sun-Earth L2 0.0001 0.0160 0.0001 0.0448 0.1001 0.0174 0.5158 0.0004 0.0945 0.0884 0.0460 0.0764 
Venus Orbit 0.0001 0.0161 0.0001 0.0029 0.0501 0.0291 0.0129 0.5139 0.1321 0.1118 0.0517 0.0793 
Near-Earth Object 0.0000 0.0058 0.0000 0.0127 0.0249 0.0151 0.0048 0.0002 0.8224 0.0532 0.0261 0.0347 
Mars Orbit 0.0000 0.0083 0.0001 0.0013 0.0264 0.0157 0.0073 0.0008 0.0411 0.7202 0.0449 0.1340 
Mars Moon 0.0000 0.0081 0.0001 0.0010 0.0188 0.0155 0.0074 0.0011 0.0121 0.0298 0.7200 0.1859 

F
ro

m
 

Mars Surface 0.0000 0.0005 0.0000 0.0009 0.0139 0.0113 0.0096 0.0092 0.0252 0.0031 0.0175 0.9087 
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Table 51.  Discrete-time Markov chain transition matrix for median non-dominated expert 
inputs and ∆t = 2 years, for the condition that current mission demand is not fulfilled. 

  To 

 
Mission 
Demand 

Noth. LEO 
GEO 
Serv. 

Lunar  
Orbit 

Lunar  
Surf. 

Earth- 
Moon 

L1 

Sun- 
Earth 
L2 

Venus  
Orbit 

Near- 
Earth  
Object 

Mars  
Orbit 

Mars  
Moon 

Mars 
Surf. 

Nothing 0.1398 0.6512 0.0459 0.0488 0.0769 0.0116 0.0009 0.0000 0.0182 0.0044 0.0015 0.0009 
LEO 0.0064 0.8306 0.0235 0.0310 0.0531 0.0179 0.0006 0.0000 0.0290 0.0057 0.0012 0.0011 
GEO Servicing 0.0158 0.1262 0.6106 0.0612 0.1119 0.0252 0.0012 0.0000 0.0407 0.0037 0.0021 0.0015 
Lunar Orbit 0.0006 0.0696 0.0151 0.5221 0.2104 0.0453 0.0134 0.0000 0.0672 0.0325 0.0175 0.0062 
Lunar Surface 0.0002 0.0286 0.0046 0.0235 0.8592 0.0139 0.0041 0.0000 0.0214 0.0184 0.0139 0.0122 
Earth-Moon L1 0.0004 0.0579 0.0110 0.0725 0.1121 0.6752 0.0014 0.0000 0.0411 0.0133 0.0027 0.0124 
Sun-Earth L2 0.0005 0.0642 0.0118 0.0363 0.0776 0.0491 0.5659 0.0002 0.0685 0.0494 0.0347 0.0418 
Venus Orbit 0.0007 0.0828 0.0175 0.0240 0.1084 0.0688 0.0295 0.3681 0.1307 0.0633 0.0433 0.0630 
Near-Earth Object 0.0002 0.0270 0.0058 0.0166 0.0525 0.0226 0.0098 0.0001 0.8052 0.0228 0.0172 0.0204 
Mars Orbit 0.0002 0.0329 0.0010 0.0096 0.0337 0.0178 0.0010 0.0003 0.0674 0.6987 0.0514 0.0859 
Mars Moon 0.0002 0.0346 0.0009 0.0105 0.0275 0.0200 0.0010 0.0005 0.0345 0.0525 0.6748 0.1430 

F
ro

m
 

Mars Surface 0.0002 0.0423 0.0011 0.0090 0.0374 0.0164 0.0071 0.0054 0.0342 0.0026 0.0224 0.8221 

 

 

Figure 121.  Visualization of the Markov chain of median non-dominated expert inputs for 
the condition that current mission demand is fulfilled, with ∆t = 8 years.  High-probability 

transitions are represented as thick dark links and low-probability transitions are representedas 
thin light links.  From each state, a green link identifies the highest-probability transition.  If 

different from the green link, a red link identifies the highest probability transition given 
departure from that state. 
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Figure 122.  Visualization of the Markov chain of median non-dominated expert inputs for 
the condition that current mission demand is not fulfilled, with ∆t = 8 years.  High-

probability transitions are represented as thick dark links and low-probability transitions are 
representedas thin light links.  From each state, a green link identifies the highest-probability 

transition.  If different from the green link, a red link identifies the highest probability transition 
given departure from that state. 
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Figure 123.  Stationary distribution of median Markov chain model for non-dominated 
expert inputs and the condition that current mission demand is always fulfilled. 

 

 

Figure 124.  Stationary distribution of median Markov chain model for non-dominated 
expert inputs and the condition that current mission demand is never fulfilled. 

 
 

C.2.3.3. Participant Comments 

To complete the discussion of the Markov chain estimates section, it should be 

noted that three of the nine participants left remarks in the “Additional Comments” 

portion of this section (see the bottom of Figure 106).  These remarks are reproduced 

below, unedited.  Overall, these comments convey opinions on various topics.  All three 



328 
 

contain reflections on the survey process itself, with two of the comments explicitly 

suggesting the approach of eliciting probabilities was overcomplicated and one explicitly 

suggesting the approach was overly simplistic.  One of the participants who felt the 

survey was overcomplicated suggests that it would have been less complicated if more 

extensive information were added for the participants to consider.  Another topic covered 

is what the participant believes is a misplaced emphasis within the agency, government, 

or society on achieving “firsts”.  The third comment also suggests considering alternate 

tools for data collection, the fact that the results of the survey will be variable, and that 

demand evolves as a function of multiple time-varying factors. 

“I think you are making this way more complicated than needed.  Be careful to 

not over think it………….you can get any answer you want by doing that.” 

“This seems to be a very overcomplicated way to predict the interest of various 

destinations.  l lost interest quickly in answering your questions because there 

isnt enough information provided to answer in a way that i feel comforatable will 

return data worth basing any decisions on.   For exploration, I believe that much 

will depend on what we plan to do at each destination.  If we go to plant a 

flag/say we have been there, very little interest will be created.  We need to 

consider how we can deliver benefits at each destination we visit and be sure we 

can deliver it, i.e design systems accordingly and plan stay times accordingly.  I 

believe this will create interest in teh next destination.  If we think exploration is 

about "firsts" and we must keep delivering "firsts" then we are not delivering 

enough real benefits to justify the expense.  I think the interest in delivering 

"firsts" is seriously misplaced.” 

 “The concept of demand and the pairwise comparisions are probably overly 

simplistic and all comparisons are likely not suitable.  I would have chosen a 

different tool or setup.   The results may not be clear due to variability in 

interpretation.   The demand is very depenedenty upon multiple factors that are 

always dynamic.” 
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C.3. Summary 

This appendix has documented the approach and results associated with an 

extensive survey distributed to 21 personnel with substantial experience in the field of 

human space exploration in June 2011.   The aim of the survey was to gather information 

to support (1) the identification of meaningful quantitative figures of merit (or surrogate 

figures of merit) and (2) the specification of the probability transition matrix of the 

underlying Markov chain for demand environment evolution for the decision problem in 

Chapter 6 of this thesis. 

The first aim of the survey yielded an objective tie among four figures of merit, 

which earned the highest median score and lowest score interquartile range:  Integrated 

Program Lifecycle Cost, Total Spending on Production Activities, Date of First Mission 

to Leave LEO, and Time Between Missions.  In short, these results support the 

prioritization of these four figures of merit over others within the 17 metrics considered. 

The second aim of the survey yielded a primary model for the Markovian 

evolution of mission destination demand for human space exploration missions, 

converted from the continuous-time Markov chain input of the expert participants and 

aggregated (with acceptable agreement in advance) into a central tendency via the median 

statistic to permit each participant an equal influence on the results.  A secondary model 

for sensitivity studies was generated using a non-dominated subset of experts based on 

years of experience in different categories of interest.  Both models suggested (as 

expected) that the expert participants felt that fulfillment of current mission demands 

tended to result in the progression of next-period demand toward more ambitious 

destinations away from Earth, while failure to fulfill current demand would tend to result 

in either constancy or regression of demand toward less ambitious destinations closer to 

Earth.  Both models also suggested that certain destinations, such as LEO, Lunar Surface, 

Mars Surface, and Near-Earth Objects, are ultimately highly likely to be demanded of 

NASA, while other destinations, such as Sun-Earth L2, are unlikely to be demanded or 
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would be transient if demanded.  These observations and others throughout this appendix 

agree with many expectations that an engineer in the industry might have for the demands 

placed on NASA and help to provide some additional validity to the model that has been 

developed here to enable a stochastic description of human space exploration mission 

demand. 
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