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SUMMARY

The past decades have seen the state of the agtaspace system design progress from a scope
of simple optimization to one including robustnessth the objective of permitting a single system t
perform well even in off-nominal future environmentintegrating flexibility, or the capability tasily
modify a system after it has been fielded in respoto changing environments, into system design
represents a further step forward. One challengeaomplishing this rests in that the decision-matest
consider not only the present system design decidiat also sequential future design and operation
decisions. Despite extensive interest in the tdpie,state of the art in designing flexibility ind@rospace
systems, and particularly space systems, tends twrnlted to analyses that are qualitative, deterstic,
single-objective, and/or limited to consider a nfgture time period.

To address these gaps, this thesis develops aastazhmulti-objective, and multi-period
framework for integrating flexibility into spacestgm design decisions. Central to the frameworKiaee
steps. First, system configuration options aretified and costs of switching from one configuratitm
another are compiled into a cost transition matBg&cond, probabilities that demand on the systelin wi
transition from one mission to another are compitgd a mission demand Markov chain. Third, one
performance matrix for each design objective isupaied to describe how well the identified system
configurations perform in each of the identifiedssion demand environments. The fourth step employs
multi-period decision analysis techniques, inclgdiiarkov decision processes from the field of operes
research, to find efficient paths and policies eigien-maker may follow. The final step examinke t
implications of these paths and policies for thenpry goal of informing initial system selection.

Overall, this thesis unifies state-centric concegtélexibility from economics and engineering
literature with sequential decision-making techmigjdrom operations research. The end objectivéisf t
thesis’ framework and its supporting tools is talgle selection of the next-generation space systedasy,
tailored to decision-maker budget and performameéepences, that will be best able to adapt anfibper
in a future of changing environments and requirdsmefollowing extensive theoretical developmeng, th
framework and its steps are applied to space sygtanming problems of (1) DARPA-motivated multiple-

or distributed-payload satellite selection andASA human space exploration architecture selection

XXV



The point we wish to make is that in modern lifeeconomic, industrial,
scientific and even political spheres, we are cwally surrounded by
multi-stage decision processes. Some of thesereat on the basis of
experience, some we resolve by rule-of-thumb, amiesare too complex
for anything but an educated guess and a prayer.

Richard E. Bellman, Ph.D., 1957
Preface tdynamic Programming
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CHAPTER 1

INTRODUCTION: FLEXIBILITY IN SPACE SYSTEMS

In the late 1960s, as it was preparing to mounfitesemanned lunar mission, the
nascent National Aeronautics and Space AdministtafNASA) encountered its first
major budget cuts. Between 1965 and 1970, the gtgeannual budget was cut by over
$1.5 billion, or 29% [1]. In a political environmefocused on other national priorities
and on lowering federal spending, support for fetapace exploration enterprises fell
short of NASA’s post-Apollo ambitions [2]. On Jamy 4, 1970, it was announced that
Apollo 20 would be cancelled [3]-[4], and on Sepbem?2, two more Apollo lunar
missions were cancelled [5]. With development o$pace shuttle years away from
approval, NASA’s Apollo Applications Program (AAPJormed in 1965 to develop
alternative mission options using Apollo architeaticomponents, was the only measure
available to mitigate a disastrous gap in humagesdtight and loss of the 400,000-person
Apollo workforce [6]-[8].

Thus was born the Skylab space station progranylaBktself (see Figure 1),
launched atop a Saturn V rocket in May 1973, wasodified S-IVB stage originally
intended to fly as the upper stage of a SaturnalB¢h vehicle [8]. Three-man crews
were transported to the space station using antedlafgpollo command and service
module (CSM) that incorporated 23 major modificasig7] and that launched on the
Apollo-heritage Saturn IB. Plans even existed & anone instance saved a mission
from a premature end — to modify the CSM further # rescue capability to
accommodate five crew [6]-[7]. Over the courseight months, nine crew launched to
the station and accumulated a total of 513 crevgdagpace [7], five times more than all
previous U.S. spaceflight and providing a wealthdata on long-duration effects of

spaceflight.



Figure 1. An early concept for Skylab which incluéd a Lunar Mdule converted for use as
the solar observatory (left) [9], and the Skylab cofiguration as launched (right) [10].

Importantly, Skylab and the Apollo Applications Bram demonstrated the
capability of the Apollo lunar architecture to besgy modified after it had been fielded
in response to a changing environment and chamgopgirements. This property is what
the present thesis will refer to #exibility. However, Apollo’s flexibility was largely
accidental: The components of the Apollo architezhad been selected to meet the goal
of landing a man on the Moon by 1970, with littlmghasis on other objectives like
flexibility. Of the 98 pages discussing possibleoflo architectures in the authoritative
1962 architecture decision document [11], only ehpages are devoted to implications
on growth potential — and these three pages irgliteg chosen lunar orbit rendezvous
architecture offered tHeastgrowth potential compared to others under conatiter.

Over the four decades since Apollo, the world’sl@nd military space programs
have given increasing emphasis to flexibility whiksigning new systems, but flexibility
tends to remain an intangible and abstract cortoephgineers. Many of the techniques
used to evaluate this elusive property qualitative, subjective, deterministic, single-
objective, and/orlimited to consider a single time step in the futue. The question
remains: How can engineers and decision-makerersgsically, quantitatively, and
objectively consider flexibility in the design ofrew space system? How can the space
system design community reduce future occurrendesevflexibility is desirable but is

unattainable, or where it exists but is accidental?



These questions drive the present thesis, whiclbgdy investigating the state of
the art of considering flexibility in space and e@tlengineering system design decisions
in order to substantiate the characterization ¢f #rt as described in the preceding
paragraph. In the process of this investigatibig found that, although disparate, some
threads of thought on flexibility are common in therature. These threads, which entail
the construction of state spaces to describe @mystflexibility of movement in a two-
period setting, form a foundation for the framewtrét this thesis presents.

The new framework that this thesis introduces &iasof five practical steps
intended for implementation by engineering systemalysts, the first three of which
focus on defining and characterizing a set of stpees representing system options and
environment demands. The fourth step employs #peliod decision analysis
techniques, including Markov decision processesmftioe field of operations research, to
find efficient paths and policies a decision-makey follow. The final step examines
the implications of these paths and policies faiahsystem selection. The end product
iSs a quantitative, stochastic, multi-objective, andlti-period framework for integrating
flexibility into engineering system design decisgorMoreover, this thesis illustrates that
not only is a state-centric notion of flexibilitygvalent in the literature compatible with a
comprehensive decision support framework, but ithit naturally adapted for use with
Markov decision process solution techniques froendperations research community.

After theoretical development using a simple siellsystem example,
applications are illustrated using a fractionatioativated multi-payload defense satellite
example, as well as the substantially more compbeample of NASA human space
exploration architecture selection. These latter &pplications in particular substantiate
the relevance of this framework in informing dewns for problems of interest to the
space industry today. Before proceeding furthewedver, it is necessary to establish a

preliminary background on several related topics.



1.1. Uncertainty in Modern Space Missions

Flexibility in space systems design is relevangddy because of the uncertainties
involved when planning space missions, whethergthed of the mission is as limited as
low-resolution Earth observation or as ambitioushasan exploration of Mars. These
uncertainties can be divided into categories ofrde risk and upside potential:

The foremost uncertainties in most system engiheeirsls are generally those
involving downside risk, or the possibilities of-mibminal situations causing undesirable
consequences. These include risks of launch &ilcomponent failure or degradation,
physical or directed energy attack, funding cutsstagrowth, or decrease in satellite
service demand.

Another important but less commonly considered fafuncertainty is upside
potential, or the possibility for an off-nominakugtion to present opportunities upon
which a program can capitalize with desirable cqusaces. Examples include increases
in satellite service demand, new initiatives andreases in funding, and unforeseen
scientific opportunities.

While by definition these risks and opportunities2 anot predictable with
certainty, some may be more probable than othamd, some may entail greater
consequences. Decisions made during design haymotential to mitigate or exacerbate
such consequences when or if these events ocalideally a decision-maker will make
the proper choices during design to allow the syst® adequately respond to
requirement or environment changes later. In tbed# of former and current Defense
Advanced Research Projects Agency (DARPA) prograamagers Owen Brown and
Paul Eremenko, “an uncertain future does not méah we throw up our hands, and
simply wait to react to future shocks. It does méaat we must explore a variety of
potential futures, and create strategies and gsli@as well as technical and architectural

solutions that provide hedges for a variety ofuwinstances that could occur.” [12]



1.2. Flexibility Defined

The Merriam-Webster Dictionary definition of flexliby is the “ready capability
to adapt to new, different, or changing requirersg€ftL3] This thesis adopts a similar
definition, namely that flexibility ishe capability to easily modify a system after it has
been fielded in response to a changing environmewt changing requirements(cf.
[14]). Central to this notion of flexibility are ¢hconditions that (1) a system’s
environment or requirements may change in the éutind (2) the system can, to some
degree, be modified to accommodate such changes dHfinition also includes the
notion of ease of modification, which means that éffort required to effect a change
(whether measured in dollars, manpower, or otrsguee-representative metrics) is also
relevant to discussions of flexibility. These imf@mt properties of the flexibility
definition will become more clearly defined throogih Chapters 2 and 3. Also, note that
while some techniques developed in this thesis apgyy to incorporating flexibility into
system development phases (i.e., permitting systeodlifications prior to system
fielding), this thesis focuses on modificationsttaee to be availablafter the system is
fielded. Flexibility during the development prosas another important area of work,
described by Refs. [14] and [15] and often linkedhe desire to preserve design freedom
and delay cost commitment between design and metomiiag [16]-[19]. While Chapter
6 shows that approaches developed herein are éitern® the consideration of
flexibility in the development process, the prird@iintent of these techniques is toward

considering modifications to present or futuredied systems.

1.2.1. Flexibility in the Context of Optimization and Robustness

The definition of flexibility above may be enhanc&dh a graphical comparison
to the more established engineering concepts afmaattion and robustness. Figure 2

illustrates a helpful way of visualizing these cepts, with each concept shown in terms



of a notional performance metric plotted against emvironment (or requirement)
variable:

Traditional optimization involves the minimizati@n maximization (as in Figure
2) of the performance metric assuming a systemestido the nominal operating
environment. Off-nominal environments are not @beed, and it is possible for
performance to degrade significantly in these emnnents.

In contrast, a robust system is designed such wisn the system is exposed to
an off-nominal environment, performance remainse&lto the nominal level. Robust
design techniques, popularized by Taguchi in tH#0%920]-[24], has been well explored
over the past few decades (for helpful surveyshimtopic, see Refs. [24] and [25]). By
definition, however, a robust system cannot haverminal performance better than the
optimized case; and generally such a system wii lsalower nominal performance.

A flexible system is distinguished by the fact tmaddifications can allow the
system to effectively change its performance clatv¢he operator’s discretion. If the
system is in a particular configuration at tiheand the environment changes, the
operator can choose to make a modification to yseesn (at some cost in resources) and
achieve a new performance characteristic at tymd his dynamic behavior introduces a

host of challenges in modeling and decision-making.

Optimization Robustness Flexibility

Nominal
Nominal

Nominal

Off-Nominal
Off-Nominal

Performance
Performance
Performance

Environment/Requirement Environment/Requirement Environment/Requirement

Figure 2. Optimization, Robustness, and Flexibilit Notionally Compared.



1.2.2. Observed and Observable Flexibility

As defined here, system flexibility is essentialigobservable until required to
manifest itself in response to requirement or @mment changes. As a result, flexibility
tends to remain an intangible and abstract contegngineers. To help address this
limitation, specific examples of observed flexitilin the history of space exploration
and human spaceflight have been previously docledej@6]-[28]. Analysis of these
examples has highlighted the classification of spagstem flexibility into the two
categories of intra- and inter-mission flexibil[88]. In cases of intra-mission flexibility,

a one-of-a-kind system is fielded and then modifie@r time to adapt to a changing
environment or requirements (examples include thablie Space Telescope,
International Space Station, and thMer space station). In cases of inter-mission
flexibility, multiple vehicles are fielded in sesi@nd adapted from one mission to another
during the course of a program (examples incluéeSpace Shuttle, Apollo, and Venera
programs). For both categories, decisions madmgldiesign affect the system’s ability
to adapt to new mission environments and requirégsneriexamples in the following
pages illustrate how this thesis’ framework carapplied to both intra-mission flexibility

(see Chapter 5) and inter-mission flexibility ($&eapter 6).

1.3. Recent Examples from Industry and Government

Interest in codifying, quantifying, and integratirfgxibility in space system
design has grown in recent years. Highlighted reree three examples from recent
DARPA and NASA programs, representing what mayaeably be considered state of

the art (or state of the practice) in incorporafiegibility into space system design.

1.3.1. Exploration Systems Architecture Study (NASA

In May 2005, NASA Administrator Michael Griffin comssioned the

Exploration Systems Architecture Study (ESAS) [B®]Jrecommend an architecture to



support sustained human and robotic lunar exptamatiln its trade studies, ESAS used
five categories of figures of merit, one of whicaswExtensibility/Flexibility. Within this
category were considerations of lunar mission gy, Mars mission flexibility,
extensibility to other exploration destinations,neoercial extensibility, and national
security extensibility. ESAS characterized thelsxilbility considerations in terms of
gualitative high (green), medium (yellow), low (ya@tings based on expert judgement.
One example of these qualitative ratings for anheb expendable launch vehicle
(EELV) derived crew launch vehicle (CLV) is shownHigure 3.

The ESAS methodology largely reflects of the statéhe practice in designing
for space system flexibility today. The approaels positive qualities in that it considers
flexibility during conceptual design process, ahdddes so with the recognition that
flexibility must be traded against other objectigegh as cost. As a result, this approach
is amenable to application of common multi-attrdoudecision-making techniques.
However, this approach has clear disadvantagés subjectivity and, more importantly,
its use of a Likert-like qualitative scale with pbysical units. This inhibits the analysis’
repeatability and allows the method’s results todaalily disputed. More fundamentally,
the method treats flexibility as a scalar metri¢hef same class as cost or performance; it
might reasonably be argued that the decision-malers not actually care about
flexibility itself (in whatever units one choosew fit), but rather cares about thffects
that designed-in flexibility may have on future tos performance. These shortcomings

will be addressed by the framework proposed byttigsis.



EELV-derived CLV

Atlas V HLV Delta IV HLV
New Upper Stage Atlaif::rlved Allasc:’eh:sez New Upper Stage
Human-Rated Human-Rated

1in 957 1in614 1in 939 1in 1,100

Probability of Loss
of Crew

Probability of Loss
of Mission

Lunar Mission Flex-
ibility

Mars Mission
Extensibility

FOMs Commercial
Extensibiity
National Security
Extensibility

Cost Risk
Schedule Risk
Political Risk
DDT&E Cost 1.18 2.36 1.73 1.03
Faciities Cost 0.92 0.92 0.92 0.92

11in 149 1in79 1in 134 1in 172

Figure 3. Sample summary of figure of merit rating for concepts in the ESAS report.
Note the qualitative red/yellow/green ratings flexibility. [29]

1.3.2. System F6 (DARPA)

In July 2007, DARPA issued a Broad Agency Announeeimfor the
development of System F6, a flight demonstratioa sétellite architecture in which the
functionality of a traditional monolithic satellite fulfilled with a fractionated cluster of
free-flying, wirelessly interconnected modules. pArpose of this program was to
demonstrate the potential benefits of a system witbuilt-in capability to respond to
mid-mission requirement changes. Four industrynteparticipated in Phase 1 of the F6
project, and an emphasized component of the proyast the development of value-
centric design methodologies to account for thé fahge of benefits (beyond cost
savings) available through the fractionated spadecapproach. All four teams
developed discrete event simulations to track castenue, and performance metrics
throughout simulated spacecratft lifecycles [30]}[33zome teams tracked net present
value of the satellite investment (in cases wheometary revenue was an appropriate
measure of satellite performance), while others lwoed performance benefits into an

aggregate utility [33]. In order to simulate systeperator behavior, the methods tended



to assume ad-hoc decision policies (e.g., ruleard¥g when to replace or upgrade
satellites) while exploring the space of possildeelite designs. The efforts of the F6
industry teams represent a considerable step fdrivathe space industry’s ability to

guantitatively consider benefits of intangible peages like flexibility.

1.3.3. Flexible-Path Human Space Exploration (NASA)

In 2009, the White House Office of Science and heddgy Policy called for the
formation of the 10-member Review of U.S. Humancgflght Plans Committee (better
known as the Augustine Committee) to independeagfess the current status and future
direction of NASA’s human spaceflight program. Téemmittee’s final report was
released in October 2009 [34]. One of the repartgor findings was that “no [human
spaceflight] plan compatible with the FY 2010 budgefile permits human exploration
to continue in any meaningful way” and that “it gossible to conduct a viable
exploration program with a budget rising to aboBtkfillion annually in real purchasing
power above the FY 2010 budget profile.” [34]

One of the viable exploration programs the commiti@oposed was an
innovative “flexible path” for human space explarat involving the development of
systems to enable mission options for a varietyinoler solar system destinations.
Highlighted in the committee’s report is an example how missions to the lunar
vicinity, Earth-Moon and Sun-Earth Lagrange poimtsar-Earth objects, Mars vicinity,
and the moons of Mars could be accomplished in esxang/e years using similar
architectural components (e.g., see Figure 4).urgi® shows the committee’s mapping
of possible paths from one destination to anotidthough only the green path in Figure
5 was costed and evaluated during the committeetyysa variety of other paths exist.
Furthermore, changing political and economic cood# may make demand for
particular paths higher than others at differeniqois in the future. These observations

are incorporated later in this thesis when humategxploration architecture selection
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is used as a demonstration of the proposed deasipport framework. In particular, the
aim of this example application is to recommend winaman spaceflight architecture
should be developed initially in order to allow l@est and high return in an environment

of uncertain and changing mission demand.

Humans in Humans in First Humanto | Human
Cislunar Interplanetary Humans to  Mars Vicinity|  Lunar
Space Space NEOs | Return < -
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Figure 4. Possible "Flexible Path" Mission Sequere [34]
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Surface
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Figure 5. Possible Flexible Path Destination Seqoees. [34]
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1.4. Flexibility in Space System Design Decisions

In short, flexibility is a property that is soughfter by many space system
decision-makers but also one that is intangible difficult to define opertionally.
Conceptually, flexibility is the capability to egsimodify a system after it has been
fielded in response to a changing environment @nging requirements. In the space
industry, where environment and requirement chaagegrevalent and typically cannot
be predicted with certainty, flexibility has beercieasingly recognized as important to
success. This recognition has been exemplifiedntdc by the fact that DARPA and
NASA have proposed flexible spacecraft and flexiblths, respectively, as future
program directions with substantial budgetary asburce implications.

However, certain aspects of flexibility, such asdistinction from robustness in
the requirement to consider a system’s ability eontndified over multiple time periods,
present challenges to analysis and decision-makirigese challenges add to an already
demanding task for space system analysts and degaisakers, involving the
enumeration and modeling of many engineering optiamderstanding the technical,
programmatic, and political implications of theggtions, and making system decisions
that strike the proper balance among multiple dhjes of differing priorities. To assist
in informing the substantially more complex deamsidacing the decision-maker
considering flexibility, flexibility-related challgges are confronted and addressed
comprehensively in this thesis, with the objectafeenabling selection of the next-
generation space systems today that will be bdsttabadapt and perform in a future of

changing environments and requirements.
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CHAPTER 2

REVIEW OF LITERATURE ON FLEXIBILITY

Before describing this thesis’ proposed framewatks helpful to review the
history of thought on flexibility. This chapter divided into five sections: The first
reviews early notions of flexibility in the econassi literature, leading to a brief
discussion of decision tree analysis. The secoadtio reviews a common
representation of flexibility in terms of next-pedi decisions within a state space. The
third section reviews relevant literature on fld&ilmanufacturing systems, and the fourth
reviews recent efforts to consider flexibility ireraspace engineering academia. The
latter two sections in particular contain examplest reflect the limited current practice
of treating flexibility as a separate scalar meimi@ larger decision-making process. The
final section identifies this and other gaps in gresent literature and state of the

practice, establishing the motivation for the fravoek described in Chapter 3.

2.1. Early Economic Notions of Flexibility

Some of the earliest discussions on flexibility andecision-making context
originate in the economics literature. As early 1821, economist Frank Knight
observed that, compared to agricultural productiehich requires commitment at the
beginning of each growing season, the supply ofufsantured goods “is more flexible
over short periods of time” since these goods canstored and the decision about
whether to bring them to the market can be delay@s] Sixteen years later, Hart

recognized that the postponement of decisions waditional information becomes

" Among his accomplishments, Knight is known for listinction between risk and uncertainty.
Knight characterized risk as a situation with ageartain result but certain probability density or
mass functions, whereas Knightian uncertainty imeslsituations with both uncertain results and

uncertain distributions.
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available is a normal occurrence and preservesbiligx in a business plan. [36]

However, he also recognized that this flexibiligngrally comes at a cost:

. an entrepreneur who was obliged to make all bigsibns as to volume of
operations in the present would be unable to uker fimformation as it came in,
and would have to act on what was available. Batribrmal case is that the
business man expects to be in receipt of additiom@rmation bearing on
markets at most future dates long before he wilehaeen forced to make all the
decisions affecting output ... The entrepreneur'siamental means of meeting
uncertainty is the postponement of decisions tidreninformation comes in —
that is to say, the preservation flgxibility in his business plan. But flexibility
involves costs ... ordinarily a given production-sdhie can be produced at
lower cost if the entrepreneur has adapted histitgit well in advance than if

plans are improvised. [36]

In 1939, Stigler developed economic thought on flexibility somewhather.
He too recognized that “flexibility will not be &ée good™ [37] but also illustrated how,
in terms of marginal cost and average cost plas @gure 6), a flexible plant might
have a smaller variability in average and margausts as a function of output compared
to an inflexible plant. Figure 6, from Stigler’'939 article, illustrates how at a nominal
outputF, a flexible plant (represented by the dashed melild incur a higher average
cost to produce each item than would an inflexjpent; however, at an off-nominal

outputA, the flexible plant would have lower average costs

" In 1982, Stigler would earn the Prize in Econofaiences in Memory of Alfred Nobel.
" In fact, in a competitive market, the inflexiblpt would need to close since outputalls on
a decreasing part of the marginal cost curve, megpiice per item (equivalent to marginal cost)

would be less than average variable costs. [37]
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Figure 6. Marginal Cost (MC) and Average Cost (AC)Curves for an
Inflexible Plant (solid line) and Flexible Plant (dashed line). [37]

Twenty-five years later, in 1964, Koopmans reitedathe relevance of flexibility
by observing that “almost all choices occurringeal life are sequential, ‘piece-meal,’
choices between alternative ways of narrowing doenpresently existing opportunity
rather than ‘once-and-for-all choices between #me@rograms visualized in full
detail.” [38] Koopmans introduced the notion o&fptioning of opportunities” which, as
shown in Figure 7, modeled the narrowing of oppaties with time as a tree of
opportunity nodes spaced at discrete times in titerd. Koopmans’ partitioning of
opportunities resembles decision tree analysisodioiced in the late 1950s and 1960s
within the broader field of decision analysis. [39p] Decision tree analysis has been
used substantially in management, economics, agthegring contexts (for examples,

see [44]-[48]), typically for the cases in whichuaer's objective is minimization or
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maximization of the expected value of a single jrobst, or utility metric. A common
drawback is that the analysis (and even simply [abimg the tree’s probability inputs)
can quickly become unwieldy as the number of ogtiand time periods grow into a
“decision bush” rather than a “decision tree” [448]. Also, typically the focus of
decision tree analysis is on valuating existinga® rather than recommending which
options should be embedded into the system initifdd] Nevertheless, recognition that
the options provided by flexibility can be visu@izin a rapidly-expanding tree structure
provides a useful model for discussion and thought. also hints that dynamic
programming techniques, which are well-suited ttinoiging paths within networks of
nodes, may be particularly useful in analysis exibility.” This idea is incorporated into
the approach proposed in Chapter 4; however, ifiistimportant to introduce a second

important concept from the economics literature.
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Figure 7. Visualization of Koopmans' Partitioning of Opportunities. [38]

" An irony of this approach is that, in assumingirgle expected-value objective, traditional
decision-tree analysis leaves little or no prerwgafor the decision-maker to trade different
objectives or risks against each other.

" For example, one application of stochastic dynapriegramming in the later economics
literature involves consideration of an individsalabor supply flexibility in order to maximize

total discounted lifetime expected utility. [50]
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2.2. The Two-Period State-Centric Notion of Flexibity

A second and largely separate body of literatureegonomics and industrial
engineering considers flexibility within a framewobof period-to-period transitions
between options in a state-space. Epitomizing \tl@® is a paper written in 1984 by
Jones and Ostroy [51] which suggested, “Flexibiktya property of initial positions. It
refers to the cost, or possibility, of moving torieas second period positions.” Jones
and Ostroy also suggested, “One position is moegilfle than another if it leaves
available a larger set of future positions at anyewy level of cost.” This was
mathematically formalized with Egs. (1) and (2)g. E1) definesG(a,s¢) as the set of
next-period positiond attainable from positioa at a cost that does not exceed some
valueq, in the context of some stasef the operating environment. Eq. (2) formalizes
that positiona is more flexible tham' (denoted bya >¢ a') if the set of positions
attainable froma always contains the set attainable fram excluding the zero-cost

option to stay ira'.
G(a,s,a)={b:c(a,b,s)<a} )

a>_a when
G(a,s,a) > G(a',s,a)\g(a) @)

Thus, an important recognition in Jones and Ossrayork is that the relative
flexibility of two positions is budget-dependent fesource-dependent). For an infinite
budget, two positions would be equally flexible &e®e each can reach the same set of
[all possible] future positions. At lower budgetss may not be true.

However, EqQ. (2) has a limitation: It defines tia flexibility only for the case
where the set of second-period positions frams fully contained within the set of
second-period positions froan As illustrated in Figure 8, no conclusion candbawn if

one of the sets is not fully contained within thbkes. This is appropriate in principle, as
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the positions available fro that are not available frommmay be very important (e.qg.,
may perform particularly well in meeting a part@muhew requirement or environment),
and it illustrates the need to consider more thast when making decisions regarding

flexibility.

G(a,sq)

G(a'sm)\g(a)

Figure 8. Graphical interpretation of Jones and Osoy's
interpretation [51] of relative flexibility of positions.

Other works which have discussed similar statermeritameworks include
Christian and Olds [52]-[53], Gupta and Rosenhé&gd, [Baykasglu [55], Silver and de
Weck [56]-[57], and Mandelbaum and Buzacott [58]Saleh’s visualization of
Mandelbaum’s and Buzacott's basic concept [49]sillates the interesting difference
from Christian and Olds’ and that of Jones and @sin that the system’s allowable
states are not necessarily the same between pdriedshat the definition of a system’s
state space may change with time, which can coatglianalysis). In general, these
frameworks and others of this class are helpfubbse they provide a visualization of the

concept of flexibility itself (as opposed to thelua of flexibility), which is intuitively
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related to the number of options that exist forysteam as time progresses. However,
unlike decision tree analysis (see Section 2.1gseéhframeworks become difficult to
visualize and apply for decisions consisting of entran two periods. In essence, the
framework detailed later in this thesis combines thtuitive concept of flexibility
provided by these state-centric frameworks witheeded variants of the multi-period

analysis available through decision trees detabatler.

2.3. Flexible Manufacturing Systems

A large body of literature exists within the martitaing community on the
selection and operation of flexible manufacturinggtems. A flexible manufacturing
system, or FMS, can be defined as a computer-dadrproduction system capable of
processing a variety of part types. [59]-[60] Tdegstems generally consist of computer
numerical controlled (CNC) machines, loading andoading stations, transportation
systems for parts and tools, and computerized pignand control systems (e.g., see
Figure 9). [59],[61] Key concerns in this fieldvodve around (1) how to select the
appropriate pieces of equipment and layout for lei$ Rnd (2) how to optimally operate
an already existing FMS, in both cases to allowsystem to optimally (e.g., quickly and

inexpensively) respond to changing production negquents.

Figure 9. Example setup of a small flexible manufauring system. [59]
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Unfortunately, the literature in this field tends be highly specialized to the
modeling of machining systems, and analysis appesmcsuggest modeling and
optimization techniques specific to different type$ equipment rather than one
overarching methodology. As a result, FMS measwfkslexibility are numerous
(including machine flexibility, operation flexibiyi, routing flexibility, process flexibility,
product flexibility, volume flexibility, and more5p],[61]-[63]; one survey identifies 28
different types [64]). In addition, these flexibil metrics are often measured either on a
Likert-like (e.g., 1-5) scale (e.g., see [64]) ar a scale whose physical meaning is
difficult to interpret [55],[65]. This combinatioof disparate, qualitative metrics can
complicate decision-making, an issue which has bemognized in the past. For
example, Gupta and Goyal [63] note, “a single alt@mpassing measure of MF
[manufacturing flexibility] seems to be an evasissue and such a measure is yet to be
developed,” and Mohamed [62] and Cox [66] noteg“doncept of flexibility is new,
with no acceptable measurement, and consequentigated on an abstract basis rather
than a concrete basis.” [62]

One interesting detail raised by the work of Tempeér [61] and Tetzlaff [59] is
that dynamic programming techniques may be usdiddahe lowest-cost route within a
network in which nodes are time periods and arespaths of fixed FMS configurations
(see Figure 10). However, an important limitinguamption behind this approach (and
throughout the thesis of Tetzlaff [59]) is that tiegjuired production rate in each period
is known in advance. This highlights that the wigbn of flexibility posed in Section 1.2
encompasses situations in which future changeswir@ments and requirements are
precisely known in advance (i.e., the determinitict of the more general case where
environments and requirements are not known in @@Bja Thus, Tempelmeier and
Tetzlaff illustrate the curious concept of flexibjl with respect to deterministic

requirement changes.
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Figure 10. The deterministic flexibility example & Tempelmeier and Tetzlaff [61].
The optimal path through the network is shown leydark path 0- 1 — 3 — 4.

2.4. Examples from Aerospace Engineering Academia

While the aerospace industry’s consideration ofilfligity in design of new space
vehicles is largely reflected by the examples ptedi in Section 1.3, the aerospace
engineering academic community has recently praposae variety of additional
techniques.

Ross, Viscito, and Rhodes [67]-[68] propose thdyaigof flexibility in terms of
epochs and eras, where an epoch is a time peridfixetl context and fixed value
expectations” [68] and an era is a time-orderegusace of epochs (i.e., one possible
timeline of expectations). Once an era is definRdss and Viscito [67] propose
quantifying flexibility with a metric called valuereighted filtered outdegree (VWFO)
defined in Eq. (3). Inthis equatiom]‘,<+l indicates the utility of system design optjoin
epochk+1 (i.e., the next epoch), amdrci‘,-k is a binary 0 or 1 depending on whether the
transition is possible for a given budget (or #il). As a result, systems with many
high-utility next-epoch (next-period) options anewf low-utility next-epoch options
receive high VWFO scores. However, this metric Imagations. First, the use of the

signum function in the summation of Eq. (3) pernaitsystem design with many high-
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utility options and many low-utility options to haxa VWFO indistinguishable from one
with only medium-utility options. Second, VWFO ¢@mputed from epoch to epoch,
making it difficult to assess for an entire eranafly, the metric convolves the notion of
flexibility with the value (or utility) of that flgibility, preventing the two from being
distinguished. However, the metric contributedemricexample employing a two-period
state-centric concept of flexibility similar to thaf Jones and Ostroy (see Section 2.2),

including use of a budget constraint.
1 & kel | kel K
VWFQ' =~ 1Z[Sgr(uj - Ut Arcl | €)
-14

More recently, in 2010 Olthoff, Cunio, Hoffman, a@dhanim [69] proposed a
seven-step procedure for applying flexibility, im attempt to develop a practical
example of designing flexibility into a small gurdae, navigation, and control testbed.
The group identified two strategies for flexibilitpamely modularity and maximum
overhead capacity (i.e., system margin). Limitagi@xist in that, at present, the group
does not appear to distinguish flexibility from usness, and development of the testbed
appears to have occurred in parallel with develogmef the flexibility decision
procedure. As a result, the example applicatiaatube decision procedure in retrospect
to justify decisions already made, and the procedardate lacks detail on the tools
needed to fully inform decision-making.

Substantially greater depth on the nature and aexmglof the flexibility problem
was covered in theses by Saleh [48] and later NJ&Dk and Nilchiani [71]. In 2002,
Saleh [48] extensively motivated the need for fidiy in space systems and examined
its definition, in particular contrasting it agdirtee more static property of robustness.
Specific examples were provided to illustrate tleed for flexibility in modern space
systems, including instances of historical requeata change, market demand change,

and obsolescence. Saleh applied techniques fraimiale tree and real options analysis
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to demonstrate the existence of net-present-vaitieaal design lifetimes for revenue-
generating satellites and used these techniquésefuto quantify the value of satellite
servicing.

In 2005, Mark [70] further explored designing flekiy into systems for the
application of an unmanned aerial vehicle, proppsinconsider flexibility in the context
of platforms and frames (where the platform is ske¢ of common elements between
modified designs, and the frame is the set of cbednglements). Mark proposed to
define flexibility as “the ratio of performance emttement (output) to the cost and time
required to realize such an enhancement (inpufgd] Later in 2005, Nilchiani [71]
proposed a 12-step process for assessing the egflexibility in a space system, which
included using decision trees as well as creatifftgaibility tradespace” for visualizing
alternatives’ cost-revenue (and/or cost-benefigddéss one period into the future.
Nilchiani also addressed how the proposed methggalould be integrated into a multi-
attribute trade-space exploration in a merged nuetlogy named FlexiMATE. [71]

In 2009, Lim [72]-[73] also proposed a general aggh to design evolution,
focusing on aircraft and using example applicatiofisevolving the F/A-18 Hornet
fighter as well as a simpler cantilever beam desidim adopted the framework of
stochastic programming with recourse in order tbnoige the initial design of a system
while probabilistically considering events that ltbunfold one period in the future. Lim
suggested a combination of deterministic scenaased) optimization, stochastic
programming, and interactive decision support ttmldesign evolvable systems using a
9-step process named EvoLVE.

The work of Christian and Olds [52]-[53] is anotlmecent example of aerospace
literature considering flexibility. In their worlChristian and Olds describe flexibility in
terms of a system’s ability to move between différend states in a lawful state space
(similar to the two-period state-centric framewdsdscribed in Section 2.2). An example

application evaluates two competing human explomnadirchitectures in terms of their
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ability to easily achieve extended lunar missiohdguture requirements dictate such a
need. Three state variables are defined to desthi performance requirements of the
extended lunar missionand a Difficulty Scale for Evolvability AnalysisDSEA) is
formulated to permit expert judgement to rate thféicdlty (on a 1-3-9-27-81 power
scale) of evolving each architecture to meet varisecond-period performance states.
The authors observed that “a single metric canreptwe the sensitivity of an
architecture’s capability to evolve” since that ability depends on the final evolved
state that is desired. For example, architecturenay be able to easily adapt to
requirementx but not requiremeny, while architecturd®d may be able to easily adapt to
requirementy but not requirement. In such a scenario, it cannot be said that efher

B is more flexible (or evolvable, or adaptable) gsl¢he future requirement is known a
priori.

In 2006, Silver and de Weck [56]-[57] proposed aalgsis of evolvability based
on expansion of a network of system operating avittking costs through several time
periods. A set of particular deterministic exogendemand scenarios was assumed, and
an optimizer was used to find the least-cost pathugh the network for each scenario.
Silver and de Weck refer to the method as a tinpaeded decision network (TDN) and
apply it to selection of an example NASA heavy-liftunch vehicle. One notable
limitation to the method is its single-objectivedagdeterministic solution approach: Since
the exact present and future demands of each scesma known in advance to the
decision-maker (or optimizer), paths through timetidomain are able to fully specify

any optimal solution. No explicit consideratiorgisen to the possibility that a decision-

" Contrary to Jones and Ostroy, whose state-spausitigns” appear to refer to future options,
the state space of Christian and Olds is definethbperformanceof those future options. For
reasons that should become apparent in Sectitnis4hesis primarily supports the view of Jones
and Ostroy. However, as will be shown, incorporatf future requirements into the state space

is required in order to apply the Markov decisioagess approach.
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maker will make choices in part to hedge againsetain future events. In this sense,
the approach is similar to the deterministic fleiXyp considered by Tempelmeier and
Tetzlaff (see Section 2.3).

A final note should be made on recent work from Blsn Tracey, Irvine,
Schram, and Paté-Cornell [74], presented in Mafitlzand developed independently of
the present thesis. Motivated by recent DARPAr&sftoward developing value-centric
frameworks to address the business case for freatBd spacecraft, the authors propose
heuristic and dynamic-programming-optimized decigioles for the operation of future
fractionated spacecraft. Using the example ofationated 3-module weather satellite,
the work simulated the state of the satellite amgpsrt systems (e.g., which modules
were functional, whether spares existed on thergipand optimized the procurement or
launch of new modules in order to achieve the hgb&pected net present value under a
set of assumptions to assign a dollar value tonmeg weather data. While the authors’
goals differ substantially from those of the prestresis (e.g., they do not seek to
operationally define or measure flexibility, noreathey interested in informing initial
system design decisions), their use of Markov dmtiprocesses from the operations
research community is common.

This set of literature from aerospace academigstied in order in Table 1 and
summarized in terms of several important charastiesithat have arisen in the preceding
discussion. Each element of the table indicatesethdnr each work either
implemented/provided®), recognized £\), or did not address (no mark) each of the six
characteristics represented by the columns:

Beginning with the first column, it is noted thatiny of the aerospace works
surveyed here have arisen as a result of effoppsaaide further definition to the concept
flexibility, and some of these works have explotk topic in great depth. As Table 1
indicates, six of these nine works provide deforis for flexibility (or, in one case, the

equivalent term evolvability). Fewer of these worecommend metrics for flexibility,
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although in some cases the metrics of others amgraezed in literature reviews. Also in
terms of this second category, it is worth notingttneither of the two works that provide
objective metrics for flexibility clearly distingsi flexibility from its value.

The third column indicates whether a work considetrades among multiple
distinct objectives. In general, this topic tendge covered unsystematically or not at
all among present works on flexibility, perhapspiaxrt because much of the aerospace
flexibility literature has focused on application systems with priced services (cf.
Daniels, Tracey, Irvine, Schram, and Paté-Corr@l],[Nilchiani [71], and Saleh [48]).
In cases where multiple decision-maker objectivescansidered, few, if any, mentions
are made of efforts to seek Pareto-optimal tradesng these objectives to ensure that
the decision-maker is making an objectively goocisien.

The fourth column indicates whether a work utilizets considers stochastic
models, and the fifth indicates whether a work aers decisions at multiple future
periods. With the exception of the very recent kvoi Daniels, Tracey, Irvine, Schram,
and Paté-Cornell [74], note that implementatiorthefse two characteristics is mutually
exclusive. This major limitation reflects the fabat posing a stochastic single-future-
decision problem and a deterministic multiple-fetalecision problem are each relatively
simpler than posing a stochastic multiple-futureisien problem. However,
overcoming the complexity of solving this more r&a problem brings with it
corresponding benefits.

The final column indicates whether a work implenseot proposes a framework
by which an engineer or decision-maker is intentedhake an initial system decision.
In many cases, such a framework is the intent efwlork, but in some cases (e.qg.,
Daniels, Tracey, Irvine, Schram, and Paté-Corréd],[ Saleh [48], and Ross, Viscito,
and Rhodes [67]-[68]) it is not.

The final row in Table 1 indicates that it is th@eint of the present thesis to

contribute toward each of the key characteristizg have been here identified. More
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importantly, however, it is the intent of this pees work to do so in an integrated
fashion. In considering all aspects of this prabmultaneously, it is intended that this
thesis will contribute not only improvements in yioeis works’ considerations of
individual aspects of the flexibility topic, butahit will contribute a more coherent

understanding of flexibility as a whole.

Table 1. Summary of Flexibility-Related Literature in Aerospace Academia.

Characteristic

© (green) = Implemented or Provid
A\ (orange) = Recognized
No Mark (red) = Not Addresse

Framework for Initial System Design or Selection

Stochastic

Authors Year

IO Objective Metric(s) for Flexibility (or Evolvabili)

oM Definition of Flexibility (or Evolvability)

Ross, Viscito, and Rhodes

A2 I BIP Considers Decisions at Multiple Future Periods

(oI IIPRIPS Trades among Multiple Distinct Objectives

Olthoff, Cunio, Hoffman, and Cohanim 20O A
Saleh 2002 BOCIWAN ®©

Mark 2005 O] ®
Nilchiani 2005 EOCIWAN © ®
Lim 2009 © ®©
Christian and Olds 200480 AN
Silver and de Weck 200 ®©

Daniels, Tracey, Irvine, Schram, and Paté-Cornell 0112

o>
e|o|>
(o) Kolo]
O]
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2.5. Gaps in the Flexibility Literature

In summary, this chapter has surveyed a broad &elitevature spanning

economics, industrial and systems engineering, apdospace engineering. In

combination with the state of the practice in indysglescribed in Chapter 1, certain gaps

are evident in current thinking on flexibility amdirrent implementation of methods to

consider this property in system design:

In much of the literature (esp. cf. Sections 2.8 4r3.1), there appears a
tendency for engineers to consider flexibility asystem-dependent scalar
guantity. This concept has driven the inventiomoimerous scalar measures
for flexibility that are often subjective and expsed on a scale with no units
or clear physical interpretation. Further, whernfdhese measures are used in
trade studies, they imply that flexibility is a perty of the system separate
from all others (such as cost and performance megsu However, the
decision-maker likely has little interest in flexigty for the sake of
flexibility: He or she cares about flexibility pmarily because of cost and

performance benefits it may enable in the future.

Few existing methods for considering flexibility d& at decisions more than
one period in the future.While considering one future period is an impotta
first step, it is only one period less myopic ttliha traditional single-period
horizon. If a system or program is to be operdtedmany decades (as is
often the case in the aerospace industry), thegmtudiecision-maker cares not
only to consider options for the first time thajugements or environments

change, but also for many subsequent changes.

Furthermore, of methods that do consider implicati® of flexibility more

than one period into the future, few utilize stoctiéc models. Some
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methods assume a deterministic schedule of furgeirements, while others
select a handful of deterministic scenarios uporclwvio evaluate the system
of interest. However, the probability of any omemario occurring may be
nearly (or, if continuous random variables are Iwed, exactly) zero.

Without an understanding of the underlying probaaed of transition between
demand or requirement environments, it may be probtic to assume a
handful of scenarios can properly represent théreerspace of possible

futures.

*  While some existing methods (such as decision Jtqeesnit valuation of the
avenues of flexibility provided by a system, thegpitally operate by
assuming a single expected-value objective functionreality, engineering
design involves trades among multiple cost and perfance metrics as well
as measures of dispersion for these parameters wharbject to a

stochastically changing environment.

* Finally, the flexibility literature contains littleliscussion about the policies
that flexible system operators should use to dewilether to exercise the
options provided by flexibility. Some appear tcw@awe that the appropriate
policy is to always modify the system to preciseheet the anticipated
demand or requirement. However, this is a vergigpease, and it may be in
the program’s best interests not to meet this deméant is likely to be
transient, or to over-perform if doing so is likely to bogserformance in a
later period of high demandl'he policy by which the system will be operated
is an important part of system design, especially & flexible system. It

would be imprudent to design a flexible system &hcow it over the fence”

" For example, in 1983 Bernanke illustrated a clalsstochastic problem in which optimal

investment must involve at least one period@investment at all. [75]
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to the operators with no guidance on how or wheexercise the options that

were so carefully embedded.

In summary,today there exists no quantitative, stochastic, mtifobjective,
and multi-period framework for integrating flexibil ity into space system design
decisions It is such a framework that this thesis propodess fully recognized that in
order to be practicable, this framework must (Iyioate from an intuitive and easily
communicable operational understanding of flextil(2) provide enough structure and
tools to guide analysis but not so much as to keatprocess tunnel vision” for the
engineer in the field, (3) require a reasonable lmemof inputs, and (4) provide for clear
interpretation of results. To accomplish this, fremework draws from literature and
tools from operations research, engineering, ar@ha@uics in order to operationally
define flexibility and transform its consideratiamo a tractable problem of stochastic

optimal control.
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CHAPTER 3

OBJECTIVES AND CONTRIBUTIONS

The contributions of this thesis largely address ¢ghps in the present literature
identified in Section 2.5. These gaps suggestahkgast four components are critical for
a decision framework that integrates flexibilitytdnspace system design decision-
making: First, astochastic model for the evolution of system demand oxarltiple
future time periods must be developed; such a model must describe avegstem may
be expected to accomplish (or what a decision-maiesr be rewarded for performing) in
the future. Second, a set o&ndidate system design®or configurations must be
developed that is valid for multiple time periodsthe future; this describes the future
options available to the decision-maker and is satgyl by the two-period state-centric
notion of flexibility in the literature.Quantitative performance measuresare required
to evaluate how well the configuration that isded at a given time fulfills the demand
or mission requested of it; in some scenarios, iplaltperformance measures may be
required to capture trades amangltiple objectives. Finally, since decisions regarding
which system(s) to develop and field next must laelenat multiple future time periods, a
process must exist for providirgequential decision supportin an easily interpretable
manner. Since the framework developed in this @sapis intended to be used by
decision-makers facing an immediate system selegtioblem, of particular interest is to
aid ininforming initial system selection These components are illustrated graphically

in Figure 11.
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Figure 11. Critical components for decision framewrks addressing gaps in present
flexibility literature.

Guided by the present gaps in the literature aedctitical components above,
this thesis develops a particular set of steps ¢hgineers and decision-makers in the
future can follow not only to better understand e®dnd implications of flexibility for
their particular engineering systems, but alsodeniify best possible initial system or
architecture designs. Considering flexibility invay that addresses these gaps in current
methods will enable the selection of systems todajpred to the decision-maker’s
budget and preferences, that will be best ableerdopn when subject to a future of
changing environments and requirements. To acdsmphis, core objectives and

contributions of this thesis include:

» Formulation of the two-period state-centric notminflexibility (see Section
2.2) as a formal configuration-state-based conémpspace system analysis

and design.
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» Formulation of a state-centric stochastic multiipetr model capable of
describing evolution of the demand environment ihichh an engineering

system operates.

» Incorporation of system modification policy intoitial system selection by
using the above formulation to pose integratiorfleXibility in design as a

solvable sequential decision-making problem.

» Implementation and demonstration of the utility suflving for the multi-
objective (Pareto-) optimal sequential decisionsabéed by flexibility,

including:

» Optimal “open loop” sequential system configuratmaths, in which
future system configurations are changed accordmga preset

schedule.

» Optimal “closed loop” system configuration poligies which future
system configurations are chosen based on a cotidmnaf the
current configuration and current demand envirortmernabling
tools from the operations research community aeefdhmulation and
probabilistic dynamic programming solution techmgufor Markov
decision processes. In addition, Appendix A contes a new
heuristic technique for identifying concave porsiasf Pareto frontiers

in dynamic programming problems.

» Systematic use of multi-objective (Pareto-) optiraahfiguration paths and

policies to recommend initial system configurataecisions.

» Application and illustration using the examples(df communications and

reconnaissance satellite system selection, (2)iptettor distributed-payload
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satellite selection, and (3) NASA human space egplon architecture
selection. The latter two examples in particulse this thesis’ framework to
provide practical insights regarding current proideof interest to the space
industry. Also, Appendices B and C include conttitns of a human space
exploration transition cost model and Markov champert judgement

elicitation implementation that permit the NASA exale to be executed.

The remainder of this thesis is organized as fddtovChapter 4 introduces the
five-step framework central to the thesis and esttety establishes its theoretical basis.
Chapter 4 also includes a demonstration of thedwaonk for a simple example in which
a small government must decide upon whether to ldevand field 0, 1, or 2
communications or reconnaissance satellites abwsriuture time periods. Chapter 5
applies the newly developed framework to a moreeturfractionation-related question
of whether to distribute payloads among multipleefflying modules for an Earth-
orbiting satellite. Chapter 6 applies the framéwtar a current NASA question of what
human spaceflight architecture decisions will resal maximum long-run return for
minimum long-run cost. The latter example introekiseveral modeling complexities to
the framework, demonstrating significant extengipibeyond the simple examples of

Chapters 4 and 5. Chapter 7 concludes with a suynamal suggestions for future work.
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CHAPTER 4

THEORETICAL BASIS FOR A MARKOVIAN STATE-SPACE
FLEXIBILITY FRAMEWORK

Based on the gaps in the current literature obdemeChapter 2, Chapter 3
established that the three rungs of Figure 11, flasquantitative performance measures
linking the bottom two rungs of the figure, areticel for a decision framework that
integrates flexibility into space system designisiea-making. To accommodate these
requirements, this chapter presents a frameworgistomg of five basic steps, outlined in
Figure 12. First, system configuration options idemntified and costs of switching from
one configuration to another are compiled into &t cwansition matrix. Second,
probabilities that demand on the system will traosifrom one mission to another are
compiled into a mission demand Markov chain. Thaode performance matrix for each
design objective is populated to describe how wedl identified system configurations
perform in each of the identified mission demandiremments. Fourth, possible future
sequences of system configurations are simulatddsaquences that are Pareto-optimal
in terms of the decision-maker’s objectives aranidied. In a complementary approach,
the system decision problem is formulated as a ivobjective variant of a Markov
decision process, and Pareto-optimal decision jesliare identified. Finally, the paths
and policies from the latter step are synthesingnl a set of data to inform initial system

selection.

35



Define Markovian Demand
‘ Environment Evolution

Define Configuration .
Options and Cost
Transition Matrix

Define State-Dependent
Performance Matrix

Decision Support Analysis

72 \
! Analysis Analysis I
: Option A Option B I

|
: Find Pareto-Optimal Find Pareto-Optimal !
I “Open-Loop” Paths _ “Closed-Loop” Policies :
| e — using Markov Decision |
| Process Techniques I
! I
! |
| ]

|dentify Path and/or Policy Commonalities
to inform Initial System Selection

Figure 12. Five major steps of this thesis’ frameuork.

4.1. Step 1: Define Configuration Options and th€ost Transition Matrix

As noted in Section 2.2, in 1984 economists Jomeks @stroy [51] suggested,
“Flexibility is a property of initial positions. tlrefers to the cost, or possibility, of
moving to various second period positions.” Thiep 1 of this proposed framework

begins by defining: What are the possible “possioof an engineering system?

4.1.1. Defining the Configuration Space

This framework proposes that the “positions” of emgineering system are its
possible configurations, or its possible designiamst This choice for the position
definition has the reasonable implication that gienough resources, the engineer or
decision-maker can choose to field any particulmtesn configuration (or be at any

particular “position”) in the future.
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What precisely defines such a set of configuratisrapplication-specific but may
be guided by the fact that systems, by definitmmsist of combinations of lower-level
components or characteristics. In the examplencdigplane, each system configuration
might be defined by a combination of charactessttich as wing sweep angle and
aspect ratio, engine type, and fuselage diamdtethe case of a satellite constellation,
each configuration might be defined by charactiessike number of satellites, number
of orbit planes, angular spacing between satellitea plane, and the inclinations and
right ascensions of the ascending nodes of the pldmes. In other words, each system
S inaset of systemsY, i =1, 2, ...,N} may be defined by a set of design variableg {
k=1, 2, ...,M}, whereN is the number of candidate systems under considerandM
is the number of design variables required to ugligjdefine each system. Written
concisely,S is defined by the orderéd-tuple i, X2, ..., Xv).

Thus, the available configurations for an engimegsystem may be considered to
comprise a configuration state space that can fiealized as a set of design points in a
hyperspace in which each dimension represents tecydar design variable or design
characteristic. A simple two-dimensional exampléllustrated in Figure 13. Here, the
configuration state-space consists of five systarhgnterest defined by particular
combinations of values of the design variabdeandx,. An important concept conveyed
by this visualization is that different discretesgms may not be equally distinct from
each other. For example, in Figure 13 it is clbat S, S, andS; are physically quite
alike in the sense that their defining design \@esa have similar values; in contra$t,
and$ lie in different areas of the configuration stapmce and are physically different.
Thus, within the configuration state space, distaeuclidean or otherwise) is an
indicator of the physical similarity of two systems

Unfortunately, in many cases, the design variablag not have cardinal or even
ordinal properties. For example, one design véifdr a satellite might be the type of

battery used for energy storage (e.g., nickel-cadminickel-hydrogen, or lithium-ion

37



batteries). In such cases, engineering judgemext shll suggest that some of the
options are more alike than others and at leastaditative notion of distance may still

exist.

>
X1

Figure 13. Example configuration state space in vith five
systems are defined by two design variables.

From where do the discrete systems of the configuratate space originate? In
some applications, an engineer may be faced wphollem in which many candidate
configurations have already been defined. In @thar systematic process may be
required to identify these configurations. Thisaisommon early step in multi-attribute
decision-making (MADM) methodologies. Since thentxinatorial space of alternative
system configurations can be quite large, previamesks have proposed the use of
morphological matrices as a brainstorming tool (andasionally as a tool to enumerate
the entire combinatorial space) [17],[76]-[79].

An example morphological matrix is shown in Table Zach row denotes a

particular design variabbe for the system, and possible discrete valuesdoh &ariable

" In many cases, this qualitative notion of distantight be rigorously quantified by defining
each of the nominal (non-ordinal and non-cardingljons in terms of their own internal design

variables.
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are listed as options. A single configurati®ms defined once one value is selected from
each row. Thus, if values for each design variabdy be selected independently, the
total number of statedloa In the configuration state space is the productthef
cardinality of each design variable’s set of pdssdiscrete values. This relationship is
expressed via Eq. (4).

This total number of states can be quite largeedémg on the number of design
variables considered and the number of values paghtake. One way to restrict the
architectures considered to a representative buhageable set is to use the
morphological matrix to assist in brainstormingrtteel configuration options [77]. In
this case, the number of configuratidtigonsidered in the analysis will be less than full-
factorial Niotal.

Table 2. Example Form of a Morphological Matrix.

Design Discrete Values Number of
Variable Discrete Values
X1 X1 X2 X3 Xi4 || =4
X2 Xo1 Xo2 Xo3 | |=3
X3 X31 X32 X33 X34 X35 X36 |x3|=6
XM . . . . . . | XM |
M
Ntotal = | ”Xk‘ (4)
k=1

4.1.2. Defining the Cost Transition Matrix

Recalling that flexibility “refers to the cost, possibility, of moving to various
second period positions” [51], to proceed it isesmary to incorporate cost information
in addition to information on the composition ofcbhasystem configuration. For
engineering systems, this cost typically consi$tsmo temporally distinct components:

recurring and nonrecurring costs.
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4.1.2.1. The Development Cost Transition Matrix

The cost information most central to the conceptexdibility falls in the category
of nonrecurring costs. These costs, which typycaltcount for the one-time costs
required to develop a new engineering system, eleged to the resources required to
develop the system given existing components adichtdogies. In other words, these
are the transition costs incurred due to a switoimfone configuration to another. As a
result, these switching costs are naturally defimed pairwise manner. This thesis
proposes the definition of a matige, Where the elementgey,j are the costs incurred to
develop configurationfor the next time period given that the configigatin the current

period isi. Table 3 illustrates the format of such a matrix.

Table 3. Example Format for a Cost Transition Matix C.

To Configuration

S S S - - 0§
_5 S Ci1 C12 C13 s CiN
=
© S Co1 Co2 C3 L CoN
>
2 S Cs1 C32 C33 s C3.N
C .
/o)
O
S
o
i
S| Cne Cn,2 Cn,3 c CN,N

Costs in this matrix may be calculated elementdbyrent using available
parametric models or other cost estimation teclesqu However, in some cases,
especially when large numbéxsof possible configurations are under considerasind
N? elements must be populated, this technique magrbe time-prohibitive. In such
cases, simplifying approximations for these tramsitcosts may be warranted. For
example, consider a configuration state space iolwdach syster§ is defined by a set
of binary design variables. That 8,= [x; Xz ... xv]", wherex, € {0,1} V¥ k. Let each
design variablex. denote whether or not(= 1 orx = 0, respectively) independent

subcomponerk of the system has been developed and exists $berss. Let the cost
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of developing each of thd independent subcomponents be defined btieements of
a column vectoR. In this case, Eg. (5) provides a simple formfolacomputing costs
for each elementyey,j Of the matrix. Note that in Eq. (5), the opercleir() denotes the
Hadamard entrywise product operator and the ¢lahdicates the dot product operator;
in short, this equation simply adds the costs ofettging each of the previously

undeveloped components.
Caevi = fz-(ma><§j -5 16»: ﬁ'(éj -§o éj) (5)

Note that Eq. (5) inherently assumes that theensémt of subcomponents in the
transition fromS to § has a negligible cost. If this assumption is ahséc and
subcomponent retirement (or shutdown) costs caddbmed by theM elements of a

column vectoD, the formula may be modified as in Eq. (6).
Cdevij:R°(SJ_S\°SJ)+D°(SI_SIOSJ) (6)

In the case of Eq. (6), for example, the numbedath elements that must be
provided by a cost estimation analyst has beengdthfromN2 to 2M. As Figure 14
helps to illustrate, typically this change servestbstantially reduce the pieces of data
that a cost analyst must provide: For instanc#encase where a system is definedvby
= 5 subcomponents, Eq. (6) is more efficient ag lag more thal = 3 configurations
are under consideration. If shutdown costs arerelevant, Eq. (5) is more efficient as
long as more thail = 2 configurations are under consideration. GahgrN will be
substantially larger than these break-even vafugsignificant trade-space exploration is
to be conducted. In fact, if tHall space of possible configurations is to be expldoed

this binary example, then by definitidh= 2 .
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Figure 14. TheM-N space, indicating for the binary subcomponent scemio

regions in which it is more efficient to use Eqgs.5) or (6) rather than
populate the cost matrix element by element.

It should be emphasized that this binary subcompo@eample is intended only
to illustrate one straightforward method for populg the development cost transition
matrix from more basic pieces of information. Ediens to this basic form are clearly
possible (for example, if the subcomponents areimtgpendent and having developed
one for the current time period offsets costs ofettgping another for the next time
period). For the remainder of this thesis, no agdions are made regarding how the

development cost matrix is populated.

4.1.2.2. The Recurring Cost Transition Matrix

A second component to transition costs is the rewurcost, which typically
accounts for the production and operation of ayfdé#veloped system. These costs too
can be represented in A N matrix, and can be decomposed into two lower-lewsts
of production and operation.

If we extend the binary subcomponent model andhdedi configuration by a set

of nonnegative integer-valued design variables,haeeS = [x1 X ... xv]', wherex
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€{0, 1, 2, ...} V k. Such a representation would be useful in demg;jlfor example, an
engineering system consisting of multiples of sutyoonents. In this case, the design
variables ofS directly describe the number of subcomponents thadt be produced in
order to produce the system by the next time perididsubcomponents in existence
during the current period cannot be effectively sexli into the next period, then
production costs become a function only of the umétion decision for the next period,
or the column of the cost matrixIn this case, the production component of thenrég
cost transition matrix can be represented byNheN matrix Cyroq, described by Egs. (7)-
(8). Note thaQ is a column vector of per-unit production costghwimensiondM x 1
and individual elementg.. Equation (7) applies linear algebra and assumegarning
effects during production, while Eq. (8) demongsathow learning effects can be
incorporated using the Wright learning curve modith learning perceng [80]. Note

thatsx denotes individual elemektof column vectofS.

1
1 — - - -
C:Drod: QT[ SZSN] (7)
1 Nx1
S 1
Corodjj = ;qksjg,; (8)

If it is assumed that the configuration under depetent in the current period is
to become the operational system in the next periben operations costs can be
accounted for through ah x N matrix Cops in which each column is identical.
Unfortunately, in many scenarios it is unrealistcsimply add operations costs for each
subcomponent of the configuration; for example, rapens costs may be nonlinear

functions of the total system investment cost.this case, per-period operations costs

" If this is not the case, an extension to Eqs(§)}o include dependence on the rows is possible.
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Cops,i for each configuration must be estimated with application-specific toalsd

converted taCopsVvia EqQ. (9).

C:ops = lCopsi Jle [1 o 1]JxN ()

The recurring cost matrix is simply the sum of gneduction and operations cost

matrices, as in Eq. (10).

C:rec = C:prod + C:ops (10)

4.1.2.3. The Total Cost Transition Matrix

With nonrecurring (development) and recurring (juctcbn and operation) costs
now defined in matrix format, the two can be ad@eslin Eq. (11)) to form the total cost
transition matrixC. This matrix accounts for all costs incurred othex subsequent time
period as the result of the decision to transifrmm developing system configurati&h

to developing system configurati&n

C = C:dev_i_ C:rec (11)

4.1.3. Analyzing the Cost Transition Matrices

The data represented by the cost transition matge@ be analyzed, visualized,
and related to flexibility in several useful way illustrate, this section will assume a
simple, notional scenario in which a governmentao$mall country is contemplating
options for government satellite systems to develithin the next eight years. Two
different types of satellites are under considerati communications satellites and
reconnaissance satellites. Producing up to tweaoh satellite is considered feasible. In
this case, a “configuration” will be defined by thember of communications satellites
(x1 € {0,1,2}) and number of reconnaissance satellites<({0,1,2}) to be developed;

that is,S = [x. %] withi e {1,2,3,4,5,6,7,8,9} as noted in Table 4.
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Suppose the cost of development is $50 milliondocommunications satellite

and $300 million for a reconnaissance satellited @dhat each of these costs is

independent of whether the other satellite has loeseloped. Shutdown costs will be

neglected. In this case, Eq. (5) can be applieecdy, with R = [50 300] and with the

resulting Cqey matrix shown in Table 5. Similarly, assume thaddurction (including

launch) costs are $100 million for the communiaaisatellite and $200 million for the

reconnaissance satellite, and that learning effaetsiegligible such th& = [100 200]

and Eq. (7) can be used directly to calculate ttoelyction costs in Table 4. Finally,

assume that operations costs are a nonlinear fumofithe total development cost of the

system, such that per-period operations costs argiven in Table 4. The resulting

matricesC,ec andC are shown in Table 6 and Table 7, respectively.

Table 4. Configuration Definitions for Satellite Example.

Config. Number of Number of Production Operations
ID No. Communications Reconnaissance Costs €prod.x), Costs €ops,iys
0] Satellites %y) Satellites %) $M $M / period
1 0 0 0 0
2 0 1 200 310
3 1 0 100 133
4 1 1 300 372
5 0 2 400 392
6 2 0 200 191
7 1 2 500 449
8 2 1 400 412
9 2 2 600 486

Table 5. Cgey for Satellite Example. Costs are in millions of dllars.

From Configuration

© 00 NO Ul WN P

To Configuration

1 2 3 4 5 6 7 8

0 300 50 350 300 50 350 350 350
0 0 50 50 0 50 50 50 50
0 300 0 300 300 0 300 300 300
0 0 0 0 0 0 0 0 0

0 0 50 50 0 50 50 50 50
0 300 0 300 300 0 300 300 300
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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Table 6. C,. for Satellite Example. Costs are in millions of diars.

To Configuration
1 2 3 4 5 6 7 8 9

0 200 100 300 400 200 500 400 600
310 510 410 610 710 510 810 710 910
133 333 233 433 533 333 633 533 733
372 572 472 672 772 572 872 772 972
392 592 492 692 792 592 892 792 992
191 391 291 491 591 391 691 591 791
449 649 549 749 849 649 949 849 1049
412 612 512 712 812 612 912 812 1012
486 686 586 786 886 686 986 886 1086

From Configuration
© 00N Ul WDN PP

Table 7. C for Satellite Example. Costs are in millions of diars.

To Configuration

1 2 3 4 5 6 7 8 9

0 500 150 650 700 250 850 750 950
310 510 460 660 710 560 860 760 960
133 633 233 733 833 333 933 833 1033
372 572 472 672 772 572 872 772 972
392 592 542 742 792 642 942 842 1042
191 691 291 791 891 391 991 891 1091
449 649 549 749 849 649 949 849 1049
412 612 512 712 812 612 912 812 1012
486 686 586 786 886 686 986 886 1086

From Configuration
© O ~NO O~ WN PR

4.1.3.1. Development Cost Transition Matrix

A helpful visualization of the switching or developnt cost data in Table 5 is
provided in Figure 15. In this figure, each vatitine indicates the range of switching
costs from a given configuration, defined by thevscof Table 5. Solid dots indicate
minimum and maximum values, open circles indicagamvalues, and triangles indicate
median values. Each vertical line is located looally at the cost needed to develop the
configuration from scratch (in this case, Confiyy. For example, if no system currently
exists and a decision-maker chooses to develop igo&f (involving only the
reconnaissance satellite), a cost of $300 mill@im¢urred (on th&-axis), and the cost to
switch configurations in the future varies from ®0$50 million, depending on which

future configuration is chosen. In contrast, ié tecision-maker instead chooses to

46



develop Config. 3 (involving only the communicatiosatellite), a cost of $50 million is
initially incurred, and the cost to switch configtions in the future varies from $0 to
$300 million. Thus, Figure 15 empirically confirntBe intuitive trend that future
switching costs can often be reduced by earlieeshwments. More abstractly, this
confirms the early observations of Hart [36] anjl6t [37] that flexibility (the ability to

easily modify a system, of which switching cosamsinverse indicator) comes at a cost.
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Figure 15. Switching Cost vs. Initial Cost from Cafig. 1 (S;) for the satellite

example. Each vertical line indicates the range of switchowgts from a given
configuration; some configurations overlap. Salmts indicate minimum and maximum

values, open circles indicate mean values, anchg¢fies indicate median values.

A similarly interesting set of data that can beamnitd from the development cost
transition matrix is shown in Table 8. This talsleows the ratio Ofgev,j 1O Cdev,1j
expressed as a percentage. In other words, regéiiat configuratiom = 1 refers in this
example to the “do nothing” configuration, thistlse cost savings that results from
starting with Configuration to reach Configuration rather than starting with nothing.
For example, Table 8 indicates that starting widnf@). 3 (the one-communications-

satellite configuration) makes development of Cgn# (the communications-plus-
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reconnaissance-satellite configuration) 14% lespersive than if Config. 4 were
developed from scratch. Values of 100% in Tablen@8icate that no additional
development is required to reach Configuratjofrom Configurationi; this occurs
frequently toward the bottom of the example mabmcause, as they were numbered in
Table 4, more capable and demanding configuratae generally listed later. Also by
definition, values of 100% occur along the diagpmdlere no additional development is
required to remain in the same configuration.

Table 8. Development Cost Savings MatrixElements &.,..; indicate the percent of

development costs saved in reaching Configurationgtarting from Configuration i
rather than nothing (Config. 1).

To Configuration

100% 0% 86%  100% 0% 86% 86% 86%

0%  100% 14% 0%  100% 14% 14% 14%
100% 100% 100% 100% 100% 100% 100% 100%
100% 0% 86%  100% 0% 86% 86% 86%

0%  100% 14% 0%  100% 14% 14% 14%
100% 100% 100% 100% 100% 100%  100% 100%
100% 100% 100% 100% 100% 100%  100% 100%
100% 100% 100% 100% 100% 100% 100% 100%

=

&

From Configuration
©O© 00 ~NO O~ WN

Before continuing, it is worth making one final aabout this development cost
matrix. Recall that earlier it was mentioned thlmnfgguration space can be roughly
conceptualized as a multidimensional map, with lsinsystem configurations grouped
together on the map and unlike configurations disfeom each other. While it is
tempting to consider the possibility that the shibg cost matrix of Table 5 might form
the basis for drawing such a map, this is not pdessi Note first that Table 5 is not
symmetric: Movement between two configurations hmhige expensive in one direction
and inexpensive (or zero) in the other directioithis alone precludes the use of
switching cost as a true distance measure. Funthrer, although the triangle inequality
is indeed fulfilled in the Table 5 example, it istmecessarily satisfied for all reasonable

development cost matrices. For example, starting garticular Configuration A,
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although improbable, it is not impossible for thevelopment of an intermediate
Configuration B to dramatically reduce costs ofivamg at Configuration C, such that
Cdev.AC™> CdevaBt Cdevgc  This further precludes the use of switching asta distance

measure. Because of these observations, thisttetains the definition of configuration
space distances in the sense described in Secfidnahd Figure 13; in particular, Figure

16 shows a visualization of this satellite exanmgp®nfiguration state space.
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Figure 16. Configuration state space for the satile example.

4.1.3.2. Total Cost Transition Matrix

Recall that the total cost transition mat@xaccounts for all costs incurred over a
subsequent time period as the result of the decisidransition from developing system
S to developing syster§. This matrix will be particularly important inegis 4-5 of this
framework, and a helpful synthesis of the informatcontained in this matrix with the
two-period state-centric notion of flexibility ishewn in Figure 17. Here, each node
represents one of the configurations consideratiardesign space, the color of which is
indicative of the cost to develop and produceatrfithe “nothing” configuration (Config.
1). The nodes are arranged in a configurationlairno that in Figure 16, but with slight

geometric modifications to avoid confusion wheneatining which arrows connect
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which nodes. Above each of the four groups of sagde budget, and for every element
of the total cost transition matrix less than ounado the given budget, a directed link is
drawn. In cases where the total cost on the dialigoithe matrix is less than or equal to
the budget, a dark circle is drawn around the gmppate node. For example, the top left
portion of Figure 17 shows that, if the currentigided architecture is Config. 3, a $400
million budget for a given eight-year period woaltbw the decision-maker to transition
to Configs. 1 or 6, or to remain in Config. 3.

A natural observation from Figure 17 is that, add®t is increased, more links
become available. That is, as the decision-makerrhore resources available, more
options exist. The total number of links in thegns of Figure 17 increases from 12 at
the $400 million budget to 22 at the $550 millicurdbet, 40 at the $700 million budget,
and 60 at the $850 million budget. Eventuallyadarge enough budget, all 81 links
would appear. Linking this to the two-period steémtric concept of flexibility, a clear
indicator of the flexibility of a given configuratni is the number of links or transitions
available to it for a given budgbt(the number of “outs” available, which will be de¢ad
®;(b)). This indicator is plotted in Figure 18. Hetbe starting configuration (node) is
shown on thex-axis, and the number of available transitions frdmat node to other
nodes is shown on thgaxis. Note that these available transitions do inorease
linearly with budget; for example, adding $150 oill of budget to $400 million results
in no increases to the transitions available froomi@s. 3 and 6, while adding the same

amount to $700 million increases the transitiorailable to each by 75%.
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$400M Budget $550M Budget

Figure 17. Available configuration transitions for $400, 550, 700, and 850 million budgets.
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Figure 18. Number of available transitions @) for $400, 550, 700, and 850 million budgets.

If available budget is considered on a continuusteiad of four discrete intervals,
the data in Figure 19 result. This figure showes tiamber of available transitions as a
function of available budget, where data for eamhfiguration is represented by a single
line. For example, the figure shows that for ageniod budget of $200 million, Config.

1 (the “nothing” configuration) ha$ = 2 transitions available, Configs. 3 and 6 each
have® = 1 available transition, and all other configioas have no available transitions
(i.e., the available budget is insufficient even gopport operation of the current
configuration into the next period). It also shothiat by a budget of $1.1 billion, any
configuration can be reached from any other configon since all configurations have 9
available transitions.

An interesting characteristic visible in Figure i$%hat Configs. 1, 3, and 6 tend
to have significantly more transitions availablarththe other configurations for per-
period budgets below $500 million. These configiores have in common the fact that
they have no reconnaissance satellites to incgelaperations costs; as a consequence,

while all other configurations must spend betwe&@05and $500 million simply to
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operate, Configs. 1, 3, and 6 are able to usehiniget to effect transitions to other
configurations.

To develop this observation more fully, Figure 20ows a subset of the
configurations visible in Figure 19, in particul@onfig. 3 (one communications satellite
only) and Config. 4 (one communications satellibe @ane reconnaissance satellite). As
expected from Figure 19, Config. 4 has fewer ttanss available than Config. 3 at low
budgets because of its operations cost requireméihdsvever, at a per-period budget of
about $570 million, a reversal occurs. Above thidget, Config. 4 always has at least as
many transitions available as Config. 3. At highddgets, the greater developed
capability of Config. 4 (i.e., the existing recomssance capability) translates into lower
development transition costs. Thus, this grapkheseto illustrate thatiexibility is not
solely a function of the engineering configuratiardecision-maker selects, but also a
function of the resources that are available torap@that configuration In this case, the
low-development-cost (no-reconnaissance-sateltte)figurations are equally or more
flexible than the high-development-cost configuasi when resources are scarce
because the low-development-cost configurationsiriiower fixed operations costs.
However, as financial resources become more abtintt@nconfigurations that include
reconnaissance satellites permit more flexibilityecduse they already have a
reconnaissance capability which the low-developroeist (no-reconnaissance-satellite)

must spend resources to develop.
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Figure 19. Available configuration transitions asa function of available per-
period budget.
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Figure 20. Available configuration transitions for Configs. 3 and 4 as a
function of available per-period budget, illustrating a “flexibility reversal”.
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4.1.3.2.1. Sensitivity to Budget

One analysis that Figure 19 and Figure 20 enal@a&amination of the sensitivity
of a configuration’s number of available transigah (roughly speaking, the sensitivity
of a configuration’s flexibility) to changes in tlalocated per-period budget. Such an
analysis is particularly useful to entities intéegkin selecting an appropriate budget level
for a multi-period program or project.

Figure 21, which is derived from Figure 20, tracke number of transitions
gained from a $250 million per-period budget inseat each of the budget levels in
Figure 20. Formally, this is the forward different,®;(b) given in Eq. (12) (cf. [81]-
[85]), with h = $250 million. This difference is used in lieutbe derivative (that is, the
limit of Ap®i(b)/h ash — 0) because the derivatives of the functions irufag20 take

values only of zero or infinity and are not insigihto examine.
Ahq)i(b):q)i(b+h)_q)i(b) (12)

Note that this forward derivative, plotted on thaxis of Figure 21, illustrates a
distinct difference between Config. 3 (one commatians satellite only) and Config. 4
(one communications satellite and one reconnaisssaiellite): WhileA,®4 exhibits an
overall unimodal behavior, having from $525-570lianil a gain of 5 transitions per $250
million budget addedAn®; exhibits a more bimodal behavior. Config. 3 hakigh
forward difference for low budgets that then dissgos toA,® = O before rising again at
higher budget levels. In effect, thg® = O valley illustrates that there exists a capabil
gap for Config. 3: A certain threshold of resogreeust be invested in order to permit
any options beyond a communications-satellite-ardpability. For a decision-maker
considering a $250 million per-period budget inseabove an existing $350 million
budget in a situation where Config. 3 already exikigure 21 clearly indicates that such
a budget increase would provide no additional aystioOn the other hand, for a decision-

maker considering a $250 million per-period budperease above an existing $625
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million budget, Figure 21 indicates that such asrease may be justified, as it adds four

more options.
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Figure 21. Number of transitions gained when budgeon the x-axis is
raised by $250 million.

Another way to represent the data in Figure 2liasaw elasticity metric. This
metric, defined in Eq. (13) for the case of thecdbte step sizh, indicates the percentage
change in the number of transitiobghat can be achieved by adding budgdtvided by
the percentage change in the current budgethtliapresents. Note that this metric is
undefined wherd = 0. If this metric is plotted for Configs. 3 aAd Figure 22 results.
This indicates, for example, that at its peak @#gt adding $250 million to a $470
million budget for Config. 4 results in the numldrtransitions increasing relatively 7.5
times more than the budget. Thus, this is a regitwere flexibilty can be very
significantly impacted by budget increases. Ndiat,tas in Figure 21, the elasticity
curves also fall to zero at the highest budgetsesiat these budgets, any configuration

state can be reached from any other configuratiate.s
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Figure 22. Transition Elasticity for a forward difference of $250 million.

4.1.3.2.2. Transitions for Uncertain Costs

A final extension of the cost transition conceptesgnted here is provided to
illustrate how probabilistic analysis can assistumderstanding the robustness of the
deterministic transition results illustrated thas f Suppose, for example, that the $50 and
$300 million development cost and $100 and $200Qianilproduction cost estimates
assumed forR and Q in Section 4.1.3 are associated with significargrdes of
uncertainty. Suppose that each of these four peteasican take values from 25% below
to 50% above their baseline values and can be mddey independent triangularly-
distributed random variables with modes equal eoltaseline values above. As a result,
the available transitions indicated by Figure 19 &mgure 20 are no longer properly

described by single deterministic lines, but rathebands of uncertainty.
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These bands are shown in the upper plot of Fig8r®2Configs. 3 and 4. This
plot has a format identical to Figure 20, except thands of uncertainty surround a
median near the baseline deterministic result. Baeds in Figure 23 are drawn to
encompass the"Sto 95" percentile results as obtained from 1,000 MonteloCa
simulations of the triangular input uncertaintiddote that, even in the presence of these
substantial uncertainties, the error bands for ©Qorf below a budget of about $550
million do not overlap with those of Config. 4. i$hs reflected as well in the lower plot
of Figure 23, which shows that between a budg&1@D million and $500 million there
is near certainty that Config. 3 will have morens#ions available than Config. 4. As
the available budget is increased beyond $500amijlithere is a sharp decline in this
probability, until by $720 million the reverse ocsu In this region, there is near
certainty that Config. 3 will have fewer transit®oavailable than Config. 4. Thus, in
addition to assisting the decision-maker in visziagj the uncertainty in the transition
numbers from the deterministic analysis, the resufltthis probabilistic cost analysis can
reveal the existence of “flexibility reversal” segios even in the presence of cost

estimate uncertainties.
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Figure 23. Probabilistic comparison of the transibns available to Configs. 3 and 4.

In summary, this step of the framework has showat the two-period state-
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4.1.4. Limitations of Cost-Only Considerations

centric notion of flexibility from previous literate can be adapted to apply to

system in which multiple configuration options éxxer time, a cost transition matrix

can be formed and used to visualize the optionsekiat for changing the system as a
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function of available budget. If a single, relaliv constant per-period budget is likely to
exist for the foreseeable future, that budget @asdiected and a diagram such as one of
the graphs in Figure 17 can be useful in tracingsfide configuration pathways. If the
available budget is likely to be subject to chawogeoartially under the control of the
decision-maker, the available transitions can battgd as a function of budget to
determine if additional budget would make a suligthalifference in the available
options. Analysis of these graphs and associat¢d ilustrate how budget itself can
drive whether one configuration is more flexibleathanother, and sensitivity and
uncertainty analyses can both be conducted to gigdttional useful insight.

At the conclusion of Step 1, it is reasonable ki aBrom this information, what
conclusions can be drawn about the best initialtesysconfiguration to select?
Unfortunately, none. To do so requires overcontimg limitations of considering only
configurations and cost over a two-period time rvaé First, the time horizon of the
analysis must be expanded to more than two periodavoid potentially myopic
decision-making. Second, the benefits of being in a given coméigian at a given time
must be quantified. A limitation of using numbdrawailable transitions as an indicator
for flexibility is that it contains no informatioabout the value of each configuration in
each future time period. As a result, it is polssio manipulate this metric to make
certain configurations appear relatively more @sldesirable by either (1) including in
the state space a large number of physically simdafigurations or (2) including in the
state space a large number of configurations tratualikely to have any value in the

future. These limitations are resolved in theoiwihg two steps of the framework.

" If this were the only limitation, it might be owame for example by defining a time horizon of
n periods and expanding the configuration space attree, tracking in total how many

configurations are accessible over thgeriod horizon given an initial configuration.

60



4.2. Step 2: Define Markovian Demand Environment &olution Probabilities

Discussed in Step 1 was how the two-period stat&icelexibility framework of
previous literature can be adapted to apply to igardtion changes for engineering
systems or architectures. That step focused orophiens available to and under the
control of the engineer or decision-maker. Howeasrrecognized in Step 1, information
about the utility or value of being in each configlion at a given time period is needed
in order to make meaningful conclusions about thgability of each configuration
decision. In order to do this, it is necessarynaoe information about the environment
(in particular, the demand environment) in whickteyn is operating, which is generally
out of the control of the engineer or decision-makiearely is deterministic prediction of
this environment possible, and so this informationst generally be in the form of a
stochastic model.

Mathematically, this is equivalent to the stateméntEq. (14), i.e., that a
performance or utilityu (preferably a metric with physical meaning, but peecluded
from being a normalized aggregate metric) thatised in time incremertis a function
not only of the configuratio® that is operational at that time, but also of tleenand
environmenty that materialized at that time. This environmemublves according to
some stochastic proces¥({)}. The fact that(t) is not a function o8§(t) alone concisely

explains why conclusions about value or utility manbe drawn from Step 1 alone.

u(t) = f(S(t), y(t)) (14)

Thus, the two questions that arise in Step 2 &what are the environments that

{Y(t)} can describe, and what kind of stochastic matieluld be used to describ¥{)}?
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4.2.1. Definition of the Demand Environment

As with the definition of configurations in Step Wyhat precisely defines a
demand environment is application-specific. Idgate environment definition would
completely describe the current state of the w(ptduniverse). However, since such an
extensive definition of the state of the environmemwuld be far from tractable, the
analyst may be guided by two practical considenstioFirst, what major external factors
or combination of factors tend to describe demamdHe system being considered? For
example, in defense applications this might invaheterrain of the theater of operations
or the type of enemy combatant, while in disastdief applications this might involve
the type and frequency of various natural and maerdisasters. Second, of these
factors or combinations of factors, are some likeldistinguish the performance of some
configurations over others, or do they affect alhfigurations equally? In general,
factors that would have little effect on the counfigtion decision can be neglected.

This framework assumes that the set of possibleaddrenvironmentsy, i = 1,

2, ..., K} to which the system of interest may be subjedinge and discrete or can be
reasonably approximated as finite and discrete, tad this environment evolves
stochastically with time. In the case of the exbngatellite application, suppose that the
demands upon the satellite system are primarilyedriby (1) the existence of armed
conflicts and (2) the degree to which existing caereial capacities reduce the need for a
government satellite capability. In this case,deenand environment might be described
by six states, summarized in Table 9. This tallaracterizes the set of demand
environments ¥;, i = 1, 2, ...,K}, whereK = 6, by the two drivers above, and translates
these qualitative descriptions into a reasonabEntative implication in terms of the
number of government communications and reconnaigssatellites needed. In general,

within the table, hostile conflict environments iho available commercial capacity
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produce the greatest demand for government sagllithile environments in which full

capacity is provided by commercial entities prodireeleast demand.

Table 9. Demand Environment Definitions for Satelte Example.

Env. . Available Implied No. of Government Implied No. of Government
ID No. Cpnfhct Commercial| Communications Satellites Reconnaissance Satellites
(i) Environment Capacity Needed Needed
1 Hostile None 2 2
2 Hostile Some 1 1
3 Hostile Full 0 0
4 Quiescent None 1 1
5 Quiescent Some 0
6 Quiescent Full 0 0

4.2.2. The Markovian Stochastic Model

To continue, we address the second question ostes What sort of stochastic
model should be used to describgtj}? No doubt the simplest stochastic model for
{Y(t)} would be a time-ordered set of independent ramdeariables; however, the
implication of such a model is that the past hasinfluence on the future, and it is
guestionable whether such an assumption is reaoimamost practical situations faced
in the space industry. A more general stochastidehfor {Y(t)} is a Markov chain.
Formally, a Markov chain is a time-ordetesbt of random variablesr{t)} for which the
probability thatY(t) takes some valug depends only on the value it-4t), i.e.,Y in the
previous time period. The possible values Yomust be finite or countable. In a

Markovian stochastic process, the past influenbesfature only through the present

" Note that some of these environments, such asoeuents 3 and 6, have identical satellite
requirements. It would be equally valid to defilne demand environment states in terms of
these requirements, if the transition probabilitiegsre more easily estimable between these

environment states.

" Strictly speaking, the variables need not be tordered as long as they are ordered by some
other monotonically increasing parameter. Forpghesent application, this parameter will be
time.
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state; if it is necessary to build additional meynmto the process, it is possible to do so
by expanding the chain’s state space (i.e., thmitieh of the possible values &). The
conditional probabilities R{t) = a | Y(t-4t) = b] with which values ofY at time t-At
evolve to other values of at timet are organized in a probability transition matrix,
which for Markov chains is typically assumed constavith time. For further
familiarization with Markov chains and its tradm@l applications, the reader is referred
to Refs. [86] and [87].

If sufficient historical data exists, a Markov alai probability transition matrix
can be populated by statistically mining the histrdata for the appropriate conditional
probabilities. However, if this data does not exis would take too much in time or
resources to obtain, a positive quality to the afse Markov chain is that the probability
transition matrix can be populated via expert judget without excessive complication.

Suppose that, by use of historical data or exphkeitation, a Markov chain
probability transition matri¥ for the satellite application is populated as able 10. In
this matrix, each elemei®; indicates the probability that demand will traiesit from
environmenti to environmentj over one time increment (in this case, eight years

corresponding to the time step assumed in Step 1).

Table 10. Sample Markov Chain Transition Matrix for the Satellite Example Application.

To Demand Environment;

-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,

None Some Full None Some Full
- 1 - Hostile, None 0.10 0.15 0.05 0.40 0.20 0.10
g E - 2 - Hostile, Some 0.20 0.10 0.10 0.10 0.30 0.20
§ g - 3 - Hostile, Full 0.10 0.20 0.05 0.05 0.50 0.10
g _g - 4 - Quiescent, None 0.20 0.10 0.05 0.30 0.30 50.0
L ch -5 - Quiescent, Some 0.10 0.20 0.10 0.15 0.30 501
- 6 - Quiescent, Full 0.05 0.10 0.10 0.20 0.30 50.2

" One application of such a process is availabReh [88].
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The Markov chain of Table 10 can be visualized astaof demand environment
states as in Figure 24. In this figure, high-plolitg transitions are represented as thick
dark links and low-probability transitions are repented as thin light links.From each
state, a green link identifies the most likely (regt-probability) transition(s). For
example, from this diagram it can be seen thatrenments 4 and 5 act much like a sink:
The most likely transitions from each environmedhlead to one of these two states.

It is also useful, for reference, to observe twmpgrties of the demand
environment Markov chain. First, most practicamded environment Markov chains
will involve probability transition matrices withrgctly positive elements; rarely will the
probability of transition from one environment tao#her beexactly zero. These will
thus be single-class chains that are irreduciblesitipe recurrent, and aperiodic
(therefore ergodic). As a consequence, a unigug-fan probabilityz; of being in
demand environmentwill exist [86] and can be found via Eq. (15). Nghbehavior of
the demand environment an infinitely long time itihe future is not often of principal
interest to the decision-maker, it can provide @halyst helpful intuition regarding the
direction toward which the demand will eventuatiyd as a consequence of the assumed
matrix P. In the case of the Markov chain in Table 10, tight half of Figure 24
displays the stationary probabilities of existingeach demand environment. Note that in
the long term, the quiescent conflict environmerthwsome available commercial
capacity is the most likely (30.3%), while the hiestonflict environment with full
available commercial capacity is nearly four timess likely (7.9%). Also, it is
insightful to note that the Markov chain of Tabl@ iinplies that the conflict environment

in the long term is more often than not (64.7%heftime) quiescent.

" In the field of combustion, a similar type of \éization, called a reaction pathway diagram, is
used to convey information about the relative intce of elementary reactions in more

complex reaction mechanisms (e.g., see Ref. [89]).
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Second, it can be insightful to calculate the gntroate H' of the demand
environment Markov chain. Entropy rate is a qugntith origins in the field of
information theory that serves as an indicator hid tlegree of uniform randomness
introduced at each time step (or other index) stachastic process. In the case of a
Markov chain with a stationary distribution definbgz;, Vj € {1,2,..., K}, the entropy
rate is calculated as in Eq. (16) [90] and is regmbrin bits. Note that the maximum
entropy rate of &-state Markov chain occurs when its transition mag completely
uniform, i.e.,P; = 1/K. In such a caséi' = logK, which serves as a helpful upper bound
for understanding the randomness indicated by thieogy rate. In the case of the
Markov chain of Table 10, the entropy rate is atre¢ly high 2.36 bits (of a possible
log.6 = 2.58 bits) per eight-year time period. As aule this particular demand

environment model can be characterized by sigmfiaancertainty over its eight-year

time step.
K K
H'{Y(®)})= Zﬂ. Z log, R, (16)
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Figure 24. Visualization of the Markov Chain (lef) and Stationary
Distribution (right) of Table 10.
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4.3. Step 3: Define State-Dependent Performance Mix

Step 2 presaged the fact that at least one utlityperformance metriai is
necessary to make decisions that are properlymédrby both performance and cost
considerations. The functional dependence of #ropmance metric as provided in Eq.
(14) (copied below for convenience) assumes anicixpependence on the operational
configurationS and demand environmenf As a result, a natural representation of the
functionu = f(S y) is in the form of amN x K matrix (recalling thal is the cardinality of
the set of possible configurations akds the cardinality of the set of possible demand

environments).

u(t) = f(S(t), y(t)) (14)

Such a matrix, denoted, is shown in Table 11 for the satellite illustoati In
this case, the chosen performance metric is thebeumf demanded satellites that are
available (and utilized). For example, if the dech&n one time period is associated with
a hostile conflict environment and no available owarcial satellite capacity
(Environment 1, in column 1) and the operationalfiguration during that time period
has two communications and two reconnaissancelisgggedvailable (Config. 9, in row
9), then the decision-maker accumulates the sultdaddization of all four available
satellites. As a consequence of the specificatiotinis matrix, the decision-maker will

be incentivized to place satellites into orbit thelt meet likely demands.

" Note that time is not explicitly captured in tldspendence, i.eu(t) # f(St),y(t),t). In many
cases, this lack of explicit time dependencelihas few or no practical modeling limitations.
However, if such a dependence is indeed importaegn be incorporated by integrating time

into the definition of the demand environment and@nfiguration state.
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Table 11. U for Satellite Example. Metric indicates the numberof
demanded satellites available.

Demand Environment

-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,

None Some Full None Some Full
1 0 0 0 0 0 0
2 1 1 0 1 1 0
S 3 1 1 0 1 0 0
© 4 2 2 0 2 1 0
5) 5 2 1 0 1 1 0
S 6 2 1 0 1 0 0
© 7 3 2 0 2 1 0
8 3 2 0 2 1 0
9 4 2 0 2 1 0

Before concluding the discussion of Step 3, it @t making two final notes:
First, the example metric of Table 11 is just ohenany that might be considered for this
example. For example, a decision-maker may alsotieeest in a cumulative binary
metric that indicates a 1 or O in each time pede@ending on whether satellite needs
were fully met; over the long term, such a metrowd indicate the percentage of time
that the system fully meets the demands placed. oAmnother two examples would be
metrics that are specific to communications or neeassance satellites (e.g., (1) number
of demanded communications satellites available (8y number or demanded
reconnaissance satellites available). Any suclricnean easily be accounted for via a
matrix such as in Table 11. Second, although tteangle application shown here
employs only one performance metric, the theorktiearelopment of Steps 4 and 5
should make it evident that incorporation of muéiperformance metrics and matrices

Ui, Uy, ..., Uy can be fully accommodated and integrated withim tiiesis’ framework.
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4.4, Step 4: Decision Support Analysis

At this point, enough information has been spedifie Steps 1-3 to simulate a
system as it changes in response to a decisionfiead@ions over time. The space of
possible configurations and the costs of movingveeh them over each time step have
been defined in Step 1; the space of possible demanironments and the probabilities
of moving between them over each time step haven loedined in Step 2; and the
performance accumulated when a given configurasosubjected to a given demand
environment has been specified in Step 3.

However, it has not yet been specified which astitire decision-maker will (or
should) take during such a simulation. As a resitiep 4 has the dual purposes of (1)
defining this simulation and (2) solving for thecggon-maker actions that will result in
the “best” possible outcome.

The definition of the simulation, givenTaperiod time horizon/t time step, and
a configurationS(ty)) and demand environmewto) at initial timety, is provided by the
following two dynamics equations (or “equations rabtion”) in Eq. (17). The first
indicates that the configuration selected for depeient by the decision-maker’s action
a at timet becomes the operational configuratf®mt timet+4t. The second indicates
that the demand environment that materializesna tt At is distributed as indicated by
the row of the Markovian probability transition matP corresponding to the demand

environmenty(t) in the current time period.

S(t+ At)=al(t)

17
Y(t+AY) ~ Py (17)

The goal of the more challenging decision suppesktis mathematically

expressed in Eq. (18). This task is multiobjectivenature: The decision-maker will
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typically wish to minimize cost and maximize onenasre performance metricsver the
T-period horizon of the system. This is represemdgq. (18) by the maximization of a
vector-valued function of a vector sum. The fiedément of the vector within the
summation is the elemerf(f), a(-)) of the total cost matri; this expresses the fact that
at time indexz, the system configuration §z) and the decision-maker has incurred
some cost via the decisiom The second element is elemez), y(z)) of the
performance matrixJ; this expresses the fact that at time index performance benefit
has accrued as a result of the system being inigroation Sz) while the demand
environment is in statgz). Additional elements of the vector are allowt, example,

to account for performance measutksUs, ..., Uy, as described in Step 3. For notation
convenience, in Eg. (18) only the maximum funct®osed and minimum-preferred cost
and performance objectives must be negated. Aersion from the “real-world” time

to the indexr is also provided. The vector-valued functibnexists to convert its
random-variable argument into a vector of repredes deterministic values; in most
cases, it will be convenient and computationallgessary to select this function to be the
expected-value operat&; however, in principld= can be any function of the long-term

cost and performance sums.

~Cs(r)a()

.
max F Z Us(2) y(o)
a(els) | <o : (18)

t=t,+(r —1)At

In general, it will not be possible to simultanelyusinimize cost and maximize
performance through any particular set of actiondexisionsa(-). Thus, the solution to

the problem posed in Eqg. (18) is not a single andarea(-), but a set of decisions that

" The decision-maker may also have multiple costiostwhich may be bookkept as “negative”

performance measures.
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depends on the decision-maker’'s preferences for abjective over another. This
formulation is thus one of a multi-objective optiaiion problem,the solution of which
comprises a set of non-dominated points in thecbbe space. These points form a
multi-dimensional Pareto frontier, on which thefpemance of one objective cannot be
improved without the sacrifice of another. In neatiatical terms, a scalar or vector input
x* to the vector-valued function to be maximizes said to be Pareto-optimal (non-
dominated) if there exists no other inpusuch that (1fj(x*) < fi(x) for allj and if (2)
fi(x*) < fi(x) for at least ong, wheref; is thej™ element of the vector-valued The
literature for single-period multi-objective optmaition problems is well-established, and
the reader is referred to Refs. [87] and [91] felpfful introductory reference material.
Finally, some precision must be added to specifgtvidy meant by the teraq-).
The terma indicates the action or decision made at a giiraa,tas indicated in Eq. (17).
As specified in Eq. (18), the values taken dyre drawn from the set of available
configurations §}. Clearly, a is not simply a constant to be solved for and khbe a
function (to be solved for) of some other variable variables; otherwise, a single
configuration would be fielded for all time, whighin general an unrealistic expectation
for decision-maker behavior. Thus, the questiodressed by Steps 4A and 4B centers
around: Of what variables should the decision-makactions be a function? Step 4A
takes a view traditionally taken during long-teroadmapping analysis that this variable
should be time, akin to open-loop control. Step #Bes a more complete but
computationally more expensive view that this Valgashould be the total system and

environment state, akin to closed-loop control.

" Other common names for this problem in the litamatinclude multiple-attribute decision-

making, multiple-criteria decision-making, and npl#-objective decision-making.
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4.4.1. Find Pareto-Optimal “Open-Loop” Paths

Figure 25 frames the problem posed by Egs. (17) @8 graphically and,
combined with Eqgs. (17) and (18), suggests a mefbodimulating and solving for a
Pareto-optimal path of actiogr). In Figure 25, time progresses in discrete imaets
of duration 4t along thex-axis. In each period, the bottom two rows indicale
operational configuration and demand environmehickvinteract to produce per-period
performance valuessg,y. The top row indicates the decision to be madmiaivhich
configuration to develop in the current period, evhdirectly affects current costs and
determines what configuration will be operatiomathe subsequent time period, thereby
affecting subsequent performance and transitiotscoBhis top row, posed as a sequence
of T decisions ovefl timesteps, suggests that a reasonable covariateedunctiona is

indeed time, i.ea(:) =a(7).

Configuration Under Development (Action)

20212112 [-]?

Operationa Configuratic:

S(to) S(ty+At) S(ty+24t) S(ty+3A4At) ® 0 @ |S(i,+(T-1)At)

Demand Environment

y(to) Y (ty+At) Y (ty+24t) Y (ty+3At) ® ® 0 |VY(t,+(T-1)At)

@ @+ Q:i+228 @, +34 @+ (Tt

Figure 25. Visualization of Demand Environments, @erational Configurations, and
Development Configurations (Actions) over MultipleTime Periods.
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Posing the problem in this manner, there elXispossible specifications @fr),
or possible paths. This is a consequence of ttietliat at each of thé periods there
exist N configurations that can be selected (recalling thas the cardinality of §}).
Since the configurations on these paths are spdciy the time on the clock at which
they are chosen, this type of specification isrref&to as an open-loop path.

The number of possible paths’ may be quite large, depending on the
application-specific values & andT. However, if it is computationally tractable to d
so, a Monte Carlo computer simulation may be sdbupack the stochastic evolution of
cost and performance for each possible path. FRoh eath, a large number of
simulations (e.g., several hundred or thousandemntipg on the parameters of interest
and the confidence desired) is repeated using ralydgenerated numbers where
required for stochastic propagation of the Markbain (i.e., according to Eq. (17)) . At

each time step in each simulation, the followingrég and computations occur:

1. Mission demand evolves stochastically accordingthie Markov chain
estimate of Table 10.

2. The operator of the currently operational configiora attempts to use this
system to fulfill the new mission demand, earnimgdd¢ according to the
performance matrix.

3. The decision-maker chooses which configuration éwetbp in the current
time period and field in the next time period, imng a cost according to the

cost transition matrix.

For the example satellite application carried tigtothis chapteiN = 9 andT will
be set to 4 (i.e., an assumed time horizon of 3#syetranslating into 6,561 possible
paths. The illustrative results that follow assuameinitial condition ato = 0 in which

the operational configuration is Config. 4 (oneomtaissance and one communications
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satellite) and the demand is characterized by asgent conflict environment and full
commercial capacity (i.e., Environment 6).

A sample set of Monte Carlo simulation resultshigvgn in Figure 26. This figure
shows the result of adopting a configuration pattvhich a transition is initially made to
Config. 3 (the one-communication-satellite confafion) in order to reduce operational
costs associated with carrying an unnecessary nagsance satellite capability given
the relatively high probability that Environment&terializes again. Configuration 3 is
maintained in the following period, after which tteconnaissance satellite capability is
redeveloped and the communications satellite cépalsi dropped, resulting in Config.
2. Due to the simulation setup, a configuratiorisien must be made in the final
operational time period; since the cost of develgpihis final configuration will be
incurred but no reward will be earned, Config. he(t‘Nothing” configuration) is
selected. As the bottom left portion of Figurest®ws, this particular path (denoted as
[3 3 2 1], by the configuration decisions madeathestep) is subject to a stochastically
changing demand environment. The size of eaclowedlot indicates the likelihood of
demand being in a particular state (onyais) at a given time (on theaxis); note that
all simulations begin in Environment 6tat O years, as specified by the initial condition.
The right-hand portion of Figure 26 indicates hosv-period cost and performance vary
over time. Note that the per-period cost variesvben $233 and $633 million, and
number of demanded satellites available increas@s Zero to a mean of 0.77 in the final
period. The total expected cost for this path diertime horizon is $1.65 billion, and
the total expected number of demanded satellitadadle is 1.57.

As a theoretical note, it may be observed that dheulative expected-value
results for a given path can be easily computethout Monte Carlo simulation, as a
consequence of the special structure and assurspbioBgs. (17)-(18). First, note that
once a path is chosen, cost in each period (argltttal cost) is fixed, and there is no

variability due to future demand environment eviolnt Thus, total cost is determined
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by adding the cost from the total cost transiticatnm® associated with each pre-specified
configuration-to-configuration transition. Thisegpressed in Eq. (19); note that, within
the summation fromm = 2 tor =T, the row indexy7) is substituted witla(z-1) due to the

first equation of Eq. (17).

=2

(Z Cso), a(r)j Cs(to)a(r=n) T Z Ca(r1).a(r) (19)

Second, the cumulative performance expectatiorbeacomputed analytically as
detailed in Eq. (20). In the first step of thioghderivation, the expected-value operator
is swapped with the period-by-period summationdginn generalE(X+Y) = E(X) +
E(Y)). Inthe second step, the expected performameggressed as the summation of the
environment-conditional performance over all demandironments multiplied by their
probabilities of occurrence at time indices Substitutinga(z-1) for §z) where
appropriate due to the first equation of Eqg. (1iéJds the final line of Eq. (20). Also
note that this line includes a substitution #fY(r) = y) based on the Chapman-
Kolmogorov equations [86] for a Markov chain, inimfhP(T'l)y(to),y refers to the element
in row y(to) and columny of the transition matriXP that has been raised to thel]
power. Note that this simple Chapman-Kolmogorolssitution is valid because the

evolution of the demand environment does not depgadh the configuration path.

T T
E(; Use)v (o) j = Z:;, E(US(r),Y(r) )
T
= Z ZUS(f),y ' P(Y(T) = y) (20)

=1 y« Y}

1)
Us(ty).y(t) +Z Zua(r Ty (to)y

=2 y&Y;}
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Figure 26. Evolution of configuration path [3 3 21]. In the plots on the left, the size of circles
indicates the relative number of Monte Carlo siniolacases that exist in a given configuration
or demand environment state (on the y-axes) atengime (on the x-axes). The plots on the
right indicate the associated evolution of per-pdrcost and performance. In all plots, gray
lines indicate transitions made in at least onewdation. Note configuration and cost are
deterministic, since a path is specified.

Obtaining results like those in Figure 26 for eachhe 6,561 possible paths in
the example satellite application allows the t@gbected performance to be computed
and plotted against total cost for each path d3gare 27. In this figure, each blue “x”
represents the total cost and performance of otie pé¥otice that, for the population as a
whole, there is a general trend that, as more fiamdsinvested, higher performance is
expected. However, it is important to recall tkfa¢ decision-maker has a choice of
which path to select. As a result, if he or sheeggrimarily about total cost and
expected total demanded services performed, itdvoake little sense to select a high-

cost, low-performance point toward the lower righthe cluster. Rather, the decision-
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maker would prefer to choose among the set of nmtkted points that comprise the
Pareto frontier. This Pareto frontier, shown id e Figure 27, is composed of the set of
possible configuration sequences for which oneabivje cannot be improved without the
sacrifice of another. In this application, thenfier is comprised of just 34 of the 6,561
possible paths and helps to narrow the optionsiderably.

Listed next to many of the Pareto-optimal pointsFigure 27 are associated
configuration paths. Note that at the bottom &dfthe figure is the “do nothing” option
in which Config. 1 is fielded for all time periodsiis is cost-optimal but also provides
the lowest possible performance. At the othereswér is the Pareto-optimal highest-
performance option of fielding Config. 9, the twortmunications-satellite and two-
reconnaissance-satellite option, for all time pdsio The Pareto-optimal solutions
between these two extremes involve developing @enfl, 2, 3, 4, 5, 8, or 9, either
immediately or after a delay. Notably absent fittwn frontier are Configs. 5 and 7, each
of which is defined byx, = 2 reconnaissance satellites with fewer numbdrs o
communications satellites; the implication of thss that any path that uses these
configurations is suboptimal (i.e., is dominateddblyer paths that can perform at least as
well for a cost at least as low).

One additional use of the data in Figure 27 becosweent when the sample path
from Figure 26 is overlaid as the yellow squar&igure 27. Here it can be seen that this
path is dominated by solutions on the Pareto feontiFor example, one path, [8 3 3 1],
accumulates approximately 26% additional expectedopmance for a near-identical
cost. Another path, [2 3 3 1], accumulates neantidal performance for a 15% lower
cost. Thus, the exploration of the possible pafhsas exemplified by Figure 27 permits
candidate paths to be compared and quickly tradeghst others in terms of relevant

figures of merit.
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Figure 27. Trade between total demanded serviceggormed and total cost for all open-
loop paths. Selected Pareto-optimal paths are identified byedqul configuration sequences
listed next to red circles.

In summary, Step 4A of this framework has attemptegose the multi-period
planning problem of Egs. (17)-(18) in the reasoeabtanner of asking: What
configuration should the decision-maker chooseeteetbp at each time increment? The
answer to this question is in general not obvioparticularly since the demand
environment evolves stochastically: The decisicaken who wishes to be able to fulfill
whatever demand the next period may bring wouldoshoto build the most capable
system possible, but this would come at substaintizl expense. The decision-maker
who would gamble that tomorrow’s demand will be Hane as today's would develop
few or no new architectural components and in d@ongsave significant resources;
however, this would come with the inability to pmrh if the next period’s demand
materializes to require greater capability. Fumti@re, whether one period’s decision is
best (e.g., high-reward or low-cost in the long)rimlikely to be dependent on other

decisions throughout the system lifetime. In ghisblem of considering flexibility in
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design, it is in general necessary to considerfusllre decisions within a given time
horizon in order to judge the appropriateness gfsamgle decision.

This step has illustrated that a straightforwargrapch to addressing this
problem is enumeration of the possible paifr¥ over the given time horizon, simulation
of these paths, and identification of Pareto-optip&hs in terms of relevant objectives.
In the case where the expected values of cumulatiseand performance are of primary
interest, this section has shown that analytic agatpns (see Egs. (19)-(20)) can be
substituted for simulation. The results of thispswill be further utilized in the final

initial configuration selection step (Step 5).

4.4.2. Find Pareto-Optimal “Closed-Loop” Policies

While straightforward and conceptually similar to@ptimization of typical long-
term scheduling and roadmapping efforts, the amalgsesented in Step 4A has two
principal disadvantages. First, for applicationthwarge numbers of configuratiomé
and long time horizon3, it may not be practical to enumerate NIl possible paths.
Second, and conceptually more important, assumsej patha(r) for the entirety of the
system’s lifetime neglects the ability of the demmsmaker to make choices mid-program
in response to the evolution of the demand enviemm

The latter observation suggests that, for Step thB, functiona is no longer
simply one of time (i.e.a(-) # a(r only)), but rather also of state, i.a(;) =a(¢, 7). As
this section will show, formulating the action getthis manner permits the state-space
framework set forth in Steps 1-3 to be easily iriéed and solved within a set of solution
techniques for a class of stochastic control preegsknown as Markov decision
processes (MDPs). To begin, however, it is fiestassary to define the components and

solution procedure for a basic MDP.
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4.4.2.1. Markov Decision Processes

To define any MDP, it is necessary to first def{i¢ a set of states (or state
space)z that describes the system of interest for a gitbee period, (2) a set of
decisions or actiond available from each staig (3) transition probabilitieg(j|¢,a)
given that a particular decisi@is made while the system is in stdfeand (4) expected
per-period rewards(¢,a) associated with actions and/or states [86],[82],[ In the case
of MDPs on a finite time horizonthe obijective is typically to select the decisjmiicy
a(¢, 7) that maximizes expected total rewdrddUnfortunately, the number of possible
policiesa(¢, 7) can become much larger than the number of pe@spiithsa(z) discussed
earlier, and thus enumeration and evaluation gb@disible policies is often not practical
(to be exemplified later). However, such a problean frequently be solved by
exploiting the computational efficiency of dynanpiogramming, if the problem exhibits

five particular characteristics [87]:

1. The problem can be divided into periadsith a decision or actioa required
in each period.
2. Each periodr has a number of system statésssociated with it. It is

desirable for the state to defined such that itt@ior all the information

" There exists some inconsistency in the literatur¢he definition of MDPs with regard to finite
time horizons. Winston [87] adopts the definitidrat “Infinite horizon probabilistic dynamic
programming problems are called Markov decisiorcgsses”. Puterman [92], on the other hand,
devotes an entire chapter explicitly to finite zon Markov decision processes. This thesis
adopts the latter convention, i.e., that it is ¢hates, decision sets, transition probabilitieg] an
rewards that fundamentally define an MDP and thattime horizon only governs the solution
method (e.g., backward induction for the finite ihon problem vs. policy iteration or value
iteration for the infinite horizon problem).

" For practical reasons, the decision policigsr) considered in this thesis are deterministic, i.e.
not random variables. More generally, however, MBd*mulations exist which can

accommodate random policies.
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needed to make a decision, since this permits dbehf characteristic to be
met.

3. The decision in any period describes how the statde current period is
transformed into the state in the next period.

4. Given the current state, the optimal decision fheof the remaining periods
does not depend on previously reached states wviopeedecisions. In other
words, previous decisions and states must nottiredluence the optimal
path going forward. This is clearly true, for exdey when current rewards
depend explicitly only on the current decision anadurrent system state; and
often this can be made true if the system stapraperly defined. In many
cases such a characteristic is natural. For exgngple of the first lessons
taught to every economics student is the irrelesamicsunk costs in future
planning. As another common example, the shortege to travel from one
city to another has no dependence on how one driivihe first city.

5. There must exist a recursion that relates the mkwarned during periods
7+l, ..., T-1 to the reward earned during periogddl, 7+2, ..., T. In many
problems this takes the additive formJf ., + J..1 , i.e., that the reward-to-
go J at the beginning of periodis equal to the reward-to-go in the subsequent

period plus the rewarglearned in period itself.

In the case of a multi-period problem exhibitingdiéide recursion, as more
formally shown in Eq. (21), the reward-to-gdrom stateé at periodr is composed of
two parts: The first is the rewandearned during time periad which is a function of the

system’s current stateand the current acticmm The second is the cumulative reward-to-

" This is a restatement of Bellman’s Principle ofti@®glity: “An optimal policy has the property
that whatever the initial state and initial deaisare, the remaining decisions must constitute an

optimal policy with regard to the state resultingn the first decision.” [93]
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go for all future periods, which is a function bétnext-period statg.; that is implied by
actiona (see characteristic 3 above) as well as the poli@ctionse’™ that is adopted for
all future states. A discounting fact®ican account for effects such as the time value of

money or other resources, if an appropriate discaig is available for use.

J. . (a a (5 T)): 1, (5’ a)"‘ ﬂ‘]r+l,§,_.+1(a) (O’H (5’ T)) (21)

Unfortunately, unless there exist very few stapesjods, and possible actions,
Bellman’s “curse of dimensionality” [93] can makevery difficult to find an optimum
specification of the policy: in Eq. (21) via full-factorial analysis or parametsearch
techniqgues. However, the form of Eq. (21) pernaits optimal policy to be found
efficiently via backward induction, a traditionablstion procedure for dynamic
programming problems. Backward induction beginghwihe simple problem of
optimizing actions in the final period of a mulmgod problem, recording the results,
and repeating the procedure working backward iret{or other index) until the initial
period is reached. For instance, note that infite periodz = T, by definition no
rewards-to-go exist, and the optimal action in thesiod is specified by the simple
problem defined in Eq. (22). In all other periottg optimization problem can be posed
in Eg. (23) as the maximization over all currentiaats a and policiesa™ of the
expression in Eq. (21). However, if future deaisichave no influence on the current
rewardy, the only role of selecting’™ is to maximize the second term in the equation;
the maximum possible value of this term at a gpenod and given state is noted with a
hat (*) in Eg. (24). Note that in the next-to-léiste periodr = T-1, this second term is
already known from the solution to Eq. (22). Sarly, atr = T-2, the second term is
provided by the solution from=T-1. This solution process, which continues uthg#

= 1 period is reached, is backward induction.

Jre= m%))((m (5 a)) (22)
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Joe= max( &)+ B a (O’H(f T))) (23)

acA (<)
r+(§ 1_)

~

J, . = maxy, (5 a)+ﬂ‘]r+l,§,_.+l(a)) (24)

T acA(?)

In a case where uncertainties exist in state tiansi (i.e., the transformations
mentioned in characteristic 3 above), traditionedbyabilistic dynamic programming
operates by considering the expected values (atiturs thereof) of reward-to-go treated
as a random variable as in Eq. (25). Note thaEdn (25), the discount factgt is
assumed to be deterministic, as is the currentbgdeawardy (although, without loss of

generality can also be treated as the expected current-peneatd).

EQ, (2o~ 0)=3. (aa™(&0)=n(a)+ Q... ol 1))es)

An analog of the maximization of actions describgdEq. (23) is easily derived
as the top line of Eqg. (26). However, in the ptubstic problem, note that the next-
period state’+1p) is itself a random variable. The expected rewarde from periodr
+1 can thus be expressed as in the second ling.0f2B) via the conditioning formula
E(X) = E(E(X]Y)) = Z E(X]Y =y) P(Y =y). The third line mirrors the final step from Eqgs.
(23) to (24), noting that the optimal policy to atlofor future periods (i.e., the
specification of which action to take as a functoinfuture state and time) does not
depend on the current actian The result is again formulation that can eaatppt a

backward induction solution procedure, startingexiodr =
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acA (<) J
at (&)

= max 7, 5 a Z f+1 = J |§’a)jr+1,j

acA(¢)
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(26)

X
=

I

As an example of a Markov decision process on igefitme horizon, consider a
system consisting of three statés< {1, 2, 3}), each of which has two actions aviaiéa
(4 ={1, 2}), and that rewards and probabilities idrtsition are as given in Table 12 and
Table 13. This system, depicted in Figure 28, fates a revenue-generating machine
with three states (excellent, average, and poad) amecision-maker with options to
operate the machine as usual (action 1) or repdaction 2) at the beginning of each
period. If the machine is repaired from any stateis instantaneously brought to
excellent condition and $100 of revenue is gendrédethe period, partially offsetting a
$200 repair cost for a net period reward of -$180four-period time horizonT = 4) is
assumed, and executing the backward induction dgnpragramming procedure results
in the computations shown in Table 14. Note thatlast-period optimization is trivial;
since gains from repair are only realized in thegloerm, it is not optimal to repair the
system at the end of the time horizon. As incremented backward, the results of
previously computed optimal actions and rewardgdare recorded in Table 15. Note
that this table indicates that the optimal actierg( to repair or not to repair) is a
function not only of state but also of time; whilas not optimal to repair a machine in
poor condition { = 3) atz = 3 orr = 4, it is optimal to do so at=1 andr = 2. It also
indicates, for example, that the expected rewaigetes a function of the system’s initial
state; starting in excellent conditiofh% 1) atr = 1 entails a $295.76 cumulative expected

reward if the optimal policy is followed, wheredarting in poor condition{ = 3) atz =
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1 entails only a $95.76 cumulative expected rewahgn the same optimal policy is
followed.

Before leaving this example, it is worthwhile tat@ohe computational advantage
of dynamic programming. This small problem wavedlby hand exactly as reproduced
in Table 14, with 12 maximizations and 90 operaig¢addition or multiplication). In
contrast, a full factorial exploration of all pasle policies would have required

enumerating and evaluating alf2 4096 ways of filling out the right half of Taklé.

Table 12. Transition Probabilities for Notional MDP Example.

Action 1 Action 2
To State To State
1 2 3 1 2 3
o 1 07 02 01 @ 1 07 02 0.1
€ = =gt
E fU%‘ 2 00 05 05 E fU%‘ 2 07 02 01
3 00 00 1.0 3 07 02 01

Table 13. Current-Period Reward Function for Notimal MDP Example.

Action

1 2
o 1 | $100 -$100
fd)? 2 $50 -$100

3 | $10 -$100

0.1

2.

0.5

Figure 28. Depiction of the state space, availabéetions, and action-dependent rewards
and transition probabilities for the notional revenue-generating machine MDP example.
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Table 14. Backward Induction Calculations for Notonal MDP Example.

Period  State Action Maximization Argument Opt_lmal
Action?
t=4
f=1
a=1 $100.00 «
a=2 -$100.00
£=2
a=1 $50.00 <«
a=2 -$100.00
&=3
a=1 $10.00 <«
a=2 -$100.00
t=3
f=1
a=1 $100 + 0.7 x $100 + 0.2 x $50 + 0.1 x $14181.00 <«
a=2 -$100 + 0.7 x $100 + 0.2 x $50 + 0.1 x $1:319.00
£=2
a=1 $50 + 0.5 x $50 + 0.5 x $1($80.00 «
a=2 -$100 + 0.7 x $100 + 0.2 x $50 + 0.1 x $1:319.00
&=3
a=1 $10 + 1.0 x $10 $20.00 «
a=2 -$100 + 0.7 x $100 + 0.2 x $50 + 0.1 x $1:319.00
=2
f=1
a=1 $100 + 0.7 x $181 + 0.2 x $80 + 0.1 x $2kP44.70 <«
a=2 -$100 + 0.7 x $181 + 0.2 x $80 + 0.1 x $2M4.70
£=2
a= $50 + 0.5 x $80 + 0.5 x $2(6200.00 «
a= -$100 + 0.7 x $181 + 0.2 x $80 + 0.1 x $2M4.70
£=3
a=1 $10 + 1.0 x $20 $30.00
a=2 -$100 + 0.7 x $181 + 0.2 x $80 + 0.1 x $2M4.70 <«
t=1
f=1
a=1 $100 + 0.7 x $244.7 + 0.2 x $100 + 0.1 x $44$295.76 <«
a=2 -$100 + 0.7 x $244.7 + 0.2 x $100 + 0.1 x $44$95.76
£=2
a=1 $50 + 0.5 x $100 + 0.5 x $44.B£22.35 «
a=2 -$100 + 0.7 x $244.7 + 0.2 x $100 + 0.1 x $44$95.76
£=3
a=1 $10 + 1.0 x $44.7 $54.70
a=2 -$100 + 0.7 x $244.7 + 0.2 x $100 + 0.1 x $44$95.76 <«
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Table 15. Optimal Actions and Expected Rewards-t&o for Notional MDP Example.

Optimal Expected Reward-to-Go, dollars Optimaliét
Time Periodr Time Periodr
1 2 3 4 1 2 3 4

295.76 244.70 181.00 100.00
122.35 100.00 80.00 50.00
95.76  44.70 20.00 10.00

State¢
State¢

4.4.2.2. Unification of Flexibility and MDP Framewds

It may be evident after the above description dMakov decision process that
Steps 1-3 of the flexibility framework proposedtims thesis share many characteristics
with an MDP problem. As summarized in Figure 2&pS 1 and 2 established relevant
state spaces, Steps 1 and 3 established rewamisdats), Step 2 established transition
probabilities, and Step 1 established that configion development options exist for the
decision-maker at each point in time. Each of @hesmponents — states, rewards,
transition probabilities, and possible decisions required to define an MDP. However,
two slight adjustments must be made to frame tegilfllity problem such that MDP

solution techniques can be applied directly.

Definition of the Total State Objective Function Aggregation

t \ | —_— — \
'l Step1 Step2 |! ! Step 1 Step 3 :
! Configuration Environment ! ! Cost Transition Performance |
: State Space State Space : : Matrix Matrices I

Expected
Rewards

Components

Decision Transition

Step 1 Set Probabilities Step 2
Configuration Demand Transition
Options Probabilities

Figure 29. Mapping of Flexibility Framework Comporents into a
Markov Decision Process.
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4.4.2.2.1. Definition of the Total State

First, the framework of Steps 1-3 has introduced $eparatestate spaces. Step
1 introduced a configuration state space, and 3teproduced a demand environment
state space. To utilize an MDP formulation, theld@m must be represented in a single
state space. It is proposed that a total stateldimed as the combination of the
configuration and demand states (Total State = {iQaration State, Demand State}, dr
= {Sy}. The total state space may be illustrated gicdly as in Figure 30 as a three-
dimensional “spindle” of total states, in which baertical layer represents a particular
demand environment and each column representstiaytar configuration. Thus, it is
possible for the fielded system to be in any camfigjion and operating in any demand
environment at any particular point in time. Simoafiguration is under the control of
the decision-maker, he or she can choose to moaayteertical column of the spindle at
any point in time (recognizing it takes one timepsto make this move).

However, the next-period demand environment is urater the control of the
decision-maker. lllustrated in Figure 30 is artanse where Config. 2 is operating in
Demand Environment 1. If the decision-maker chedsalevelop Config. 7 for the next
time period, he or she is assured to move to ttenoo corresponding to Config.;7
however, since the demand environment evolutisidashastic, the layer to which he or
she moves is uncertain and depends on the evolofitime Markov chain specified by
Step 2. The probability of evolution to each npetiod state described in words above
is described mathematically by Eq. (27), althougis worth pointing out that the right-
hand side of this equation can easily be modifieddflect more complex transition

models. Note that by convention for computer paogning purposesg; = 1 is assigned

" The assumption implicit in this assurance is thatdecision-maker will not by accident develop
a configuration other than Config. 7, which is gatig reasonable. However, if this assumption
is not reasonable and the distribution of probaédithat other configurations will be developed

is known, this information may be easily incorperht
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toreferto £=1,y=1}, {=2refersto §=2,y =1}, { =N+l refersto §=1,y = 2},

and so on through = NxK referring to §= N, y = K}. Once the next-period demand
environment materializes, the decision-maker fihaaself or herself at one particular
total state and makes another decision about wdfithe N configurations to select for

the following period.

i/NTj/NT mod(j,N) =k
0 ,otherwise

P(§f+1=1|§f=i,a=k)={3 27)

Erwv. 3

Erwv. 2

Erwv. 1

Config. 1
Config. 8

Config. 2
Config. 7 onna

config. & Config. 3

Config. 5 Config. 4

Figure 30. “Spindle” of N x K Total States. Each layer corresponds to one
demand environment and each vertical column comedp to one configuration.
Arrows illustrate that, due to demand environmamtartainty, multiple possible
total states are possible in the next period ieaidion is made to transition from

one configuration to another (e.g., Config. 2 tan@g. 7).

4.4.2.2.2. Objective Function Aggregation

Second, in order to apply the MDP dynamic programgnsolution technique
implied by Eg. (26), the multi-objective problenusdtrated in Step 4 must be carefully

converted to a single-objective problem. To dg,thie present framework proposes to

89



use the interpretation of the Pareto frontier &gt of optima for a weighted aggregate
objective function over all possible weights. Thiiss proposed that the Pareto frontier
be found by forming an aggregate weighted objedtivetion, solving the MDP problem
as usual using this single objective, and repedhiagrocess for a wide range of weights.
While a simple additive weighting function is arpapling aggregate function, it suffers
from an inability to detect concave segments okfafrontiers. To partially overcome
this limitation, a heuristic technique (detailedAppendix A) using the variable-power
per-period aggregate objective function in Eq. (B8used. In this equatiod) is the
number of per-period objectivesy is the weight on thé™ objective, T is the total
number of time periods in the time horizgnis per-period performance of the system in
terms of thé™ objective (normalized such that the suny;adver all time periods cannot
exceed unity or become negative, and such thathigdues of; are preferred), andlis
the objective function power. The conversions usedhis application to normalize
elementc;; of the cost matrix intg.; and elementy; of the performance matrix int@;

are shown in Eq. (29).
&)= 2w (-7 a) (28)

—C; — min (-c;)

Vijj =
maxt—=c. - min(-c.
lg(]si,jaglN( C”) Ki,jSN( Gi ))
Ui _Ei‘g'ﬂ(uu)
_ <j<K
Vo =
i (29)
<) maxy; )_ Eﬂg'ﬂ(uij)
1<j<K 1<j<K

o T p=1
5Bl
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4.4.2.3. Sample Results for Satellite Application

Applied to the satellte example, this unificatiaf flexibilty and MDP
frameworks can be applied to find optimal policedficiently for a range of decision-
maker cost or performance preferences. Theseypsoititions take the form of a matrix
with NxK rows andT columns, where each elemedfr) indicates which ofN possible
actions or decisions should be made given the systein statel at timez. In the
satellite example application, each policy matrashdimensions 54 (total states) x 4
(time periods), and 9 options exist for each eldnwdrnthe matrix. If a full-factorial
analysis of all possible policies were to be comedi¢as was done for the simple case of
paths in Step 4A),%° = 1.31x16% simulations would need to be executed! However,
use of the structure of the problem as posed by(E).and scanning over weights and
powers as suggested in Eq. (28) permits optimaktydolutions to be found within
minutes on a standard desktop computer.

Expected cost and performance results for politytems to the satellite example
are shown by each blue “x” in Figure 31. Amongsthethe nondominated (Pareto-
optimal) solutions are highlighted and connecteckth Note that the minimum-cost and
maximum-performance endpoints of the Pareto froiatie identical to those of the open-
loop full factorial analysis of Figure 27, and tlgape of the frontier largely mirrors that
of Figure 27. However, several of the solutiongloan frontier (particularly those on the
convex portions of the frontier) outperform any tthéere possible via an open-loop
policy, the reason for which is clear in viewingetaxample optimal policy solution in
Figure 32. Note here that the evolution of thefigumation state no longer follows a
deterministic path through time but rather changesespond to the changing demand
environment, per the optimal policy specified irbleal6 that provides an expected total
performance of 0.57 satellites available for a exypected total cost of $663 million. For
example, Table 16 suggests that the decision-ma&eelop no satellites for the next

period in the event that the current conflict eomment is quiescent with full commercial
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capability (Environment 6) since this environmeatrinds no government capability for
satellites and is very likely to continue into thext period. On the other hand, if the
current conflict environment is hostile and no coenoial capacity is available

(Environment 1), the underlying Markov chain reftea 65% chance that the next-period
demand environment will have use for at least mmmunications satellite, and Config.
3 (the one-communications-satellite configuratig)suggested for development from
three configurations within this environment. Rube policy-based results such as this

are impossible to capture using the fixed confijarepaths of Step 4A.

45 I I ! I !
P U S SRR SO SO SO B
= : : :
= : ' :
E 35 - ............................. . ...... .
o ' i '
o : ; '
E 3 ———————— :- [ S — e [ - JI. ______ p—
[k} 1 1 1
L : : :
v . .
] e 7 U .
= | ' ' ' '
E N L Region of Dominated |
z ! Policy Solutions
*E 16F------ e e g S Leecenn N R O R -
— : | :
= : . : :
L o ] S S Mttt St ettt
= Y mal = MDP Palicy Solutions
Ho0g .- g Po--e- —&— MDP Policy Pareto Frontier
: ! S/ Anticipatory Policy Performance
0 | | I I I I I

a 500 1000 1500 2000 2500 3000 3500 4000 4500
Expected Total Cost over 32 years, §M

Figure 31. Trade between total demanded satellites/ailable and total cost for MDP policy
solutions. Policy identification numbers are indiated next to every fifth policy.
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Figure 32. Evolution of states and objectives fdPareto-optimal policy #14 (defined in
Table 16). In the plots on the left, the size of circles iatiss the relative number of Monte
Carlo simulation cases that exist in a given camfagion or demand state (on the y-axes) at a
given time (on the x-axes). The plots on the rigdicate the associated evolution of per-period
cost and performance. In all plots, gray lines cade transitions made in at least one simulation.

Table 16. Pareto-Optimal Policy #14 for Satellité&xample.

Current State, s Time at Period Start (years),t Current State, s Time at Period Start (years),t
;(t);?é Env. Config.| 0 8 16 24 ;(t);?é Env. Config.| 0 8 16 24
1 -1- 1 3 3 3 1 28 -4- 1 3 3 3 1
2 -1- 2 1 1 1 1 29 -4- 2 1 1 1 1
3 -1- 3 3 3 3 1 30 -4- 3 3 3 3 1
4 -1- 4 1 1 1 1 31 -4- 4 1 1 1 1
5 -1- 5 1 1 1 1 32 -4- 5 1 1 1 1
6 -1- 6 3 1 3 1 33 -4- 6 1 1 3 1
7 -1- 7 1 1 1 1 34 -4- 7 1 1 1 1
8 -1- 8 1 1 1 1 35 -4- 8 1 1 1 1
9 -1- 9 1 1 1 1 36 -4- 9 1 1 1 1
10 -2- 1 3 1 3 1 37 -5- 1 3 3 3 1
11 -2- 2 1 1 1 1 38 -5- 2 1 1 1 1
12 -2- 3 1 1 1 1 39 -5- 3 1 1 1 1
13 -2- 4 1 1 1 1 40 -5- 4 1 1 1 1
14 -2- 5 1 1 1 1 41 -5- 5 1 1 1 1
15 -2- 6 1 1 1 1 42 -5- 6 1 1 1 1
16 -2- 7 1 1 1 1 43 -5- 7 1 1 1 1
17 -2- 8 1 1 1 1 44 -5- 8 1 1 1 1
18 -2- 9 1 1 1 1 45 -5- 9 1 1 1 1
19 -3- 1 1 1 1 1 46 -6- 1 1 1 1 1
20 -3- 2 1 1 1 1 47 -6- 2 1 1 1 1
21 -3- 3 1 1 1 1 48 -6- 3 1 1 1 1
22 -3- 4 1 1 1 1 49 -6- 4 1 1 1 1
23 -3- 5 1 1 1 1 50 -6- 5 1 1 1 1
24 -3- 6 1 1 1 1 51 -6- 6 1 1 1 1
25 -3- 7 1 1 1 1 52 -6- 7 1 1 1 1
26 -3- 8 1 1 1 1 53 -6- 8 1 1 1 1
27 -3- 9 1 1 1 1 54 -6- 9 1 1 1 1
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Figure 31 also permits comparisons to be made wilicies that might be
brainstormed or proposed outside of the MDP salupoocedure. For example, one
reasonable policy that might be proposed is to ydwevelop and field the configuration
that least expensively maximizes performance iniust likely next-period demand
environment. The policy implied by this statement is providedrable 17; for instance,
if Config. 2 is currently operational in the Envmoent 1 (i.e., if the system is in total
state 2), the most likely next-period demand emrment according to Table 10 is
Environment 4. To least expensively fulfill the ndends of this environment, one
reconnaissance and one communications satellitddwoel developed and launched,
which places the system into Config. 4. Thus, abld 17 shows, Config. 4 is the
decision made from total state 2 at all excepffitia time period'

The performance of this next-period anticipatonfigyois summarized by the
yellow triangle in Figure 31, and two important qisi can be noted. First, this policy is
dominated by another discovered in the optimizapmytess: Pareto-optimal policy #40
achieves a higher expected performance at a lowmrceed cost. Second, even if this
anticipatory were Pareto-optimal (as it nearly i8)te that it is just one of a multitude of
policy options; it might be tempting for a decisioraker to adopt this intuitive policy,
but Figure 31 illustrates that doing so automalcdixes the long-term cost and
performance and ignores a wide variety of optidra tan reduce cost by a factor of 5
(with a certain trade in performance) or increasggsmance by a factor of 1.6 (with a
certain trade in cost). Thus, the search througtimupolicy design space permitted by
Step 4B allows the decision-maker to understand abst and performance trades

available and select a policy tailored to his arpreferences.

" In the event that multiple demand environmentstthe same probability of materializing next,

the environment with the demand for more satellgassed.

" The reason for the difference in the final timeige decision is the same as discussed earlier in
Section 4.4.1.
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Table 17. Anticipatory Policy for Satellite Exampek.

Current State, s Time at Period Start (years),t Current State, s Time at Period Start (years),t
;(t);?é Env. Config.| 0 8 16 24 ;(t);?é Env. Config.| 0 8 16 24
1 -1- 1 4 4 4 1 28 -4- 1 4 4 4 1
2 -1- 2 4 4 4 1 29 -4- 2 4 4 4 1
3 -1- 3 4 4 4 1 30 -4- 3 4 4 4 1
4 -1- 4 4 4 4 1 31 -4- 4 4 4 4 1
5 -1- 5 4 4 4 1 32 -4- 5 4 4 4 1
6 -1- 6 4 4 4 1 33 -4- 6 4 4 4 1
7 -1- 7 4 4 4 1 34 -4- 7 4 4 4 1
8 -1- 8 4 4 4 1 35 -4- 8 4 4 4 1
9 -1- 9 4 4 4 1 36 -4- 9 4 4 4 1
10 -2- 1 2 2 2 1 37 -5- 1 2 2 2 1
11 -2- 2 2 2 2 1 38 -5- 2 2 2 2 1
12 -2- 3 2 2 2 1 39 -5- 3 2 2 2 1
13 -2- 4 2 2 2 1 40 -5- 4 2 2 2 1
14 -2- 5 2 2 2 1 41 -5- 5 2 2 2 1
15 -2- 6 2 2 2 1 42 -5- 6 2 2 2 1
16 -2- 7 2 2 2 1 43 -5- 7 2 2 2 1
17 -2- 8 2 2 2 1 44 -5- 8 2 2 2 1
18 -2- 9 2 2 2 1 45 -5- 9 2 2 2 1
19 -3- 1 2 2 2 1 46 -6- 1 2 2 2 1
20 -3- 2 2 2 2 1 47 -6- 2 2 2 2 1
21 -3- 3 2 2 2 1 48 -6- 3 2 2 2 1
22 -3- 4 2 2 2 1 49 -6- 4 2 2 2 1
23 -3- 5 2 2 2 1 50 -6- 5 2 2 2 1
24 -3- 6 2 2 2 1 51 -6- 6 2 2 2 1
25 -3- 7 2 2 2 1 52 -6- 7 2 2 2 1
26 -3- 8 2 2 2 1 53 -6- 8 2 2 2 1
27 -3- 9 2 2 2 1 54 -6- 9 2 2 2 1

4.5. Step 5: Implications for Initial System Sele@on

Recall that a major purpose of this framework igform initial system selection.
The analysis of Step 4 has produced a large séataf on optimal paths and policies to
follow for the entire system time horizon, and it is easy to lose traicthe implications
this has for thenitial system decision. This final step of the framewoukds upon the
analysis results of Step 4 to provide implicatidos this decision. Covered first are
implications based on the expected-value Paretatiéns of Step 4, followed by
advanced topics that consider variations on thdgectoves and on the initial demand

environment assumption.

4.5.1. Implications based on the Expected-Value Peto Frontier

In the case of an open-loop path as discussedep &t the initial decision is

simply the first configuration in its associatechfiguration sequence. In the case of a
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policy, the initial decision is found by locatinget initial condition in the row of the
policy matrix and examining the element in thetfegslumn. To facilitate this, the initial
configurations specified by the Pareto-optimal pathd policies found in Step 4 may be
identified explicitly and plotted as a function décision-maker cost (or performance)
preference.

In the case of the satellite example, the initiahfggurations implied by the
Pareto-optimal paths and policies of Figure 27 Bigdire 31 are identified in Figure 33.
Here, the Pareto frontier solutions of Figure 2@ &mgure 31 are identified by their
expected total cost on theaxis. On they-axis are the initial configuration decisions
called for by each Pareto-optimal path (yellow leisy or policy (blue squares). Two
particular observations can be made: First, oidyo$ the nine configurations appear
among the optimal initial decisions. All paths gmalicies with other initial decisions are
dominated by paths and policies using these sifigunations. Second, the number of
satellites involved in the initial configurationnes to increase as the expected total cost
of the system increases. For example, the opiimitédl configuration tends to progress
from no satellites (for a low budget) to one commations satellite (Config. 3) to a
communications satellite and a reconnaissancelisatéConfig. 4) to eventually two
communications satellites and one reconnaissane#itsa(Config. 8) and to two of each
type of satellite (Config. 9). The primary exceptito this occurs in the medium-cost
region in which the initial decision to develop thene-reconnaissance-satellite
configuration (Config. 2) is associated with Parepdimal paths and policies. Thus, for
example, a decision-maker interested in minimiziogt without regard for performance
would elect to develop Config. 1 or 3 initially, wéh a decision-maker interested in
maximizing performance without regard for cost vebolpt for Config. 9 initially. A
decision-maker seeking a compromise between thésenges should opt for Configs. 2,
4, or 8, but any other selection would result insuboptimal long-term cost and

performance result.
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Also noted next to several paths and policies gufé 33 and explicitly plotted in
Figure 34 are the number of transitishsvailable from each initial configuration for the
average per-period cost associated with each totsth. As discussed in Step 1, this
number® can be considered an indicator of flexibility, amccan be seen that more
flexible initial configurations (e.g.9 = 7) are selected at higher cost and performance
preferences. Thus, there exists some correlagbwden flexibility and performance on
the Pareto frontier, which paves the way for anartgmt discussion after the following
section to conclude this theoretical discussiorttenpresent framework for integrating

flexibility into system design decisions.
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Figure 33. Initial configurations for Pareto-optimal paths and policies as a

function of expected path or policy total cost.Also noted are the numbers of

transitions available for several initial configurans at their path or policy’s
average per-period budget requirements.
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Figure 34. Number of Available Transitions for Paeto-Optimal Initial Configurations.

4.5.2. Accounting for Non-Expected-Value Objectives

An important consideration for initial system seiew is the fact that expected-
value objective functions of cumulative cost andfgrenance metrics may not fully
capture a decision-maker’s true objectives. Fangde, in the case of one-of-a-kind
engineering programs in which the large samplessie not exist for which expected-
value-based decisions would be most relevant, sideemaker may have some interest
in minimizing risks or deviations away from a ceamttendency measure of cost or
performance.

In the event that the decision-maker’s true obyestiare not expected values of
cumulative costs and performance metrics, all tslogi in the approach of Steps 1-4. In
fact, much is gained. Recall that the policy tragace (e.g., the 1.314Bways that the
policy matrices of Table 16 and Table 17 could bgytated) can be astronomically

large, but that MDP dynamic programming technigeeas permit optimal policies to be
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found quickly and efficiently over a wide ranged#cision-maker cost and performance
preferences. The dynamic programming techniquestdtion is that the objective
function must take the form of a cumulative expdetalue objective, but this can be
valuable if the decision-maker is able to identsiych an objective as an acceptable
surrogate or starting point for an analysis sucbresthat is illustrated next.

In the following analysis, a customized multi-oltjee genetic algorithm is
employed to perturb each of the policies identifiadFigure 31, simulate each new
hybrid policy, and search for non-dominated sohsgion terms of any combination of
metrics that can be accounted for via simulati®his genetic algorithm is customized in
the sense that it is real-valued and not binaryrder to avoid the need to represent each
of the '° possible policies of the example application vi®&6-bit binary string;
instead, each member of the population is repredeny its full policy matrix. At each
iteration, each member has a 10% probability ofatmom, which is associated with a
random change of approximately 10% of the membegsrix elements. In addition, at
each iteration a 75% probability of crossover existhich occurs via the two-point
splicing of the matrix rows of each member withaadomly selected other member to
form one new member of the population. Elitismemployed to ensure the highest-
performing member of the population is retainedrfrane generation to the next, and the
initial guess is also retained in the populatiorotighout. The algorithm employs the
infinity norm aggregate objective function (for icatale, see Appendix A) and sweeps
across the range of weights to identify optimumusohs over a variety of decision-
maker preferences. Note, however, that this pdaticselection of a genetic algorithm is
meant only to illustrate how existing optimizaticand design space exploration
techniques can be used to further explore the ypagace introduced and efficiently
solved for in Step 4B; a great deal of expansioth @xploration of other algorithms is

possible and warranted in the future.
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The results of Figure 35 are produced by applyihg fpolicy exploration
technique to the new metrics of "®@ercentile (near-worst-case) total cost and' 10
percentile (near-worst-case) total number of deredrgatellites available, in addition to
the expected-value versions of these metrics. @&fiqular note in the Figure 35
multivariate plot are four subplots: First, thdadan the subplot of the second row and
first column shows the familiar expected-value crsd performance trade, with slightly
better Pareto frontier performance due to the geadjorithm’s search. Second, the data
in the subplot of the last row and second colummwshthe 18 percentile performance
vs. the 98 percentile cost; the performance data in this kbis noticeably more
discrete since fractional numbers of available |g&® are not possible in a simulation.
Finally, the upper left and bottom right subplol®w the correlations between the new
percentile-based metrics and their expected-vatumterparts. In the cases of the cost
subplot, linear correlation is particularly high?(R0.88) and strongly supports the use of

expected value as a surrogate for optimizing tmegeile-based metrics.
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Figure 35. Multivariate plot of multi-objective genetic algorithm policy results.
Each data point indicates the performance of orleyoesult in terms of the four
percentile-based and expected-value metrics oféate Data points are colored by

their corresponding policy’s initial configuratiotecision.

The usefulness of the multivariate plot of FiguEeli#comes more evident if cost
or performance constraints are imposed by the decmaker. For example, suppose
that this decision-maker has a $3 billion limit the funds available for supporting this
system over its time horizon. If the decision-nrakeshes to be 90% sure that this
budget will not be breached, a $3 billion constraiy be imposed on the "9percentile
total cost metric. This constraint eliminates maimgh-cost (and also high-performance)

options that formerly fell into the high @ercentile cost regions of the multivariate plot
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that are now gray in Figure 36. Similarly, the iden-maker may wish to have 90%
confidence that at least one service will be pend over the system’s lifetime. In this
case an additional constraint may be imposed orasterow of subplots in Figure 36.
Combined, these two constraints eliminate a largaber of the policy options available.
Furthermore, they limit the decision-maker’s opsidior which configuration to select
initially. In this case, options are limited tosjuConfigs. 2, 4, and 8 (associated with
policies colored cyan, magenta, and green). WHideire 36 shows that all these initial
configurations are associated with policies of éqii¥ percentile performance, Config.
4 tends to be associated with policies of highegiterm cost than Config. 2, and Config.
8 is associated with policies across a range of-tenm costs (both mean and"90
percentile). Note that if a decision-maker wishhedave more insight into the behavior
of any given policy, the policies associated wiHltle data point in Figure 36 could easily
be simulated and visualized in a manner identicahe example of Figure 32. In the
end, in this notional scenario a recommendatiorCionfigs. 2, 4, or 8 could be justified,
depending on the cost and performance prefererfde @ecision-maker. Importantly,
through the use of this thesis’ framework, the mijaof possible initial configurations
have been eliminated, either due to long-term oogterformance constraints, or due to

the Pareto sub-optimality of the policies with whitey are associated.
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Figure 36. Multivariate plot of multi-objective genetic algorithm policy results with cost
and performance constraints imposed.Each data point indicates the performance of one
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4.5.3. Flexibility, Entropy, and Policy

An interesting observation was made earlier regarthe fact that in the satellite

program application there existed some correlabietween the long-term performance

and the flexibility®(b) of the initial configuration decision associatedh the Pareto-

optimal policies. This is natural for two reasorisrst, higher-performing configurations
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are themselves often correlated with higher costl higher-cost configurations are
themselves often correlated with lower switchingstso(and thus higher numbers of
available transitions,®). Second, because higher-performing configuratiare
correlated with higher cost, the average per-pébiadhetb used to calculaté(b) of the
initial configurations is higher for these configtions. Thus, this seemingly interesting
guestion becomes somewhat less so in short oroee\Ver, a useful and very interesting
guestion does present itself upon reflection o$ gevious question: How does the
optimal behavior with respect to flexibility varys acertainty about the demand
environment changes?

To address this empirically, consider the sateixample used throughout this
chapter but with two new models for the demand remvnent. The first, the low-
entropy-rate environment, is shown in Table 18 laasl an entropy rate of 0.67 bits (for
details on entropy rate, see the discussion in 3tgmd Eq. (16)). The second, the
medium-entropy-rate environment, is shown in Tdlfleand has an entropy rate of 1.26
bits. The reference model used throughout the dstr&tion in Steps 1-5 is provided in
Table 10 and has a relatively high 2.36 bit entrogig. Note that the lower the entropy

rate of a Markov chain model is, the more detershimit becomes.

Table 18. Low-Entropy-Rate Demand Markov Chain Transition Matrix (H '=0.67 bits).

To Demand Environment;

-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,

None Some Full None Some Full
=5 | 1 - Hostile, None 0.00 0.00 0.00 0.98 0.02 0.00
g *q:‘; - 2 - Hostile, Some 0.07 0.00 0.00 0.00 0.85 0.07
8 g - 3 - Hostile, Full 0.00 0.00 0.00 0.00 1.00 0.00
g€ 2 |-4- Quiescent, None, 0.04 0.00 0.00 0.48 0.48 0.00
,_% L% - 5- Quiescent, Some 0.00 0.08 0.00 0.01 0.89 0.01
- 6 - Quiescent, Full 0.00 0.00 0.00 0.06 0.70 0.23
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Table 19. Medium-Entropy-Rate Demand Markov ChainTransition Matrix (H '=1.26 bits).

To Demand Environment;

-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,

None Some Full None Some Full
-1 - Hostile, None 0.00 0.02 0.00 0.92 0.06 0.00
€% |-2- Hostile, Some | 0.14 0.01 0.01 0.01 0.70 0.14
g g - 3 - Hostile, Full 0.00 0.02 0.00 0.00 0.97 0.00
£ _g - 4 - Quiescent, None,  0.09 0.01 0.00 0.45 0.45 0.00
L 5 |-5- Quiescent, Some 0.01 0.15 0.01 0.05 0.74 0.05
- 6 - Quiescent, Full 0.00 0.01 0.01 0.12 0.59 0.28

Executing the MDP optimization procedure of StepfdBa range of decision-
maker cost and performance preferences result®areto frontier and a set of suggested
initial configuration decisions for each of the twwew demand environment Markov
chains. Just as was done for the nominal (higlropytrate) case in Figure 34, for each
of these chains the number of available transitiivasn each optimal policy’s initial
configuration for the average per-period cost carplotted. These results are shown in
Figure 37. Surprisingly, despite the large differes in entropy rate among the three
cases, the three plots look remarkably alike: fitmnber of available transitions spans
from one at an expected total cost somewhat ung@® illion to seven or eight at a
cost between $3.5 and $4.0 billion, with a sigaifit clustering of low-cost, low-

flexibility options.
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Figure 37. @ of the Initial Configurations of Pareto-Optimal Palicies for varying Demand
Environment Entropy Rates.

If flexibility of the optimum initial configuratiordoes not distinguish high- from
medium- and low-entropy-rate (i.e., more from lemsdom) demand environments, then
what does? As the following discussion will higjhif, the simple answer igolicy.
Policy specifiehowa system’s flexibility is exercised, which changamificantly with
the stochastic nature of the demand environmentthiB end, it is instructive to examine
two special cases:

Consider first a case in which demand evolves detestically according to the
transition matrix in Table 20. In this matrix, Eronments 4 and 5 are absorbing states,
and Environment 5 is the state to which the systethe present simulation is absorbed
(since the initial condition for this simulation Env. 6). Intuitively, one would expect
that Pareto-optimal policy solutions in the pregentno uncertainty are paths, and this
is exactly the case. Figure 38 shows the Pareintiér and the time-histories of
configurations for the Pareto-optimal points fasttieterministic case. Depending on the

| performance desired, Config 2 is fielded for aajer or fewer number of time periods.

The optimal policy in a deterministic demand enmirent thus degenerates to a path.
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Table 20. Special Deterministic Markov Chain Trangion Matrix (H '=0 bits).

To Demand Environment;
-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,

None Some Full None Some Full

_ |- 1- Hostile, None 0 0 0 1 0 0
S *>E- - 2 - Hostile, Some 0 0 0 0 1 0
§ g - 3 - Hostile, Full 0 0 0 0 1 0
g _g - 4 - Quiescent, None 0 0 0 1 0 0
L 5 |-5- Quiescent, Somg¢ 0 0 0 0 1 0
- 6 - Quiescent, Full 0 0 0 0 1 0
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Figure 38. Trade between total demanded satellites/ailable and total cost for MDP policy
solutions subject to a deterministic (minimum entrgy rate) demand environment Markov
chain. Configuration time histories for the optimal poésiare overlaid.

Consider second the case in which demand evolveforony randomly
according to the transition matrix in Table 21.thrs extreme case, a decision-maker has
decided to assume that he or she has no knowldugg #he likelihood of any future
demand environment. Each environment is equadBlytito occur in the future, and no
knowledge about the current demand environment mirove knowledge about the

likelihood of the next period’s environment. Instltase, since no information about

demand evolution can be gained from the probabitigpsition matrix, it may not be
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immediately obvious what optimal policies may exisHowever, some suboptimal
policies may be clear. For example, a policy thatles the decision-maker to alternate
between developing Config. 1 and 9 (the most aast leapable configurations) would be
particularly wasteful, since Config. 9 would needoe re-developed in each time period.
This simple example thus illustrates, and Figurec88firms, the important point that
Pareto-optimal policies exist even in a uniformigndom (maximum entropy rate)
demand environmentThis carries with it important implications for thesefulness of
this thesis’ framework even in the presence of detepuncertainty in the transition
probabilities of the demand environment.

More importantly, what is the character of the Rawgptimal policies in the case
of the uniformly random demand environment? Indame format as Figure 38, Figure
39 shows the Pareto frontier as well as the tinseshies of configurations for Pareto-
optimal points in the maximum-entropy-rate caséxikiBgly, most of these points (and
in fact all of the points that fall on the convesrfion of the frontier, which is known to
contain the set of global optimum solutions) areiakty paths. Thus, the optimal policy
in response to total uncertainty in the demandrenment also tends to degenerate to a
path. In such an environment, the present corihno information about the future,
and no useful policy exists to specify how to adapsystem to future environment

changes.

Table 21. Special Uniform Random Markov Chain Trarsition Matrix (H '=2.58 bits).

To Demand Environment;

-1- -2- -3- -4 - -5- -6 -
Hostile, Hostile, Hostile, Quiescent, Quiescent, Quiescent,
None Some Full None Some Full

- Hostile, None 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
- Hostile, Some 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
- Hostile, Full 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
- Quiescent, None| 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
- Quiescent, Some 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
- Quiescent, Full 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

From Demant
Environmenty;
o o M WON B

108



l Time History of Policy #20
Time History of Policy #18 =
s O O
8 H
c 7 :
§ 6] e N
] U U SO I o R o
"
Time History of Policy #10 “) OO O
9 H i H
8 ; H H ] 8 15 2
E H i £ = e Time at Period Start (years)
Ss O O ....... Time at Period Star (years)
[ PSS N S - 7
L S ) B fonieea R LEEEtes IR (SR ). GRS S A
LR,
1 H " )
] 8 24 '
Tirne at Period Start (years) .
Time History of Policy #6 :
: ]
e '
[ SRS S— I H
E af O R R '
© ] TS T S S A R T Y . S s :. .......
. |
1 i i .
[ 16 4 [-o-ro--- -g-r-
Time at Period Start (years) '
H ]
Time History of Policy#4 [ --—g i
9 " '
P SO Vo Sl
" A U S S
] S [ O = ) S
| Time History of Policy #13
8
500 8 [] ] 18 24
; Time at Periad Start (years)
£e
Time at Period Start (years) R S S
ime at Period Start (years g
) s
-
! 0 16 24
Time at Period Start (years)
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Markov chain. Configuration time histories for several optimalipees are overlaid.

In summary, despite the fact that the Pareto-optim#al configurations for

high-, medium-, and low-entropy-rate demand envitents possessed similar flexibility

@, this flexibility was used in very different ways:

* |n thelow-entropy-ratecase, this ability to change configurations wasluse
respond to environment changes known to the deeisiaker in advance,
making this case akin to a traditiorgdtimizationproblem in the sense that
the influence of uncertainties over time need netalbscounted for. More
precisely, in this case thpath (not necessarily the configuration) was

optimized.

* In the high-entropy-ratecase, a similar path was set in advance since,

although the future was evolving stochasticallynimial or no information
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about the future could be gleaned from the presemronment. This case is
thus more akin to the concept abustnessn the sense that the selected
sequence of configurations is able to perform wellwhatever future
environments materialize, but that no actions atended to be taken to
respond to these future environments. To be petiepath (as opposed to

the configuration) was made robust.

* In themedium-entropy-rateaseflexibility can be utilized to its fullest extent.
In such a case, the Pareto-optimal policies aréonger paths but rather are
true policies or “playbooks” that indicate to thecéion-maker what action to
take (i.e., configuration to develop) given futurenvironment and
configuration states. These policies take advantaiginformation gained

about the future evolution of demand from knowled§the present state.

These observations thus highlight the fundamemtetl that although flexibility
may exist in many systems, it is only when a mixeitainty and uncertainty in future
environments exists that this flexibility will rdsin non-path policies. Only between the
extremes of a deterministic and uniformly randommded environments will the ability
of a system to be modified in response to changesvironments or requirements be
exercised. That is, onlpetweenthese entropy rate extremes is flexibility ussfull
exercised.

The observations of this section also emphasizerevhexibility exists in the
analyses of Step 4 that produced Pareto frontierseims of performance and cost
objectives: While flexibility itself is not an ekpit objective (cf. Section 2.5), it exists
implicitly in the search for policies, particularlyon-deterministic (non-path) policies.
The ability of a system to be modified in responsechanging environments or
requirements (i.e., flexibility) is inherently liekl to the rules that govern its modification

response (i.e., policy), whether those rules azetielves explicit or implicit. This thesis

110



advances work on flexibility by making explicit #e system modification policies in a
unification of traditional two-period state-centdoncepts of flexibility with multi-period
decision analysis techniques. As a result, paigeverninghow system flexibility is
usedare not only explicit and transparent, but cartrbded and optimized to match a

decision-maker’s cost and performance preferences.

4.6. Summary

In a methodical manner, this chapter began fromuadational two-period state-
centric concept of flexibility and showed how, thgh interpretation of this concept for
space systems and linkage to the environments ithvwhese systems may be required to
operate, it can be unified with existing formulagoand optimization techniques for
Markov decision processes. Throughout the fivg-ft@mework developed here, several
insightful analyses were developed. For exampileStep 1 the number of available
transitions from a given configuration state ativeeg budgetdi(b) was developed as a
surrogate metric for flexibility. Step 4 made ihgortant distinction between paths and
policies; while paths are a more traditional metbdglanning (e.g., laying out a set of
actions to execute in future years), they precladkcision-maker from considering the
full “playbook” of if-then possibilities when malgnhis or her decisions. Step 5
illustrated how the complicated policy (and, to soaxtent, path) results of Step 4 can be
distilled into information that a decision-makerncase to make an initial system
selection. For the more advanced practitionern Staddressed how the expected-value
optima of Step 4 can be used as reasonable igiieéses for more local design space
searches in the case that decision-makers haveexpmeted-value or non-cumulative
objectives in mind. Finally, Step 5 also addregsedintriguing point that flexibility has
a particular niche in environments of neither veaigh nor very low uncertainty, but

rather in environments in which the present giwest $omeinformation about future

111



demand. Emphasized was the inherent link betwéenbility and policy, which
specifies the conditions under which a system’silfidity is exercised.

This chapter has thus established the theorebeaddations of the present thesis.
The following two chapters illustrate how this frawork can be applied to problems of
current interest to the space industry. FirsChapter 5 comes a direct application to a
relevant defense-related problem motivated by tefraationation efforts of the Defense
Advanced Research Projects Agency (DARPA). Secon@hapter 6 is a significant
extension of the basic framework presented in Glrapto address decision-making for

NASA human space exploration architecture planning.
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CHAPTER 5

APPLICATION TO DISTRIBUTED- OR MULTI-PAYLOAD
SATELLITE DESIGN DECISIONS

In July 2007, the U.S. Defense Advanced Researofeds Agency (DARPA)
released a Broad Agency Announcement solicitingpgsals for development of System
F6 (Future Fast, Flexible, Fractionated, Free-lglyBpacecraft united by Information
eXchange) [92]. DARPA's goal for F6 is ultimatedy flight demonstration of an
architecture in which the functionality of a traalital “monolithic” satellite is fulfilled
with a fractionated cluster of free-flying, wiredg interconnected modules. One special
reference case defined in the context of fractieshaspacecraft studies is that of a
distributed-payload monolith satellite, in which yjmmds but not subsystems are
distributed among free-flying modules (e.qg., sessR85]-[97]). To illustrate this thesis’
framework in a step-by-step manner for a realiggiplication of intra-mission flexibility
[28], this chapter poses an example in which desigoisions must be made for a
hypothetical multi-payload Department of Defenselite system motivated by such a
distributed-payload monolith concept. Of particulaterest is the answer to the
following question: How can a systems engineeraoalyst select the design of the
satellite system initially such that it can optitgajor Pareto-optimally) respond to the
uncertain future demands that may be placed ugon it

Recall that this thesis’ framework consists of fhasic steps, outlined in Figure
12. First, system configuration options are ideedi and costs of switching from one
configuration to another are compiled into a coatgition matrix. Second, probabilities
that demand on the system will transition from amssion to another are compiled into a
mission demand Markov chain. Third, one perforneamatrix for each design objective
is populated to describe how well the identifiedtsyn configurations perform in each of

the identified mission demand environments. Fqugbssible future sequences of
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system configurations are simulated and sequeheg¢site Pareto-optimal in terms of the

decision-maker’s objectives are identified. In@nplementary approach, the system

decision problem is formulated as a multi-objectraeiant of a Markov decision process,

and Pareto-optimal decision policies are identifigdnally, the paths and policies from

the latter step are synthesized into a set oftdatd#orm initial system selection.

Define Configuration .

Analysis Analysis
Option A

Find Pareto-Optimal Find Pareto-Optimal

Define Markovian Demand

Options and Cost ‘ Environment Evolution

Transition Matrix

Define State-Dependent
Performance Matrix

Decision Support Analysis

Option B

“Open-Loop” Paths “Closed-Loop” Policies
’ using Markov Decision
Process Technigues

-——— e o o o Em o o = o= P

|dentify Path and/or Policy Commonalities
to inform Initial System Selection

Figure 12. Five major steps of this thesis’ frameuork.

5.1. Step 1. Define Configuration Options and th€ost Transition Matrix

As noted in Section 2.2, in 1984 economists Jomeks @stroy [51] suggested,

“Flexibility is a property of initial positions. tlrefers to the cost, or possibility, of

moving to various second period positions.” Stepf this proposed framework begins

by defining: What are the possible “positions”, egineering configurations, of this

multi- or distributed-payload satellite system?
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5.1.1. Defining the Configuration Space

In this application, suppose that the decision-méles the option of inserting up
to three specific payloads in any current or futsystem designs. One payload (PL1)
provides detection of distress transmissions, amo{RPL2) provides high-bandwidth
communications, and a third (PL3) provides higlehason imagery. Assumptions for
mass, power, and pointing requirements for thesdopds are shown in Table 22.
Considering that these three payloads can be lwistxd among up to three on-orbit
modules and that not all three payloads need Hdaded in the system design (i.e., that
omitting payloads is a valid consideration), thexrest 15 distinct configuration options.
These configurations are represented graphicallyignre 40 and, as noted in previous
work [95], can be decomposed into subsets of cardigpns described by Bell numbers.
Starting from the bottom, configurations 11-15 es@nt all possible ways of distributing
three payloads among between one and three mo@idesfrom monolithic to fully
fractionated). Configurations 5-10 cover all pbisiways of distributing combinations
of two payloads among up to two modules. Configans 2-4 are the single-payload

satellite system options, and Configuration 1 iates the option to field no system at all.

Table 22. Assumed payload characteristics for exgpte design. [98]-[102]

Payload Payload Flight Mass Power Relzgoulinrtelzrrlgent
No. Description Heritage (kg) Requirement (W) ? deg.)
1 Search & Rescue Repeater NOAA-N 24.0 53 1.00
2 LEO Transponders Orbcomm 8.4 10 5.00
3 High Resolution Imager NigeriaSat-2 ~ 41.0 55 0.01

" This list of payloads is limited to three for demstration purposes only and can easily be

increased if a decision-maker wishes to considditiadal candidate payloads.
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Figure 40. Possible system configurationsEach distinct
rectangular block represents a free-flying moduldwe payloads
inside each module are indicated in green.

Even at this early point in the process, enumematib the designs within the
configuration space reveals two extremes in appremdor evolving the system to meet
future needs: The most modular (but in the lomgigotentially costly) approach would
be to launch new single-payload modules as newopdygl are needed. A robust (but in
the short term, potentially wasteful) approach wideg to launch a single spacecraft with
all three payloads, betting that all capabilitie eventually be required. A number of
approaches fall between these extremes, and antampgoal is to find the best possible
sequence of configurations over the system’s tiorvezn, given the uncertainty in future
demand or requirements. One of the most impontasults of this search is eventual
identification of the best possible initial desi¢re., what the decision-maker should

build at the start of the program).
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5.1.2. Defining the Cost Transition Matrix

With possible system configurations defined, itnesxt necessary to compile
development and operations transition cost infoignat In this application, operations
costs refer to the total costs required to opdtasecurrently-fielded configuration over
the coming time period. Development costs refethitotal costs required to design,
develop, produce, and launch the components netmdcansition from the current
configuration to a new configuration over the cogriime period.

In this application, suppose the decision-makeoanters a decision point every
30 months. At these points, a decision must beemnadgarding which of the 15 system
configurations to develop and then field 30 mon#ter. Demand for payload services in
each 30-month operations period is uncertain aipm materializes after development,

with the possibility that it will then change intsequent period (see Figure 41).

|. Planning Period (4) |

"~ “1

I( Planning Period (3) >|

I< Planning Period (2) >|

|< Planning Period (1) >I ‘

Design and Design and | Design and | Design and
Development | Development | Development | Development

(1) (2) 3) (4)
(1) (2) (3) (4)
Operation | Operation | Operation | Operation
Demand (1) Demand (2) Demand (3) Demand (4)
Materializes Materializes Materializes Materializes
t =-25yrs t=0 t=25yrs t=5yrs t=7.5yrs t=10yrs

Figure 41. Planning periods and decision points fahe
distributed-payload satellite example.

Thus, the decision-maker has control over the systenfiguration but not the
demand environment at each time step. Howeveradt decision point, the control that

the decision-maker chooses to exercise comes attairc cost. For example, if the
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decision-maker is at the second decision point lzesl Config. 2 already on-orbit, in
order to transition to Config. 8 he/she would nee@xpend the appropriate resources to
develop and launch a new module. In addition,Heefaust simultaneously pay for the
operation of the current on-orbit system.

These transition costs can be represented in nfatrix First, a development (or
nonrecurring) cost matriqey accounts for the one-time costs required to devaled
produce one system given that another system gireadts. This cost, which can also
be considered a switching cost, is the cost mastraieto the notion of flexibility and
may be computed through application-specific ceitrating relationships. In this case,
application of the GT-FAST fractionated architeetsynthesis tool [95],[103] using the
payload assumptions of Table 22 for a 10-year delffigtime in a 410 km circular orbit
produces the transition cost estimates in Table ZBese costs include appropriate
spacecraft subsystem development and first-unitlyotion, program management and
systems engineering, software, ground segment @@vent, launch, and assembly, test,

and launch operations (ATLO).

Table 23. Development cost transition matrixCqe, (data in $FY08M).

To Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1| 0 169 131 184 175 200 189 197 252 212 204 257 2288 280
21 0 O 36 89 80 105 94 36 89 117 109 94 134 163 117
3| 0 75 O 8 80 105 94 75 158 89 109 163 105 163 158
4| 0 75 36 0O 80 105 94 103 75 36 109 163 134 80 103
S| 5/ 0 75 36 89 0 105 94 103 158 117 109 163 134 896 18
B| 6] 0 75 3 89 80 0 94 103 158 117 109 163 36 163 186
g% 7/ o 75 36 89 80 105 0 103 158 117 109 75 134 1636 18
S| 8l o0 0 0O 89 80 105 94 O 89 89 109 94 105 163 89
g 9| 0 0 36 0O 80 105 94 36 0 36 109 94 134 80 36
gl100 0 75 0 0O 80 105 94 75 75 0 109 163 105 80 75
11| o 75 36 89 80 105 94 103 158 117 0 163 134 1686 1
12| 0 0O 36 89 80 105 0 36 89 117 109 0 134 163 117
13| 0 75 0 89 80 0 94 75 158 89 109 163 0 163 158
14| 0 75 36 0 0 105 94 103 75 36 109 163 134 0 103
15| 0 0 0 0 80 105 94 0 0 0 109 94 105 80 0
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Importantly, note that Table 23 accounts for the faat free-flying modules for
the next-period architecture need not be develogre@groduced if they exist already
within the on-orbit cluster. The most obvious nfastiation of this is that the diagonal of
matrix Cgey CONSists entirely of zeros; this signifies thauitive fact that it costs nothing
to develop configuration given that configuratiomn already exists. Similarly, note that
no development costs are required to downgradenfigcmation, such as a transition
from Config. 15 (which, as shown in Figure 40, ud#s three single-payload modules)
to Config. 2 (which consists of only the PL1 singkeyload module). This highlights a
simplifying assumption within the data of this peutar matrix that the cost to shut down
or decommission a module is zero; however, givepp@r decommissioning cost models,
this information could easily be included@ge

Second, a recurring cost mati. shown in Table 24 accounts for operations
and any production beyond the first unit.In this example application, first-unit
production costs are the only applicable productiosts, so the costs within this matrix
are functions only of the row, i.e., the configimatthat is operational over the length of
the coming 30-month time period. These costs @ @stimated using the GT-FAST

tool, which draws upon a publicly-available NASAsgion operations cost model [104].

" In some instances, the analyst may wish to acctmrall of production within the recurring
cost matrix, since even one-time production fonaue flight unit is traditionally bookkept as a
recurring cost. In the present application, ongetimodule production costs are considered more
closely related to the one-time development costsaae accounted for in the development cost

matrix.
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Table 24. Recurring cost transition matrix, Cre. (data in $FYO8M).

To Configuration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2120 20 20 20 20 20 20 20 20 20 20 20 20 20 20
3] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
41 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
g 5121 21 21 21 21 21 21 21 21 21 21 21 21 21 21
"E 6| 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
éﬁ 7122 22 22 22 22 22 22 22 22 22 22 22 22 22 22
5 8| 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
LE) 9129 29 29 29 29 29 29 29 29 29 29 29 29 29 29
L% 10| 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
11| 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
12| 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
13| 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
14| 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
15/ 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

SummingCgyevand Cec from Table 23 and Table 24 yields the total coetdition
matrix C in Table 25 Each elemeay; of this matrix specifies the total cost incurrego
a subsequent 30-month period as the result ofebesidn to transition from developing
configurationi to developing configuration For example, to transition from Config. 2
to Config. 8 requires developing, producing, anthizning the module containing PL2 as

well as operating the current Config. 2, for altti@nsition cost; g = $56 million.

Table 25. Total cost transition matrix,C (data in $FY08M).

To Configuration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1| 0 169 131 184 175 200 189 197 252 212 204 257 2288 280
2|20 20 56 110 101 126 115 56 110 138 130 115 1584 1138
3|16 91 16 106 97 122 111 91 174 106 125 179 1220 1874
422 96 58 22 102 127 116 124 96 58 131 184 155 1024

S| 5|21 9 57 110 21 126 115 123 178 138 130 184 1550 1207

B | 623 98 59 113 104 23 118 126 181 141 133 186 597 1809

g% 7022 97 58 112 103 128 22 125 180 140 131 97 1566 1808

S| 8|23 23 23 113 104 129 118 23 113 113 132 118 1287 1113

g 9|29 29 65 29 109 134 123 65 29 65 138 123 162 1085

210/ 25 99 25 25 105 130 119 99 99 25 134 187 130 1089
11| 24 98 60 113 104 129 118 126 181 141 24 186 1%87 209
121 29 29 65 118 109 135 29 65 118 147 138 29 1633 1947
13| 26 101 26 116 107 26 121 101 184 116 135 189 280 184
14| 29 104 65 29 29 135 124 132 104 65 138 192 1639 232
15| 31 31 31 31 112 137 126 31 31 31 141 126 137 1131
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5.1.3. Analyzing the Cost Transition Matrices

The data represented by the cost transition matge@ be analyzed, visualized,
and related to flexibility in several useful wayBirst, the relative trade between system
initial costs and the switching costs (or one-tdexelopment costs) of Table 23 can be
visualized as in Figure 42. In this figure, eachtigal line indicates the range of
switching costs from a given configuration, defir®dthe rows of Table 23. Solid dots
indicate minimum and maximum values, and triangtelcate median values. Each
vertical line is located horizontally at the coseded to develop the configuration from
scratch (in this case, Config. 1). For examplenaf system currently exists and a
decision-maker chooses to develop Config. 5 (inmgha single module with PL1 and
PL2 on board), a cost of $175 million is incurrexh thex-axis), and the cost to switch
configurations in the future varies from $0 to $188lion, depending on which future
configuration is chosen. In contrast, if the decisnaker instead chooses to develop
Config. 15 (involving three payloads among threedunies), a cost of $280 million is
initially incurred, and the cost to switch configtions in the future varies from $0 to
$109 million. Thus, to some extent Figure 42 eroglly confirms the intuitive trend

that future switching costs can often be reduceddjier investments.
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Figure 42. Switching cost vs. initial cost from Cofig. 1. Vertical lines

indicate ranges of switching costs from each camégon; some overlap. Solid
dots indicate minima and maxima, and triangleséaté median values.

Second, the data from the total cost transitiorrimétable 25) can be visualized
directly in the context of the two-period state{cennotion of flexibility mentioned
earlier. For this visualization see Figure 43.réjeach node in each of the three plots
represents one of the configurations considerdbeardesign space. Each node is named
Sk, whereX is the configuration number from Figure 40, and &aolor indicative of the
number of on-board payloads (consistent with tHersoof Figure 42). Above each of
the three plots is a budget, and for every eleroénhe total cost transition matrix less
than or equal to the given budget, a directed isnlrawn. In cases where the total cost
on the diagonal of the matrix is less than or eqodhe budget, a dark circle is drawn
around the appropriate node. For example, the lmjaldt of Figure 43 shows that, if the
currently-fielded architecture is Config. 12, a $%llion budget for a given 30-month
period would allow the decision-maker to transitiorConfigs. 1, 2, or 7, or to remain in
Config. 12. In cases where no links or dark cir@es associated with a configuration, the
available budget is insufficient even to supporragion of the current configuration into

the next period.
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Figure 43. Available transitions for three example830-month budgets. Self-transitions are
available if a dark ring circles a given node. Cdandicate each configuration’s number of
payloads (0 = blue, 1 = green, 2 = red, 3 = cyaonsistent with Figure 42).

A natural observation from Figure 43 is that, addg®mi is increased, more links
become available. The total number of links inghephs of Figure 43 increases from 23
at the $20 million budget to 47 at the $50 millibndget and 78 at the $100 million
budget. Eventually, at a large enough budgeg 24l links would appear. Linking this to
the two-period state-centric concept of flexibiliey clear indicator of the flexibility of a
given configurationi is the number of links or transitions availableitdor a given
budgetb (the number of “outs” available, denotégdb) ).

This indicator is plotted in Figure 44. The figwsleows the number of available
transitions as a function of available budget, wheata for each configuration is
represented by a single line. For example, thardigllustrates that for a per-period
budget of $50 million, Config. 1 (the “nothing” cliguration) has® = 1 transition
available, Configs. 2-7 and 11 each hdve 2 available transitions, Configs. 8-10 and
12-14 each havedb = 4 available transitions, and Config. 15 hhs= 8 available
transitions. It also shows that by a budget of $&fiion, any configuration can be
reached from any other configuration since all murhtions have 15 available

transitions.
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Figure 44. Available configuration transitions asa function of the
available 30-month budget.

Figure 44 highlights a few interesting transitiorhacacteristics for the
configurations in the design space defined in Fagll. If the quantity is interpreted as
a surrogate measure of flexibility, then it is §aseen that Config. 1 is significantly less
flexible than any other configuration over mostlod budget range plotted in Fig. 9. For
Config. 1, the first available transition to anatlwenfiguration occurs at $131 million;
for the same budget, other configurations can dyreaake between 9 and 13 transitions.
This occurs because Config. 1 has no capabilibiasit can leverage to easily transition
to other configurations, and all capabilities mbstdeveloped from scratch. It is also
relevant to note that the three-payload monolitonfig. 11, which has no modules in
common with other configurations, tends to haveefewansitions available than most
other configurations at most budget levels. On dteer hand, Config. 15 (the fully
fractionated design) very quickly attains a largenber of available transitions as budget
increases; this configuration is the first to re&ckransitions and the first to attain the
ability to make all 15 available transitions. Tloiscurs because Config. 15 consists of

three single-payload modules that can easily bé asepieces of other configurations;
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from Config. 15, the only modules that must be dgwed to reach other configurations
are the two- or three-payload modules.

In terms of number of transitions, the other comfagions within the design space
generally fall between the bounds of Configs. 1 d&5d All illustrate that® is a
monotonically increasing function of budget, whicimplies that any given
configuration’s flexibility increases with availabbudget. However, examples also can
be found to illustrate that thelative flexibility between configurations is also a fuiect
of available budget. For example, at a budge®&f&illion, Config. 8 has four available
transitions while Config. 15 has none. In otherdg) at a budget of $25 million, it is
reasonable to make the statement that Config. Base flexible than Config. 15.
However, at a budget of $50 million, Config. 8Istias four available transitions while
Config. 15 can make eight transitions. At this dgpeidlevel, Config. 15 is more flexible
than Config. 8, and the relative flexibility of &e configurations has reversed. The
reason for this “flexibility reversal” becomes eerd when it is recalled that the cost
transition matrix accounts for both development egcurring operations costs: When
budget resources are scarce, operating a high-tiagpabnfiguration (like Config. 15)
consumes funds that would otherwise be availablddoeloping the components needed
to transition to another configuration. Howeves, famancial resources become more
abundant, more capable configurations become mierable because they already

possess capabilities transferrable toward the dpuant of other configurations.

5.2. Step 2. Define Markovian Demand Environment &olution

While Step 1 focused on defining the available mpmhtion states for the
distributed-payload satellite application of int@rehe environment in which the system
will operate has not yet been discussed. Stelts2His gap by proposing a model for the
evolution of the environment. Unlike the configuwa state, which is under the control

of the decision-maker, the environment state Wwiliracterize the demands placed on the
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system at any given time, which inherently is noder the control of the decision-maker
and evolves stochastically.

As mentioned in Section 5.1.1, up to three spegifigloads are available for any
current or future designs of the distributed-paglisatellite system. One payload (PL1)
provides detection of distress transmissions, amo{RPL2) provides high-bandwidth
communications, and a third (PL3) provides higleheson imagery. In terms of
defining the demand environment, it is reasonablkexpect that future demand may exist
for the satellite system to provide any combinabdthese three services. For example,
in one time period, only high-bandwidth communioca may be required, and in
another, both high-resolution imagery and high-madth communications may be
needed. Thus, there exist eight distinct demart@mment states, indicated by the axes
in Table 26. Note that these environment statesrartually exclusive and, for example,
“1” should be interpreted as “1 only” and “1+2” sha be interpreted as “1+2 only”.

It is also reasonable to expect that the evolutbnlemand for these services
through time is unlikely to be properly modeled@&yime series of independent random
demand environments. Rather, a subsequent peded'snd likely depends at least in
part upon the current demand, a dependence thdiecaaptured using a Markov chain.
stochastic model with an associated probabilitynditéoon matrix. The particular
probability transition matrix assumed for this exdenis shown in Table 26. Ideally, this
matrix would be populated using a set of experg@mdents regarding future demand
behavior or, if they exist, probabilities basedhistorical data. In this notional example,
the author’s judgement was used to select valussréilected a high likelihood that a
current demand would be maintained (e.g., if higénfution imagery is demanded in the
current period, it would be likely to also be dewhadh in the next period) and tended to
place lower probabilities on the need for dedicatkstress transmission detection
services. The probabilities in Table 26 also w#fen assumed conditional independence

in the evolution of demand for each individual sesy for example, the probability of
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demand evolving for all three services (1+2+3) suhsequent period is equivalent to the
product of three underlying probabilities that amnditional on demand in the current
period and reflect the likelihood that demand egslto each of the services individually.
It is important to emphasize, however, that thetipaar probabilities in Table 26 are

illustrative and can easily be substituted withmibre data or other expert judgements

become available.

Table 26. Assumed demand environment transition bability matrix.
Note that, in the demand environment naming comwent indicates demand for
distress transmission detection , 2 indicates dehianhigh-bandwidth
communications, and 3 indicates demand for higloltg®n imagery services.

To Demand Environment

‘g‘ None 1 2 3 1+2  1+3 2+3 1+2+3
g None 0.30 0.05 0.13 0.30 0.02 0.05 0.13 0.02
2 1 0.20 0.15 0.09 0.20 0.06 0.15 0.09 0.06
L% 2 0.10 0.02 0.23 0.15 0.05 0.03 0.35 0.07
o 3 0.10 0.08 0.07 0.23 0.05 0.19 0.16 0.12
g 1+2 0.05 0.07 0.20 0.03 0.28 0.05 0.13 0.19
8 1+3 0.05 0.05 0.05 0.20 0.05 0.20 0.20 0.20
g 2+3 0.05 0.04 0.12 0.12 0.09 0.09 0.27 0.22
iC | 1+2+3 0.02 0.02 0.08 0.08 0.08 0.08 0.32 0.32

The Markov chain of Table 26 can be visualized asteof demand environment
states as in Figure 45. In this figure, high-plolitg transitions are represented as thick
dark links and low-probability transitions are regented as thin light links. The
likelihood of self-transitions (along the diagonal Table 26) are indicated by the
darkness and thickness of rings around each stdteus, for example, this figure
immediately allows identification of the highesbpability and lowest-probability

transitions in the Markov chain and demand envirentngvolution.
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Figure 45. Visualization of the demand environment
Markov chain described by Table 26.

5.3. Step 3: Define State-Dependent Performance KMix

Linking the on-orbit configuration to the demandviemnment is a matrix that
specifies the amount of reward (e.g., revenue acuraclated performance measure)
earned in each time period as a function of the at®menvironment and system
configuration in that period. The application herges the matrix in Table 27, which
specifies the number of demanded services thatpar®rmed given a particular
configuration operating in a particular demand sswinent. For example, if the demand
in one time period is for imagery and communicai¢oolumn 7) and the vehicle on-
orbit is in Config. 15 (the 3-payload fully-fractiated option, row 15), the decision-
maker accumulates the successful performance ofdemeanded services. As a result,
the decision-maker is incentivized to place paytoadorbit that will meet demand for
services.

It is also worth noting that, although the presapplication adopts just one
performance metric (and thus one performance matmltiple such matrices can be
defined for any cumulative performance metricsnbérest to the decision-maker. For
example, a decision-maker may also be interested aumulative binary metric that

indicates a 1 or 0 in each time period dependingvbether performance demands were
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fully met; over the long term, such a metric woundicate the percentage of time that the

system fully meets the demands placed upon it.

Table 27. Performance matrix quantifying the numbe of
demanded services performed in a given time period.

Demand Environment State

None 1 2 3 1+2 1+3 2+3 1+2+3

1] o0 0 0 O 0 0 0 0

2| o 1 0 O 1 1 0 1

3| o0 0o 1 o0 1 0 1 1

4l o 0o 0 1 0 1 1 1

8 5| 0 1 1 0 2 1 1 2
n 6 0 1 0 1 1 2 1 2
IS 71 o o 1 1 1 1 2 2
gl 8| o 1 1 0 2 1 1 2
@ 9| o 1 0 1 1 2 1 2
§ 10| o0 0o 1 1 1 1 2 2
11| 0 1 1 1 2 2 2 3

12| 0 1 1 1 2 2 2 3

13| 0 1 1 1 2 2 2 3

14| 0 1 1 1 2 2 2 3

15| 0 1 1 1 2 2 2 3

5.4. Step 4. Decision Support Analysis

With configuration transitions, demand environmefttansitions, and a
performance matrix defined, there now exists endofgirmation to begin to answer the
guestion of what is the “best” initial configuratithe decision-maker can choose. Using
Figure 41 as a framework for a simulation timelinme time period before a
configuration is fielded (in this distributed-paghb satellite example, &t= -2.5 years), a
decision-maker must choose which system configumét initially design, develop, and
produce. At = 0, the system that had been developed over #haous time period is
fielded, and a demand environment materializesth&tpoint, the system operator must
make use of the currently operational system ianating to fulfill the current demand.

Meanwhile, the decision-maker must choose whicHigaration to design, develop, and

129



produce over the coming period. The cycle theratpfor as many periods as fills the
time horizon under consideration. In this case,ttime horizon of interest is 10 years of
operation.

The decision support analysis in this step is didnto two complementary
analysis options. The first option, in which Pareptimal paths are identified, is simpler
to implement and conceptually similar to long-tesuoheduling and roadmapping
analysis. The second option, in which Pareto-ogitipolicies are identified, is a more
complete consideration of the problem and is a&idéveloping an optimal “playbook”

of what actions to take given all possible futweletions of the environment.

5.4.1. Find Pareto-Optimal “Open-Loop” Paths

One question that Figure 41 prompts is: What goméition should the decision-
maker choose to develop at each time incrementdtHar words, what configuration
should be selected for each of the yellow desighdevelopment blocks in Figure 417
The answer is not obvious, especially since the aheimenvironment evolves
stochastically. For example, the decision-makes wishes to be able to fulfill whatever
demand the next period may bring would choose tiid ihe most capable system
possible, but this may come at substantial inkgbense. The decision-maker who
would gamble that tomorrow’s demand will be the sas today’s would develop few or
no new architectural components and in doing s@& sagnificant resources; however,
this may come with the inability to perform if tinext period’s demand materializes to
require greater capability. Furthermore, whether period’s decision is best (e.g., high-
reward or low-cost in the long run) is likely to lependent on other decisions
throughout the system lifetime. In the flexibiliproblem, it is in general necessary to
consider all future decisions within a given timeribon in order to judge the
appropriateness of any single decision. While pinesents a unique difficulty within the

realm of space system conceptual design, once ebenplpresents an automatic solution
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to the question of which configuration to selectiatly: The appropriate configuration
to select initially is the first configuration de@mn from the “best” time-ordered sequence
of decisions.

In this example, posing the problem such that wehwto find the optimal
sequence of the four development decisions (eacisidie of which implies a selection
among the 15 configuration options) means thatettexist 15 = 50,625 possible
sequences (or paths). Since the configurationthese paths are identified by the time
on the clock at which they are chosen, this typspafcification will be referred to as an
open-loop path.

Assuming an initial condition at = -2.5 years in which the operational
configuration is nothing (Config. 1) and there Bnthnd for none of the services (the
“None” environment), one approach to solving thielgem is to simulate all 50,625
paths subject to the stochastically-changing demamdronment and identify which
produces the “best” combination of performance emst. Thus, for each of the paths,
1000 Monte Carlo simulations are run. At each tstep of a simulation, the following

events and computations occur:

1. Mission demand evolves stochastically accordingthie Markov chain
estimate of Table 26.

2. The operator of the currently operational configiora attempts to use this
system to fulfill the new mission demand, earnimgd¢ according to the
performance matrix.

3. The decision-maker chooses which configuration éwetbp in the current
time period and field in the next time period, imng a cost according to the
cost transition matrix. An available choice in amge period is to retain the

current configuration, which requires no additiodalelopment resources.
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A sample set of Monte Carlo simulation resultshigvgn in Figure 46. This figure
shows the result of adopting a path representinpp@emental buildup of capability in
which Config. 4 (the PL3-only configuration) is lfled initially. In the next time period,
a new module containing PL1 is launched, and Pla2iged in the third time period. The
cluster of three modules operates until the enthefl0-year time horizon. Due to the
simulation setup, a configuration decision mugt lsé made in the final operational time
period; since the cost of developing this final faguration will be incurred but no
reward will be earned, Config. 1 (the “Nothing” ¢gyuration) is selected. As the bottom
left portion of Figure 46 shows, this particulartipgdenoted as [4 9 15 15 1], by the
configuration decisions made at each step) is stibjea stochastically changing demand
environment. The size of each yellow dot indicateslikelihood of demand being in a
particular state (on thg-axis) at a given time (on theaxis); note that all simulations
begin in the “None” demand environmenttat -2.5 years, as specified by the initial
condition. The right-hand portion of Figure 46 icates how per-period cost and
performance vary over time. Note that the perguedost decreases from $184 million
for the initial investment to $31 million in thenfil operations period, and number of
demanded services performed per period increases Zero to a mean of 1.67 in the
final period. The total expected cost for thistpatver the time horizon is $407 millign

and the total expected number of demanded serpa&désrmed is 4.69.

" Note that once a path is chosen, cost is fixes.aAesult, the expected cost is equivalent to the

minimum, maximum, and median costs across all patted Monte Carlo simulations.
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Figure 46. Evolution of configuration path [4 9 1515 1], representative of an incremental
capability buildup. In the plots on the left, the size of circles imadiécthe relative number of
Monte Carlo simulation cases that exist in a gigenfiguration or demand environment state
(on the y-axes) at a given time (on the x-axefe plots on the right indicate the associated
evolution of per-period cost and performance. llrpbots, gray lines indicate transitions made in
at least one simulation. Note configuration andtare deterministic, since a path is specified.

Obtaining results like those in Figure 46 for eadhthe 50,625 possible paths
allows the total expected performance to be contpatel plotted against total cost for
each path as in Figure 47. In this figure, eaale X" represents the total cost and
performance of one path Notice that, for the population as a whole, ¢hisra general
trend that, as more funds are invested, higheopeence is expected. However, it is

important to recall that the decision-maker hasaice of which path to select. As a

" These totals are taken over the -2.5 year period (at which there is zero perfamoe due to

the initial condition) and the four subsequent pesi
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result, if he or she cares primarily about totadtcand expected total demanded services
performed, it would make little sense to selecighitost, low-performance point toward
the lower right of the cluster. Rather, the desismaker would prefer to choose among
the set of nondominated points that comprise thet®drontier. This Pareto frontier,
shown in red in Figure 47, is composed of the $@bbssible configuration sequences for
which one objective cannot be improved without garifice of another. In this
application, the frontier is comprised of just 2l 50,625 possible paths and helps to
narrow the options considerably.

Listed next to each of the Pareto-optimal pointsFigure 47 is its associated
configuration path. Note that at the bottom Idftree figure is the “do nothing” option in
which Config. 1 is fielded for all time periods;ighs cost-optimal but also provides the
lowest possible performance. At the other extramehe Pareto-optimal highest-
performance option of fielding Config. 11, the #ugayload monolithic satellite, for all
time periods. The Pareto-optimal solutions betwéleese two extremes involve
developing Configs. 3, 5, 7, or 11, either immeshator after a 1-2 period delay.
Notably absent from the frontier are the higherteogltiple-module configurations.

One use of the data in Figure 47 becomes evidesnwhe sample path from
Figure 46 is overlaid as the yellow square in Fegdi7. Here it can be seen that the
incremental path [4 9 15 15 1] is dominated by sohs on the Pareto frontier. In fact,
one particular path, [1 11 11 11 1], accumulatesr-mentical performance for a total
cost about $131 million (32%) lower. In this Pareptimal path, detailed in Figure 48,
the three-payload monolithic satellite is fieldefen a one-period wait, during which
time demand evolves toward an environment in winehtiple services are demanded.
Unlike the incremental path in Figure 46, whichibxk a gradual decrease in per-period
cost, the Pareto-optimal path in Figure 48 exhiaitsnitial $204 million spike followed
by $24 million in operations costs for three pesiodAs a result, this cost profile results

in significant savings, and the system still perferwell since all three payloads are
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available to fulfill all requested services at tsniea the future in which the environment

has evolved to one in which multiple services tentdde demanded.

6 ! ! ! !
[11 11 11 11 1] :

ek ........ “
1111111 1) =G

T e Lo ' Path Perfarmance
: —&— Pareto-Cptimal Path Performance
O mample Path: [4 89 15 15 1]

I I I I

Expected Total Demanded Services Performed
(3]
L

Ei. I
a 100 200 300 400 500 GO0 700 800 500
Expected Total Cost over 12.5 years, $FYOEM

Figure 47. Trade between total demanded servicegormed and total cost for all open-
loop paths. Pareto-optimal paths are identified by 5-period ftgaration sequences listed next
to red circles.
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Figure 48. Evolution of configuration path [1 11 1 11 1], a Pareto-optimal pathln the plots
on the left, the size of circles indicate the rie@lmnhumber of Monte Carlo simulation cases that
exist in a given configuration or demand environtratate (on the y-axes) at a given time (on the
x-axes). The plots on the right indicate the asged evolution of per-period cost and
performance. In all plots, gray lines indicaterisations made in at least one simulation. Note
configuration and cost are deterministic, sinceadhpis specified.

5.4.2. Find Pareto-Optimal “Closed-Loop” Policies

While straightforward and conceptually similar to@ptimization of typical long-
term scheduling and roadmapping efforts, the amalgsesented in Step 4A has two
principal disadvantages. First, for applicationthvarge numbers of configurations and
long time horizons, it may not be practical to eeuate all possible paths. For example,
if the number of time periods in the present agpiom were doubled, the number of
possible paths would increase from 50,625 to overbilion and take several years of

run time on a standard desktop computer. Seca@sdnang a set path for the entirety of
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the system’s lifetime neglects the ability of thecdion-maker to make choices mid-
program in response to the evolution of the densamdronment.

To overcome these limitations, Step 4B presentemaptementary analysis that
draws on the unification of flexibility and Markalecision process (MDP) frameworks
discussed in depth in Section 4.4.2.2. To proceid this analysis, the configuration
and environment state spaces of Steps 1 and Dareired into a single total state space
(i.e., Total State = {Configuration State, Demanat&}). In this distributed-payload
satellite example, there are 15 configuration staté environments = 120 total states,
which Figure 49 Iillustrates graphically. In thisrée-dimensional “spindle” of total
states, each vertical layer represents a partiddarand environment and each column
represents a particular configuration. Thus, passible for the fielded system to be in
any configuration and operating in any demand emvirent at any particular point in
time. Since configuration is under the controltbé decision-maker, he or she can
choose to move to any vertical column of the sgratl any point in time (recognizing
that it takes one time step to make this move) wéi@r, the demand environment is not
under the control of the decision-maker. lllustthin Figure 49 is an instance where
Config. 15 is operating in Demand Environment X.the decision-maker chooses to
develop Config. 10 for the next time period, hesbe is assured to move to the column
corresponding to Config. 10however, since the demand environment evolut®n i
stochastic, the layer to which he or she movesicetain and depends on the evolution
of the Markov chain specified by Step 2. Oncedémand environment materializes, the
decision-maker finds himself or herself at one ipalar total state and makes another

decision about which of the 15 configurations tlecefor the following period.

" The assumption implicit in this assurance is ttet decision-maker will not by accident

develop a configuration other than Config. 10, Whi considered reasonable in this application.
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Figure 49. “Spindle” of Total States. Each layer corresponds to one demand environmetht an
each vertical column corresponds to one configoratiEnvironments 4-7 are not depicted.
Arrows illustrate that, due to demand environmamteartainty, multiple possible total states are
possible in the next period if a decision is maggansition from one configuration to another

(e.g., Config. 15 to Config. 10).

Accounting for probabilities of transitions withinhe total state space,
configuration decisions from each state, and peiegeost and performance aggregation
as detailed in Section 4.4.2.2, the solutions fareB®-optimal decision policies take the
form of a matrix with 120 rows and 5 columns, wheaeh element(r) indicates which
of the 15 available configurations be developed gésen the system is in stafet time
periodz. If a full-factorial analysis of all possible j@és were to be conducted (as was
done for the simple case of paths in Step 4Aj%°15 10 simulations would need to be
executed! However, use of the structure of theblera as posed in Section 4.4.2.2
permits optimal policy solutions to be found withiours or minutes on a standard
desktop computer.

Expected cost and performance results for polidutems to the distributed-

payload satellite system application are shown dgheblue “x” in Figure 50. Among
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these solutions, the nondominated (Pareto-optinsallutions are highlighted and
connected in red. Note that the minimum-cost aadimum-performance endpoints of
the Pareto frontier are identical to those of thersloop full factorial analysis of Figure
47, and the shape of the frontier largely mirronattof Figure 47. However, an
interesting solution with performance superior g available from an open-loop path is
visible at an expected total cost of $40 millidbepicted in Figure 51 in the same format
as the open-loop results earlier, it can be seaintlins policy solution is nearly the same
as the “do nothing” policy but with one exceptioAs the top left plot shows, at the O
time period the policy occasionally (in 14.5% o$esg) calls for a decision to develop and
subsequently field the three-payload monolith. eWkr decision is made is governed by
the demand environment, as the policy indicate¥ahle 28. In this table, the policy
solution itself is shown, and the action specitigcthe policy is provided for a system in
any states (the row) at any time(the column). Looking only at the eight totaltetathat
are associated with Config. 1 (i.e., total states6l 31, 46, 61, 76, 91, and 106), it can be
seen that the decision to develop Config. 11 rati@n Config. 1 at = 0 occurs only in
total states 91 and 106, which correspond to atsito in which either the 2+3 or 1+2+3
demand environment exists. In other words, thigpachieves a low expected cost and
an appreciable expected performance by only deirgjape three-payload monolith if a
substantial demand for services materializes edutyng the program. Such a result is

impossible to capture using the fixed configurafi@hs of Step 4A.

" The sparsity of points on this frontier is largelye its concavity: Only four of the frontier
points could be found using= 1 in Eq. (28). The heuristic method adoptedifigoroving the
frontier estimate by increasimgbeyond unity was only partially successful in itgmg the full

frontier, and this is thus a clear area for futlegelopment.
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Figure 50. Trade between total demanded servicegormed and
total cost for MDP policy solutions.
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Figure 51. Evolution of states and objectives fdPareto-optimal policy #3 (defined in Table
28).In the plots on the left, the sizes of circlescate the relative number of Monte Carlo
simulation cases that exist in a given configunatto demand state (on the y-axes) at a given
time (on the x-axes). The plots on the right iatidhe associated evolution of per-period cost
and performance. In all plots, gray lines indicétansitions made in at least one simulation.
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Table 28. Pareto-optimal policy #3Configuration decisions for a
system in state s at time t are indicated by mafexnents shaded in gray.

Current State, s Time at Period Start (years),t Current State, s Time at Period Start (years),t
;(t);?é Env. Config.| 25 0 25 5 75 ;(t);?é Env. Config.| 25 0 25 5 75
1 None 1 1 1 1 1 1 61  1+2 1 11 1 1 1 1
2 None 2 11 12 1 1 2 62 1+2 2 11 12 8 8 1
3 None 3 11 11 3 1 3 63  1+2 3 11 11 3 3 3
4 None 4 14 10 4 4 1 64  1+2 4 14 14 14 10 4
5 None 5 14 5 5 5 1 65  1+2 5 5 5 5 5 5
6 None 6 i3 13 6 6 6 66  1+2 6 13 13 13 13 6
7 None 7 7 7 7 7 1 67 1+2 7 7 7 7 7 7
8 None 8 11 8 8 8 1 68  1+2 8 11 8 8 8 2
9 None 9 15 15 9 9 4 69  1+2 9 15 15 15 15 9
10 None 10 10 10 10 10 10 70 1+2 10 14 10 10 10 3
11 None 11 11 11 112 11 11 71 1+2 11 11 11 11 11 1
12 None 12 12 12 12 12 2 72 1+2 12 12 12 12 12 1
13 None 13 i3 13 13 413 6 73 1+2 13 13 13 13 13 6
14 None 14 14 14 14 14 1 74 142 14 14 14 14 14 4
15 None 15 15 15 15 15 2 75 1+2 15 15 15 15 15 15
16 1 1 11 1 1 1 1 76 1+3 1 11 1 1 1 1
17 1 2 11 11 2 2 2 77 1+3 2 11 12 12 2 2
18 1 3 11 11 3 1 3 78  1+3 3 11 11 11 3 1
19 1 4 14 14 4 4 4 79  1+3 4 14 14 10 4 1
20 1 5 11 5 5 5 1 80 1+3 5 14 14 5 5 5
21 1 6 i3 13 6 6 1 81 1+3 6 i3 13 13 6 6
22 1 7 7 7 7 7 7 82 1+3 7 7 7 7 7 7
23 1 8 11 8 8 8 2 83  1+3 8 11 11 8 8 8
24 1 9 15 15 15 9 1 84  1+3 9 15 15 15 9 9
25 1 10 10 10 10 10 10 85  1+3 10 10 10 10 10 1
26 1 11 11 11 11 11 1 86  1+3 11 11 11 11 11 11
27 1 12 12 12 12 12 2 87 1+3 12 12 12 12 12 12
28 1 13 i3 13 13 413 3 88  1+3 13 13 13 13 13 3
29 1 14 14 14 14 14 1 89  1+3 14 14 14 14 14 5
30 1 15 15 15 15 15 9 90  1+3 15 15 15 15 15 4
31 2 1 11 1 1 1 1 91  2+3 1 11 11 1 1 1
32 2 2 11 11 8 1 1 92  2+3 2 11 11 12 2 2
33 2 3 11 11 3 3 1 93  2+3 3 11 11 3 3 3
34 2 4 14 10 10 4 1 94 243 4 14 14 10 4 4
35 2 5 11 5 5 5 1 95  2+3 5 14 5 5 5 5
36 2 6 13 13 13 6 1 96  2+3 6 i3 13 13 6 1
37 2 7 7 7 7 7 1 97  2+3 7 7 7 7 7 7
38 2 8 11 8 8 8 8 98  2+3 8 11 8 8 8 2
39 2 9 15 15 15 9 1 99  2+3 9 15 15 15 9 4
40 2 10 10 10 10 10 4 100 2+3 10 10 10 10 10 4
41 2 11 11 11 112 11 11 101 2+3 11 11 11 11 11 1
42 2 12 12 12 12 12 2 102 2+3 12 12 12 12 12 12
43 2 13 13 13 13 13 1 103 2+3 13 i3 1y 13 13 13
44 2 14 14 14 14 14 4 104 243 14 14 14 14 14 4
45 2 15 15 15 15 15 8 105 243 15 15 15 15 15 15
46 3 1 11 1 1 1 1 106 1+2+3 1 11 11 1 1 1
47 3 2 11 11 12 2 2 107 1+2+3 2 11 11 12 8 2
48 3 3 11 11 3 3 1 108 1+2+3 3 11 11 11 3 3
49 3 4 14 14 10 4 1 109 1+2+3 4 14 14 10 10 1
50 3 5 14 5 5 5 1 110 1+2+3 5 11 14 5 5 5
51 3 6 13 13 13 6 6 111 1+2+3 6 13 13 13 13 6
52 3 7 7 7 7 7 7 112 1+2+3 7 7 7 7 7 1
53 3 8 11 8 8 8 3 113 1+2+3 8 11 11 8 8 8
54 3 9 15 15 15 9 9 114 1+2+3 9 15 15 15 15 4
55 3 10 10 10 10 10 4 115 1+2+3 10 10 10 10 10 3
56 3 11 11 11 11 11 1 116 1+2+3 11 11 11 11 11 11
57 3 12 12 12 12 12 1 117 1+2+3 12 12 12 12 12 2
58 3 13 13 13 13 13 6 118 1+2+3 13 13 13 13 13 3
59 3 14 14 14 14 14 5 119 1+2+3 14 14 14 14 14 1
60 3 15 15 15 15 15 10 120 1+2+3 15 15 15 15 15 15
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Figure 50 also permits comparisons to be made wilicies that might be
brainstormed or proposed outside of the MDP satupoocedure. For example, one
reasonable policy that might be proposed is to ydwevelop and field the configuration
that least expensively maximizes performance inriast likely next-period demand
environment. The policy implied by this statement is providedrable 29; for instance,
if Config. 2 (the PL1-only configuration) is curténoperational in the “1+2” demand
environment (i.e., if the system is in total sté®), the most likely next-period demand
environment according to Table 26 is also the “l@@mand. To least expensively fulfill
both the PL1 and PL2 functions demanded in thisrenmnent, a single PL2-only module
would be developed and launched, which places yete® into Config. 8. Thus, as
Table 29 shows, Config. 8 is the decision made ftotal state 62 at all except the final
time period!

The performance of this next-period anticipatonjigyois summarized by the
yellow triangle in Figure 50 and detailed in Fig&2 Figure 50 in particular illustrates
two interesting and important points regarding #msicipatory policy: First, this policy
is dominated by others discovered in the optimiraprocess: Both policies 9 and 10 on
the Pareto frontier perform, on average, more delethiservices at a lower cost. Second,
this anticipatory policy is just one of many opsoreven if it were nondominated,
selection of this particular policy carries with o options regarding cost and
performance preferences. In contrast, a searclughout the policy design space (as
was completed in order to produce Figure 50) alltvesdecision-maker to understand
the cost and performance trades available andtsal@olicy according to his or her

preferences.

" In the event that multiple demand environmentsetthe same probability of materializing next,

the environment with the demand for more servisassed.

" The reason for the difference in the final timeiguk decision is the same as discussed earlier in
Section 5.4.1.
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Figure 52. Evolution of states and objectives faan anticipatory policy (defined in Table
29).In the plots on the left, the size of circles imdkcthe relative number of Monte Carlo
simulation cases that exist in a given configunatto demand state (on the y-axes) at a given
time (on the x-axes). The plots on the right iatidhe associated evolution of per-period cost
and performance. In all plots, gray lines indicét@nsitions made in at least one simulation.

143



Table 29. Anticipatory Policy. Configuration decisions for a system in
state s at time t are indicated by matrix elemshesded in gray.

Current State, s Time at Period Start (years),t Current State, s Time at Period Start (years),t
;(t);?é Env. Config.| 25 0 25 5 75 ;(t);?é Env. Config.|-25 0 25 5 75
1 None 1 4 4 4 4 1 61 1+2 1 5 5 5 5 1
2 None 2 4 4 4 4 1 62 1+2 2 8 8 8 8 1
3 None 3 4 4 4 4 1 63 1+2 3 8 8 8 8 1
4 None 4 4 4 4 4 1 64 1+2 4 5 5 5 5 1
5 None 5 4 4 4 4 1 65 1+2 5 5 5 5 5 1
6 None 6 6 6 6 6 1 66 1+2 6 i3 13 13 13 1
7 None 7 7 7 7 7 1 67 1+2 7 12 12 12 12 1
8 None 8 4 4 4 4 1 68 1+2 8 8 8 8 8 1
9 None 9 4 4 4 4 1 69 1+2 9 8 8 8 8 1
10 None 10 4 4 4 4 1 70 1+2 10 8 8 8 8 1
11 None 11 11 11 11 11 1 71 1+2 11 11 11 11 11 1
12 None 12 7 7 7 7 1 72 1+2 12 12 12 12 12 1
13 None 13 6 6 6 6 1 73 1+2 13 i3 13 13 13 1
14 None 14 4 4 4 4 1 74 1+2 14 5 5 5 5 1
15 None 15 4 4 4 4 1 75 1+2 15 8 8 8 8 1
16 1 1 4 4 4 4 1 76 1+3 1 11 11 11 11 1
17 1 2 4 4 4 4 1 77 1+3 2 12 12 12 12 1
18 1 3 4 4 4 4 1 78 1+3 3 i3 13 13 13 1
19 1 4 4 4 4 4 1 79 1+3 4 14 14 14 14 1
20 1 5 4 4 4 4 1 80 1+3 5 14 14 14 14 1
21 1 6 6 6 6 6 1 81 1+3 6 i3 13 13 13 1
22 1 7 7 7 7 7 1 82 1+3 7 12 12 12 12 1
23 1 8 4 4 4 4 1 83 1+3 8 15 15 15 15 1
24 1 9 4 4 4 4 1 84 1+3 9 15 15 15 15 1
25 1 10 4 4 4 4 1 85 1+3 10 15 15 15 15 1
26 1 11 11 11 11 11 1 86 1+3 11 11 11 11 11 1
27 1 12 7 7 7 7 1 87 1+3 12 12 12 12 12 1
28 1 13 6 6 6 6 1 88 1+3 13 13 13 13 13 1
29 1 14 4 4 4 4 1 89 1+3 14 14 14 14 14 1
30 1 15 4 4 4 4 1 90 1+3 15 15 15 15 15 1
31 2 1 7 7 7 7 1 91 2+3 1 7 7 7 7 1
32 2 2 7 7 7 7 1 92 2+3 2 7 7 7 7 1
33 2 3 10 10 10 10 1 93 2+3 3 10 10 10 10 1
34 2 4 10 10 10 10 1 94 2+3 4 10 10 10 10 1
35 2 5 14 14 14 14 1 95 2+3 5 14 14 14 14 1
36 2 6 13 13 13 13 1 96 2+3 6 13 13 13 13 1
37 2 7 7 7 7 7 1 97 2+3 7 7 7 7 7 1
38 2 8 10 10 10 10 1 98 2+3 8 10 10 10 10 1
39 2 9 10 10 10 10 1 99 2+3 9 10 10 10 10 1
40 2 10 10 10 10 10 1 100 2+3 10 10 10 10 10 1
41 2 11 11 11 11 11 1 101 2+3 11 11 11 11 11 1
42 2 12 7 7 7 7 1 102 2+3 12 7 7 7 7 1
43 2 13 13 13 13 13 1 103 2+3 13 13 13 13 13 1
44 2 14 14 14 14 14 1 104 2+3 14 14 14 14 14 1
45 2 15 10 10 10 10 1 105 2+3 15 10 10 10 10 1
46 3 1 4 4 4 4 1 106 1+2+3 1 11 11 11 11 1
47 3 2 4 4 4 4 1 107  1+2+3 2 12 12 12 12 1
48 3 3 4 4 4 4 1 108 1+2+3 3 13 13 13 13 1
49 3 4 4 4 4 4 1 109 1+2+3 4 14 14 14 14 1
50 3 5 4 4 4 4 1 110 1+2+3 5 14 14 14 14 1
51 3 6 6 6 6 6 1 111 1+2+3 6 13 13 13 13 1
52 3 7 7 7 7 7 1 112 1+2+3 7 12 12 12 12 1
53 3 8 4 4 4 4 1 113 1+2+3 8 15 15 15 15 1
54 3 9 4 4 4 4 1 114 1+2+3 9 15 15 15 15 1
55 3 10 4 4 4 4 1 115 1+2+3 10 15 15 15 15 1
56 3 11 11 11 11 11 1 116 1+2+3 11 11 11 11 11 1
57 3 12 7 7 7 7 1 117 1+2+3 12 12 12 12 12 1
58 3 13 6 6 6 6 1 118 1+2+3 13 13 13 13 13 1
59 3 14 4 4 4 4 1 119 1+2+3 14 14 14 14 14 1
60 3 15 4 4 4 4 1 120 1+2+3 15 15 15 15 15 1
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5.5. Step 5: Implications for Initial System Seld®n

The analysis of Step 4 has produced a large seataf on optimal paths and
policies to follow for theentire system time horizon, and it is easy to lose traickhe
implications this has for thaitial system decision. This final step of the framework

builds upon the analysis results of Step 4 to pi®wnplications for this decision.

5.5.1. Implications based on the Expected-Value Peto Frontier

In the case of a path, the initial decision is dyrihe first configuration in its
associated configuration sequence. In the caagpoficy, the initial decision is found by
locating the initial condition in the row of the lmy matrix (in this distributed-payload
satellite application, at total state 1, which esponds to the “nothing” configuration
fielded and no services demanded) and examininglément in the first column (in this
case, thé¢ = -2.5 year column). To facilitate this, the imitconfigurations specified by
the Pareto-optimal paths and policies found in Fegdi/ and Figure 50 are identified in
Figure 53. In this figure, the Pareto frontierudmins of Figure 47 and Figure 50 are
identified by their expected total cost on tkexis. On they-axis are the initial
configuration decisions called for by each Pargtbreal path (yellow circles) or policy
(blue squares). Two particular observations can rbade:  First, only three
configurations (Configs. 1, 3, and 11) appear amihegoptimal initial decisions. All
paths and policies with other initial decisions doeninated by paths and policies using
these three configurations. Second, the sizeefrtitial configuration tends to increase
as the expected total cost of the system increasa&s. example, only the “Nothing”
configuration (Config. 1) appears as an optimalahdecision for total expected budgets
under $195 million; these solutions tend to beegitholicies that wait until sufficient
demand materializes to justify the expenditureumids or paths that tend to delay initial
operational capability until demand evolves sulisadiy beyond the initial “None”

environment. At the highest expected total coghés decision to initially develop the
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three-payload monolith (Config. 11), which is theadt expensive method to ensure
complete capture of all possible future demandsévices.

Also noted next to several paths and policies mgufa 53 are the number of
transitions® available from each initial configuration (1, 3, bl) for the average per-
period cost associated with each total cost. Asudised in Step 1, this numbers an
indicator of flexibility, and it can be seen thabma flexible initial configurations & = 2
or ® = 3) are selected at higher cost and performanetengnces. Thus, there exists
some correlation between flexibilty and performanc However, the maximum-
performance (and maximum-cost) Config. 11 initie¢ion is far from the most flexible
for its average $60 million per-period budget;, Feguw4 illustrates that the fully-
fractionated three-payload configuration (Confi§) has® = 8 transitions available for
the same budget. Thus, this example illustrates rtiaximization of performance does

not necessarily translate into maximization offtegibility of a system’s configuration.
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Figure 53. Initial configurations for Pareto-optimal paths and policies as a function of
expected path or policy total cost.Also noted are the numbers of transitions availdbte
several initial configurations at their path or poy’s average per-period budget requirements.

5.5.2. Accounting for Non-Expected-Value Objective

A final relevant consideration for initial systemlection is the fact that expected-
value objective functions for the cumulative costl @erformance metrics may not fully
capture a decision-maker’s true objectives. Useheke expected-value objectives
enables the use of MDP dynamic programming teclesiqw efficiently explore the
astronomically large policy trade-space; howeverthie case of one-of-a-kind satellite
programs a decision-maker may also be interestedinimizing risks associated with a

given expected level of cost or performance.
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Operating under the assumption that the expectkekwptima discovered in Step
4 are reasonable initial guesses for desirableipslia multi-objective genetic algorithm
may be employed to perturb each of the policiestifled in Figure 50, simulate each
new hybrid policy, and search for non-dominatedismhs in terms of any combination
of metrics that can be accounted for via simulatiolhe results of Figure 54 are
produced by applying this technique to the new itetof 93" percentile (near-worst-
case) total cost and I@ercentile (near-worst-case) total number of detedrservices
performed, in addition to the expected-value versiof these metrics. Of particular note
in the Figure 54 multivariate plot are four subplotFirst, the data in the subplot of the
second row and first column shows the familiar expe-value cost and performance
trade, with slightly better Pareto frontier perf@mece due to the genetic algorithm’s
search. Second, the data in the subplot of thedasand second column shows thd'10
percentile performance vs. the™percentile cost; the performance data in this Bt
noticeably more discrete since fractional numbédrseovices performed are not possible
in a simulation. Finally, the upper left and bottoight subplots show the correlations
between the new percentile-based metrics and éxpiected-value counterparts. In the
cases of both subplots, linear correlation is gstiteng (R? = 0.85 and 0.88) and supports
the use of expected value as a surrogate for agptigithe percentile-based metrics.

Also of note in Figure 54 is that each data pawiijch represents a particular
policy result, has a color that corresponds toitit&al configuration decision implied by
its associated policy. Of particular note is ttiase initial decisions differ little from
those implied by the original path- and MDP-polizgsed results in Figure 53. Use of
Config. 1 initially is still associated with low sband performance; use of Config. 3 is
associated with medium values for both objectiaes} Config. 11 is associated with the
highest levels of cost and performance. The pnynuhfference is the introduction of
Config. 13 as an initial decisions, which has periance and cost levels that are

generally competitive with Config. 11.
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The usefulness of the multivariate plot of Figudeli®comes more evident if cost
or performance constraints are imposed by the decmaker. For example, suppose
that this decision-maker has a $500 million limit the funds available for supporting
this system over its time horizon. If the decisioaker wishes to be 90% sure that this
budget will not be breached, a $500 million coristranay be imposed on the ®0
percentile total cost metric. This constraint @liates many high-cost (and also high-
performance) options that formerly fell into theymiod" percentile cost regions of the
multivariate plot that are now gray in Figure SSimilarly, the decision-maker may wish
to have 90% confidence that more than one serviltdavperformed over the system’s
lifetime. In this case an additional constraintymae imposed, represented by the
horizontal gray stripe in the subplots of the last in Figure 55. Combined, these two
constraints eliminate a large number of the patiptions available. As Figure 55 shows,
no policy options remain for which the “Nothing” mitguration is acceptable.
Furthermore, in both the expected-value-based antkptile-based performance vs. cost
subplots, policies involving the three-payload midho(Config. 11) as an initial
configuration exhibit lower cost for the same (attbr) performance as those that
involve Config. 13. As a result, the decision &mwed to one of whether to select a
policy that suggests Config. 11 as an initial decigat an expected and ®@ercentile
total cost of $300 million, with 5.6 expected sees performed and 3 services performed
in the 18" percentile) or, instead, Config. 3 (at an expec$ed5 million and 99
percentile $331 million total cost, with 3.8 expegttservices performed and 2 services
performed in the 10percentile). While no objectively correct decisiexists, it is likely
that the small ($15 million, or 5%) difference ixpected cost and large (1.8 services, or
38%) difference in performance between the optiaasild compel many decision-

makers to accept the slightly higher budget fohsasignificant performance increase.
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Figure 54. Multivariate plot of multi-objective genetic algorithm policy results.
Each data point indicates the performance of orlepoesult in terms of the four
percentile-based and expected-value metrics ofaate Data points are colored by

their corresponding policy’s initial configuratioecision.
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5.6. Summary

First and foremost, this chapter has demonstrab@dthe theoretical framework

posed in Chapter 4 can be applied to a class dilgarodirectly relevant to the space

industry today. This chapter began with definitafma problem in which a hypothetical

Department of Defense decision-maker was faced wathdecision about what
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combination of payloads to launch upon potentiatiyltiple distributed, free-flying
satellites. Population and analysis of cost ttamsimatrices revealed information about
the flexibility of various configuration optionsFor example, the three-payload fully-
fractionated configuration (Config. 15) has sigrafntly more next-period transition
options than any other configuration just aboveQan®®nth budget of $31 million and
retains a high number of available transitionsefeen higher budgets; below this budget
it has no options because of its high operatiossscoThe three-payload monolith, on the
other hand, tends to have fewer available tramstithan most other configurations at
most budget levels since it has no modules in comwith other configurations.
Population of a Markov chain representing the evmiuof the demand for
payload services and population of a performanceixneepresenting the number of
demanded services performed by a given configuratioa given demand environment
enabled Steps 4A and 4B of the framework to findet@aoptimal decision paths and
policies. Step 4A returned the interesting rethdt just 12 of the 50,625 possible paths
for this four-period decision problem were Parepbioal, and only four configurations
(Configs. 3, 5, 7, and 11) appeared within thegsbgpaPerhaps more interesting was the
identification of a path with a one-period delayildwed by the fielding of the three-
payload monolith that dominated a strategy of im@etal capability buildup. Step 4B
illustrated how Markov decision process techniqwese able to efficiently find a Pareto
frontier of policies more intricate than a simplkatip Illustrated was one case in which
the MDP solution procedure found an optimal compsembetween maximum
performance and minimum cost by identifying a pplichich only developed the three-
payload monolith if an appropriate level of demdodparticular payloads materialized
early during the program. Furthermore, the MDPutsmh procedure was shown to
identify policies that dominated an anticipatoryippthat a human might have proposed

as a reasonable policy.
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In the application of Step 5 of this thesis’ franwelto the distributed- or multi-
payload satellite problem, initial decisions werbjeatively narrowed to just four
configurations: Configs. 1, 3, 11, and 13. ImpgsPd" percentile budget and 0
percentile performance constraints narrowed thed@vn to three, and the existing
trades would likely compel most decision-makers avselection of Config. 11, the
three-payload monolith, as the initial configuratio This selection is an interesting
result, particularly since Config. 11 is one of tlkast flexible options as identified in
Step 1.

Notably, the selection of this relatively inflexdbl configuration is not
contradictory to this thesis’ framework. As emphed in Section 2.5, it is a tenet of this
work that a decision-maker cares about flexibilggincipally because of cost and
performance benefits it may enable in the futuféus, this example highlights the fact
that finding a minimum-cost, maximum-performancduson in a changing demand
environment may not be equivalent to finding a soiu with maximum flexibility.
However, until the proper analysis and optimizaig@run to account for the ability of the
system to change over time, this equivalence cahedtnown. In fact, the particular
result that favors the monolith can only be saitha@ for the numerical inputs assumed
in this chapter. Future investigations are enagedato modify these inputs to explore

under what circumstances monolithic and fractiothagacecraft are favored as solutions.

153



CHAPTER 6

ADVANCED APPLICATION: NASA HUMAN EXPLORATION
ARCHITECTURE DECISION-MAKING

Richard Bellman prefaced his original 1957 bookdgnamic programming [93]
by observing that “in modern life, in economic, ustrial, scientific and even political
spheres, we are continually surrounded by mulgesi@ecision processes. Some of these
we treat on the basis of experience, some we redplrule-of-thumb, and some are too
complex for anything but an educated guess andyept

While realistic and reasonably complex, the spgstesn planning applications in
Chapters 4-5 have been intended mainly to demdadina core concepts of this thesis’
framework. In the present chapter, a major cursgatems planning challenge within the
National Aeronautics and Space Administration iected to illustrate the applicability
and utility of this new framework for problems thatght otherwise be well beyond the
complexity threshold for even an educated guesa prayer. This particular example
will illustrate the framework for inter-mission Ribility applications [28].

As described in Chapter 1, the Review of U.S. Hun®paceflight Plans
Committee (Augustine Committee) was formed in 2@08ssess the status and direction
of NASA’s human spaceflight program. One of thable exploration programs the
committee proposed was a “flexible path” involvitige development of systems to
enable mission options for a variety of inner sslgtem destinations, including the lunar
vicinity, Earth-Moon and Sun-Earth Lagrange poimtsar-Earth objects, Mars vicinity,
and the moons of Mars. This new approach is daisimthat, instead of focusing on a
single path to a single destination, it focusespooviding options to allow the human
space program to adapt to changing expectatiomeimands as exploration progresses.
Since 2009, the Flexible Path strategy has maddstantial impact and has been largely

adopted in the formulation of architecture planthum NASA.
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However, due perhaps in part to time constrairite, Augustine Committee’s
justification for naming this approach the Flexidtath was qualitative. No attempt
appears to have been made to quantitatively contparéexibility of the Flexible Path
approach to the flexibility of the other approackisrs First and Moon First) that the
committee presented. As demands upon NASA evolee the coming few decades, the
guestion remains: What architectural componentsilshthe agency develop today so
that, in the long run, it is able to minimize tlo¢atl cost of the human spaceflight program
and maximize total return in an environment of g@ag mission expectations?

The aim of the present chapter is twofold: Fiwgith the help of probability,
schedule, and cost estimates obtained through sxéeninteraction with NASA
personnel, it is intended that this advanced agpdin will shed light on and inform
decision-making for the present NASA architectueeision-making challenge. Second,
in the process of realistically addressing thisllenge, several advances to this thesis’

methodology are introduced:

» Large Configuration State Spaceln the previous applications in Chapters 4-
5, the configuration state space consisted of enattder of ten candidate
configurations. This NASA application illustratesow the present
framework, when supplied appropriate computing powan be used even for
state spaces with thousands of configuration ogtiolm order to handle this
large state space, a computer code is developedittomatically create the
necessary cost transition matrices based on thepmoent-by-component
configuration definitions. All relevant costs aaecounted for, including
development and first unit, production, mission agbund operations,
program management and systems engineering, agdapndermination and

shutdown costs.
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Intermediate Development Architectures, Operatiodgchitectures, and
Memory Architectures. In the previous applications, it was assumed tinat
demand environment would be relatively constaninduthe development of
a new architecture. Further, it was taken for ggdrthat the configuration
developed during the one period would always becdimee configuration
fielded (or operated) in the subsequent fielded. hil&/ convenient for
demonstrating the fundamentals of this thesis’ @awork, these assumptions
are not required. In the NASA example, the vel possibility of demand
changing mid-development is modeled, as are therggpto cancel a program
in mid-development and to not utilize all comporseat an architecture just
developed. This is accomplished by introducingenmiediate architectures
representing systems that are not operational bhbichware partially
developed. The introduction of these intermedaathitectures subsequently
requires defining the configuration state by theéements: the development

architecture, operations architecture, and memuantyitecture.

Configuration-Dependent Demand. The previous applications have
effectively assumed that the environment describgdhe mission demand
Markov chain evolves independently of the configiora that the decision-

maker selects to respond to this demand. In samnatiens, such as if there
exist many actors responding to the same envirohif@nin a scenario of
perfect competition in economics), this independemcay be a realistic
approximation. If there exist relatively few ag@m economics, for example,
an oligarchy), it may be more appropriate to coasithe influences of
decision-maker choices on future demand. NASAsfatito this latter

category, as the demands that are placed uponeitaarleast partially

dependent on whether it is achieving its curredigynanded mission. The
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capability to handle this interaction between cgufation and environment is

demonstrated here.

Elicitation of Expert-Opinion Markov Chain Probabities. In the absence of
sufficient historical data for inner solar systerastination demand, this
application takes the step of eliciting expert apinfor the probabilities of

demand transition. To permit this data to be esitda to analyses of different
timesteps, the data is elicited as a continuous-tvtarkov chain and then
discretized to the proper step. Expert opinioo alsntributes to the selection

of the mission return (or performance) figure ofrine

Endogenous Schedule-Slippage Uncertaintie$o account for the existence
of endogenous uncertainty unrelated to exogenossiom demand changes, a
basic probabilistic model is incorporated to modbe probability of

development program schedule slippage.

Exploration of High-Performing Policies in terms oNon-Cumulative as
well as Non-Expected-Value Objective Functionsin the final step of
previous applications, exploration of non-expectatlte objective functions
focused on measures of dispersion of the originahudative objective
functions. In the NASA application, exploration @my non-cumulative

objectives is included.

Recall that this thesis’ framework consists of fhasic steps, outlined in Figure

12. First, system configuration options are idedi and costs of switching from one
configuration to another are compiled into a coatgition matrix. Second, probabilities
that demand on the system will transition from amssion to another are compiled into a

mission demand Markov chain. Third, one perforneamatrix for each design objective
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is populated to describe how well the identifiedtsyn configurations perform in each of
the identified mission demand environments. Fqugbssible future sequences of
system configurations are simulated and sequeheg¢site Pareto-optimal in terms of the
decision-maker’s objectives are identified. In@nplementary approach, the system
decision problem is formulated as a multi-objectraeiant of a Markov decision process,
and Pareto-optimal decision policies are identifidtl is worth noting that, due to the
large configuration state space of the NASA probléhe traditional Step 4A full-
factorial search paths becomes infeasible and tiwkdw decision process approach will
be used exclusively. Finally, the paths and pesidrom the latter step are synthesized

into a set of data to inform initial system selenti
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Figure 12. Five major steps of this thesis’ frameuork.
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6.1. Step 1: Define Configuration Options and th€ost Transition Matrix

As in the previous examples, the fundamental qouedor the first step of this
framework is: What are the relevant “positiong” tlee configurations, that the system in
guestion can take? Subsequently, what are the obstansitioning between any two of
these configurations?

It is also important to define up-front the duratiof the period (or time step) of
interest. For the human spaceflight architect@asibon problem, this period will be set
at two years in duration. This duration corresgotalthe U.S. Congressional election
cycle as well as one-half the length of the U.@&sjatential election cycle and historically
one-half the median time between appointments wfMASA administrators [105]. The
implication of this period selection is an assummptithat decision points, at which
architecture selections are either re-confirmedhamged in response to mission demand
changes, occur once per new Congress and twiderpsidential and, on average, NASA

administration.

6.1.1. Defining the Configuration Space

As suggested in Chapter 4, the specific systemiguntions relevant for this
problem of interest originate from the definitioha morphological matrix as shown in
Table 30. Each row denotes a particular definttigbate of an architecture, which in all
cases is the number of architecture components (@umch vehicles, crew vehicles, in-
space propulsion stages, landers, and other systbatswill be developed and produced
during a particular two-year increment. Possilkdugs for each attribute are listed as
options. For example, the second row indicatesdhangineer might consider fielding
architectures that require zero, three, four, sight, ten, or twelve heavy-lift launch

vehicles over a two-year period.Since an architecture is defined once one atibu

" In theory, any integer value for this attributeceptable; for brevity, the morphological matrix

shown here only lists the values that will be useldter architecture definitions.
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value is selected from each row, it can be easdynmuted that in this simple

morphological matrix there exist over 6.58 billipassible architectures. However, some
of these architectures make little practical senBer example, one option within these
6.58 billion is to develop and produce 12 heawytditinch vehicles (HLVS) and no other
systems or capabilities (i.e., select zero foradltibutes other than HLVS); such an
architecture would not be able to achieve any missiasked of it since no in-space

elements or capabilities exist.

Table 30. Morphological Matrix for the Human Spacédlight Architecture Application.

Attribute Relevant Options
No. of Crew Launch Vehicles (CLVs) 0 4
No. of Heavy Lift Launch Vehicles (HLVs) 0 3 4 6 810 12
No. of Commercial Cargo Launch Vehicles (CCLVs) 0 6
No. of Multi-Purpose Crew Vehicles (MPCVs) 0 1 2 4

No. of Commercial Cargo Logistics Modules (CCLMs) 06
No. of Small Chemical Stages
No. of Medium Chemical Stages
No. of Large Chemical Stages

olo © o
N I
SR NEN
o
©

No. of Deep-Space Habitation Modules
No. of Lunar Landers 0 8
No. of Mars Landers

No. of Multi-Mission Pressurized Rovers 0 1

No. of Unpressurized Rovers 0 2

No. of Science Rovers 0 2 4
No. of Surface Habitats 0 1

No. of Logistics Modules 0 2

No. of Power Generation and Storage Units 0 1 2
No. of ISRU Systems 0 2

No. of Surface Extravehicular Activity (EVA) Suits 0 10 20
No. of In-Space Extravehicular Activity (EVA) Suits 0 8 12
No. of Supporting Communications/Navigation Saiedli 0 1
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One way to overcome this limitation as well as nmeistthe architectures
considered to a manageable number is to use th@hwmlogical matrix to assist in
brainstorming themed configuration options [77i this application, a reasonable theme
to select is the architecture’s intended missiostidation, which drives mission duration
and spacecraft velocity changa\{) requirements that subsequently suggest certain
numbers of stages and launch vehicles as well bisahand excursion vehicles. With
the assistance of NASA Johnson Space Center paisdhe ten themed architectures
defined in Table 31 are selected, based largelyegent studies of the agency-wide
Human Exploration Framework Team (HEFT) and HumaracBflight Architecture
Team (HAT). Note that eight of these architectuesdirectly themed upon destinations
suggested by the Augustine Committee, and Architest 1 and 10 in some respects
bound the configuration space: Architecture 1hes dption to develop nothing, and the
“Deep Space” themed Architecture 10 is the optmdevelop and produce the maximum
of the number of components specified by Architext(B, 4, 6, 7, and 8. Also note that,
to avoid confusion with the demand environmentsSitep 2 and beyond, these
architectures may in general be referred to by thhitecture numbers (1-10). Finally,
the reader may note in Table 31 that four engimedisted as architectural components
but are not parts of the morphological matrix irblea30. These numbers of engines are
not user-defined but are directly dependent otleenponents in an architecture; for

example, there exist five RS-68-class enginesdoh éneavy-lift launch vehicle.
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Table 31. Architecture Definitions for the Human $ace Exploration Application.

Architecture: Number, Theme, and Icon

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-
Nothing LEO GEO Lunar Lunar Sun-Earth Near- Mars Mars Deep
Servicing Orbit Surface L2 Earth Moon Surface Space
Object
@2 o @ - ‘ @0
0@ %% e RS AT
Architecture Components 1 - -
1. Crew Launch Vehicles (CLVs) - 4 - - - - - - - -
2. Heavy Lift Launch Vehicles (HLVs) - - 3 4 12 8 6 4 10 8
3. Commercial Cargo Launch Vehicles (CCLVs) - 6 - - - - - -
4. Multi-Purpose Crew Vehicles (MPCVs) - 4 2 4 4 2 2 1 1 4
5. Commercial Cargo Logistics Modules (CCLMs) - 6 - - - - -
6. Small Chemical Stages - - - - 2 - - 1 2
7. Medium Chemical Stages - - 3 4 8 4 6 2 1 6
8. Large Chemical Stages - - - - - - 2 6 4
9. Deep-Space Habitation Modules - - 1 - - 2 2 1 1 2
10. Lunar Landers - - - - 8 - - -
11. Mars Landers - - - - - - - 2 -
12. Multi-Mission Pressurized Rovers - - 1 - 8 2 2 2 2 2
13. Unpressurized Rovers - - - - 4 - - - 2 -
14. Science Rovers - - - - 4 - - - 2 -
15. Surface Habitats - - - - - - - 1
16. Logistics Modules - - 2 - 4 2 2 - - 2
17. Power Generation and Storage Units - - - - 2 - - - 1 -
18. ISRU Systems - - - - 2 - - - 2 -
19. Surface Extravehicular Activity (EVA) Suits - - - - 20 - - - 10 -
20. In-Space Extravehicular Activity (EVA) Suits - 8 8 8 - 8 8 12 12
21. Supporting Communications/Navigation Satellite - - - - 1 - - - 1 -
22. RS-68-Class Engine - - 15 20 60 40 30 20 50 40
23. J-2X-Class Engine - 4 6 8 24 16 12 8 20 16
24. RL-10B-2-Class Engine - - 6 8 56 12 12 14 44 36
25. AJ-10-Class Engine - 4 2 4 4 2 2 1 1 4
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Can this architecture space be visualized? Inagyication, each architecture in
Table 31 is described by a vector of 25 variabtes@n be accurately visualized only in
a 25-dimensional hyperspace. In this hyperspaceilas architectures would be
separated by smaller distances and dissimilar texatbres would be separated by larger
distances. While it is not possible to displays#h@5 dimensions graphically on a two-
dimensional page, it is possible to preserve muchis distance property by solving for
two-dimensional coordinates for which pairwise Hadedn distances minimize the sum of
the squared errors with the true 25-dimensionali@e@n distances. This is expressed in
Eq. (30), whereg andy; indicate the abscissa and ordinate, respectieélgrchitecture
in the two-dimensional Euclidean spaéejndicates the true coordinates of architecture

in the 25-dimensional space, ahi a free scaling factor.

~ 2
. X, X. — _
o3| 51)-[5] A -l
j<i

subjectto 0< X, <1, Vi (30)
0<y, <1Vi

For the architectures in Table 31, the two-dimemslioarchitecture space in
Figure 56, with architecture coordinates listedTable 32, results. These coordinates
make some intuitive sense: Note that architect3ed, 6, 7, 8, and 10, which are
characterized by similar beyond-LEO but non-surfa@stination requirements, are
grouped together. Architectures 1 and 2 (the “Mogth and “LEO” themed
architectures) are somewhat separated and towardight of the graphic, while the
architectures intended for lunar and Mars surfazgtidations are significantly separated

toward the upper left of the graphic.

" Minor adjustments have been made to the true naimiraolution to prevent state circles from
overlapping. The set of solution coordinates hege been normalized to span the range of zero

to unity.
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Figure 56. Architectural Projection for the Human Space Exploration Application

Table 32. Architectural Projection Two-DimensionalCoordinates.

x-coordinate y-coordinate

Arch. (abscissa) (ordinate)
1 0.7871 0.0000
2 1.0000 0.3686
3 0.5962 0.2025
4 0.6728 0.3563
5 0.3942 0.8000
6 0.3271 0.0963
7 0.4385 0.2073
8 0.5156 0.0353
9 0.0000 0.5158
10 0.1560 0.1097

At this point, it may be noted that the word “atebture” has been used instead
of “configuration” when describing the ten setscomponents in Table 31. The primary
reason for this is that the two-year timestep of firesent application requires a
distinction between an architecture and the futlisien available to the decision-maker
at any point in time (i.e., the “configuration”Because development will span multiple

two-year time periods,it is inappropriate to assume the decision-makir field the

" In this application, the development of each dechiire (except for the “Nothing” architecture)
is approximated as nominally taking eight yearaur(fperiods). This is in agreement with

timelines for crew exploration vehicle, crew launeihicle, lunar lander, heavy-lift launch
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previously-developed architecture in the curremtggesince in many cases development
of that architecture is not yet finished. As aulgsat any given decision point the
decision-maker must choose what architecture toab@en addition to what architecture
to develop or continue to develop. Furthermoreg later development period it may be
necessary for the decision-maker to keep in memorgrchitecture that had been current
when development had started, since this woulcaffether certain development costs
need to be incurred.

Thus, this {Development, Operations, Memory} arebiure triplet will define a
configuration for the purposes of this applicatioA. notional four-period sequence of
configurations (architecture triplets) that a dexismaker could choose is depicted in
Figure 57. Reading this sequence from left to trigh the first two-year period
development for the near-Earth object (NEO) thenaedhitecture is begun while
operation of the low-Earth-orbit (LEO) themed atebiure continues and the capabilities
of a previous lunar surface themed architectureirmmmemory. In the second period,
NEO architecture development continues into it©sd@phase, as does operation of the

LEO architecture. The third and fourth periods seetinuation of the NEO architecture

vehicle, Earth departure stage, and lunar surfgséeems development from the 2005 ESAS
report, which were there all baselined on 7-9 yadredules [29]. This is justified historically,
for example, by the Space Shuttle Orbiter, for Whaathority to proceed was obtained in August
1972 and for which mating to its Solid Rocket Beostand External Tank in preparation for its
first flight occurred in November 1980, just ovégle years later [106]. Even on the accelerated
Apollo program, the time between selection of Ndktherican Aviation as the prime contractor
for the Apollo Command and Service Module in Novemh961 [107] and the first successful
manned flight of the program in October 1968 waarlyeseven years. (It deserves note that
Apollo Spacecraft 012, assigned to the crew of Apd| was received at Kennedy Space Center
in August 1966 [108]. However, the 113 engineerinders not accomplished at the time of
delivery and 623 engineering changes ordered subséetp delivery [108], in addition to the fire
that took the lives of astronauts Grissom, Whitad &Chaffee, suggest that the five-year

development implied by the 1966 delivery date wowtbe appropriate.)
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development to completion but discontinuation ofQLBperation (with a substitution of
operation of the Nothing architecture). Throughalit periods, the Ilunar surface
architecture capability is retained in memory.

Two fundamental observations can be made from ttemple sequence of
configurations in Figure 57: First, each configima (or architecture triplet) represents a
decision over which an appropriate decision-makeassumed to have direct influence.
It is within the decision-maker’s prerogative whetho continue to develop a current
development architecture or to develop a new archite instead it is within the
decision-maker’'s prerogative whether to continue discontinue operations of an
architecture; and it is within the decision-makesterogative to hold or not hold within
institutional memory the capabilities associatedhvwa previous architecture. Second,
there aremany possible configurations, even for only the tenhaectures defined in
Table 31. Considering that nine of these archiest have four-period developments
(the exception is Architecture 1), there are inothe(9x4 + 1) x 10 x 10 = 3,700
configurations. Each may be assigned an identibicanumber, as are the four
configurations in Figure 57. In practice, howewubere are somewhat fewer than 3,700
relevant configurations — only 3,286 — because oime practical considerations

concerning relevant and allowable states and tiansidetailed next.

" This highlights the present assumption that ontg @rchitecture is assumed to be under
development at a time. If a future analyst wisteespply this technique to options in which
multiple architectures can be under developmerdnae, he or she need only to define a new

architecture for each multi-architecture option emconsideration.
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Development
Architecture

Operations
Architecture

Memory
Architecture

Config. 1399 Config. 1400 Config. 1365 Config. 1366

Figure 57. Notional Sequence of Configurations (Arhitecture Triplets).

6.1.2. Defining the Cost Transition Matrix

A key component of Step 1 of this framework is tedinition of transition costs
among configurations. To accomplish this, a costleh is necessary. While the cost
transition matrices of the previous examples infgi#is 4 and 5 consisted of 81 and 225
elements, respectively, and in the absence of &omated cost model may have been
estimable manually by an experienced cost anatlgstsame cannot be said about the
present application. With 3,286 configurationg tost transition matrix for the NASA
human space exploration application consists oflyel@®.8 million elements, without
guestionrequiring an automated model. This model, developed spadyi for this
application from publicly-available data, is dissed in detail in Appendix B and
summarized in brief via Figure 58. The model takeputs the architecture definitions
of Table 31 and, coupled with mass estimates fah eachitecture component (also
documented in Appendix B) and the definitions ofre@onfiguration (or architecture
triplet, as described in Section 6.1.1), combingtsmates of development, production,
management and systems engineering, operatiomgnnent, and termination liability

costs to produce an estimate for the total coswuired to transition from one
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configuration to another over a two-year time st&he model has components coded in
MATLAB (outlined in orange in Figure 58) and in Nasoft Excel and Visual Basic
(outlined in green in Figure 58); once executechvaitgiven set of inputs, it is able to

populate a full cost transition matrix within 25mates on a standard desktop computer.

1 ang \
Architecture | | €OMPONeNt | i [ rota1 DDTRE + TFU Transition Cost Model
. Mass . for Human Space Exploration Configurations |
Definitions : I Parametric Cost Model I
Estimates : i
' For each pairwise transition: |
1 1
1
— i v - v A !
e m ) )
X ' Time Spreading of Recurring Production Costs i
' DDT&E + First Arch. (for continued operation) 1
- Production Costs I i
: J 1
: Program Management ]
. . h I r S and Systems Eng. Costs ]
Configuration State- : Ground and Mission I
b > b ; .
Space Definition ' Operations Costs I
J & I \ J :
1
4 1 1
- Component Retirement Costs@ ]
: TOTAL i
1
i ->[ Termination Liability Costs % TRANSITION ]
: COST i
1
"\ ]

Figure 58. Transition Cost Model for Human Space Eploration Configurations.

In the previous examples of Chapters 4 and 5, anfiguration could be reached
from any other configuration given a sufficient erditure of resources. However, with
the introduction of intermediate architectures his thew configuration state space, it
becomes be evident that some transitions will nogds make logical sense. For
example, it should not be possible to skip phaseewelopment (see Rule 3 to follow).

Other transitions violate cost model assumptiof®r example, a four-period
(eight-year) development is costed to include petida of the flight units necessary for
the first period of operation as listed in Table it each period in which a configuration
is not in the final phase of architecture developmenbvdpction costs are estimated for

the continuation of operations of the current opena architecture into the next period.
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Applying this costing assumption, it would not lmnsistent to allow a current operations

architecture to be used in a subsequent configuraii the current development

architecture is in its final phase, since productias been accounted only for fielding of

the new development architecture (see Rule 5 below)

These disallowed transitions are summarized bystheestrictions below, which

are correlated with the illustrations in Figure 59:

1.

Improper Program Initiation. Development of an architecture may only be
initiated into phase 1.

Premature Operations Initiation. An architecture may not be placed into
operation if it had not been in the final phaselevelopment in the previous
period (or, alternatively, if it or an architectuwéwhich it is a subset had not
been in operation in the previous period).

Premature Advancement.Development of an architecture may not advance
more than one phase in one time period.

Unavailable Memory Architecture.An architecture that is not a subset of the
current operations architecture, memory architegtuor just-completed
development architecture may not be placed into ongm

Unavailable Operations Architecturelf development has just completed on
a particular architecture, an architecture thatosthe same as or a subset of
this architecture can not be placed into operatidan architecture is in mid-
development, the next-period operations architectoust be the same as or a
subset of the current operations architecture.

Stagnation and Partial Backtracking.If a particular architecture remains in

development between periods, it must either pregredevelopment phase or
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restart in phase 1. Stagnation and partial backing (e.g., remaining in

phase 4, or backtracking from phase 3 to 2) ipromitted.

In concert with the recognition of disallowed cagufiation transitions, several
configurations themselves become evident as unsages For example, since the
memory architecture is only useful in reducing sastly if it differs from the operations
architecture or from a completed (phase 4) devetoprarchitecture, configurations with
the same architecture in memory as in operatiorcl{ding those with both the
“Nothing” architecture in memory and operation) denremoved from the state space.
This first filter removes 333 configurations frorhet theoretical 3,700. Second, 81
configurations with the same architecture in memas in completed (phase 4)
development are removed from the state spaceotdh #14 unnecessary configurations
are removed, bringing the total number of configiore in this application’s state space

to 3,286.

" That this rule should be important is not intwtiand is related to the fact that the underlying
cost models distribute both development and fiestegal production costs based on historical data
[98] over the four-period development timeframerioPto its implementation, the dynamic
programming optimization algorithm in Step 4 cldydound solutions in which an architecture
could be developed to phase 4, for example, andirem phase 4 development indefinitely
while continuing to field operational flight unitd a fraction of the cost that would normally be
required to produce the full set of flight unitsibt distributed over the four-period development.
Note also that this rule only applies to thecisionto proceed in developing an architecture. It
will be possible, as will be described in Sectio#, 6or stagnation to occur in the final period of
development, but only as a result of probabilistbedule slippage and not as a result of a choice
on the part of the decision-maker.
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Rule 1: Rule 2:
Improper Program Initiation Premature Operations Initiation

Development
Architecture Y 5 (2 Y ,
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Rule 3: Rule 4:
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Rule 5: Rule 6:
Unavailable Operations Architecture Stagnation and Partial Backtracking
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Operations
Architecture

Memory
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Figure 59. lllustrations of Disallowed TransitionRules.
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While the resulting 3,286 x 3,286 cost transitioatmx is too large to reproduce
here as it was in the examples of Chapters 4i§ visualized in part via Figure 60. On
the left in this figure, all matrix elements reprrEng transitions not excluded by the
transition rules are marked in black or gray; thekdr the element, the lower the cost of
transition. In this matrix, 453,007 elements (4.2%cthe 10.8 million total matrix
elements) have costs associated with them; theingrgaelements are excluded due to
the transition rules. On the right in this figusehe distribution of these per-period costs.
Note that many (approximately 41%) of these costsa or below the $12.9 billion
budget obtained when the NASA FY11 authorizatiom &xploration plus non-
International-Space-Station operations [109] iskded to obtain an appropriate budget
estimate for a two-year period length. Other titars costs are quite high; later in this
analysis we will consider the ability of this frawak to exclude consideration of
transitions that are too costly in the short rubhis per-period cost limitation will be
implemented, in effect, as a seventh transitioe.rul
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Figure 60. Cost Transition Matrix Visualization (left) and Distribution of Costs (right).
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6.1.3. Analyzing the Cost Transition Matrix

As in the previous examples of Chapters 4-5, tha depresented by the cost
transition matrix can be analyzed, visualized, esldted to flexibility in several useful
ways. Covered for this application are (1) viszetion of transitions available through
the configuration and architecture state spaces(2n@nalysis of available transitions

from various configuration states as a functiobudget (i.e.®i(b)).

6.1.3.1. Visualization of State Space Transitions

In the previous satellite examples of Chapters thé,configuration state spaces
were small enough to allow relatively uncomplicatetualizations of available
transitions (as links) between configuration stdies nodes) for given budgets in the
context of the two-period state-centric notion lekibility. While in principle the same
visualizations can be created for large configoratstate spaces, some care must be
taken to reduce the large volume of data (in tlise¢ for a 3,286-configuration state
space) to an interpretable form. In support of tipoal, this subsection presents two
views of configuration or architecture state spa@msitions: The first view, most
analogous to those in Chapters 4-5, deals withctwiguration state space and deals
with transitions available among all 3,286 confafions in the configuration state space
over the two-year time increment selected for tW&SN application. The second view
presents a less complicated view of transition amsti among architectures (not
configurations), with the disadvantage that onlynaiindependent costs can be

considered.

6.1.3.1.1. Configuration State Space Transitions

With the cost transition matrix for a two-year timeacrement defined,
visualization of available transitions in the cqguifiation state-space also requires a

definition of the arrangement of the configurationdes. While there exist many
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arrangements (for example, the example of Chaptesedl a euclidean space defined by
the two design variables, and that of Chapter Sseha circular arrangement since a
single cardinal or ordinal design variable was a®tclearly defined), perhaps the most
intuitive choice for visualization of the NASA exalta is to match the {Development,
Operations, Memory} architecture triplet itself toree orthogonal axes in a euclidean
space. Visualization based on this choice of digoration node arrangement is shown
in Figure 61 through Figure 65.

In Figure 61 through Figure 65, each of the 3,288figurations exists as one of
the gray points, plotted by its development, openat and memory architectures. Recall
that 10 architectures are considered in this exar(gde Table 31), and each (except for
Architecture 1, the “Nothing” architecture) has rfqahases of development. Thus, the
operations and memory architecture axes take vafum® one to ten, and the
development architecture axes of the figures abeldal alphanumerically, where the
initial number indicates the architecture numbed #me letter indicates the phase of
development (e.g., development architecture 5basé plots refers to the third phase of
development of Architecture 5).

Each of the figures is labeled with a particuladdpet, and a link is drawn
between two configurations in a figure for evergmént of the total cost transition
matrix with a value less than or equal to the gilkadget. The color of the link indicates
the cost of the transition: Blue indicates a lowstcand bright orange indicates a high
cost relative to the budget. As a consequenchisftelative color selection, as budget is
increased through the figures, the bright orang&sliare those that have been just
enabled by the increased budget. Gray links througindicate transitions that “retreat”
to the configuration with the “Nothing” architectuin development, operations, and
memory.

The most clear observation from these figuresasdifamatic increase in available

transitions as budget increases from low levels thiedapparent leveling off at higher
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budget levels (the difference in the number ofgitéons available between $5 billion and
$12.9 billion is not as visually apparent as betw&800 million and $5 billion, for
example). Particularly at low budget levels, itynfee noted that the available transitions
have points near the origin (i.e., “Nothing” as tevelopment, operations, and memory
architecture) in common; if directed arrows weraced on each link it would be seen
that most available transitions at these levelstateeating” towards lower capabilities at
low budget levels. However, at the lowest budgstel it is notable that many
configurations have no options at all due, for epkento shutdown costs that exceed the
allowed budget. At the $500 million budget levehly configurations with either the
LEO-themed architecture or nothing in operationehawny options at all. As in the
previous examples, this visualization illustratiest the number of transitions available to

a system can be a strong (and nonlinear) functi@vailable resources or budget.
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Figure 61. Available configuration transitions fora $500 million 2-year budget.
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Figure 64. Available configuration transitions fora $5 billion 2-year budget.
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Figure 65. Available configuration transitions fora $12.9 billion 2-year budget.

6.1.3.1.2. Transitions for Time-Independent Casthe Architecture Space

While Figure 61 through Figure 65 are comprehensing precise in visually
recording all transitions available for a given gattamong all 3,286 available system
configurations over the two-year time increment fbe human space exploration
application, they provide so much data that soraeds and insight may be easily lost.
To partially overcome this limitation, the followgrbrief analysis reverts to the simpler
visualization of the architecture space in Figu 5In this visualization, the ten
architectures under consideration from Table 31 pmogected onto a two-dimensional
plane such that similar architectures are groupgdther and dissimilar architectures are
placed farther apart. While the following analybss the limitation that it does not
consider certain costs, it lends some helpful intsigto the set of architectures under
consideration and the relative costs of switchiagueen them.

In the following analysis, the transition cost mbfie human space exploration
configurations described in Appendix B is applied ¢stimate only the “time-
independent” costs of DDT&E, DDT&E-related programanagement and systems
engineering, and retirement. Unlike productionerapions, and termination liability

costs, which depend directly on a decision-makehsices regarding whether to extend
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or shorten the duration of a program, these tindependent costs define a minimum
bound for total costs incurred to successfully sii@on from the development and
operation of one architecture to another. Thestscare shown in Table 33, which has
properties similar to those of development costriceg of the examples in Chapters 4-5.
Notably, the diagonal consists entirely of zeragni$ying that it costs nothing to develop
architecture given that architecturealready exists; and since architectuiie desired
next, neither are any retirement costs requireanil&@ly, the elements in the first row
(from the “Nothing” architecture) are the higheststs in any given column; based
directly on the data in this matrix, Figure 66 addgisher empirical confirmation to the
expectation that greater initial investment in eshdecture tends to result in lower future
switching costs. However, unlike the previous epkes of Chapters 4-5, note that the
first column of this matrix does not consist entiref zeros. This is due to the retirement
costs accounted for in the transition cost modai details, see Appendix B), which in
Step 4 of this framework will impose an additiobalrier to changing architectures and
in effect add inertia toward the continuation ofremt program plans as a consideration

in the search for optimal policies.

Table 33. Time-Independent Architecture TransitionCosts (in $FY11B).

Architecture

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-
Nothing LEO GEO Lunar Lunar Sun- Near- Mars Mars Deep
Servicing Orbit Surface Earth Earth Moon Surface Space

L2  Object
-1- Nothing 0.00 26.15  60.93 44.15 70.12 64.09 60.93 61.73 95.88 68.17
-2-LEO 041 000  47.84 31.07 57.44 51.01 47.84 4864 83.20 55.08
-3- GEO Servicing 0.79 13.49 000 029 1921 3.16 000 4.16 38.72 7.24
% -4- Lunar Orbit 0.61 13.30 16.78 0.00 26.38 19.94 16.78 17.57 52.14 24.02
S -5- Lunar Surface 0.90 14.00  10.17 0.83  0.00 13.33 10.17 14.29 36.37 17.41
5 |6-Sun-Earth L2 0.82 13.52 008 033 19.26 000 008 421 3555 4.08
< |-7- Near-Earth Object 79 13.49 000 029 1921 3.16 0.00 4.16 3872 7.24
-8- Mars Moon 0.80 13.50 337 030 2255 654 337 0.00 3457 6.44
-9- Mars Surface 1.14 14.26 425 112 1094 421 425 092 0.00 4.17
-10- Deep Space 0.86 13.56 015 038 19.32 009 0.15 0.13 3148 0.00

178



I
100} — . |
— =,
90y == A, ]
80} &= 4, ||
= A
Q 70} A 1
o +A7
o 60/ AL
@ A
— 9
g 50+ ALl
2 a2 |- SFKF-2Y) e - .-
'_E |
[S) |
s 30} B SRR | YRR, L
|
20 Sh _ Y BRI
|
10} M g
|
o :
0 20 40 60 80 100

Initial Cost from Arch. 1, $FY11B
Figure 66. Switching cost vs. initial cost from Achitecture 1. Vertical lines indicate ranges
of switching costs from each configuration; somerfap. Solid dots indicate minima and
maxima, and triangles indicate median values.
Using the cost matrix in Table 33 to draw availaipdnsitions as links between
the architectures in the projection of Figure 5éutes in the visualization of Figure 67.
Each node in Figure 67 represents an architeatutigei architecture space. Each node is
namedAyx, whereX is the configuration number from Table 33, and &aslor indicative
of the initial cost to develop the architecture nfrothe “Nothing” architecture
(Archictecture 1); blue indicates an architectuithva low initial investment cost (e.g.,
the “Nothing” or LEO-themed architectures), whileright orange indicates an
architecture with a high initial investment cost.g(e the Mars-Surface-themed
architecture). In these projections, the lowetiahicost architectures tend to appear
toward the bottom right, while the high-initial-¢osrchitectures tend to appear toward
the upper left. Above each of the plots is a btidged a directed link is drawn for every
element of the cost transition matrix less thanequal to the given budget. In this
particular matrix, the diagonal consists of zemas,a dark ring encircles every node to

indicate that self-transitions are possible for baglget.
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As usual, Figure 67 illustrates that higher budgetemit more transitions, and
again illustrated is how the increase in numbdrarisitions can be highly nonlinear with
budget. For example, substantially more transstidd@come visible in the budget
increase from $500 million to $5 billion than iretbven greater budget interval from $5
billion to $10 billion.

More interesting, however, wherethe transitions appear, which could not be
easily ascertained from the large configurationesgalots in Section 6.1.3.1.1. Note that
at the low $500 million budget level, many trarmsis are available; however, as Figure
67 shows, these are #dical transitions. Recall that the architectures inuFeég67 are
arranged such that physically similar architectaeslocated nearer to each other, while
physically dissimilar architectures are locatedhar from each other. The $500 million
budget plot shows that Architectures 3, 4, 6, 7a®] 10, which are characterized by
similar sets of components intended for beyond-L#® non-surface destinations, have
some flexibility to transition to each other, budtrto architectures outside their local
group — not even to the “Nothing” architecture (Atecture 1), which would require
retirement costs higher than the $500 million budgAs the budget is increased, the
ability to transition between distant groups alsoreases, at first in the “retreating” or
“shutdown” direction toward the lower-cost architges at the bottom right and then in
both directions. If the budget were raised to$86 billion maximum of the matrix, all
pairwise links would appear.

In summary, while this analysis was prefaced with acknowledgement that it
neglects some of the costs incurred to a decisiakem it is illustrative in that it
highlights the particular influence of shutdown tsoand the relationship between the
physical similarity of architectures and costsrahsition. In considering the ten human
space exploration architectures of Table 31 througkhe rest of this chapter, it may be
helpful to refer back to this simple set of datd analysis for physical understanding of

the architectures under consideration.

180



$1B Budget

$500M Budget

$10B Budget

$5B Budget

$20B Budget

$15B Budget

Figure 67. Available architecture transitions for$0.5, 1, 5, 10, 15, and 20 billion budgets.
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6.1.3.2. Architecture and Configuration Transitionss. Budget

As in Chapters 4-5, it is possible to extend thecept of the state-space
visualizations from the previous analyses to carsal continuum of budgets with the

goal of better understanding the sensitivity ohs&ion options to available resources.

6.1.3.2.1. Architecture Transitions vs. Time-Indef@nt Budget

Prior to considering the full costs of transitignis instructive to begin with the
analysis of the time-independent costs that allothedview of available transitions in the
architecture space in Section 6.1.3.1.2. Her@ # examples of previous chapters, the
per-period budget may be increased on a continunth the number of available
transitions away from a given node (or architegtunay be tracked. Since there are ten
architectures in each of the plots in Figure 6&re¢hare ten such values to be tracked,
each of which is plotted as a function of budgeFfigure 68.

Note that each line in Figure 68 is a monotonicadbreasing function of budget,
but that each rises at a different overall rater éxample, note that Architecture 10 (the
general Deep Space architecture) rises quickleters available transitions at a budget
of less than $1 billion, while it takes Architeatut (the “Nothing” architecture) a budget
of over $64 billion to reach the same number ofar® In general, Figure 68 suggests
that this availability of transitions for low budgas a property of the number and type of
components in an architecture: Architectures 1 2rithve few or no components in
common with other architectures and thus incurdacgsts to transition to any others,
whereas Architectures 3, 7, 8, 9, and 10 (and espe@rchitecture 10) have many

components in common with other architectures andrismaller transition costsNote

" This explains the common coupling of the concegitsnodularity and flexibility. In the
transition cost model used to the generate theiddaure 68, development costs were additive
by component, and this modularity-representativedeting structure produced benefits when

existing components needed not be re-developethé&fielding of a new system. However, it
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also that since Architectures 3 and 7 require theelbpment of all the same components
(albeit that they require different production nwerd of each component), their time-
independent transition characteristics overlap amg Architecture 7’s characteristic is
seen in Figure 68.

It may further be seen in Figure 68 that the raggd in the number of links in
Figure 67 between $0 and $10 billion can be eadiserved as steep increases for many
of the architecture transition lines. The gradagkr in the increase in number of links in
Figure 67 at high budgets can also be observeadsda the lines in Figure 68 tends to

plateau as it approaches the ten-transition maximum
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Figure 68. Available architecture transitions vsavailable time-independent budget.

should be recognized that the results of Figurec®8 be produced no matter what modeling
structure applies to a given problem of interest & is conceivable that other strategies could
also produce flexibility. Thus, while modularityam in general be an important and common
means to achieving flexibility, it neither guarasgeflexibility in every situation, nor is it

necessarily the only way to achieve flexibility.
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6.1.3.2.2. Configuration Transitions vs. Full Pegsidd Budget

In the context of understanding the scope of ttemsioptions for resources
available in a given timeframe, it is most meanimgb conduct a continuum budget
analysis for the full cost of transition (ratheathonly the time-independent costs, as in
Section 6.1.3.2.1).

Thus, plotting the number of available transitidnasn each of the 3,286 nodes in
Figure 61 through Figure 65 as a function of aldéger-period budget yields the result
in Figure 69. Since there exist 3,286 configuragifrom which transitions can be made,
there also exist 3,286 lines in Figure 69. Notd,tls is typical in these transition vs.
budget plots, all lines are monotonically incregsimndicating that the number of
transitions available from (or, approximately spegk the flexibility of) a given
configuration cannot decrease with increasing btidge

To better facilitate analysis, each line in FigG8eis colored by its corresponding
operations architecture. This reveals, for exambigt configurations with Architecture
10 in operation are distinguished by high numbdrgamsitions whereas configurations
with Architecture 1 in operation tend to have loumbers of available transitions. This
correlation with operations architecture can bahatted to the fact, for example, that the
presence of a high-capability operations architectioes not only enable the operation
or placement into memory of any lower-capabilitghatecture in the following period,
but makes less costly the development of subseqagsititectures with common
components.

One difference that Figure 69 exhibits when compatie other transition vs.
budget plots in this thesis is that the lines repnging each configuration no longer
plateau at the same maximulnvalue. This is a consequence of the transitidaesru
introduced in Section 6.1.2, and thus Figure 69amger solely conveys information
about which configurations have more options thahers, but it also contains

information about the maximum potential a configiora has to gain options with any
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amount of budgetary resources. For example, Figi@eshows that many of the
configurations with Architecture 10 in operatiomaf@au at betweeh = 400 andbd = 600
transitions, while those with Architecture 1 in ogt@on plateau at less thal = 100
transitions. Interestingly, the black dashed Imd-igure 69 indicates an approximation
for the current configuration of NASA’s human spaoeloration development efforts,
with a LEO-themed architecture in the second plasdevelopment and no relevant
exploration architectures in operations or memamysfiorthand notation, [2b 1 1]). This
serves as a clear example of a configuration wathh dptions even at high per-period
budgets: As Figure 69 shows, this configuratioatgdus at a value of judi = 11

available transitions by a budget of $22 billion.
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Figure 69. Number of available transitions vs. avéable budget over two years.
Lines are colored by operations architecture, amel black dashed line indicates the
characteristic for an approximation of NASA's prgssonfiguration: [2b 1 1].
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One observation made earlier regarding the dataFigure 69 was that
configurations with Architecture 10 in operatiore atistinguished by high numbers of
transitions whereas configurations with Architeetur in operation tend to have low
numbers of available transitions. While this stegat appears substantially justified by
observation of Figure 69 itself, some additiongllexation is warranted.

Figure 70 and Figure 71 show cross-sections ofrEi¢9 taken at budget levels
of $12.9 billion and $25 billion, respectively. dkahistogram in the figures shows the
distribution of the number of available transitiofsr configurations with given
operations architectures. The histograaxis range internal to each of Figure 70 and
Figure 71 is consistent and marked on the bottah pihd thus the central tendencies
and dispersion ofp for different operations architectures (due to faet that® is
determined not only from a configuration’s operasicarchitecture, but also from its
development and memory architecture) can be cordpaseally. Of particular note is
the fact that the mean of the distribution for Atetture 10 in Figure 70 is about 28%
higher than the next-highest mean, while the mdaheoArchitecture 10 distribution in
Figure 71 is 137% higher that the next-highest mdarother words, the budget level of
interest affects the relative flexibility of onerd@uration (or the central tendency for an
architecture) over another. In the case of Archites 10, at a low enough budget level it
would not be accurate to say that as an operatianethitecture it distinguishes
configurations as substantially more flexible (@vimg substantially more options) than

others.
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To conclude this analysis associated with the $tepst transition matrix, Figure
72 shows an example in which the relative flexipibf two configurations reverses at a
particular budget level (termed a “flexibility regal’ in Section 4.1.3.2). In this case,
the blue line indicates a low-capability configuoatof a LEO-themed architecture in the
third phase of development with nothing in operatar memory, and the green line
indicates a contrasting high-capability configurati of a Mars-surface-themed
architecture in its first phase of development vathunar-surface-themed architecture in
operation and nothing in memory. While the higpataility configuration plateaus at a
higher number of transitions, it also requires edst $4.9 billion to make its first
transition because of commitments in the form b§ eninimum, termination liability and
system retirement costs. This further highlighis importance of considering available
resources (such as budget) when characterizinflekibility of a space system; in this
particular case, options exist over a substantimlgbt range with a lower-capability

configuration that do not exist with a higher-capgbconfiguration.
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Figure 72. Example of a "Flexibility Reversal' inthe NASA Application.
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6.2. Step 2: Define Markovian Demand Environment &olution

As in the examples of Chapters 4-5, Step 1 herefdmssed on defining the
available configuration states for the system deériest, in this case comprised of
development, operations, and memory architectuaes ttfie NASA human space
exploration application. However, yet to be disags is the demand environment in
which the system will operate. Step 2 fills thagpgwith a model for the evolution of the
state of the demand environment which, unlike tlenfiguration state, evolves
stochastically and is largely not under the cortfdhe decision-maker.

In terms of the Flexible Path approach proposedhbyReview of U.S. Human
Spaceflight Plans Committee in 2009 (for detaitke Section 1.3.3 or Ref. [34]), the
mission demand environment can largely be claskifieterms of mission destination.
The committee’s report [34] mentions that the Fé&xiPath approach is designed, for
example, to allow decision-makers to respond taur@utcircumstances calling for
exploration of the surface of the Moon or Mars, aalling for the mounting of
destination-oriented missions in response to disdes such as life on Mars or near-
Earth object threats. Additional factors influemgimission destination changes could
include changes in political will that cause thelugtion in scope of missions to
destinations near Earth, the emergence of techiwaloghallenges from other nations
that expand the scope of missions toward the Maobegond, and the successful (or
failed) achievement of current goals in space wisizhld have the effect of reducing or
expanding the scope of mission destinations. Thughis human space exploration
architecture application, inner solar system dasibm is used to characterize the mission
demand state as either (1) Nothing, (2) Low EarthitQLEO), (3) Geosynchronous
Earth Orbit (GEO) Servicing, (4) Lunar Orbit, (Sdithar Surface, (6) Earth-Moon L1, (7)
Sun-Earth L2, (8) Venus Orbit, (9) Near-Earth Objg¢0) Mars Orbit, (11) Martian

Moon, or (12) Mars Surface. Note that, while samh¢he architectures in Table 31 are
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themed around some of these destinations, theres dw# exist a one-to-one
correspondence.

Appendix C extensively details the derivation of Markovian demand
environment evolution model structured around thesdve mission destinations, based
upon a survey of primarily NASA experts with sulmgi@ experience in the field of
human space exploration. A key difference, howelwetween this model and the models
in the examples of Chapters 4-5 is that it inclutkes conditional probability transition
matrices: The first matrix, shown in Table 34, icades probabilities of demand
evolution given that current demand is fulfille@he second matrix, shown in Table 35,
indicates of probabilities of demand evolution gitdat current demand is not fulfilled.
The separation of these matrices thus allows fodetig of configuration-dependent
demand, or the reality that human space exploratission demand does not evolve
completely independently of NASA system decisioroth matrices in Table 34 and
Table 35 express transition probabilities overtithe-year time step corresponding to the

period length set at the initiation of the discaasn Section 6.1.

Table 34. Discrete-time Markov chain probability ransition matrix for median expert
inputs and At = 2 years, for the condition that current missiordemand is fulfilled.

To
Mission GEO Lunar  Lunar Earth- Sy Venus| Near s Mars Mars
Demand S LEO Serv. Orbit = Surf. Moon Orbit Ea_rth Orbit = Moon Surf.
L1 L2 Object

Nothing 0.5180 0.2447 0.0301 0.0311 0.0928 0.0308 0.0027 0.0001 0.0372 0.0043 0.0037 0.0045
LEO 0.0192 0.6784 0.0340 0.0577 0.1028 0.0395 0.0039 0.0002 0.0475 0.0060 0.0052 0.0057
GEO Servicing 0.02610.0489 0.5192 0.0776 0.1483 0.0479 0.0157 0.0002 0.0598 0.0246 0.0190 0.0126
Lunar Orbit 0.0101 0.0326 0.0266 0.3771 0.2868 0.0709 0.0295 0.0003 0.0664 0.0389 0.0338 0.0270
Lunar Surface 0.00050.0046 0.0079 0.0080 0.8261 0.0195 0.0136 0.0002 0.0278 0.0240 0.0231 0.0447
g Earth-Moon L1 0.00950.0346 0.0223 0.0435 0.1491 0.5733 0.0259 0.0003 0.0522 0.0278 0.0255 0.0360
(L |Sun-Earth L2 0.00220.0439 0.0325 0.0466 0.1089 0.0448 0.4550 0.0005 0.1057 0.0637 0.0363 0.0598
Venus Orbit 0.00180.0248 0.0201 0.0290 0.0957 0.0690 0.0447 0.2647 0.1950 0.0826 0.0568 0.1157
Near-Earth Objectf 0.00060.0094 0.0076 0.0138 0.0431 0.0181 0.0141 0.0047 0.7242 0.0540 0.0453 0.0651
Mars Orbit 0.00050.0106 0.0014 0.0024 0.0295 0.0207 0.0171 0.0006 0.0442 0.6123 0.0760 0.1846
Mars Moon 0.0006 0.0100 0.0012 0.0020 0.0290 0.0187 0.0133 0.0007 0.0273 0.0439 0.6133 0.2400
Mars Surface 0.00210.0011 0.0006 0.0009 0.0213 0.0068 0.0057 0.0039 0.0267 0.0025 0.0185 0.9099
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Table 35. Discrete-time Markov chain probability ransition matrix for median expert
inputs and At = 2 years, for the condition that current missiordemand isnot fulfilled.

To
Mission GEO Lunar | Lunar Earth- Sty Venus| Near s Mars Mars
Demand S LEO Serv. Orbit = Surf. Moon Orbit Ea_rth Orbit = Moon Surf.
L1 L2 Object

Nothing 0.1417 0.5730 0.0495 0.0515 0.1171 0.0256 0.0029 0.0000 0.0284 0.0050 0.0029 0.0024
LEO 0.0104 0.8055 0.0209 0.0405 0.0575 0.0234 0.0031 0.0000 0.0270 0.0063 0.0034 0.0019
GEO Servicing 0.01510.1183 0.5203 0.0799 0.1572 0.0471 0.0072 0.0000 0.0436 0.0048 0.0030 0.0035
Lunar Orbit 0.0009 0.0617 0.0267 0.5249 0.2376 0.0523 0.0197 0.0000 0.0417 0.0189 0.0093 0.0062
Lunar Surface 0.00030.0221 0.0120 0.0291 0.8297 0.0220 0.0074 0.0000 0.0292 0.0180 0.0131 0.0170
g Earth-Moon L1 0.00090.0589 0.0269 0.0508 0.1273 0.6136 0.0104 0.0001 0.0501 0.0226 0.0098 0.0287
(L |Sun-Earth L2 0.00150.0813 0.0497 0.0687 0.1126 0.0757 0.3716 0.0001 0.1022 0.0509 0.0380 0.0475
Venus Orbit 0.00150.0879 0.0429 0.0542 0.1325 0.0882 0.0441 0.1356 0.2076 0.0752 0.0521 0.0783
Near-Earth Objectf 0.00040.0267 0.0145 0.0217 0.0608 0.0199 0.0088 0.0001 0.7579 0.0315 0.0267 0.0310
Mars Orbit 0.0004 0.0281 0.0103 0.0219 0.0439 0.0305 0.0097 0.0002 0.0584 0.6743 0.0537 0.0688
Mars Moon 0.00030.0297 0.0074 0.0094 0.0459 0.0094 0.0016 0.0005 0.0619 0.0168 0.6470 0.1701
Mars Surface 0.00020.0192 0.0044 0.0093 0.0258 0.0110 0.0065 0.0037 0.0413 0.0179 0.0356 0.8252

To visualize the conditional Markov chains in TaBlke and Table 35 as is done
for the Markov chains in the examples of Chapteks # is helpful to project them over
more than one two-year time increment. Note thatgrobabilities on the diagonals of
these matrices tend to quite high due to this difod step (naturally, as the time step of
becomes smaller and smaller, the probability inaiemg in a particular state would be
expected to approach closer and closer to unitg,thus a visualization of the Markov
chain on the two-year step would reveal only theialks tendency for the system to stay
in its current demand state over the coming perigdtending the time increment to an
eight-year step for the purposes of visualizatiby faising each matrix to the fourth
power, or by using the uniformization procedureadetl in Appendix C) yields the
diagrams in Figure 73 and Figure 74. In theseréiguas in those depicting Markov
chains in Chapters 4-5, high-probability transisi@re represented as thick dark links and
low-probability transitions are represented as lght links. Also, from each demand
state, a green link identifies the highest-proligbitansition; and if different from the
green link, a red link identifies the highest proitity transition given departure from a

given demand state.
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Thus, for example, several differences can be edticetween Figure 73 and
Figure 74, which themselves represent the differemc demand evolution experts
believed would exist if demand itself were fulfdi€in the case of Figure 73) versus not
fulfilled (in Figure 74). Whereas the most likelsansition from LEO is to a Lunar
Surface demand if LEO demand is fulfilled, it isreamain in LEO if that demand is not
fulfilled. Whereas the most likely transition froen Venus Orbit demand is to Mars
Surface if demand is fulfilled, it is to the lesswatious Lunar Surface mission if that
demand is not fulfilled; and similarly, if Mars QrlWlemand is not fulfilled, the most
likely demand is to continue Mars Orbit missionthea than progress to Mars Surface
missions. It might also be noticed that the re& from the Lunar Surface mission (the
second most likely next demand) leads to a NeathE2abject mission rather than a Mars
Surface mission in the event that the Lunar Surf@emand is not being met in the
current period. These examples illustrate the gamdaracteristic of the model that the
condition of demand being fulfilled favors progressof demand toward missions aimed
at more ambitious destinations that are generatihér away from Earth; conversely, the
condition of demand not being fulfilled tends tovda a constancy or sometimes
regression of demand toward less ambitious desimgatloser to Earth.

Figure 73 and Figure 74 also reveal that the nmsdstinations of LEO, Lunar
Surface, and Mars Surface, and to a somewhat lesggee Near-Earth Objects, form a
set of long-term “sinks” for mission demand in t@nion of the expert participants. In
both figures, these destinations have high proibasilof remaining in their present state
and also have many high-probability incoming traoss. In contrast, mission demands
like Venus Orbit, Sun-Earth L2, and Nothing tendatd almost as transient states for

which demand is rare and, when it does existeistithg.
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Figure 73. Visualization of the Markov chain of mélian expert inputs for the condition that
current mission demand is fulfilled, withA4t = 8 years. High-probability transitions are
represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpesbability transition. If different from the
green link, a red link identifies the highest prbligy transition given departure from that state.
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Figure 74. Visualization of the Markov chain of mélian expert inputs for the condition that
current mission demand isnot fulfilled, with At = 8 years. High-probability transitions are

represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpesbability transition. If different from the

green link, a red link identifies the highest prbligy transition given departure from that state.

6.3. Step 3: Define State-Dependent Performance Mix

With the set of possible engineering configuratidegined in Step 1 and the set
of mission demand environments defined in Steph2, rble of Step 3 is to link the
configuration state to the environment state irhgagriod with one or more quantitative
performance measures. Taking the form of a magach measure must inherently

accumulate over time to match the formulation ohgtler 4.
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6.3.1. Selecting the Performance Metric

Appendix C describes in detail the results of avesyrof experts with substantial
experience in the field of human space exploratidhe first part of this survey requested
that participants rate the relative importance dfcandidate figures of merit for human
spaceflight architecture evaluation. Four figuodgmerit in particular earned both the
highest median score and lowest interquartile rginge highest consistency) of scores
among the participants: Integrated Program Lifecy€ost, Total Spending on
Production Activities, Date of First Mission to el EO, and Time Between Missions.

In deciding which of these four figures of merituse in the analysis that follows
in Steps 4-5, it may be recalled that total progreosts (expressed through the
importance of the Integrated Program Lifecycle Gosl Total Spending on Production
Activities figures of merit) will already be congiced via the transition cost matrices
defined in Step 1. Thus, in terms of performartbe, relevant metrics to consider
including are Date of First Mission to Leave LEOdafime Between Missions.
Unfortunately, neither of these metrics is cumutati For example, the Date of First
Mission to Leave LEO metric tracks the occurrentthe single event in a timeline and
provides no performance credit for achievementsei@n the same achievement) at
earlier or later times. For instance, this metvauld not distinguish between a timeline
involving sustained missions to the Moon in 202@ antimeline involving a single
mission to the Moon in 2020 followed by missiond 0O for the rest of the decade.

In contrast, the Time Between Missions metric &slenyopic. The consistency
with which it was rated with high importance by tiepert survey participants is likely
driven by the priority the participants placed omimtaining the skills of the human
spaceflight engineering workforce and maintaininglg interest through high flight
rates. Furthermore, while this Time Between Missimetric itself does not accumulate
over time, a surrogate for it does. If this meisiinterpreted as aawveragetime between

missions, then for a given timeline it would be quted as the total number of missions
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(a cumulative metric) divided by the duration ot thime horizon. Throughout the
analyses in Steps 4-5, the total time will be fix@da twenty-year horizon length, and
thus a reasonable surrogate for this metric istabed number of missions flown. More
specifically, the metric tracked through the parfance matrix developed in Step 3 will
be the Number of Missions to Demanded Destinatiofi® account for the fact that
decision-makers may wish to place some value orsioms flown to non-demanded
destinations, an additional “Mission Ratio” figusémerit defined as the ratio of Number
of Missions to Demanded Destinations to total missj along with the Date of First
Mission to Leave LEO metric, are considered ingbgaetic algorithm exploration in Step

5.

6.3.2. Populating the Performance Matrix

Thus, in Step 4 for this framework applied to th&S¥\ human space exploration
example, the objectives of interest will be IntegdaProgram Lifecycle Cost (to be
abbreviated as “Total Cost”) and Number of Missitm®Demanded Destinations. The
performance matrix linking the configuration statethe environment state will have
dimensions 3,286 rows x 12 columns since there &®&86 configurations (defined in
Step 1) and 12 environments (defined in Step 2)weéVer, since the number of missions
that can be flown to a demanded destination invargperiod depends only upon the
operations architecture available in that periodalbreviated version of the performance
matrix using as rows the 10 operations architestungll serve for display and
explanation for the remainder of this step.

To populate the abbreviated 10 x 12 performancerixnatach of the ten
architectures in Table 31 must be compared to anssequirements for each of the

twelve mission demand environments. If an architechas insufficient components to
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meet the requirements of a missiahwill be assumed that the mission cannot be fiow
Conversely, it will be assumed that the operatortled architecture will use the
components present to either meet the present demagossible or, if not possible,
maximize the number of missions flown to the prégedemanded destination. The
assumed mission requirements for the mission demamdronments, populated
concurrently with those in Table 31, are shown ablé 36. Note that each demand
environment is also associated with a particulasion rate: The LEO, GEO, and Lunar
Orbit missions are associated with a demanded anmissite of four per period (two per
year); the Mars missions are associated with aiomgsite of one every two years; and
all others except for the Nothing mission demandassociated with a rate of two

missions per period (one per year).

" As will be soon described, substitutions are afidwFor example if an architecture is missing a
required small chemical stage but has an extreelatgemical stage, the mission can still be

performed.
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Table 36. Demand Environment Component Requiremerefinitions for the Human Space Exploration Appliation.

Demand Environment

Noth.  LEO GEO  Lunar  Lunar I'\Eﬂzrgrl]- ESeL\jrrt]h Venus gg?trh- Mars ~ Mars  Mars
Serv. Orbit Surf. Orbit ) Orbit Moon Surf.
L1 L2 Object
Representative Mission R g 4 4 4 2 2 2 2 2 1 1 1
(missions per 2-year perix
1. Crew Launch Vehicles (CLVs) - 4 - - - - - - - - - -
2. Heavy Lift Launch Vehicles (HLVS) - - 3 4 12 3 8 8 6 4 4 10
_-S 3. Commercial Cargo Launch Vehicles (CCLVs) - 6 - - - - - - - - - -
E 4. Multi-Purpose Crew Vehicles (MPCVs) - 4 2 4 4 2 2 2 2 1 1 1
- 5. Commercial Cargo Logistics Modules (CCLMs) - 6 - - - - - - -
g 6. Small Chemical Stages - - - - - - 2 - - - - 1
3 7. Medium Chemical Stages - - 3 4 8 3 4 4 6 2 2 1
E 8. Large Chemical Stages - - - - - - - 4 - 2 2 6
% 9. Deep-Space Habitation Modules - - 1 - - 1 2 2 2 1 1 1
% 10. Lunar Landers - - - 8 - - - -
g 11. Mars Landers - - - - - - - - - - 2
o 12. Multi-Mission Pressurized Rovers - - 1 - 8 - 2 - 2 - 2 2
S 13. Unpressurized Rovers - - - - 4 - - - - - - 2
g 14. Science Rovers - - - - 4 - - - - - - 2
(@) 15. Surface Habitats - - - - - - - - - - - 1
g 16. Logistics Modules - - 2 - 4 2 2 - 2 - - -
5 17. Power Generation and Storage Units - - - - 2 - - - - - - 1
3 18. ISRU Systems - - - - 2 - - - - - - 2
x 19. Surface Extravehicular Activity (EVA) Suits - - - - 20 - - - - - - 10
% 20. In-Space Extravehicular Activity (EVA) Suits - 8 8 8 - 8 8 8 8 8 12 -
E 21. Supporting Communications/Navigation Satellites - - 1 - - - - - 1
= 22. RS-68-Class Engine - - 15 20 60 15 40 40 30 20 20 50
23. J-2X-Class Engine - 4 6 8 24 6 16 16 12 8 8 20
24. RL-10B-2-Class Engine - - 6 8 56 6 12 28 12 14 14 44
25. AJ-10-Class Engine - 4 2 4 4 2 2 2 2 1 1 1
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To compute the abbreviated performance matrix iblda37, an algorithm
compares each operations architecture to eachf seission demand requirements on a
capability by capability basis. First, launch daipty is compared, with the assumption
that an architecture possessing more heavy-lithdawehicles than are required for a
given mission demand can use them to fulfill anyicitein crew launch vehicles.
Second, commercial cargo logistics module requirdmere considered, with the
assumption that any of an architecture’s logistieedules, MPCVs, and multi-mission
pressurized rovers that are not explicitly requif@dthe current mission demand can be
readily outfitted to fulfill the role as a commeaaticargo module if necessary. Third,
chemical stage capability is compared. It is agslithat each large chemical stage not
explicitly required by the current mission demaiaah ©e used to fulfill the function of a
medium or small chemical stage; similarly, it is@a®ed that each medium chemical
stage of an architecture can fulfill the functiof small chemical stage. Fourth,
extravehicular activity (EVA) suit requirements areecked, with the assumption that
surface EVA capability in an architecture can beduw fulfill in-space needs; however,
the opposite is not assumed to hold. Fifth, athponents other than those listed here are
checked on a one-to-one basis with the assumphian o relevant substitutions are
available with other components. Given these coispas, the algorithm identifies
whether the full number of demanded missions inctilamn can be fully achieved with
the architecture in the row; and if not, the algon determines the maximum integer
number of missions that can be flown to the demdrdisstination using the available
components in the architecture.

Although the resulting performance matrix in TaBteby definition does not take
cost into account, it is worth observing that saanghitectures, such as Architectures 6,
7, and 10 (the Sun-Earth L2, Near-Earth Object,[@adp Space architectures) perform

well in a variety of mission demand environment$n contrast, architectures like
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Architectures 2 and 4 (the LEO and Lunar Orbit @echures) are highly specialized and
are unable to meet demands except in the enviraisni@nwhich they were designed.
Table 37. Performance matrix (abbreviated in rowsy operational architecture, rather

than configuration) quantifying the number of missbns flown to the demanded destination
in a given time period.

Demand Environment

Earth- Sun- Near-
GEO Lunar Lunar Venus Mars Mars Mars
Noth.  LEO Serv. Orbit  Surf. Mffn Efzrth Orbit CI)Eg\_rth Orbit Moon Surf.

ject
° 1- Nothing 0 0 0 0 0 0 0 0 0 0 0 0
3 -2-LEO 0 4 0 0 0 0 0 0 0 0 0 0
é -3- GEO Servicing 0 0 4 2 0 2 0 0 1 0 0 0
5 |4- Lunar Orbit 0 0 0 4 0 0 0 0 0 0 0 0
< |-5- Lunar Surface 0 4 0 4 2 0 0 0 0 0 0 0
g |-6- sun-Earth L2 0 0 4 2 0 2 2 0 1 0 0 0
%2 |-7- Near-Earth Obje¢t Q 0 4 2 0 2 1 0 2 0 0 0
2 |-8- Mars Moon 0 0 0 1 0 0 0 1 0 1 1 0
O |-9- Mars Surface 0 0 0 1 0 0 0 1 0 1 0 1
-10- Deep Space 0 0 4 4 0 2 2 2 2 1 1 0

6.3.3. Populating the Boolean Demand Fulfillment Miix

An additional useful piece of information may bethgmed from the data
computed for Table 37. If the data in the tableasverted from an integer to a Boolean
(i.e., zero or one) representation, the matrix datis whether a given operations
architecture (in the row) fulfills a given demandveonment (in the column). The
conversion is largely trivial; every zero in Tal8& remains zero in Table 38, and all
other elements become unity. The only exceptiothesfirst column, which becomes
comprised entirely of ones since every architecha®the ability to fulfill the “Nothing”
demand. This Boolean demand fulfilment matrix Iwlecome necessary in the
definition of the modified function in Step 4 thdéfines the probability of transition
among total states; Step 2 introduced configuradispendent demand, and Table 38 will
provide the information needed to allow selectidrtiee proper probability transition
matrix (Table 34 or Table 35, respectively a Booleme or zero in Table 38) as a

function of the current total state.
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Table 38. Boolean demand fulfillment matrix (abbreiated in rows by operational
architecture, rather than configuration).

Demand Environment

Earth- Sun- Near-

GEO Lunar Lunar Venus Mars Mars Mars
Noth.  LEO Serv. Orbit  Surf. Moon  Earth Orbit Ea_rth Orbit Moon Surf.

L1 L2 Object
" -1- Nothing 1 0 0 0 0 0 0 0 0 0 0 0
5 |2-LEO 1 1 0 0 0 0 0 0 0 0 0 0
& |-3- GEO Servicing 1 0 1 1 0 1 0 0 1 0 0 0
5 |-4- Lunar Orbit 1 0 0 1 0 0 0 0 0 0 0 0
< |-5- Lunar Surface 1 1 0 1 1 0 0 0 0 0 0 0
g |-6- sun-Earth L2 1 0 1 1 0 1 1 0 1 0 0 0
2 |-7- Near-Earth Objeqgt 1 0 1 1 0 1 1 0 1 0 0 0
@ |-8- Mars Moon 1 0 0 1 0 0 0 1 0 1 1 0
O |-9- Mars Surface 1 0 0 1 0 0 0 1 0 1 0 1
-10- Deep Space 1 0 1 1 0 1 1 1 1 1 1 0

6.4. Step 4: Decision Support Analysis

Defined through Steps 1, 2, and 3 have been thefsatailable configurations
and associated transition costs, the set of pessitidésion demand environments and
associated transition probabilities, and the penorce accumulated as a consequence of
a given configuration operating in a given demandrenment. With these components
defined, as in the previous examples of Chaptefs #here now exists enough
information to begin to answer the question of wisathe “best” initial configuration
and, furthermore, the “best” decision policy theid®n-maker can choose.

Figure 75 shows a version of the assumed FigursiriGlation timeline that has
been modified to reflect the architecture tripleffidition of a configuration posed in
Section 6.1.1. Figure 75 also incorporates therayqumation discussed in Section
6.1.3.2.2 regarding the present NASA human spapdomation configuration (a LEO-
themed architecture in the second phase of developm@nd no relevant exploration
architectures in operations or memory) and the@ppration that the immediate demand
is for LEO missions. These approximations defite tnitial condition of the
configuration and demand environment stateds=a0. Also marked in Figure 75 are the

two-year time increments up to the 18-year markicé&the last period is of a two-year
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length, the total horizon length over which costl grerformance measures accumulate
will be 20 years (or ten periods). In each peribe, decision-maker must decide which
configuration (i.e., which architecture triplet) $elect such that its implementation might
begin at the start of the subsequent period. Arsdlistinction with Figure 25, notated
by the wavy arrows in Figure 75 and explained ihfer detail in Section 6.4.2, is that
the translation of a configuration decision to @erational configuration will be modeled

as probabilistic to account for the endogenousipitibg of schedule slippage.

Configuration Decision

Development
Architecture

=B
XXX
S
3
g8
25
<
Operational Configuration
g‘g Dev. Arch. Dev. Arch. Dev. Arch. Dev. Arch.
2%
§;§ Ops. Arch. Ops. Arch. Ops. Arch. o000 Ops. Arch.
5%
3
§§ Mem. Arch. Mem. Arch. Mem. Arch. Mem. Arch.
<
Demand Environment
Tl g e || g7 R T
LEO S 1 S eoee | S/
O P g} P || &P Oei

@ oyrs @® 2yrs @ 2yrs @ 6yrs @ 18yrs

Figure 75. Visualization of Configuration Decisios and Demand Environment Evolution
over Multiple Time Periods for the NASA Human SpaceExploration Application.

203



6.4.1. Preclusion of Open-Loop Path Analysis

Unlike the previous examples in Chapters 4-5, amadter of practicality this
example foregoes the explicit identification of &aroptimal paths (Step 4A). In the
cost matrix developed in Step 1, all rows posseaséghst 10 transitions not restricted by
the transition rules of Figure 59. With ten pesoth the time horizon under
consideration, this implies that there exist asied® (10 billion) possible full-factorial
paths, which is nearly 200,000 times more paths there considered in the example of
Chapter 5. However, this number is itself mislegti low; some rows in the cost
transition matrix have as many 600 allowable tt@nss, and thus an upper bound on this
number is 60t (about 6x1&', or 6 octillion). To rigorously enumerate all seepossible
paths, all 3288 (about 1.5x1¥, or 150 decillion) possible paths would need to be
enumerated and then filtered according to the tiansules. Given these computational
demands, only the Step 4B analysis option is etljzemploying Markov decision

process techniques to preferentially identify acdd?areto-optimal decision policies.

6.4.2. Timeline Assumptions and Expanded Probabiljt Definitions

As in the previous examples of Chapters 4-5, tinelihe depicted in Figure 75
can be modeled as occurring in the following stépsg., at each time step of a

simulation):

1. Mission demand evolves stochastically accordingthie Markov chain
estimate, conditioned on whether previous demaddban met.

2. The operator of the currently operational archueetattempts to use this
architecture to fulfill the new mission demand,reag credit according to the
performance matrix.

3. The decision-maker chooses what architectures velale, operate, and put
into memory next, paying according to the costgiteon matrix. If schedule

slip does not occur, this selection becomes théepexod configuration.
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These three steps repeat at each time incremedt,cast and performance
accumulate at each incrementln the descriptions of these three steps, howewer
items have not been substantially discussed i phapters’ Step 4 coverage and require
additional clarification.  First, as introduced iBection 6.2, since the demand
environment no longer evolves independently of sleos, the probability transition
matrix used to describe the evolution of the demamdronment is selected as a function
of whether a current configuration meets curremhaied. Second, a model for schedule
slippage has been implemented, which describesssmnged endogenous uncertainty.
This schedule slippage model is based upon thdtsesiDubos, Saleh, and Braun [110],
who model the probabilistic schedule slippage erpee of previous NASA programs as
a function of Technology Readiness Level (TRL).r ppograms characterized by initial
TRLs of 6, used in this thesis as an approximaworhe initial aggregate system TRL of
a human space exploration development prodréine, regression model of Ref. [110]
suggests that mean relative schedule slippagebeil8.5%. For reference, Table 39
reproduces the mean relative schedule slippageltsesor other TRLs. As a
consequence, for a planned eight-year programrsgjaat a TRL of 6, schedule slippage
will, on average, account for approximately an tiddal two years of development. To
approximate typical experiences of schedule slippagcurring toward the end of
development as components must be aligned in sttheshd integrated, this schedule
slippage is modeled to occur probabilistically orflgr configurations in which

development is in its final phase. Thus, to madhehexpected two-year relative schedule

" In this particular setup, the performance trackedach period is the performance earned in the
current period. The cost tracked at each periothés cost committed for the next period
(equivalent to tracking in each period the necessaxt-period budget that must be requested,
maintained, or paid forward).

" This use of TRL 6 assumes adherence to U.S. GoernAccountability Office recommended

practices for the initiation of space system dgwelent. [111]
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slippage, a 50% endogenous progression proballiey, a 50% probability that
development will finish and permit operations) mpiemented for configurations in
which development is in its fourth and final phase.

Table 39. Mean relative schedule slippage as anfttion of
TRL, from the model of Ref. [110].

Initial Mean Relative
System TRL Schedule Slippage, percent

87.7
50.0
28.5
16.3

9.3

co~NO Ol A~

In terms of the Total State = {Configuration Stademand State} unification of
the flexibility and Markov decision process framek®(see Section 4.4.2.2.1), both the
configuration-dependent demand evolution and pridisab schedule slippage can be
integrated into the definition of the decision-degent transition probability: Given any
two total stateg; and & and actiora taken from stat€i, the probability of reaching
from ¢&; in the next time increment is described by Figi8e The flowchart in this figure
illustrates how the combination of the configuratiand environment in staté
determine, based on an expanded version of thBdbkean demand fulfillment matrix in
Table 38, whether demand environment transitiorbgdities from Table 34 or from

Table 35 form a basis for the total-state-to-tstake transition probabilites.

" This implementation clearly demonstrates the gbdf the present framework to account for
endogenous uncertainties such as schedule slippitbeugh there exist some impediments to
modeling arbitrary schedule slippage time distitmg. In particular, the distribution of project
completion times is naturally geometric. In thatcular application, the authors of Ref. [110]
suggest a normal distribution for relative schediligpage, while the present implementation is
necessarily a geometric distribution (but with achad mean). This limitation can be overcome,

however, if enough additional states are addetlda @racking of schedule slippage history.
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The flowchart also shows the logic that by defaadisigns these transition
probabilities values of zero unless they invoh&ate, with an associated configuration
that matches either the decision or the “slip apmftion” from the configuration
corresponding to staté. This slip configuration is a configuration to st one
configuration will transition in the event that schile slippage occurs, and it is
predefined for each configuration that has a deuaknt architecture in a final
development phase. By definition, a configuratoslip configuration will have an
identical development and memory architecture; hamnesince costing assumptions for
the final period of development do not involve éoméd production of the operations
architecture (see Section B.3), the operationsitaxathre for the slip configuration is
Architecture 1 (the “Nothing” architecture).

The probability associated with transitioning toskp configuration, or the
probability of schedule slip, is defined by the gd@ment of the progression probability
(50%, as discussed above). Assuming independesteeebn the endogenous schedule
slippage and exogenous demand environment evojutientotal transition probability
between two total state§ and &, given actiona, is computed as the product of the
appropriate exogenous environment transition andogenous schedule slip or
progression probabilities. As a result, Figureprévides a means of integrating both
exogenous and endogenous uncertainties into th@algbolicy solution (and ultimately
optimal initial system selection) process by cdjzitag on the definition of the total state

as the combination of both configuration and enwinent state.

" This definition could be further capitalized updar, example, if future data suggest the need to
relax the independence assumption. Since the stdd¢ contains information about both the

configuration and environment state, all that isassary to relax the independence assumption is
an appropriate model for the probability dependdmetsveen the exogenous (which tend to be

environment-related) and endogenous (which ter toonfiguration-related) uncertainties.
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State Transition
and Action Input

§, 6 a

v

Decompose ¢, and §, into
associated configurations
configl and config2 and
environments envl and env2 .

Set variable envp
equal to the probability
from element
(envl ,env2) of the
probability transition

Set variable envp
equal to the probability
from element
(envl,env2) of the

Table lookup from the Boolean
demand fulfillment matrix: Is
the configuration in §; meeting

- . No X Yes probability transition
matrix conditioned on the demand in §;? matrix conditioned on
lack of demand )
’ demand fulfillment.
fulfillment.
Is schedule slip impossible Isconfig2=a ?
from configl ? (i.e., has the
(i.e., is this configuration not > decision-maker v
in the final phase of Yes chosen to implement es
architecture development?) config2 next?)
l No
Is [config2 = a] AND [config2 = sIpcfg(configl)] ?

(i.e., has the decision-maker chosen to implement config2 next, which is
also the configuration that would be attained in the event of a schedule slip?)

Set
prob =envp
l No

| Isconfig2=a ? | > Set prob =envp x progproD

No Yes where progprob is the assumed progression probability
v (the complement of the schedule slippage probability)
Is config2 = slpcfg(configl) ?
(i.e., is this the configuration that would be #@prob =envp x (1-progprob) >
attained in the event of a schedule slip)? Yes
where progprob is the assumed progression probability

(the complement of the schedule slippage probability)

Figure 76. Flowchart describing the effective totbstate-to-total-state transition probability
prob used in the Markov decision process solution prodere for the NASA human space
exploration application. Note that, due to the sixth transition rule in $@ti6.1.2, the third to
last conditional action (using the “AND” statemetid)present only for probabilistic
completeness. Since stagnation is not an alloweetsthn option, these two conditions never
coincide in the present application; however, & #ixth transition rule were removed, this
flowchart would still be valid.

6.4.3. Computational Resources and Implementation

In the examples of Chapters 4-5, the total staéeesp consisted of at most 120
states over 5 time periods. In contrast, the ptesgplication involves 3,286
configurations x 12 environments = 39,432 statesaf@otal of 10 time periods. The

policy matrices for which the Markov decision preg@lynamic programming algorithms
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will be searching thus consist of 394,320 elementsch is of a size nearly 660 times
larger than the policy matrices in Chapter 5 (€lghle 28). Initial attempts to use the
same MATLAB-based computer code as in Chaptersos-the present NASA human
space exploration example resulted in run timareggs on the order of 250,000 hours
(nearly 30 years!) if executed serially. While exton on several machines in parallel
was considered, use of all available MATLAB licessen the Flight Mechanics
Laboratory to which the author was granted accés’ASA Johnson Space Center
would reduce this time only to 19,000 hours (oveyears), and order of magnitude
improvements beyond this were required.

To solve this computational run time issue, theeddATLAB finite time horizon
Markov decision process dynamic programming cods wanverted to Fortran and
utilized the OpenMP interface to enable parall@cessing among the multiple threads
and processors of a single computer. Paralletimabf the code is possible for
computations within a given time period, since #cgion taken from one state at time
has no effect on the optimal selection of the actiom another state at the same time
Since, as discussed in Section 4.4.2.2.2, optimizatare performed for a range of
weights and objective function powers to ensuresfeatory identification of the Pareto
frontier, multiple instances of the code were ablde executed in parallel on each of
approximately 40 eight-core, sixteen-thread, 2.9& GIP DL360 G6 computing nodes
in the Flight Mechanics Laboratory at NASA Johnsypace Center. In the primary
results that follow, weights were varied from z&yaunity in increments of 0.025, and the
objective powers used were 1, 2, 4, and infinithe time required to execute a full set of
these primary runs was approximately 50 hourgy@fgsant improvement (by a factor of
5,000!)) from the 250,000 hour estimate prior to tRertran conversion and

parallelization.
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6.4.4. Primary Results: The Potential of an Unconisained Per-Period Budget

As in the previous examples of Chapters 4-5, theadyc programming solution
to the present problem posed as a Markov decigiocegs permits the identification of
Pareto-optimal decision policies. However, unlike previous examples of Chapters 4-
5, in which the policies could each be displayethioular form on a single page, each of
the optimal policies in the NASA human space exglon example is defined by a
matrix of nearly 400,000 elements and would reqaeeeral hundred pages to display.
In lieu of identifying policies in this unwieldy fo, each policy will be identified simply
by the weight placed on cost and the objective tiancpower used to obtain it as a
solution (e.g., W0.1-N4 refers to the policy sadatio use of a 0.1 weighting on cost, 0.9
weighting on performance, and power 4 objectivecfiom). Each such identification
number has a single optimal policy associated wtjtland the number itself contains
some information about the character of the podiclution; for example identification
numbers with high weights on cost will be assodiatath low-cost policies, and those
with large objective function powers will have adency to fall away from the convex
portion of the Pareto frontier. The one exceptiorthis notation will be a notional
anticipatory policy, a seemingly sensible but sulmal policy that will illustrate the

benefits of exploring the policy space.

6.4.4.1. Definition of an Anticipatory Referenceokcy

Before proceeding to the full results of the MDPligo optimization, it is
instructive to consider the time histories of stateosts, and system performance that
may be obtained if a reasonable pre-specified ypabcrun through the simulation
described via the steps of Section 6.4.2. As éngrevious examples of Chapters 4-5,
this policy will be named an anticipatory policy fine reason that it simulates the logic a
decision-maker might normally follow to plan fortefpated future demands without the

benefit of the techniques proposed by the curfeggis. This anticipatory policy will be
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defined by the three basic rules below, governirgndgions for transitioning

development, operations, and memory architectures:

1. Development begins or continues for the architecttitat most closely
corresponds to most likely next demand after acajipidevelopment 8-year
period. This most likely next demand is obtainednf the appropriate
conditional probability transition matrix projecteder eight years (i.e., the
two-year matrices in Table 34 and Table 35 raigethé fourth power). In
most cases, the architecture that most closelyesponds to each demand
environment shares the same name as the demandrenent; based on the
component demands, Architecture 3 is assigned as ctasely corresponding
to the Earth-Moon L1 demand, Architecture 10 idgas=d to the Venus Orbit
demand, and Architecture 8 is assigned to the MW&en demand. To be
competitive with the optimal finite-horizon polisiefor which the MDP
algorithm solves, no new development projects taeexd within four periods
of the end of the simulation since these projeatk net result in a fielded

operations architecture with performance benefits.

2. Operations continue with the previous operatiohitgcture unless the prior
configuration involved a development architectureats final phase, in which
case the just-finished development architectupdaised into operation. To be
competitive with the optimal finite-horizon polisiefor which the MDP
algorithm solves, costs are reduced by selectirtipenfinal period the action

not to continue operations into the next period.

3. Previous memory architectures are retained unlessnéiguration is in the
last phase of development for another architeciareshich case the current

operations architecture is placed in memory.
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Simulation of this anticipatory policy produces tiae history results in Figure
77, shown in a format similar to those used indiia@e and objective time histories shown
for the examples in Chapters 4-5. In the plotghenleft in Figure 77, the size of each
yellow dot indicates the likelihood of a configucast or demand being in a particular
state (on they-axis) at a given time (on theaxis); here, the configuration itself is
decomposed into its component architectures faitglaThe plots on the right indicate
the evolution of per-period cost and performancériose

Starting from the first time step (approximatedtss year 2011), all simulations
utilize the same initial decision to continue widbvelopment of the LEO architecture
since all simulations start at the same initial fguration and demand environment
defined at the beginning of Section 6.4. This sieai is based on the anticipation, from
the Markov chain visualization in Figure 74, thatk of fulfilment of the current LEO
mission demand will lead to stagnation of the detn@anvironment and continuation of
the LEO demand in the future. Development of tE®Larchitecture continues through
its third and fourth phases until, in some simolagi it is fielded as the operations
architecture in the year 2017. At this point thstfmissions to demanded destinations
can be flown to LEO, which by 2017 continues torabterize mission demand in 56% of
simulations. Due to schedule slippage, fieldingtlted LEO architecture is delayed in
some simulations, and by 2021 the LEO architectisreoperational in 70% of
simulations.

Once the LEO configuration is fielded and, in maages, begins to meet mission
demand, Figure 73 suggests to the decision makrthe lunar surface mission is the
most likely next demand. Thus, in many simulatitins lunar surface architecture is
developed throughout the early 2020s and fieldethénlate 2020s. As anticipated, by
2029 the demand environment has shifted much moréavor of the lunar surface
missions, with 33% of simulations exhibiting Luranrface demand in 2029 and only

15% of simulations exhibiting LEO mission demar@ver the total ten-year time span
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of the simulation, the expected total cost of @nigicipatory policy is $179.9 billion for

an expected 7.1 missions to demanded destinations.
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Figure 77. Evolution of states and objectives fahe anticipatory reference policy. In the
plots on the left, the size of circles indicates iblative number of Monte Carlo simulation cases
that exist in a given configuration or demand eomiment state (on the y-axes) at a given time
(on the x-axes). The configuration state at eaule is decomposed into its development,
operations, and memory architectures. The plottherright indicate the associated evolution of
per-period cost and performance. In all plots, ghaes indicate transitions made in at least one

simulation.

6.4.4.2. Pareto Frontier of Policies

Figure 78 shows the performance of the anticipatefgrence policy, marked as a
yellow triangle, in comparison with the performamdehe full set of 63 available Pareto-

optimal policies obtained from the dynamic prograngmoptimization procedure. The
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Pareto frontier in particular is of interest to d&m-making because it comprises the set
of policies for which performance cannot be inceegasvithout increasing cost, or for
which cost cannot be decreased without sacrifipegormance. Especially interesting
on a Pareto frontier are regions of steep or shafitopes, which indicate regions of
compelling trades. Figure 78 shows that, for th&SM human space exploration
application, the frontier is nearly linear and gushallow above a total cost of $50 billion
(regressing, with an R? value of 0.97, to an averglgpe of 0.009 missions to demanded
destinations per billion dollars added) and suliitby steeper below the $50 billion total
cost. As a result, optimal performance at the $8kon total cost level entails an
average cost of $6.2 billion per mission to demadndestination, a value that grows
substantially to $8 billion per mission at the $&ilion total cost level, $18 billion per
mission at the $124 billion total cost level, ar&8®illion per mission at the $226 billion
total cost level.

The overlay of the anticipatory policy performarmoethe same plot as the Pareto
frontier is of interest because doing so revealsamy that the anticipatory policy is
dominated by others discovered in the MDP optinozrafrocess, but also that the
anticipatory policy is just one of many optionseevf it were nondominated, selection of
this particular policy carries with it no optionggarding cost and performance
preferences.

Also marked in Figure 78 are three policies oflijkiaterest to a decision-maker,
details of which are provided next. Covered fissipolicy W0.125-N1, a policy that
attains both substantially lower cost and highefgseance than the anticipatory policy.
Covered next is policy W0.050-N2, the highest-perfance (and highest-cost) Pareto-
optimal policy in Figure 78. The final policy exarad in detail in W0.600-M, a policy
that has an expected total cost on par with NASAisrent non-International-Space-

Station human space exploration budget projected twwenty years.
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expectation for human space exploration activities.

6.4.4.2.1. Policy W0.125-N1: Dominating the Ap@tory Policy

Shown in Figure 79 are the time histories of stated objectives for policy
WO0.125-N1, which provides 7% more expected perfaceathan the anticipatory
reference policy for 12% less expected cost. Arcé&xample of a policy that dominates
the anticipatory policy, Figure 79 provides someechbout why this is the case: Figure
79 shows no development of the Mars Surface, Marsrilor Near-Earth Object themed
architectures, which stands in contrast to thecgraiory policy of Figure 77. Instead,
the policy of Figure 79 favors greater focus onadepment of the core LEO and Lunar
Surface themed architectures, with occasionalg#s than 6% of simulations) focus on
developing the Deep Space architecture startir@Qitv, depending on the evolution of

the demand environment early during the timelienong all simulations, this policy
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begins operations of the LEO themed architecturearber than 2017, the Lunar Sruface
themed architecture no earlier than 2023, and #epCspace architecture no earlier than
2025. The expected total cost of policy W0.125id$158.8 billion for an expected 7.6

missions to demanded destinations.
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Figure 79. Evolution of states and objectives fgoolicy W0.125-N1. In the plots on the left,
the size of circles indicates the relative numlddvionte Carlo simulation cases that exist in a
given configuration or demand environment statetf@ny-axes) at a given time (on the x-axes).
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performance. In all plots, gray lines indicaterisations made in at least one simulation.
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6.4.4.2.2. Policy W0.050-N2: Maximizing Performanc

Also of some interest in Figure 78 is the highestigrmance policy at the upper
right of the Pareto frontier. This policy, WO0.0B(2, has state and objective time
histories shown in Figure 80. A variation on Figut9, policy W0.050-N2 shares the
predominant characteristic of continued LEO architee development, followed by
fielding of the same LEO architecture in 2017 anbdsequent development and fielding
of the Lunar Surface themed architecture as earB023. Compared to policy W0.125-
N1, this policy exhibits a greater focus on deveigpthe Deep Space architecture,
starting as early as 2015 with operations staréisigearly as 2023. By 2029, the Deep
Space architecture is operational in 8% of simofetj the Lunar Surface themed
architecture is operational in 68% of simulatiomse LEO themed architecture is
operational in 23% of simulations, and no archueet(the “Nothing” architecture) is
operational in the remaining 1% of simulationstefastingly, in the year 2023 the Deep
Space architecture is used in 2% of simulations stsrting point for development of the
GEO Servicing themed architecture, and at the gaome in 8% of simulations the Lunar
Surface themed architecture is used as a startimgj for development of the Lunar Orbit
themed architecture; however, these architectuesgrnsee operation because of their
development late in the simulation. The expectddltoost of policy W0.050-N2 is
$226.1 billion for an expected 8.0 missions to desea destinations.

The results associated with this highest-perforreapolicy also reveal some

fundamental insights regarding the evolution of hurspace exploration capabilities and

" As is evident in Figure 78, there is significalistering of candidate MDP policy solutions near
the maximum-performance point of the frontier, atichave nearly identical performance. The
reason for a 0.05 weighting rather than a 0.00 kgig achieving the distinction of the

maximum-performance policy can be reasonably atiith to numerical sensitivity associated
with using a Monte Carlo simulation to generatetcmsd performance results for the near-

equivalent policies in this region.
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architectures. First, the fact that the policy Eifure 80 maximizes performance
indicates that, despite the materialization of bssantial Mars Surface mission demand
in many (at least 10% of) simulations, developmami fielding of the Mars Surface
themed architecture is never an optimal use of tom@aximize the number of missions
flown to demanded destinations. This is due irt pathe low mission rate of the Mars
Surface mission, in part to the existence of the8pace architecture as an option, and
in part to the transience of the Mars Surface missiemand: As detailed in Table 37,
the maximum number of missions that can be achiewed given time period in an
environment of Mars Surface mission demand is difieonce a Mars Surface mission
demand materializes, the time that might intuivieé spent developing a Mars Surface
architecture is instead spent developing the DgeEe& architecture, up to four times as
many missions could be flown per period in the oeably likely event that future
demand shifts to a different mission before develept finishes. This example thus
illustrates that the transience (or stability) o€@rent mission demand is an important
consideration in system decision-making.

Second, both policies W0.050-N2 and W0.125-N1 redgo strong demands for
LEO and Lunar Surface missions with, predominansigquential development and
operation of LEO and Lunar Surface themed architest The Lunar Surface themed
architecture development is able to capitalize upwn previous development of the
Multi-Purpose Crew Vehicle (MPCV) from the LEO-thedn architecture to reduce
development costs. This progression is intuitivg i3 also supported by the fact, as
illustrated in Table 37, that the Lunar Surfacembd architecture has the ability to
operate missions in the LEO demand environmentedsas the Lunar Surface demand

environment.

" From Figure 74 and from the matrix of Table 3%edito the fourth power, the 8-year (4-
period) probability of remaining in the Mars Sudademand environment while demand is not

being fulfilled is approximately 50%.
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Third, as alluded to in the first point, this perfance-optimal policy involves
notable development of the Deep Space architedtuye2029, operational in 8% of
simulations) to allow non-LEO and non-Lunar-Surfangsion demands to be met in
cases where demand for such missions can be pldonedth reasonable confidence
(for example, in cases where demand early in alatia evolves to an ambitious deep
space mission and is likely to remain within theniigg of deep space missions). These
non-LEO and non-Lunar-Surface mission demandsqudatiy tend to occur toward the
end of simulation timelines, collectively with aghiprobability; however, since no single
deep space mission carries enough probability stiffudevelopment of a dedicated
architecture, development of the Deep Space aothie provides a means of meeting
mission demands for a wide variety of deep spaasion expectations. To a substantial
degree this idea is similar to that of the RevieivloS. Human Spaceflight Plans
Committee (Augustine Committee); however, it is thoemphasis that in Figure 80, the
presence of the Deep Space architecture is nobaleot predominant. This optimal-
performance policy calls for the Deep Space archite’s development only in special
situations and, as mentioned in the previous papgrcalls predominantly for the

development of LEO and Lunar Surface themed ardiites.
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Figure 80. Evolution of states and objectives fgoolicy W0.050-N2. In the plots on the left,

the size of circles indicates the relative numlddvionte Carlo simulation cases that exist in a
given configuration or demand environment statetf@ny-axes) at a given time (on the x-axes).
The configuration state at each time is decompasgedts development, operations, and memory

architectures. The plots on the right indicate #@ssociated evolution of per-period cost and
performance. In all plots, gray lines indicateristions made in at least one simulation.
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6.4.4.2.3. Policy W0.600-\N Matching an Expected Long-Term Budget

A final policy of particular interest from Figure87involves an expected 6.9
missions to demanded destinations and lies atahdrpected cost of $124.1 billion, just
below the $128.7 billion budget that is obtainecewlthe NASA FY11 authorization for
exploration plus non-International-Space-Statioarajons [109] is projected over a 20-
year time span. The history of states and objestikom this policy, shown in Figure 81,
reveals that the Pareto-optimal policy for this ¢gpeidinvolves substantially less focus on
non-LEO architecture operations, although thereais increase in focus toward
development and operations of the Deep Space ectlne that also translates into
operations of the Near-Earth Object architectuirecésthis is a subset of the Deep Space
architecture). Interestingly, coupled with the etstions in Section 6.4.4.2.2, this
would suggest that the case for the Deep Spacetenithie and the Augustine
Committee’s flexible path recommendation becomemger at lower budgets.

Predominantly, however, it should be emphasized tthea shift in development
focus following completion of LEO-themed architegudevelopment is toward no
development project at all. As a result, the majaf simulations describe a scenario in
which development of the LEO-themed architectureasmpleted and the same LEO-
themed architecture is subsequently operated éremainder of the timeline. By 2029,
the Deep Space architecture is operational in 16%tnhaulations, the Near-Earth Object
themed architecture is operational in 2% of simofe, the Lunar Surface themed
architecture is operational in 10% of simulatiomse LEO themed architecture is
operational in 67% of simulations, and no archueetis operational in 6% of
simulations. In a negligible 0.2% of simulationack, the Sun-Earth L2 and GEO

Servicing architectures were also operational.
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Figure 81. Evolution of states and objectives fgoolicy W0.600-No. In the plots on the left,
the size of circles indicates the relative numlddvionte Carlo simulation cases that exist in a
given configuration or demand environment statetf@ny-axes) at a given time (on the x-axes).
The configuration state at each time is decompasgedts development, operations, and memory
architectures. The plots on the right indicate #ssociated evolution of per-period cost and
performance. In all plots, gray lines indicaterisations made in at least one simulation.

6.4.5. Implications of a Per-Period Budget Constrait

As introduced in Section 6.4.4.2.3, W0.60&Igresents a policy option with an
expected long-term cost commensurate with a reas®ih@ng-term NASA human space
exploration budget expectation. However, examimatof Figure 81 produces the
disconcerting revelation that in many simulatiomgl(gding in the mean and median cost

profiles across all simulations), the $12.9 billjper-period budget assumed to be allotted
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to the agency for this human space explorationqamags breached. As a result, even
though this policy has long-term costs that mageénay budget expectationsgr-period
budget constraints make this policy unreasonable.

To ascertain whether there exist policies that doaverspend on a per-period
basis, a seventh transition rule is added to tistieg set of six (see Section 6.1.2). This
rule prevents a configuration transition from betunsidered if it costs more than the
$12.9 billion per-period budget. As a result, 58fthe transitions previously possible in
the cost transition matrix discussed in SectionZate no longer allowed.

The Pareto-optimal policies that result for thisvneonstrained condition are
summarized by performance in Figure 82. Most ealide in Figure 82, in comparison
with Figure 78, is the limited extent of the Parstmtier. While the frontier in Figure 78
extends well past $200 billion expected costs ane@xpected missions to demanded
destinations numbering near 8, the frontier in Fég82 extends to under $70 billion and
expected missions to demanded destinations nungbkrss than 6.6. If the maximum-
performance and maximum-cost point on the new ieom compared to policy W0.600-
Noo from Section 6.4.4.2.3, which is targeted for sjpeg at the expected long-term
budget level, Figure 82 illustrates a performanep @f 0.3 expected missions and
moreover, a cost gap of about $60 billion. Thistagap is of particular interest: At an
approximately constant budget of $12.9 billion period, $129 billion will be allocated
and presumably spent on human space exploratiogrgrs over the ten-period
simulation. However, the existence of the perguerbudget constraint results in a
situation whereby no Pareto-optimal policies exist spend the entire $129 billion
budget; that is, while it is certainly possibleidentify inefficient policies for spending
these funds toward the goal of accumulating missimndemanded destinations, there
exist policies that achieve the same performand@nar total costs. The cost gap of $60
billion pointed out in Figure 82 thus highlightsettotal amount of funds that would be

used inefficiently by virtue of a constant use-asd $12.9 billion per-period budget.
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Figure 82. Trade between expected total missions temanded destinations and expected
total cost for MDP policy solutions subject to a $2.9 billion per-period budget constraint.
Marked on the plot is the long-term budget expémtaaind WO0.600-M policy from Figure 78,
which serves as a reference for assessing the ispathe per-period budget constraint.
What do time histories of states and objectivespolicies on this new Pareto
frontier look like? As an example, plotted in Figu83 are the probabilistic time histories
for the maximum-performance point in Figure 82,responding to a $66.5 billion
expected total cost and an expected 6.55 miss@uermanded destinations. The plots
on the left in the figure illustrate the magnituafethe restriction that the per-period cost
constraint places on system development: In centéh the time histories displayed
throughout Section 6.4.4.2, which focus initiallyn oLEO-themed architecture
development but then diversify to Lunar-Surfacented and other architecture
development projects, the optimal performance alstel in the case of the per-period
budget constraint concludes development of the ltligDaed architecture and replaces it
with no development project at all. Instead, tpéral action (from a now very limited

set of actions) is found to be to devote availdtldget resources toward continuation of
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LEO-themed architecture operations into the forasleefuture. In doing so, demand for
exploration beyond Earth orbit cannot be met, Ihat $ubstantial probability of LEO
mission demand that exists even ten periods int® fiture allows substantial
accumulation of missions to this demanded destinatMoreover, as the plots on the left
in Figure 83 illustrate, per-period spending reraaim all simulations and in all time

periods below the critical $12.9 billion cap.
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Figure 83. Evolution of states and objectives famaximum-performance policy in the
presence of a per-period cost constraintin the plots on the left, the size of circles iatis the
relative number of Monte Carlo simulation cased #ast in a given configuration or demand
environment state (on the y-axes) at a given tonel{e x-axes). The configuration state at each
time is decomposed into its development, operatam$ memory architectures. The plots on the
right indicate the associated evolution of per-pdrcost and performance. In all plots, gray
lines indicate transitions made in at least oneuation.
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6.5. Step 5: Implications for Initial System Seld®n

While the analysis of Step 4 has produced a laggg®fsimportant and necessary
data on optimal policies to follow for thentire system time horizon, the most relevant
information to a decision-maker from this dataisdikely to be the optimal decision to
make at thenitial time step. To address this question, Step 5 builds uporatizysis

results of Step 4 to provide tools and data to stigpis decision.

6.5.1. Implications based on the Expected-Value Patio Frontier

As described in Sections 4.5.1 and 5.5.1, thealnitecision implied by a policy is
identified by locating the initial condition state the row of the policy matrix and
examining the element in the first column. In tese of the NASA human space
exploration application, the initial condition cesponds to Config. 3 (a LEO-themed
architecture in the second phase of developmennhandlevant exploration architectures
in operations or memory) and the approximation thatimmediate demand is for LEO
missions. This converts to Total State 3,289 ef38,432 total states that the system can
take at any given time. Since the optimal poli@gpends upon a decision-maker’'s
relative cost vs. performance preference along Rheeto frontier of Figure 78, the
optimal initial configuration decision is a funati@f an appropriate coordinate along the
Pareto frontier. The initial configurations thwsihd from the Pareto-optimal policies in

Figure 78 are identified in Figure 84. In thisulig, each initial configuration solution is

" In cases where the time step of interest is veoytscompared to the time required to conduct
the analysis suggested by this framework, decisawes multiple future time steps may have
particularly great value. In emphasizing the kkeilterest in the initial decision over othersisit

assumed that the time required to implement thiyars (e.g., to assemble all tools, gather all
cost, probability, and performance data, run theadyic programming optimization codes, and
analyze all results; likely on the order of weekstmnths, depending on the availability of data,
number and experience of personnel implementingtbeess, and number of configurations and

environments considered) is shorter than the tiee af interest.
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decomposed into its architecture triplet componembtsch are displayed on tlyeaxes of
the three separate plots of Figure 84 and idedtifiy the policy’s expected total cost on
thex-axis. Since 63 Pareto-optimal policies exist iguiFe 78, 63 yellow circles exist in
each of the three plots of Figure 84 to identifg ®#rchitectures corresponding to each
policy’s initial configuration. In the case of tlievelopment architecture, each yellow
circle contains a number identifying the next phasedevelopment selected for the
architecture.

As Figure 84 makes evident, from the present candigon and demand
environment for the human space exploration apjdicathere exists an initial
configuration decision (for the next two-year timerement) that is consistent for nearly
all long-term cost and performance preferences.is Tiitial configuration involves
continuation into the third phase of developmentlef LEO-themed architecture and
operations and retention in memory of no architec{since none exists yet to operate or
retain in memory). Considering in combination (that the stochastic demand
environment model of Figure 74 indicates substastability of the initial LEO mission
demand and (2) that the performance matrix of Ta&eindicates the LEO-themed
architecture can permit a high number of missi@niset flown to LEO in response to this
demand, this initial decision to continue LEO-theén@chitecture development rather
than incur the termination liability penalty of $shing to a different and likely lower-
performing architecture makes sense. The onlyalnitecision that differs exists at a
small $660 million cost, which involves cancellatiand payment of termination liability
for the remainder of the LEO-themed architectuneettgment in favor of developing no

architecture at all.
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6.5.1.1. Cost-Constrained Policies

For completeness, Figure 85 shows initial configaradecisions implied by the
per-period cost constrained Pareto-optimal policieBigure 82. As might be expected
from the example time histories shown in Figure t88se initial decisions in almost all
cases favor the continuation of LEO-themed arctutecdevelopment. As in Figure 84,
the one exception to this is the lowest-cost (amdekt-performance) option, which
involves cancellation and payment of terminati@tility for the remainder of the LEO-
themed architecture development in favor of devielpmo architecture at all. The
implications of this result for the favored contal development of a LEO-themed
configuration over most cost and performance pesfegs are thus nearly identical to

those seen in the unconstrained results of Figdire 8
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6.5.1.2. Cost-Constrained Policies using a Nondoated Expert Demand Model

Another relevant question regarding the resultsigtire 84 and Figure 85 is
whether the same initial decisions (predominarglicdntinue LEO-themed architecture
development) are optimal under different assumptifor the demand environment
model, which had been based upon a central tend&rexpert probability estimates and
may be a source of uncertainty. To address thestgun, the central tendencies of
probability estimates from a particular subsethef driginal expert population are used to
produce a new model and a corresponding new septirhal policies. As discussed
extensively in Appendix C, the experts chosen figiusion in this subset are those who
qgualified as non-dominated within the total setsofvey participants based on their
number of years of experience in the four releeperience metrics of interest.

When the model based on this uniquely experieneedfsexperts is substituted
and carried through the analysis process of Stepsfdhis thesis’ framework subject to
a $12.9 per-period cost constraint, the Paretai@oof Figure 86 results. Note that the
frontier is similar in shape to Figure 82 but wathbstantial vertical stretching due to, as
noted in Section C.2.3.2.2, the fact that this sktexperts on average assigns a
substantially higher probability of continuing demdafor missions to LEO in the event
that current mission demand is fulfilled (85.7% 63.8% in Table 34), resulting in a
longer maintenance for LEO mission demand and &ehnignumber of missions
accumulated to demanded destinations when the lbE@wd architecture enters into
operation. As Figure 87 shows, however, the medifdiemand model has minimal
impact on the optimal initial configuration decis®in comparison to Figure 84 and
Figure 85: With the exception of the lowest-cqstian to cancel all future development,
all other policies are in agreement to initiallyntoue development of the LEO-themed

architecture.
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6.5.2. Accounting for Non-Expected-Value Objectives

As discussed in previous chapters, a final relegansideration for initial system
selection is the fact that expected-value objectivections for the cumulative cost and
performance metrics may not fully capture a deaisitaker’s objectives. While use of
these cumulative expected-value objectives enables use of MDP dynamic
programming techniques to efficiently explore trsr@nomically large policy trade-
space, consideration must in general be accordeth& objectives as well. Applying to
the NASA human space exploration example the geadgorithm developed and used in
Chapters 4-5 yields the more extensive set of robiective optimal policy solutions
presented here.

In addition to appending the B(ercentile (near-worst-case) total cost antl 10
percentile (near-worst-case) performance metricg &hapters 4-5, this section adds
two metrics (in both their mean and near-worst-chsgersion senses) implied as a result
of the the figure of merit portion of the surveynsé human space exploration experts
discussed in Appendix C and Section 6.3. The atric is the date of the first mission
to leave low-Earth orbit, intended for minimizatiomhe second metric is the ratio of the
number of missions flown to demanded destinatianshe total number of missions
flown over the simulation timeline, in short desaged as “Mission Ratio”. Both metrics
employ an assumption, consistent with productiosting assumptions detailed in
Appendix B, that in states and times when a curogerations architecture is unable to
fulfill current mission demand (i.e., the Boolearra elements of Table 38), the
architecture can be and is flown on the missiond esrresponding mission rates to
which it is themed The mission ratio metric captures the efficiengigh which
missions are targeted toward demanded destinatindsis intended for maximization

(with a maximum possible value of unity). It alserves to capture the fact that the

" In the case of the Deep Space architectureflitig on the Mars Moon missions and rates.
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original survey’'s figure of merit suggestion negéet the demanded destination
distinction in the figure of merit definition, andus in combination with the Number of
Missions to Demanded Destinations metric allows domeasure of the total expected
number of missions flown, including those to dediibns that may not have been
demanded or expected.

Applying the genetic algorithm described in Chaptdr5 using each policy
identified in Figure 78 as an initial member of thenetic algorithm population and
searching for multi-objective optima in terms otlkaf the eight objectives described
above (i.e., the original two cumulative objectiveddigure 78, the two new objectives
described in the above paragraph, and their casreipg 98" or 10" percentile near-
worst-case dispersions) yields the results of 8. Each subplot in Figure 88 shows
a cross-section of the the performance of the paladutions, each of which is displayed
as a data point colored by its implied initial agofation decision, in terms of two
objectives. While in many cases the policy sohgighow little variation in performance
according to the percentile metrics (indicatingtttiee near-worst-case results may be
difficult to influence), the means tend to show ®abtial variation. For example, the
leftmost subplot that is second from the bottorfigure 88 shows that the expected date
of the first mission beyond low-Earth orbit canrbhade as early as 2025 with sufficient
expenditure of funds, corresponding to policies with initial decisions switch
immediately to development of the Lunar Surfacentde architecture (the light blue
points in the subplots). As the subplot two abtive subplot illustrates, these same
policies also result in the highest mission ratibabout 0.6.

As the colors of the data points in Figure 88 emspd®ga only five initial

configuration decisions are identified among theeRaoptimal policies in the genetic

" In simulations for some policies, no missions beyQEO are ever flown. In such simulations,
the date for the first beyond-LEO mission is reeards 2031, which is one time step beyond the

simulation time horizon. This explains the platéauthis subplot at low cost levels.
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algorithm search. The blue and red points reptesenConfig. 1 and 4 options seen in
the optimal expected-value analysis of Section16té.either shift to no development or
continue into the next phase of LEO themed architeadevelopment. The green points
indicate the option to restart development of tkOLthemed architecture, the light blue
points indicate the option to shift immediately development of the Lunar Surface
themed architecture, and the purple point indicabesoption to shift immediately to
development of the Mars Moon themed architectw¢hile, as mentioned earlier, the
Lunar Surface themed architecture options providardenefits in terms of speeding the
process of leaving low-Earth orbit and increasimg tatio of demanded to total missions
flown, the second row in Figure 88 shows that cardtion of LEO-themed architecture
development (Config. 4) provides high numbers afsmins to demanded destinations for
both low mean and $0percentile costs.

The usefulness of the multivariate plot of FiguBel#comes even more evident if
constraints are imposed by the decision-maker. example, suppose that a decision-
maker wishes to be 90% certain that the $128.7obillong-term human space
exploration budget projection used earlier in thmalysis will not be breached by the
policy he or she adopts. Imposing this constralimhinates many high-cost (and also
high-performance) options that formerly fell intethigh 98' percentile cost regions of
the multivariate plot that are now gray in FiguB 8Among these eliminated options are
the policies with Lunar Surface themed architectwas an initial development decision.
Consequently, with the clear advantage in term&whber of missions to demanded
destinations and mission ratio for over most of dost range of interest (and little
remaining variation available in terms of the fiteyond-LEO mission date), policies
with continuation of LEO-themed architecture depatent (Config. 4) are largely

supported by these results, in basic agreementthetfindings of Section 6.5.1.
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6.6. Summary

This chapter has covered in substantial detail timwvcore theoretical framework
proposed in Chapter 4 of this thesis can be extetaahel applied to address long-term
program planning for the course of NASA’'s humancgp&xploration efforts. The
application has illustrated the ability of this frawork to accommodate large
configuration spaces of hundreds or thousands ididate engineering configurations.
To accommodate this, an automated cost model atinguor development, production,
mission and ground operations, program managemaatsgstems engineering, and
program termination and retirement costs was deeeloto facilitate population of a
large (10.8 million element) cost transition matriXhe application has also illustrated
the ability of the framework to model multi-periai@velopment, which introduced the
need to use configuration state definitions acaagntor development and operations
architecture decisions as well as memory. Furtbeenthe ability of the framework to
model dependence between the effects of previostemsyconfiguration decisions and
the demand environment was demonstrated, and ansax¢ survey distributed to
individuals with human space exploration and systeengineering experience
demonstrated how such a configuration-dependenkd¥&an demand model can be
aggregated from multiple expert probability estiesat The ability of the framework to
accommodate endogenous uncertainties, here inaitme 6f schedule slippage, was
demonstrated, as was the ability of the framewarlts fifth step to account for non-
cumulative objective functions.

In terms of practical implications and insights fouman space exploration,
implementation of the framework in this chapter pesvided several: Step 1 illustrated
that existence of the Deep Space architecturecasfgguration’s operations architecture
is associated with a very high number of availabdasitions (i.e., options or, roughly,

flexibility) with respect to other architecturestagh per-period budget levels but not at
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low budget levels. Since the Deep Space architeasuto a large degree representative
of the Review of U.S. Human Spaceflight Plans Cottawis “Flexible Path” approach,
the practical implication of this observation isthhe flexibility of this (or any other)
approach or configuration in comparison to itsraliéives may be a strong function of
available budget resources. In this context, Steyso illustrated that NASA’surrent
human space exploration configuration is starkfieible in the context of the candidate
architectures and configurations in the state spafcenterest, with relatively few
transition options even at high budgets over thmicg two-year period.

Implementation of Steps 2 and 3 of the framewonkolved eliciting expert
opinions regarding mission demand environment dwolu and figure of merit
importance. The resulting Markovian demand envitent model shows a general
progression in demand toward the Martian surfanghe condition that mission demand
is fulfilled, with secondary demands (or “sinks™) the Lunar Surface and Low-Earth
Orbit and tertiary demand at Near-Earth Objectstogfession toward the Martian
Surface demand is less likely under the conditlmat mission demand is not fulfilled,
and the model exhibits the general characteristat the condition of demand being
fulfilled favors progression toward missions aimsdmore ambitious destinations that
are farther away from Earth; conversely, the coowitof demand not being fulfilled
tends to favor constancy or sometimes regressiodeofiand toward less ambitious
destinations closer to Earth. In terms of the feguof merit, consistently high-scoring
metrics from the survey results lead to use ofgrated Program Lifecycle Cost and
Number of Missions to Demanded Destinations as dectives for exploration and
optimization.

Step 4 identified Pareto-optimal policies over age of long-term cost and
performance preferences. Considering initially ttese of no per-period budget
constraints, it was shown first that an anticipateference policy was dominated by

others that could perform at higher numbers of immssto demanded destinations at
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lower long-term costs. Among the Pareto-optimdicpes it was shown that, due in part
to the transience of the Mars Surface demand, dprent of the Mars Surface themed
architecture was, interestingly, never optimal. stéad, in scenarios where demand
evolved to ambitious destinations, many high-peniag policies favored development
of the Deep Space architecture. The main excepappeared to be development of the
LEO and Lunar Surface themed architectures, whiomidated development and
operations plans for most policies due principé&diythe predominant progression of the
demand environment, the fact that LEO developmemgartially complete as an initial
condition, and the fact that the Lunar Surface #e@narchitecture has the ability to
operate missions in the LEO demand environmentedsas the Lunar Surface demand
environment. In the three Pareto-optimal poli@@amined in detail, no missions away
from LEO started earlier than 2023.

The second case considered in Step 4 involved nipementation of a $12.9
billion per-period budget constraint representatif’a doubling (due to a two-year period
length for ths present application) of the NASA RAYduthorization for exploration plus
non-International-Space-Station operations. Tlaastraint severely limited solution
options, and the highest-performing Pareto-optis@ltion involved continuation of
development of the LEO-themed architecture untihptetion and subsequent transition
to LEO-themed architecture operation with cessat@in any new development.
Compared to the per-period budget-unconstraineét®aptimal solution at the long-
term budget level, the highest-performance comstthsolution exhibits a 0.3 expected
mission performance gap and, moreover, a cost fapaut $60 billion. This cost gap
indicates the total amount of funds that, by thdgsenance measure used in this work,
would be used inefficiently by virtue of a constaisie-or-lose $12.9 billion per-period
budget.

The first segment of Step 5 examined the policytgms of Step 4 in terms of

their implied initial decisions and found agreemener the vast range of cost and
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performance preferences that the optimal initiadiglen is to continue development of
the LEO-themed architecture into its third develepmphase. Only the lowest-cost
option involved cancellation of this architecturdsvelopment (and replacement with no
development at all). These conclusions were fotntiold even under an alternative
demand environment model. In considering the ioapibns of non-expected-value and
non-cumulative objectives, the second segment ep St confirmed these conclusions
under the constraint that a decision-maker wisbeadbpt a policy that meets a $128.7
billion 20-year program cost with 90% probability.

In this way, Steps 1-5 provide a set of informatiorithe decision-maker not only
about the best immediate decision (in this case;otttinue development of the LEO
themed architecture), but also a cost- and perfocerailored policy and a
corresponding outlook for the future. As new imfation becomes available or as
guestions arise, the approach used here also pothe analyst and decision-maker with
the ready ability to modify inputs and test theustimess of his or her results to changing

numerical assumptions.
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CHAPTER 7

CONCLUSION AND AVENUES FOR FUTURE WORK

7.1. Summary

At the outset in Chapters 1-3 of this thesis, aengwf the state of the art and
practice in aerospace engineering revealed thareaent, there exists no comprehensive
guantitative, stochastic, multi-objective, and mpériod framework for integrating
flexibility into space system design decisions. rbtover, it was recognized that a
substantial need for such a framework exists: ibity is well-recognized as important
to space system success, to the extent that DARRANASA have in recent years
proposed flexible spacecraft and flexible pathspeetively, as future program directions
with substantial budgetary and resource implicatioBecause this property of flexibility
is by definition linked to the ability of a decisionaker to make choices in response to
[typically uncertain] changing environments or riegments over multiple periods, a
framework that considers the integration of fleiipiinto decision-making must be both
stochastic and multi-period in nature. Becausetreogineering applications involve
trades among multiple objectives, such a framewoukt be multi-objective in order to
completely consider the breadth of decision-maktarests. Finally, to permit the use of
objective performance metrics as opposed to usitlsgbjective ratings, such a
framework must also be quantitative.

The framework that this thesis introduces in Chagteonsists of five practical
steps intended for implementation by engineeringtesys analysts, the first three of
which focus on defining and characterizing a setstate spaces representing system
options and environment demands. The fourth st@plays multi-period decision
analysis techniques, including Markov decision psses from the field of operations

research, to find Pareto-optimal paths and polieesdecision-maker may follow in a
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stochastically changing demand environment. Witetiof full Pareto-optimal multi-
period decision paths policies thus identified, tihal step examines the implications of
these paths and policies for the selection of atmairsystem. The end product is a
guantitative, stochastic, multi-objective, and mpériod framework for integrating
flexibility into space system design decisions.isTihesis, moreover, illustrates that not
only is the two-period state-centric notion of flakty prevalent in the literature
compatible with a comprehensive decision suppa@iéwork, but that it is naturally
adapted for use with Markov decision process smiutechniques from the operations
research community.

Three examples have been used to illustrate thicappn of this framework to
space systems decision-making. The first and sist@xample in Chapter 4 presented a
scenario in which decisions were to be made reggrdumbers of communications and
reconnaissance satellites to be fielded to meetdubational needs. This example was
used as a means for exploring the present theaisieivork in great depth: The chapter
began with a foundational two-period state-centancept of flexibility from the
economics literature and showed how, through tlope interpretation of this concept
for space systems and linkage to the environmentwhich these systems may be
required to operate, it can be unified with powkdynamic programming technigues
already in existence to solve Markov decision pssgaroblems. Along the way, several
additional insightful analyses were developed,ipaldrly in Step 1, in which the number
of available transitions from a given configuratietate at a given budged(b) was
developed as a surrogate metric for flexibilityn particular, it was illustrated that
“flexibility reversals” are possible due to intetiaos between existing capabilities,
existing commitments, and available resourcesthdse situations, more transitions are
available from Configuration than Configuration at a budget leveb;, but fewer
transitions are available from Configuratiothan Configuratiorj at a higher budget

level by (i.e., thatd;(by)>®;(by) but®;(b,)<d;(by)).
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Later in Chapter 4, Step 4 made the important rdistin between paths and
policies; while paths are a more traditional metbéglanning and consist of the simpler
task of laying out a set of actions to executeuiturfe years, they preclude a decision-
maker from considering the full “playbook” of if¢h possibilities when making his or
her decisions. Step 5 illustrated how the comfgidaolicy (and, to some extent, path)
results of Step 4 can be distilled into informatibat a decision-maker can use to make
an initial system selection. Step 5 addressed t@wexpected-value optima of Step 4
can be used as reasonable initial guesses for Ioakdesign space searches in the case
that decision-makers have non-expected-value orcnomulative objectives in mind.
Finally, Step 5 also addressed the intriguing pthat flexibility has a particular niche in
environments of neither very high nor very low utamty, but rather in environments in
which the present gives jusbmeinformation about future demand. Emphasized \Wwas t
inherent link between flexibility and policy, whidpecifies the conditions under which a
system’s flexibility is exercised.

The example of Chapter 5 demonstrated how the ¢heal framework posed in
Chapter 4 can be applied to a problem motivatedrdnent DARPA fractionated
spacecraft development efforts. This chapter ddfia scenario in which a hypothetical
Department of Defense decision-maker was faced wathdecision about what
combination of payloads to launch upon potentiatiyltiple distributed, free-flying
satellites. Step 1 of this analysis illustratedvhile number of available transitions
metric ® clearly captured the relatively high flexibilityf ca three-payload fully-
fractionated configuration over a three-payload alitimover most budget levels. Step 4
of the analysis revealed examples in which, suli@a notional demand environment
evolution model, an optimal path involved a oneiguedelay prior to fielding of a three-
payload monolith and an optimal policy identified afficient compromise between
maximum performance and minimum cost by only dgvelp the three-payload

monolith if an appropriate level of demand for partar payloads materialized early
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during the program timeline. These examples fiatsd the ability of this thesis’
approach to identify non-intuitive high-performingpw-cost paths and policies that
might otherwise be overlooked. Step 5 of this DARRotivated application objectively
narrowed initial system selection decisions to jostr candidate configurations, and the
imposition of budget and performance constraintengfly suggested selection of the
three-payload monolith as the initial configuratiofhis result highlighted the important
conceptual point that finding a minimum-cost, maximperformance solution in a
changing demand environment may not be equivalenfirtding a solution with
maximum flexibility.

Chapter 6 presented the extension of the basiceatieal framework in Chapter 4
toward addressing long-term program planning for%% human space exploration
efforts. New elements addressed included incotpgya large state space of thousands
of configurations, multi-period development and cassted operations and memory
architecture decisions, configuration-dependentatehmodeling, elicitation of expert-
opinion Markov chain probabilities, incorporatiorf endogenous schedule-slippage
uncertainties, and exploration of non-cumulative aell as non-expected-value
objectives. Results of this chapter provided sav@ractical implications and insights for
human space exploration. For example, implemematif Step 1 within this chapter
illustrated that the relative flexibility of a cagfiration utilizing a Deep Space
architecture in operations can be a strong funatibavailable budget resources. Thus,
the availability of these resources must be comsdlerior to classifying a configuration
or approach as more flexible than, less flexib&ntlor equally flexible as its alternatives.
Step 1 also illustrated that NASA@urrent human space exploration configuration is
starkly inflexible in the context of the candidatechitectures and configurations in the
state space of interest, with relatively few traasioptions even at high budgets over the

coming two-year period.
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Using a Markovian demand environment model derivedh the central tendency
of expert probability inputs describing human spaegloration mission demand
evolution, Step 4 within Chapter 6 identified Pareptimal policies over a range of
long-term cost and performance preferences. Istiagdy, among the Pareto-optimal
policies it was shown that due in part to the tiemse of the Mars Surface demand,
development of the Mars Surface themed architeciwa® never optimal. Instead, in
scenarios where demand evolved to ambitious déstsa many high-performing
policies favored development of the Deep Space itanthre. However, in most
scenarios, demand remained at less ambitious mgsaiod prompted development of the
LEO and Lunar Surface themed architectures. Adswsidered within Step 4 of Chapter
6 was implementation of a $12.9 billion per-perimatiget constraint. This constraint
was found to severely limit solution options, ahé tighest-performing Pareto-optimal
solution given the constraint involved continuatmindevelopment of the LEO-themed
architecture until completion and subsequent ttmmsito LEO-themed architecture
operation with cessation of new architecture dgualent. Compared to the per-period
budget-unconstrained Pareto-optimal solution atidhg-term budget level, the highest-
performance constrained solution exhibited a cagpt@f about $60 billion which, by the
performance measures used in this work, would hezl usefficiently by virtue of a
constant use-or-lose $12.9 billion per-period biadgdowever, regardless of whether a
constrained or unconstrained per-period budgetnagison was used, and even with the
inclusion of additional non-cumulative and non-ectpd-value metrics, the initial system
decision analysis of Step 5 supported for virtualllylong-term cost and performance
levels continuation of present LEO-themed architectdevelopment as an immediate
next step for human space exploration.

Overall, the applications of this thesis’ framewald&monstrated throughout the
preceding pages have not only fulfilled the framakisintent of informing initial system

selection, but also have provided (1) cost- andopeance-tailored policies and a
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corresponding outlooks for future costs and utii@a (2) insights regarding future
options and flexibility, (3) useful models for examng demand evolution, and (4) the
ability to re-execute the quantitative analysis ardmine decision, cost, or performance

sensitivity (or robustness) as assumptions changew information becomes available.

7.2. Contributions

Summarized, the main contribution of this thesisaigjuantitative, stochastic,
multi-objective, and multi-period framework for @grating flexibility into space system
design decisions. While Chapter 2, and particyldidble 1, note that some of the
individual elements of this framework have beeng&sfied at various times and by
various analysts and engineers in the aerospacsstiydover the past decade, no works
to date have unified them in a way to enable themehensive analysis, trade-space
exploration, and decision-making capability demaatsd within this thesis.

More specifically, this main contribution is enabldy several component
contributions, including (1) formulation of the tvperiod state-centric notion of
flexibility as a formal configuration-state-basedncept for space system analysis and
design, (2) formulation of a state-centric stocicashulti-period model capable of
describing evolution of the demand environment ihichh an engineering system
operates, and (3) incorporation of system modificapolicy into initial system selection
by using the above formulation to pose integratbrlexibility in design as a solvable
sequential decision-making problem.

A fourth component contribution is the implemerdgatand demonstration of the
utility of solving for the Pareto-optimal sequeht@ecisions enabled by flexibility,
including optimal “open loop” sequential system figuration paths and “closed loop”
system configuration policies. Enabling tools inéitl from the operations research
community are the formulation and probabilistic dgnc programming solution

techniques for Markov decision processes. In adgitAppendix A contributes a new
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heuristic technique for identifying concave porsoonf Pareto frontiers in dynamic
programming problems. Fifth, these Pareto-optiooaifiguration paths and policies are
used systematically to recommend initial systenfigaration decisions.

The final component contribution of this thesighe application and illustration
of this framework to relevant space system desiglpms using the examples of (1)
communications and reconnaissance satellite syssetection, (2) multiple- or
distributed-payload satellite selection, and (3) A human space exploration
architecture selection. A requirement for exeaqutibthese examples is the development
of transition cost and stochastic demand envirortregalution models, contributed for

the NASA example in Appendices B and C.

7.3. Avenues for Future Work

As noted in Section 7.2, the main contribution lu tthesis is a framework for
integrating flexibility into space system desigrcd®ns. Despite its positive qualities
and advances over previous work, however, it wdedd naive to claim this ishe
framework for integrating flexibility into space sgm design decisions. By necessity,
this frameworkapproximateghe true systems, environments, and selectioregsothat a
decision-maker must consider. With this in mirteg tontributions of this thesis should
be viewed in two contexts: First, in the form meted in this thesis, this framework is a
powerful tool forinforming design decisions. The ultimate choice remaind wlhte
decision-maker, who may consider and trade the dell of factors, effects, and
constraints (technical, programmatic, political, atherwise) for a design problem;
however, as an approximation to the full problems framework may still (1) reveal
high-performance and/or low-cost policy solutiohattwould otherwise be nonintuitive,
(2) support or challenge the performance, cost, apgroximate optimality of
hypothesized policies, and/or (3) allow investigatinto why certain paths and policies

perform well or poorly. Moreover, beyond its cortgtional capability to examine the
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optimality of paths and policies, the framework pdes a set of concepts useful in
framing decision-making thought on flexibility.

Second, this thesis’ contributions provide a stepwvérd, upon which future
investigators may build to improve modeling detaild realism, in the consideration of
flexibility in the design of space and other engmeg systems. To this end, the
following discussion identifies several interestopgestions and avenues for future work

that engineers and anlysts may choose to investigahe future.

7.3.1. Multi-Period Expansion of the® Transition Metric

Introduced as an element in the analysis of thé tcassition matrices generated
in Step 1 of this thesis’ framework, the metug;(b) expresses the number of
configuration transitions available from Configuoati given budgeb. This metric has
a physical meaning and shares conceptual simdaritvith the idea of flexibility.
However, as noted in Section 4.1.4, it is limitedhat it accounts only for transitions one
period into the future. An expansion of this metsi certainly possible and of interest for
future investigation. Such a metric (e could be defined recursively in terms of the
simple two-period version® as in Eq. (31). Herdy(r) represents a schedule of budget
levelsh,, b, bs, ..., brin T total periods, an@' expresses the total number of transitions
accessible in the T-period tree originating frorm@gurationi in the first period. This
metric is clearly just a start to tracking multiFjoel transition availability, and variant
metrics might also be proposed, for example, torgjaish between options that involve

expansion or downscaling of configurations.

q)i'(b(r)):q)i(bl)—i_ Z q)j(b2)+ Z(q)k(b3)+) (31)

js.tc;<b; ks.tcy <b,
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7.3.2. Decision-Makers with Authority Limitations

In many scenarios, particularly for complex and hinglue systems under
consideration by modern republics, there may exigtactical difficulty in identifying a
single decision-maker or decision-making body. tdad, the decision-making process
might be more accurately approximated as one irchvhi particular decision-making
body has the ability to decide to pass a decismnuti to one or more other decision-
making bodies. This input may then be used byr¢keiving decision-making bodies to
produce inputs or recommendations for additionalié® perhaps in iteration with the
first decision-making body, until a final decisia reached. This chain of decision
inputs, in which no one decision-maker has compdetdrol over the final configuration
decision but each has influence, might well be &fmas a negotiation process. If
elements of the negotiation process (e.g., theepates of members of the other
decision-making bodies) are uncertain, then to awividual decision-maker the
transformation from one’s own configuration reconma&tion to the final decision might
appear probabilistic. In this case, the framewmdvided by this thesis already provides
a means to model this scenario, provided that doestn-maker can provide an estimate
of the probability that a particular final decisiowill be made given that his
recommendation is for a given configuration (simita implementation to the use of
endogenous schedule slippage probabilities fothean space exploration example in
Chapter 6). Given the complexities that existha flow of recommendations among
decision-making bodies in governments and othearrgtions, the rigorous estimation
of these probabilities may prove a rich and frdithvenue for future research.
Ultimately, correctly modeling this effect could rp@t decision-makers to maximize

their influence on the choices of decision-makinglibs utilizing their recommendations.
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7.3.3. Robustness to Changing Decision-Makers

Another intriguing area for future work originatdsom a paradox of the
flexibility sequential decision-making problem. Asscribed in this thesis, the selection
of the best initial configuration must consider id@m options and demand evolution
through future periods. This is central to thedgtof flexibility, since the existence of
options and choices over multiple time periodsiniigtishes the flexibility problem from
related problems of robustness and optimizatiorowéter, over a long enough time
horizon, tomorrow’s decision-maker will be diffetefrom — and have different
preferences from — today’s decision-maker. Thuslentoday’s decision-maker may be
able to solve for the Pareto-optimal decision poliwer a long time horizon through
Steps 4 and 5 of this framework, he or she mayaairound to implement this policy in
the future. It may be, therefore, that this decismaker can only count on being able to
influencetoday’sdecision.

In such a scenario, the decision-maker would bereésted in making a strategic
choice of system or architecture configurationiatly such that performance remains
high and cost remains low regardless of the prats® of future decision-makers. This
consideration may serve to reduce the likelihooccadtly program cancellations and
major redirections at the appointment of new deaisnakers. Future work examining
this area of future work may be enabled by the tdation of the flexibility problem
presented here and may begin by examining not Bahgto-optimal paths and policies
from Steps 4 and 5 of the framework, but also rmgdimal sequences and policies.

Somewhat related to this area of future work isitagthl development of
strategies to update and maintain probability, ,cast performance model information as
time passes. The thrust of such development woeiltb allow a decision-maker to use
this thesis’ framework to make decisions at mudtifaiture time periods without the need

to repeat the entire analysis process from scratch.
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7.3.4. Additional Theory and Algorithm Investigations

Some additional areas for further theory and alboridevelopment have arisen
during discussions throughout this thesis and meit here. First, with the exception of
the brief coverage in Section 4.1.3.2.2, the uadgties considered in this thesis have
been aleatoric rather than epistemic. That is,utigertainties in demand environment
evolution and schedule slippage are not considereskist due to cost or performance
modeling limitations but rather due to inherent emainties in how events in the world
will unfold in the future. This thesis has genbrabnsidered, for example, that the cost
and performance matrices are associated with nlelgliguncertainty. Future
development may consider methods for assessingnihects of parameter uncertainties
or the impacts of investments intended to changeem@arameters (for example,
technology investments to reduce launch vehicledgpebon costs) on optimal system
decision results.

Second, future algorithm development is invitedwio areas. Further algorithm
development toward the goal of seeking concavet®drentiers for multi-objective
dynamic programming problems (see Appendix A) waaigrove the quality of Pareto
frontiers for applications with concave frontiergurthermore, if such a method could
guarantee the identification of all Pareto-optirpalicies it may eliminate the need for
Step 4A of this framework, since the paths soughStep 4A are special cases of the
policies sought by Step 4B. In addition, algoritli@velopment toward the goal of
perturbing the Pareto-optimal cumulative expectallie objective policies in order to
discover efficient policies in terms of non-cumudat non-expected-value objectives is

another area in which this thesis has only scratthe surface.

7.3.5. Additional Application-Specific Questions

Finally, some practical questions have arisen @ dkecution or discussions of

the example applications in Chapters 5 and 6 thatbayond the scope of the present
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investigation but worth consideration in futuredsé&s. In the distributed payload versus
monolithic satellite trade study of Chapter 5, fexample, an interesting and open
guestion remains of what combination of cost, penince, and probability inputs are
required to favor monolithic versus fractionatedasgrraft as optimal initial
configuration solutions.

In the NASA human space exploration example of @vap, a number of
interesting variations on the basic study perfornredhis thesis could be performed,
including (1) gradual tightening or relaxation dfet $12.9 billion per-period cost
constraint to study properties of the resulting eRaoptimal solutions, (2) use of
“personalized” rather than central-tendency expeobability estimates to examine the
Pareto-optimal system implications of each expevitesvs of future mission demand
evolution, and (3) implementation of discountingvatious rates to simulate preferences
for current over future cost and performance. Ilgeatudies like this would be
performed with decision-maker interaction to previdn understanding of how (or
whether) changing assumptions changes the optmitl isystem decision.

Additionally, the configuration and demand enviramhdefinitions of the NASA
application may be modified as different problermomes become of interest, candidate
systems change, or other updated information besaweailable. For example, in the
time since work on the NASA application for thiesis was initiated, developments in
the commercial space sector have driven NASA towasdof commercial systems only
for International Space Station resupply (rathenth combination of commercially- and
traditional government-developed systems). In tluatext of largely decoupled LEO
and beyond-LEO human spaceflight programs, a redgemodification to the scope of
the human exploration application may be considtaradf only beyond-LEO activities,
which would involve not only removal of the LEO-thed configuration and LEO
demand environment from Steps 1 and 2 of the agtic, but also subtraction from the

available budget the funds that NASA plans to devmt commercial flights to the
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International Space Station. Recent developmeans lalso seen a change in NASA’s
heavy-lift launch vehicle of choice from the Arest® the Space Launch System, and
additional destinations of interest within the BaMoon system have arisen, both of
which could be accounted for with minor modificaiso to configuration costing
assumptions and demand environment definitions.

Future advanced development of the NASA exampléhimitgclude consideration
of (1) any costs associated with the retentiorrdfigectures in memory, (2) development
time benefits associated with the existence ofadlyedeveloped components, (3)
additional commonality benefits below the level sidered in this thesis (e.g., below the
level of treating stages, crew vehicles, landergers, etc. as basic components), and (4)
demand evolution that is not only dependent ondiment operations architecture’s
interaction with the current demand environmentt &iso dependent on the current
development and/or memory architecture’s interactiwith the current demand
environment. Finally, a potentially useful and gdementary approach to this thesis’
use of the substantial computing power describefertion 6.4.3 would be to re-execute
the NASA analysis using an 8-year time step, saorg the modeling of multi-period
development but gaining the ability to analyze mangre (on the order of several
hundred, rather than the ten in Table 31) architestin order to seek potentially non-

intuitive architectural solutions.

7.4. Closing Remarks

This thesis began with the 40-year-old story of|&kyand the Apollo program’s
largely accidental flexibility. With any luck, theages of this thesis have conveyed that
there now exist the tools necessary to analyzabiléy and, where appropriate, select
space system designs, tailored to a decision-makeist and performance preferences,
that have the flexibility to suitably respond to cartain and changing future

environments and requirements. ldeally, the cotscapd techniques provided by this
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thesis will make flexibility stories like Skylab where flexibility existed but was
accidental, or worse, where flexibility might halveen desirable but was unattainable —
relics for the history books.

Following these final remarks is a quote that GimrDarwin never said, but
perhaps that he might have sajiven the ideas i®n the Origin of SpeciesA reflection
on the ability of a species to survive, the excepiveys that a species’ ability to adapt
to change is of paramount importance toward itvigal. This is an interesting and
important closing thought to bear in mind. Howewen equally important distinction
exists between Darwin’s natural world and the eegimg world: In the world of natural
selection, no species — and certainly no individeahas control over its genetic
predisposition to adapt to new or changing climatiesds, famines, droughts, diseases,
or predators. However, in the world of engineesggtemshumans control the “genes”
(or design variables) of the systemEngineering decision-makers have always had
control not only of physical properties of enginegrsystems, but also of the inherent
flexibility these systems have to adapt to the givamenvironments in which they find
themselves. With this fundamental degree of cdniras the responsibility of space
system engineers, analysts, and decision-makersamavin the future to continue to
develop and utilize decision-making tools that vallow the engineering of the best

possible “genetics” into tomorrow’s space systems.

" Versions of this particular saying are, in factygdely quoted and misattributed to Darwin that

even the California Academy of Sciences had itedabn the floor of its San Francisco museum.
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According to Darwin’sOrigin of Speciesit is not the most intellectual of
the species that survives; it is not the strongleat survives; but the
species that survives is the one that is able tbestlapt and adjust to the
changing environment in which it finds itself.

Leon C. Megginson, Ph.D., Capt. USAAF (Fmr.), 1963
Southwestern Social Science Quartevigl. 44, No. 1
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APPENDIX A

A HEURISTIC METHOD FOR IDENTIFYING CONCAVE PARETO
FRONTIERS IN MULTI-OBJECTIVE DYNAMIC PROGRAMMING
PROBLEMS

A.1. Introduction

The past few decades have seen a significantrrifeeiuse of Pareto frontiers in
aiding aerospace system decision-making. Defireetha set of non-dominated design
solutions, or the set of solutions for which onesige objective cannot be improved
without the sacrifice of another (e.g., see Re8%] pnd [91]), the concept of the Pareto
frontier has for many become a cornerstone of @aessystems analysis, both in theory
and in practice. The fundamental advantage ofPtweeto frontier is that it allows an
analyst to objectively identify inferior design pt8 without the need for information
from a decision-maker on the relative priority okeadesign objective over another.

Frequently, obtaining a Pareto frontier requiredy anrepresentative scan of a
problem’s design space, or the space spanned bwnle of a problem’s input variables
or options. During this design space exploratitn® performance of each candidate
design among the multiple metrics of interest &ked, and the Pareto frontier can be
identified by eliminating (filtering [112]) dominatl designs from consideration.
However, this procedure can be computationallyasttable for applications in which the
design space is very large, leading to the neednfthods that are able to preferentially
seek out Pareto frontiers (e.g., see Refs. [11B}])1 Conceptually the simplest method
for accomplishing this relies on an alternativesiptetation of the Pareto frontier as the
set of optimal designs over all possible decisiaken preferences. In short, this
translates into weighting and aggregating @llobjectives of interest into a single
objective functionJ (often a simple additive weighting, such as inR¢116]-[122]),
finding the optimum design(s) with respect to flaisction, changing the weightg, and

repeating this process over the entire (or a reptative) set of possible weights.
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While this alternative interpretation is largelyneet, a body of literature with its
origins as early as the 1970s recognizes that alsimdditive weighting aggregate
objective function will fail to capture concave gons of a Pareto frontier [123]-[130].
This is illustrated in Figure 90 through Figure &2d Eq. (Al). Figure 90 shows an
example of an objective space defined by incomnratswbjectivesg’; and/%. Bothl;
and /> are normalized on a scale from zero to unity, stiet larger values of both
objectives are preferred. The Pareto frontielearty concave with respect to the origin.
If the iterative procedure described in the presiparagraph is employed using a simple
additive weighting objective function (i.e., Eq.XAwheren = 1), only convex portions
of the frontier are identified, as shown at the iefFigure 91. If the same procedure is
applied but with an objective function of increasiorder (e.g.n = 2 andn = 4), the
concave Pareto frontier is captured more fully |[128 the Tchebycheff norm is used,
denoted in this work as = o, all Pareto-optimal points may be captured [12Z9],
limited in resolution only by the discrete weiglgsnconsidered.

0
> w@-1) N <o

1

J= =
~ max(w, (- T,) W, (1- T, ),....v, (1~ T,,)),n =0

(A1)
The dependence amin an aggregate objective function’s ability tqotae the
Pareto frontier can be explained graphically viguFe 92. Contours in Figure 92
represent values of the aggregate objective funckiasn is increased. Notice how the
maximum curvature of each contour increases igsincreased: Anh = 1 there exists no
curvature, and by = o, there exists a point of infinite curvature onleaontour. In
effect, am is increased, each contour penetrates more dempbrd the concave portion
of the Pareto frontier. As weightg on each objective are varied (Figure 92 illussate
only the casev; = w, = %), the relative location of the point of maximwurvature
changes, and different points on the concave fontiaximizeJ and are recorded as

Pareto-optimal.
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Figure 90. Example of an objective space with a noave frontier of

nondominated points.
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Figure 91. Nondominated solutions identified vialte aggregate objective function

of Eqg. (A1) for varying n.

Figure 92.

Contours of the aggregate objectivé (see Eg. (Al)) as
and I'; are weighted equally.
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A.2. Application to Dynamic Programming

Many aerospace applications make use of dynamigranaming as an efficient
optimization procedure for multi-stage decisionlpeons. First introduced in the 1950s
by Bellman [93],[131], dynamic programming takevaatage of the recursive structure
of many multi-stage objective functions in orderdecompose the optimization problem
into a series of more tractable single-stage opaition problems. Commonly, the
recursion in dynamic programming problems takesftinen of stage-to-stage addition.
That is, the objectivé’ is comprised of summed single-stagebjective functions as in
Eq. (A2). Alternatively (but nearly equivalently), may be comprised of an objective
function derivatived//dt integrated over time as in Eg. (A3). In both cagsllman’s
principle of optimality forms the basis for efficie optimization. This fundamental
principle states that “an optimal policy has thegarty that whatever the initial state and
initial decision are, the remaining decisions nugsistitute an optimal policy with regard

to the state resulting from the first decision.3]9

[ = Z?”i,r (A2)

T = ]Fidt (A3)

t=0

A subtle difficulty exists when applying dynamicogramming to multi-objective
problems. A computationally appealing method folving these problems is to
aggregate the multiple objectives into a simpleitagdobjective function in each stage,
apply single-objective dynamic programming alganthas usual, and then scan over the
possible aggregating weights to identify the Parfedmtier. The aggregate objective
function for this method is shown in Eq. (A4) (or Eq. (A5) for the continuous-time
case). Note that indicates the aggregate objective function at esabe (i.e., the per-

stage version af), and it is assumed the sum of all weighitss unity.
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n=-—>w@E-7) (A4)

n=-Yw-r) (A5)

A property of this simple additive weighting fornf @ is that it sums (or
integrates) tal as defined in Eq. (Al) fan = 1, as shown in Eqgs. (A6)-(A7). However,
as a consequence, the technique suffers fromriiation that it cannot detect concave

portions of Pareto frontiers.

iﬂ=—iiwi(%—%):—ZQ:Wii(%—%):—ZWi(l—ri):J (A6)

[rdt=— [ Sw-1)dt=-Fw [(-1) d=->wa-1)=3 (A7)

An appealing solution to this problem is the amdimn of a higher-order
aggregate objective function, per the observationSection A.1. Unfortunately, this
solution has a problem since, in general, summingerastage or integrating a time-
derivative objective function of this form (see Eqgs. (A8)-(A9)) does result e total
objective functionJ (see Egs. (A10)-(All)). Thus, use of this pegstabjective
function  in a standard single-objective dynamic programmaigorithm will not

properly represent the objective to be maximizedhimimized.

n=-2 W) (A8)
=Y w1y (A9)

in:_iiwi(%_%)n:_Zg:wii(%_%)ni\] (A10)
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[r-dt=-[Swl-f)dt-—Sw [¢-1fdaz0 ()

However, one motivating observation can be maden cdses where the
normalized objective; (or its counterparl/i/dt) is small compared to T/and where the
normalized objectivd; is small compared to unity, the binomial approxioa can be
applied to Egs. (A10) and (A1l) to show (in Eqs12i(Al13)) that the sum of the
individual per-stage aggregate objective functiafisorder n nearly equals the total
aggregatel, multiplied by a correction factor. In other werdising a nonlinear power-
per-stageaggregate objective function will properly sum ttee powern cumulative
objective function and thus permit detection ofoacave Pareto frontien the region of
the objective space where designs perform pderly., near the coordinate =7 =0 in
Figure 90).

At first glance, this observation appears to hawateéd utility, since poorly
performing designs are generally of little interedtlowever, consider a simple two-
dimensional concave Pareto frontier consistinghoéd points: (0,1),6( ¢), and (1,0),
wheree << 1. The point that produces the frontier’s camitga namely €, ¢), is indeed
poorly performing and thus might be accuratelydentified using; of the form in Egs.
(A8)-(A9). While this example is extreme, it higdfits the fact that when searching for
concave Pareto frontiers, poor (but nondominatedigehs are still of interest. In this
example, for instance, finding that, ) is indeed on the frontier would provide the
decision-maker critical information about the aahbié trades. In this case, the decision-
maker would almost certainly choose the single<@tbje maximum (1,0) or (0,1), rather
than spend additional time and resources attemgaimdgentify compromise solutions.

Yr=-3 w6 ) ~-Sw3Ere-nty)

(A12)
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Jr-di=—Sw [ 1) ot~ w [(GYl-ntr)-a
t=0 I;l t=0 ] i=1 t:g (A13)
: —le.(%)”{l—n [T -dt ~—le.(%)“(1—r. )=3-@)"

A.3. A Heuristic Method for Identifying Pareto-Opti mal Solutions

In many cases, concave Pareto frontiers will noaseharply defined as the £)
example earlier, and thus it would be incorreatlgom that applying per-stage aggregate
objective functions of the form in Eqgs. (A8)-(A9)ilwalways result in the intended
qguantityJ being maximized. However, this appendix’s progosethod is motivated by
the hypothesis that applying such an objective tianccan provide a greater likelihood
of finding concave Pareto frontiers in such multjextive dynamic programming
problems.

The proposed method is summarized in Figure 93hdrfirst step, the objectives
for the problem of interest must be identified ammtmalized such that the cumulative
totals /i are each no less than zero and no greater théyn umnplicitly, each of these
objectives is additive such that Eqgs. (A2)-(A3) chol Secondly and thirdly, a set of
powersn is selected and a set of weightg {w,, ..., Wy} is selected for testing. The set
of weights is used to scan for Pareto-optimal Eoauross a representative set of possible
decision-maker preferences, and the set of powesglected to increase the likelihood
that concave portions of the Pareto frontier wélidentified.

For each combination of the powerand set of weights, an aggregate per-stage
objective functiory is used, as specified in Egs. (A8)-(A9). Thisraggeh of converting
the multi-objective problem into a single-objectjm®blem permits the use of traditional
single-objective dynamic programming algorithmsnc® such an algorithm is applied,

the design variables leading to the optimum sotufd this set ofi and {wy, W, ..., wo}
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are recorded, and the process repeats for a neaf setights and/or a new power
These recorded designs are the candidate Paremsabgblutions.

In the penultimate step, each of the candidatetisok! is evaluated in terms of
each of the?2 objectives of interest. As expressed in Eqgs. JAR11), in general the
sum of powem aggregate per-stage objective@he quantity optimized) is not equal to
the powerm aggregate of the cumulative objectivigs(the quantity that would ideally
find points on concave portions of the Pareto feyptfor n > 1). As a result, some of
these candidate solutions are likely to be domahatdutions. Thus, the final step of this
method is the discarding of dominated points td fine final estimate of the problem’s

Pareto frontier.
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Figure 93. Flowchart for this appendix’s heuristicmulti-objective
optimization algorithm.
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A.4. Example Application

To demonstrate this method on a relevant and fitise multi-objective dynamic
programming problem, the following scenario is stdd: A stealth aircraft loaded with
enough ordnance to neutralize five hostile targstto be flown across unfriendly
territory, starting at a friendly airfield at coamdtes (0, 100) and ending at a second
friendly airfield at coordinates (500, 100) mile$he 500-mile stretch between the two
fields is divided into five zones of equal lengthdaeach with breadth 200 miles. In
sequence, one target in each of the five zones Isetneutralized. Each target has a
particular strategic value (for example, measumechumber of weapons or vehicles
rendered inoperative), and it is desirable to m&emthe total value of all sites
neutralized during the mission. However, it ioadesirable for the aircraft to minimize
the total distance it travels during the missiar @xample, to minimize its time at risk).
Thus, this is a five-stage problem with two inconmswrate objectives. Coordinates of

candidate targets are listed in Table 40, and spomding target values are listed in

Table 41.
Table 40. Target Coordinates for Example Applicain.
Target Target Coordinates (miles)
No. Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

1 (55.2,114.0) (179.7,193.6) (260.5, 177.5) (89086.5) (457.9, 181.4)
(87.1,113.3) (191.8,151.9) (299.8,161.1) (S81228.1) (479.6, 164.2)
(12.3,81.9) (120.8,125.4) (232.9,155.2) (30BL1)  (486.6, 146.8)
(61.8,78.2)  (137.9,106.1) (276.3,123.5) (34623)  (416.3, 46.1)
(26.8,68.3)  (171.0,53.9)  (268.0,90.6)  (39B@BF)  (462.4, 27.2)
(68.8,42.3)  (124.3,19.6) (214.8,76.5)  (3886%7)  (464.0,7.4)
(75.1,7.0)  (166.4,13.8)  (221.9,48.8)  (30089L  (403.3,5.7)
(13.7, 4.7) (148.4,8.3)  (282.6,44.9)  (354.8)9. (443.9,4.5)

o ~NOoO UL~ WN
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Table 41. Target Values for Example Application.

Target Target Value
No. Zonel Zone2 Zone3d Zoned4 Zoneb5
1 1 80 1 95 1
2 1 42 4 25 6
3 7 18 5 20 12
4 10 1 13 1 69
5 18 16 30 1 83
6 38 33 48 6 98
7 65 35 83 10 99
8 67 38 88 12 100

A.4.1. Full-Factorial Pareto Frontier

In this case, the problem is small enough to pemmsig of a computer to
enumerate and evaluate all-832,768 possible routes (in general, such enttinaremay
not be practical, but this small example is selkdte allow comparisons between the
heuristically-generated and true Pareto frontiel@)stances between sites in sequential
zones (as well as between the start and end sit@streeir neighboring zones) are
precomputed and stored in an 8 x 8 x 6 array.otla,tthe full factorial evaluation of all
possible routes requires 393,216 array lookups.e fésults of this evaluation are
visualized in Figure 94, with the Pareto frontiastimed in dark gray. The frontier
consists of 58 points and extends from a totaladst of 524.5 miles and total target
value of 189 (the distance optimal solution, sh@srthe black circle) to a total distance
of 1006.8 miles and total target value of 430 (th&ie optimal solution, shown as the
light gray triangle). Note that the frontier hasotmajor concave segments, in the 600-
750 mile range as well as the 800-1000 mile rangree smaller concave segments
exist within the 530-600 mile range. Also marked the chart is an example
compromise solution which attains a total valueread 302 with a 596-mile traverse.

Figure 95 graphically illustrates the locations asadlies of the targets listed in

Table 40 and Table 41 as well as the physical solsitimplied by the three solutions
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marked in Figure 94. Darker sites indicate sitelsigher value. Notice that the distance
optimal solution (black) takes the most direct soatross the map but neglects high-
value targets at the map’s edges. On the othat, e target value optimal solution
(light gray) visits the highest-value targets icleaone but must fly in a costly and risky
zig-zag pattern. The example compromise solutitamk( gray) is similar to the distance

optimal solution but deviates to visit high-valaegets toward the bottom of the map.

450 r T T T .
400 F -
iy]
= 380+ A
]
o
— J00F &
a
L
E 250+ 7
=
=
w 200} i
(]
[ak]
=
E 180 + .
= Full Factaorial Solutions
E 100 A cal Pareto Frontier .
Distance Optimal Solution
a0 + Target Value Optimal Solution A
Example Compromise Solution

I:I 1 1 1 1
500 GO0 700 200 Q00 1000 1100
Total Distance, miles

Figure 94. Performance trades and the full frontie for the example application.

269



Y Coordinate (miles)
O
O
!

100 150 200 250 300

X Coordinate (miles)

Figure 95. Graphical representation of the targetdisted in Table 40 and Table 41. Darker
sites indicate sites of higher value, and three same paths are shown that correspond in
color to the distance optimal solution (black), taget value optimal solution (light gray), and
an example compromise solution (dark gray) in Figue 94.

A.4.2. Heuristically-Generated Pareto Frontier

Approaching this example in the manner outlinedSiection A.3 illustrates
several advantages of this appendix’s heuristichatet To begin the process, in this
application the precomputed distance array is meband subsequently offset and scaled
such that the smallest element (previously thetgstalistance) is zero and the sum of
the maximum distances in each zone transition ity.uT he target value matrix is offset
and scaled such that the smallest elements (thakevalues of 1 in Table 41) are zero
and the sum of the maximum target values in eaak Bunity.

Following the remainder of the process outlinedsection A.3, the solid black
line in Figure 96 shows the result for the selettio= {1, 2, 150,00} and weightsw; =
{0, 10%, 10° 10% 10? 0.04, 0.08, 0.12, ..., 0.88, 0.92, 0.96, 0.99, 904 — 1¢, 1 —
108, 1.00}, with w, = 1 —w. Note that the resulting frontier (in black) @bs
approximates the true frontier (in dark gray). plrticular, the existence of both major
concave segments is captured, as are the thredesmahcave segments identified

earlier. Also visible in the plot are candidaté&usons (black triangles) from the heuristic
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algorithm that were not Pareto optimal when evadawith respect to the true, rather

than powem, objective functions.
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Figure 96. Comparison of Pareto frontiers generaig using heuristic
and full factorial methods.

Table 42 provides a useful comparison of the acyuaad efficiency of the three
methods discussed in this appendix in the contetti® example application. Accuracy
is tracked here by two statistics. The first, whis the value of the coefficient of
determination (R?), indicates the degree to whigh interpolated approximate frontiers
explain the variations exhibited in the interpotateue frontier. While the simple
additive weighting method achieves an R? value.®889, the heuristic method performs
significantly better with an R2 value of 0.9899. hel second measure numerically
integrates the absolute value of the differencevéen the target value metric for each of
the interpolated approximate frontiers and the éangalue metric for the true frontier

over the range of the true frontier. Normalizedlsthat the area between the simple
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additive weighting frontier and the true frontier unity, this metric illustrates that the
geometric area discrepancy is improved by more gh&attor of three when the heuristic
method is used in place of the simple additive Wwing method.

In terms of efficiency, Table 42 highlights thaetheuristic method requires less
than 23% as many function calls (here measuredring of the number of table or array
lookup operations required) as the full factoriahlgsis for this example. Furthermore,
32% of the points identified from the heuristic had are nondominated, in contrast with
the 0.18% ratio for the full factorial analysis.n this sense, the heuristic method is
efficient in preferentially seeking points on tharéo frontier. Furthermore, it might be
reasonably hypothesized based on the advantageslythamic programming provides
that these indicators would more highly favor theutistic method as the size of the
problem (number of zones and number of sites pee)zocreases. In terms of the
simple additive weighting technique, it is notabtat this method requires only about
19% as many function calls as the heuristic metudi has 100% success in identifying
Pareto-optimal points (in the sense that all poibtsdentifies are Pareto-optimal).
However, this metric does not reflect the numbeingrortance of Pareto-optimal points

on concave segments that the simple additive wieigimethod omits.

Table 42. Comparison of Pareto Frontier Search Métods in the Example Application.

Pareto Frontier Search Method

Metric Full Simple Additive Heuristic Approach
Factorial Weighting (Dynamic (Dynamic
Analysis Programming) Programming)
Accuracy
Coefficient of Determination (R?) 1.80 0.9389 0.9899
Integrated Area Discrepancy (normalized) 6.00 1.00 0.3136
Efficiency
Number of Function Calls (array lookups) 393,216 , 167 89,936
Ratio of Non-dominated to Total Points Evaluated 00Q8 1.00 0.3167
2By definition
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A.5. Summary

In summary, this appendix has presented a heunms@thod for identifying
concave Pareto frontiers in multi-objective dynamiogramming problems that employ
additive recursion. Using a power{instead of simple additive weighting) per-stage
aggregate objective function, the method posseasesnportant advantage of being
easily integratable with existing single-objectignamic programming algorithms; that
is, only definition of the per-stage objective ftioo need be modified, eliminating the
need for a unique multi-objective dynamic programgnalgorithm. Because simple
additive weighting is a special case of this metlithet casen = 1), this heuristic
method’s results are at least as (and generallyemeoaipable of identifying concave
segments of Pareto frontiers, and in theory thbrigoie becomes better able to identify
points on concave frontiers as overall concavityheffrontier increases.

The example aircraft route selection applicatioovah in this appendix illustrates
how the heuristic method can substantially increaaseaccuracy of the detected Pareto
frontier over simple additive weighting. Furthemapthe R? = 0.9899 coefficient of
determination for the detected Pareto frontierbsamed with 4.4 times fewer function
calls than required for the full factorial analysis

It may be reasonably hypothesized that the comiputt advantage of this
approach over full factorial analysis substantiallgreases as the number of fully
enumerated paths increases. In the aircraft srleetion application demonstrated here,
the 32,768 paths could be enumerated, evaluatedc@mpared by a standard desktop
computer within about one-half of a second. Howgewad the number of zones and
available sites per zone each doubled, the nunfbeatbs would have increased to 1.10
trillion (a factor of 33 million greater!). In thiull factorial approach, all these paths
must be evaluated, potentially at a large experfigene and computational resources,
because there exists @opriori knowledge about which paths are likely to be Raret

optimal. In contrast, the number of function ewions required by this appendix’s
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heuristic method is controlled largely by the usesxelections of sets of trial weights and
powers, and in all cases the algorithm preferdptisearches for Pareto-optimal
solutions. As a result, although the ideal comtmmeof power and weight sets cannot be
known in advance, for large problems the computali@xpense of sweeping through a
wide range of possible sets may easily be moreieffi than the full factorial analysis.
For example, using the extendeg weight set {1, 2, 3, ..., 148, 149, 15@} in this
appendix’'s example application produces a nearlgcexnatch to the true frontier,
improving the fit of the detected frontier to an\Riue of 0.9969.

This method is termed heuristic in the sense tbhadbmmal proof assures that the
true Pareto frontier will be converged upon, evernhe power and weight sets are
increased infinitely in range and resolution. Whihe method is motivated by
fundamental properties of the per-stage objectivection# (noted in Sections A.1 and
A.2), the fact that convergence tends to occur dialy been observed empirically.
Furthermore, the astute reader may notice two iaddit details which contribute to this
heuristic characterization:

First, the definition ofl in Eq. (Al) forn = « is not the true limit of th& < «
expression as — oo; for this to be true, the summation within the< co expression
would need to be raised to the powear. 1However, this modification would nullify the
theoretical accuracy for highly concave frontiected at the end of Section A.2, since
the derivation of this property required the exdwwof the per-stage and per-objective
summations. Thus, strictly speaking, the utilifyselectingn = « as weighting is itself
heuristic in nature.

Second, the large finite powens(e.g., 150) used in the weighting sets for the
example application present numerical difficult&nace they are applied to aggregate
objective functions; which are normalized to fall between zero andynitWhen the
resulting very small numbers, which can differ bgny orders of magnitude, are added

during the operation of the dynamic programmingatgm, some fall below computer
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numerical precision limits. When this occurs, st possible for several next-stage
alternatives to tie as optimum, in which case logiast exist to select among these
equivalent alternatives. Rather than default gpclohat selects the tied alternative which
happens to appear first in the array, this appéndimplementation selects at random
among the tied alternatives. Because differenghtesets frequently result in identical
optimal solutions, this randomization has the dffefcdiversifying the set of candidate
Pareto-optimal solutions that are detected. Tthes|ogic that handles selection among
tied next-stage alternatives within the selectedadyic programming algorithm is also a
heuristic element.

These components, which characterize this appendigthod as heuristic, are all
worthy of future investigation and improvement. the interim, it is hoped that the
method presented here will contribute to theory prattice in multi-objective dynamic
programming applications within the aerospace amdader system design and

optimization communities.
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APPENDIX B

TRANSITION COST MODEL FOR HUMAN SPACE
EXPLORATION CONFIGURATIONS

Section 6.1.2 of this thesis describes how a custosh model is used to estimate
transition costs within Step 1 of the NASA humarasp exploration application.
Described in its final form in this appendix, thransition cost model for human space
exploration configurations was developed from peliplavailable information and cost
models over a period of approximately six monthg kst two of which were spent
obtaining feedback from systems engineers and aaltysts at NASA Johnson Space
Center.

The cost model described here has the ultimategserpf converting an input of
two configurations (a “from” configuration and ao“tconfiguration) to a one-period
transition cost. As described in Section 6.1.Zheeonfiguration is a {Development,
Operations, Memory} architecture triplet; and assatded in Section 6.1.1, each
architecture is defined by a set of componentschEeriod in the NASA application is
assigned a duration of two years, and thus the rooskel translates a decision to move
from one {Development, Operations, Memory} architee set to another into a two-year
cost. Repeated use of this model over all possimarwise combinations of
configurations permits the population of the casinsition matrix for Step 1 of this
thesis’ framework.

As shown in Section 6.1.2, Figure 58 summarizestdbés utilized and types of
cost estimated by this model. The model has coemsncoded in MATLAB
(approximately 830 lines; outlined in orange in g 58) and in Microsoft Excel
(approximately 260 lines of which are in Visual Ba®utlined in green in Figure 58).
Once executed with a given set of inputs, the madal populate a full cost transition

matrix within 25 minutes on a standard desktop astemp
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Figure 58. Transition Cost Model for Human Space Eploration Configurations.

In terms of the cost components estimated by thosleh (i.e., development,
production, operations, program management anemsgsengineering, retirement, and
termination liability), this appendix is organizéa cover each in detail. Each of the
following sections addresses one of these compenanterms of (1) the core models
upon which the parametric estimates are basedreh{ additional logic built in to the
model to enforce consistency in assumptions. A&t ¢bnclusion of the appendix, a
validation is presented showing satisfactory ressatjainst a set of 121 cost transition

estimates independently generated by NASA cosysaisain 2010.

B.1. Development and First-Period Production Costs

The most complex segment of the transition cost @hasl the portion that
involves the estimation of development and firstiquok production costs. Although
conceptually separable, these development andpinsdd production costs are covered
within the same section in this appendix becaugé boe assumed to be distributed,

based on historical data [98],[132], over the etyirof a four-period (eight-year)
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development. Thus, estimating these costs invdllZesstimating the total development
and production costs and (2) estimating the distiolm of these costs among each of the
four development periods. In addition, logic i€luded to account for the fact that

existing components need not be re-developed.

B.1.1. Total Development and First-Period Productio Cost Estimation

Total development and first-period production c@stsbased upon core estimates
for design, development, test, and evaluation (DEY&nd theoretical first unit (TFU)
costs for each of the 25 architectural componeisted in Table 31. With a few
exceptions, these core DDT&E and TFU estimatedased directly upon the publicly-
available NASA JSC Spacecraft/Vehicle Level Costdelo(SVLCM) [133], which
outputs total DDT&E and TFU estimates as a functibesystem Earth weighenicie for
several different classes of space vehicles andwaae. Of particular interest for this
application are the liquid rocket engine, mannedcspraft, unmanned planetary
spacecraft, and launch vehicle stage classes. efjnations used to produce these
estimates (in $FY11M) are given in Eqgs. (B1) an@)(Eand thea andb coefficients for
these equations as a function of vehicle or hardwass are provided in Table 43. Note
that the TFU cost equation includesgay term accounting for the production of
multiple units; with the exception of two solid k&t boosters on the side of the assumed
heavy-lift launch vehicle, two satellites per conmeation/navigation satellite pair, and
two mobile power units included with the power gatien and storage units, the per-
TFU quantitygrry = 1. In all casesl.C is taken to equal unity (i.e., no substantial

learning effects, in part due to the findings & thalidation discussed in Section B.6).

b
Coprake = Appra e Wyehicle (B1)
(In LC +1j
_ br In2
CTFU - aTFU erFhUicIe TFU (BZ)
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Table 43. Coefficients for Egs. (B1) and (B2) asfanction of Vehicle/Hardware Class.

Vehicle/Hardware Class apptee  DppTeE aTtry brry

Liquid Rocket Engine 24.039 0.550 0.121 0.662
Manned Spacecraft 15.0890.550 0.435 0.662
Unmanned Planetary Spacecraft  10.152.550 0.674 0.662
Launch Vehicle Stage 5.951 0.550 0.129 0.662

The vehicle masses used as inputs to Eqgs. (B1)(Bayd for each individual
component of an architecture are provided in Taldle Note that in many cases, an
architecture component is itself comprised of mildtivehicles (e.g., multiple stages,
multiple manned spacecraft modules), the costs lmthvare combined to produce a
single DDT&E cost estimate and TFU cost estimatétie component.

Vehicle mass inputs are based on several sourddge crew launch vehicle
component is modeled after the LV 13.1 option (appnately the Ares 1) from the
ESAS report [29], and the heavy lift launch vehicdlenodeled after the LV 27.3 with
EDS option (approximately the Ares V) from the ESASport [29]. Masses for a
representative deep-space habitation module, mpufpose crew vehicle, lunar lander,
multi-mission pressurized rover, and chemical stage based on inputs from the NASA
Human Exploration Framework Team (HEFT) and Humarac®flight Architecture
Team (HAT) [134]-[136]. The Mars lander is basedprevious NASA design reference
architecture planning [137]-[138], and the unpreged rover, surface habitat, and ISRU
systems are each based on mass assumptions ghiEESAS report [29]. The logistics
module is based upon the ESAS report [29] withasgHto-dry-mass correction based on
the Italian Space Agency’'s Multi-Purpose Logistidodules [139]. The power
generation and storage unit includes a componesgdoapon the ESAS report’s surface
outpost primary power source [29] plus two mobitever units based upon Ref. [140].
The Mars Science Laboratory rover [141] is use@ aspresentative science rover, the

Mars Reconnaissance Orbiter (MRO) [99] is used aspaesentative communications
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and navigation satelliteand space suits are approximated as Apollo lspace suits
[143]. Engine masses are obtained from Refs. FL84]].

As noted by the two architectural components wahmass estimates in Table 44,
the DDT&E and TFU estimates for the the Commer€algo Launch Vehicle and
Commercial Cargo Logistics Module are not obtaifiedn SVLCM but rather from
representative  NASA investment in commercial cangghicle development [148]
(commercial launch vehicle development costs asaraed to be borne by the industry)
and for SpaceX Falcon launch prices and Dragoriligént-contract rates [149]-[150].

While the NASA JSC SVLCM provides total DDT&E an#&U costs, it does not
provide a breakdown of how those costs are spernyehy. To accomplish this for the
multi-period developments considered in the NASAl@mation, an accepted historical
model for the time spreading of program costs glediby the standar8pace Mission
Analysis and DesigliSMAD) reference [98],[132] for conceptual designdiscretized.
As Figure 97 shows, the resulting distribution o$ts among a four-period development
is unimodal, with about 19% of costs incurred ie first period, 41% in the second

period, 32% in the third period, and 8% in the thyreriod.

o o o o
] [ =N in

=
—

Fraction of DDT&E + First
Period Production Expenditure

1 2 3 4
Development Period

Figure 97. Normalized and four-period discretizeddevelopment and first-period
production cost distribution. [98],[132]

" Added to the communications and navigation s&etiost are two $100 million launch costs,
representative for MRO’s launch aboard an Atla0¥ f142].
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Table 44. Architectural Component Weight Assumptims and DDT&E and TFU Cost Outputs. [29],[99],[134]F150]

iqui Manned LIJDrI]::\T:flert]r::re ‘ Launch Vehicle Stage
Rochlgtl_JIIEdngine Dry et by SpaC_ecrez/ft Dry Weight (b) DOTaE orrLim
Dry Weight (Ib) Dry Weight (Ib) ($FY11M)
Architecture Components SC#L SC#2 SC#1 SC#2 Stage#l Stage#2 Stage#3

1. Crew Launch Vehicle (CLV) 188049 39572 6746.4 544.5

2. Heavy Lift Launch Vehicle (HLV) 221234 120617 31745 10670.0 1316.9

3. Commercial Cargo Launch Vehicle (CCLV) 0.0 56.6

4.  Multi-Purpose Crew Vehicle (MPCV) 4388.6 401.3

5. Commercial Cargo Logistics Module (CCLM) 846.0 76.8

6. Small Chemical Stage 1871.2 131.3

7. Medium Chemical Stage 2013.0 143.3

8. Large Chemical Stage 2411.7 178.2

9. Deep-Space Habitation Module 5580.4 535.9
10. Lunar Lander 11091 4222.0 302.3
11. Mars Lander 94578 6920.6 530.6
12.  Multi-Mission Pressurized Rover 2403.8 194.5
13.  Unpressurized Rover 485.7 28.4
14. Science Rover 608.8 93.0
15. Surface Habitat 4616.7 426.5
16. Logistics Module 1940.9 150.3
17. Power Generation and Storage Unit 25353 3573.5 848.5
18. ISRU Systems 7937 1417.0 257.2
19. Surface Extravehicular Activity (EVA) Suits 235.0 11.8
20. In-Space Extravehicular Activity (EVA) Suits 235.0 11.8
21. Supporting Communications/Navigation Satellites 712.3 424.0
22. RS-68-Class Engine 4740.1 70.0
23. J-2X-Class Engine 2728.6 36.0
24. RL-10B-2-Class Engine 818.2 8.5
25. AJ-10-Class Engine 527.9 5.0
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B.1.2. Development and First-Period Production CodEstimation Logic

The NASA JSC SVLCM and SMAD data provide the bunigliblocks around
which a basic logic can be structured to providet astimation for development and
first-period production, taking into account anyeqaxisting capabilities from the
starting-point configuration. This logic is summaad in Figure 98: Given a transition
from one configuration to another (each of whiclitself an architecture triplet), checks
are first performed to ensure that transition r@aesnot violated (for details, see Section
6.1.2). Provided that the transition is allowdag logic proceeds through each of the
twenty-five components listed in Table 31, checkiirngt to see if the component is
needed in the development architecture of the nemfiguration. If so, the previous
configuration is examined to ascertain whether ¢henponent existed in operations
memory, or in a just-completed phase of developn(grdapplicable). If so, DDT&E
costs need not be incurred since the componenalneady been developed; only first-
period production (TFU) costs are incurred and arappropriately according to the
particular period of development and the distribatin Figure 97. If the component does
not exist in previous memory, operations, or justipleted development, it must be
developed, and DDT&E costs are incurred as weld (@istributed according to Figure
97). If the component does not exist in the newelgment architecture, no cost is
incurred for development or first-period productioAll component DDT&E and TFU
and costs are drawn directly from the last two cwla of Table 44, and production
learning effects are assumed to be negligible & gdue to the findings of the validation
in Section B.6).

The basic consequence of this development andpimsdd production cost
estimation logic is that any components that existoperations, memory, or just-
completed development of a current configuratiorednenot be re-developed if

development in the next period calls for them. aAesult, this allows the modeling of
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cost benefits that may incurred as a consequendaccgmental development or the

selection of architectures with common componemtshiperiod to period.

Configuration Transition Input
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Figure 98. Summary of Development and First-PeriodProduction Cost Estimation Logic.

B.2. Program Management and Systems Engineering Gss

Added to the development effort cost estimateigstimate for accompanying
program management and systems engineering cosgd loa historical data. This cost
estimating relationship, based on the mean of hestbdata [151], adds 40.8% to the

DDT&E and TFU costs incurred in a given period tesystem in development and
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includes the sum of ground support equipment (GS#iggration, assembly, and
checkout (IACO), launch and orbital operations supgLOOS), program management

(PM), systems engineering and integration (SE&}] aystem test operations (STO).

B.3. Recurring Production Costs

Beyond development and first-period production goste transition cost model
estimates the costs of recurring production of afp@ns architectures. This production is
estimated directly from the component TFU cost$atfle 44 and is assumed to occur for
each component of the next operations architectuee to allow this architecture to
continue operation into the following period, ifetldecision-maker chooses to do so)
unless the development architecture is in the foartd final phase of development. As
in the case of the estimation of first-period pretthn, learning effects are assumed to be

negligible.

B.4. Ground and Mission Operations Costs

Also included in the transition cost estimatestarecosts of ground and mission
operations. These costs are estimated using thempé&ic NASA JSC Mission
Operations Cost Model (MOCM) [152], which takes a&s input system investment
(DDT&E + TFU) costciny and outputs an annual estimadgs annuaifor the sum of ground
and mission operations costs. Modified such th#& anchored to the Space Shuttle’s
$33.9 billion (in FY11 dollars; or $5.97 billion 972 dollars [153]) investment cost and
average annual $2.43 billion ground and missionratpmns cost (averaged from the
years 2001-2003 and 2007-2010 [154], with produciéativities excluded from the
average), the equation for this model, with inand outputs in millions of FY11 dollars,

is provided in Eq. (B3).

C = 0.676c7% (B3)

opsannual — inv
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To apply this model to a given configuration tréinsi, the DDT&E and TFU
costs of each component in the new operationstaotbre are summed and used as the
investment cost input to Eq. (B3). The annual apens cost output, shown for each
operations architecture in Table 45, is multiplBdthe two-year duration of the period
and output as a contribution to the total coshac¢ost transition matrix.

Table 45. Operations cost model inputs and output®r each
operations architecture.

Operations System Annual Per-Period
Architecture Investment Cost Operations Cost Cost,
(v SFY11B)  (Cops.annual SFY11B)  $FY11B

-1- Nothing 0.0 0.00 0.00
-2- LEO 16.6 1.39 2.78
-3- GEO Servicing 38.9 2.71 5.42
-4- Lunar Orbit 28.1 2.10 4.12
-5- Lunar Surface 45.8 3.08 6.16
-6- Sun-Earth L2 40.9 2.82 5.64
-7- Near-Earth Object 38.9 2.71 5.42
-8- Mars Moon 394 2.74 5.48
-9- Mars Surface 62.4 3.92 7.85
-10- Deep Space 43.5 2.96 5.92

B.5. Shutdown Costs

The final component of the transition cost model the NASA application
estimates costs in the event that a transitionsaetiis made that involves either the
retirement of a current operations architectureth@ termination of an architecture
program in mid-development. Though in generaleéhassts have seen the least attention
in the field of parametric cost modeling, considgrthem in a decision model helps to
simulate the effect of program inertia that is olable (at least anecdotally) in many

applications.

B.5.1. Retirement Costs

The first type of shutdown cost is incurred for gaments in the operations
architecture of a current configuration that ar¢ required at all in the operations

architecture of a subsequent configuration. Imssituation, it is assumed that a certain
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retirement cost is incurred in the coming periog.(eo shut down production lines, safe
remaining flight hardware, and close out contraci8jith limited data and no parametric
models available to NASA cost analysts to addréss ¢ost, for the purposes of the
present cost model this cost is modeled as a 8hurtigram-derived percentage of the
total MOCM operations cost estimate for the compbts@eing retired. That is, the total
investment cost of all components being retired igiven period are input in Eq. (B3),
and based on the total projected post-2011 SpactlsStexpenditures [109] as a
percentage of the average Shuttle annual groundrasglon operations cost, 29.2% of

the MOCM estimate is accounted as the applicaliengent cost.

B.5.2. Termination Liability Costs

The second type of shutdown cost is incurred foretbpment projects that are
terminated prior to reaching the final phase ofadgwment. This occurs in the case
where the development architecture for a presemfigiaration is not in the final phase of
development and the development architecture ®n#éxt configuration does not require
components from the present configuration. In sactase, component development
programs have been terminated premature to theiplstion, and government agencies
typically incur termination liability costs. Thes®sts cover contract requirements and
damages that accrue from the cancellation of cotstraAlthough practices vary with
specific programs (and again, no parametric moebaks), typical rules of thumb are that
10% of to-go program costs are bookkept terminaiainlity costs [155]-[156]. This is
the guideline used for the present transition cwosidel: In the situation where
development has been terminated, 10% of the rentppianned development cost-to-go
(i.e., the out-years in Figure 97) is incurred Ire tnext period for each terminated

component.
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B.6. Validation

To validate results of the NASA JSC SVLCM in theegent application, the
architectural component mass estimates of Tablerd4ised to replicate an 11 x 11 cost
transition matrix that was manually populated byeaperienced NASA JSC cost analyst
in August 2010 for 11 architectures (many of whiadre precursors to those considered
in Table 31) on four-year development timelinesrdeer-year period lengths. The only
common assumptions between the current transitmst ecnodel and the JSC cost
analyst’s estimation process are the definitionstred names and numbers of the
components in each architecture; cost estimatingnigues differ (in general, the JSC
cost analyst’s techniques can be regarded as higledty and non-parametric), and
vehicle-specific mass and other assumptions aepentently estimated.

Results from the JSC cost analyst account onlydémelopment and production
costs and assume no learning effects after praduct the first unit; as a result of the
latter assumption, the best match in results utitestandard learning curve paradigm is
found to occur under the assumption of negligiberhing effects. Also, the results from
the JSC cost analyst are provided in a normalipech,fand thus one explicit degree of
freedom exists in the scaling factor required tdamahe dollar-valued transition costs
from the present model to the normalized JSC estgnalo accomplish this, the value of
the units scaling factor is selected such thatstima of the squared errors between the
elements of the model-calculated cost transitiotrimmand the scaled JSC cost transition
matrix is minimized. The resulting element-by-edarh percent discrepancies (model-
predicted minus actual JSC estimate, normalizéld@SC estimate) are shown in Table
46, and the distribution of the absolute valuethese errors is shown in Figure 99. Note
that nearly 75 percent of these errors fall belo®%2 and all fall below 34.9%.
Considering the application of this cost model tmweonceptual phases of planning (and
the level of independence in the formation of thesst estimates), this level of

agreement is considered acceptable.
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Table 46. Discrepancies, expressed in percent, iveien the transition cost model with a

best-fit single scaling factor and a JSC cost anadys manual estimate for transition costs
among 11 reference architecturesPositive values indicate model overprediction rekato the
prediction of the JSC cost analyst. Both the madelanalyst agreed that the first column of the
matrix consists of zeros, and thus this is book&sf1% error rather than a divide-by-zero error.

Validation Architecture

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
Vil 0.0% -7.8% 252% -57% 13% 2.7% -3.6% 1.7% 23.0% 22.9% 11.9%
V2| 0.0% -34.9% 32.7% -6.3% -21% 0.7% -49% 1.7% 27.8% 27.7% 17.5%
V3| 0.0% -22.8% -0.3% -16.5% -19.8% -11.9% -22.0% -13.6% 13.5% 1.8% -0.9%
V4| 0.0% -29.6% 0.7% -17.6% -21.8% -13.0% -20.9% -12.0% 16.8% 17.3% 8.1%
V5| 0.0% -30.8% -0.3% -18.5% -27.0% -16.6% -25.5% -15.5% 16.0% 17.9% 7.0%
V6| 0.0% -30.8% 5.4% -16.8% -23.4% -19.5% -29.5% -18.4% 18.2% 20.2% 8.0%
V7| 0.0% -22.8% 5.4% -15.0% -19.7% -16.1% -29.5% -18.4% 18.2% 18.5% 8.0%
V8| 0.0% -22.8% 5.4% -15.0% -19.7% -16.1% -29.5% -18.4% 18.2% 18.5% 8.0%
V9| 0.0% -22.8% -0.3% -16.7% -23.2% -16.1% -29.5% -18.4% 15.4% 15.8% 6.2%
V10| 0.0% -22.8% -0.3% -17.5% -23.2% -16.1% -29.5% -18.4% 15.4% 16.0% 6.3%
V11| 0.0% -21.7% 0.7% -9.2% -22.6% -15.6% -28.9% -17.9% 16.0% 16.5% 14.9%

Validation Architecture
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Figure 99. Histogram of absolute value of discrepeies from
Table 46. Vertical gray lines indicate locations of 075", 9",
95" and 108 percentile errors.

It should further be noted that an in-depth dismussvith the JSC cost analyst

who produced the full set of 121 manual estimatelcated that different equipment

commonality assumptions had been used in the gpsfiarchitectures destined for Mars
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(in the validation here, this corresponds to aedtires V9, V10, and V11). Motivated
by this and the fact that the V9, V10, and V11 ouils of Table 46 have development
and production costs that are systematically owenated by the present model, it is of
some relevance to consider solving for two (insteddjust one) best-fit scaling

parameters. Applying the first parameter to thstfeight columns and the second
parameter to the last three columns produces thepeecent discrepancies in Table 47
and the absolute value distribution in Figure 10Rote that the new distribution in

general has substantially smaller errors; for eXapgbout 95 percent of transition cost
matrix elements agree within 20%. This suggestnawore strongly that the present
transition cost model is appropriate for the comgalpphases of program planning for

which it is used in this thesis.

Table 47. Discrepancies, expressed in percent, iveen the transition cost model with two
best-fit scaling factors and a JSC cost analyst’s amual estimate for transition costs among

11 reference architectures.Positive values indicate model overprediction nefato the
prediction of the JSC cost analyst. Both the madelanalyst agreed that the first column of the
matrix consists of zeros, and thus this is book&sf1% error rather than a divide-by-zero error.

Validation Architecture

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
V1| 0.0% 4.2% 41.4% 6.6% 145% 16.1% 8.9% 14.9% 8.1% 8.0% -1.7%
V2| 0.0% -26.5% 49.9% 5.9% 10.6% 13.8% 7.5% 14.9% 12.3% 12.2% 3.2%
V3| 0.0% -12.8% 12.7% -5.7% -9.3% -0.4% -11.9% -2.4% -0.2% -10.6% -13.0%
V4| 0.0% -20.5% 13.8% -6.9% -11.7% -1.7% -10.6% -0.6% 2.7% 3.1% -5.0%
V5| 0.0% -21.8% 12.7% -7.8% -17.5% -5.7% -15.9% -46% 1.9% 3.6% -6.0%
V6| 0.0% -21.8% 19.1% -5.9% -13.4% -9.0% -20.3% -7.8% 3.9% 5.6% -5.1%
V7| 0.0% -12.8% 19.1% -3.9% -9.2% -52% -20.3% -7.8% 3.9% 4.1% -5.1%
V8| 0.0% -12.8% 19.1% -3.9% -9.2% -5.2% -20.3% -7.8% 3.9% 4.1% -5.1%
V9| 0.0% -12.8% 12.7% -5.8% -13.2% -5.2% -20.3% -7.8% 1.4% 1.8% -6.7%
V10| 0.0% -12.8% 12.7% -6.7% -13.2% -5.2% -20.3% -7.8% 1.4% 2.0% -6.6%
V11| 0.0% -11.5% 13.8% 2.6% -12.6% -4.7% -19.7% -7.2% 1.9% 24% 0.9%

Validation Architecture
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Figure 100. Histogram of absolute value of discregmcies from
Table 47. Vertical gray lines indicate locations of 075", 9",
95" and 108 percentile errors.

B.7. Summary

One assumption that this thesis makes is that proppate cost model exists via
which a cost transition matrix may be populatedowever, in many applications, this
may not be true, and substantial work may needctwiroto create such a model. This
appendix has described the construction of a tianstost model for the human space
exploration example discussed in Chapter 6 of thissis. With the purpose of
converting an input of two configurations (a “fromfonfiguration and a *“to”
configuration) to a one-period transition coststparticular model includes estimation of
the costs of development, production, operatiomegnam management and systems
engineering, retirement, and termination liabilityAlso included in this appendix has
been a discussion of the results of a validatioaires independently-generated NASA

transition costs.
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It should be mentioned that several challenges weceuntered in the creation of
this model. In particular, while parametric costduals for space vehicle development
and production have received substantial attemtidhe space industry, few such models
were found for other relevant costs. For exammepmmended future investigations
would include reexamination of the NASA MOCM’'s gtture that uses system
investment cost as a sole input for the estimatiboperations costs. Such a structure
does not allow the possibility, for instance, thadystem decision-maker can implement
design options that result in high development lanwd operations costs or vice versa.
While far more detailed operations cost models xist €for example, the Exploration
Architecture Operations Cost Model developed byNW&sA Jet Propulsion Laboratory
[157]-[158]), the time, personnel resources, amgdanumber of data inputs required to
produce an estimate using a detailed costing teid thot to be conducive to rapid
parametric analysis. A need appears to exist fiadedity level between these extremes
in operations cost modeling. However, perhapsntbst obvious gap in cost modeling
capability exists for shutdown costs, both in tewhsetirement and termination liability
costs. In the present cost model, both were estonaased on limited historical data and
rules of thumb. Clearly this is an area in needutdire work for the cost estimation
community, as these high costs (or avoidance aktligh costs in favor of alternatives)
produce an inertia to continue with current progaimt is not negligible in decision-
making.

As developments continue in the areas of cost asbm identified above,
relevant components of the cost model developed t@n be updated and re-applied to
the analysis in Chapter 6 of this thesis to comtilpumprove the quality of human space
exploration system analysis and decision-makinger@ll, the capabilities provided by
this transition cost model are intended to permitn@ation of the elements of the cost
transition matrix required by Step 1 of this thesiamework to a level of accuracy and

comprehensiveness appropriate for conceptual desidmprogram planning.
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APPENDIX C

EXPERT INPUTS FOR HUMAN SPACE EXPLORATION
STOCHASTIC SYSTEM DECISION MODELING

Two assumptions inherent to the framework propaseithis thesis are that (1)
meaningful quantitative figures of merit (or surabg figures of merit) exist for the
decision problem of interest and (2) it is posstoleneaningfully specify the probability
transition matrix of the underlying Markov chainr fdemand environment evolution.
While step 1 of the framework relies only upon tk&atively mature discipline of cost
estimation, the remainder of the framework cannet dpplied without these two
elements. The following appendix describes a subisil effort undertaken in the course
of this work to address and obtain information @stimates for these elements in the

context of the NASA human space exploration apptica

C.1. Survey Description

The two assumptions above are inherently relatedthto preferences and
perspectives of the decision-making body. For gtanthere is no single objectively
“correct” figure of merit. In the case of the Markchain probabilities, although they
may be considered objective quantities when endugtorical data exists, in many
applications the lack of sufficient historical dataust be substituted with expert
estimates.

To address these two assumptions for the NASA eafxm application, a survey
was distributed to a group of 21 personnel withssatitial experience in the field of
human space exploration. This group was intendesintulate the opinions, beliefs, and
preferences of a senior NASA decision-making bodg.detailed in Table 48 and Figure
101, these individuals represented a total of 8 ANA&nters plus one external
organization; particularly high representation vaasorded to Johnson Space Center due

to its specialization in human spaceflight acteati
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Table 48. Survey Invitee Affiliations.

No. of Percent
Invitees  of Total

Headquarters (HQ) 2 9.5%
Johnson Space Center (JSC) 9 42.9%
Marshall Space Flight Center (MSFC) 1 4.8%
Langley Research Center (LaRC) 2 9.5%
1
1

NASA Center Affiliation

Glenn Research Center (GRC) 4.8%

Goddard Space Flight Center (GSFC) 4.8%
Ames Research Center (ARC) 2 9.5%
Jet Propulsion Laboratory (JPL) 2 9.5%
Non-NASA 1 4.8%
TOTAL 21  100.0%

Figure 101. Geographic view of invitee NASA centeaffiliations.

The survey was distributed to these invitees viaeeruitment E-mail that
contained a link to a central website (http://wwexibility.gatech.edu). At this website,
invitees found instructions on downloading andrlatéomitting the survey in the form of
a Microsoft Excel file. The survey itself askedtmapants to consider NASA’s need to
decide which space systems to develop to meet tmtdature human spaceflight
mission demands or expectations. After documentimgr consent to voluntarily
participate in the study, participants were askedgrovide specific inputs on (1) the
relevance of various figures of merit and (2) tileelly evolution of future mission
demands. The estimated time required to comphetestrvey was 55 minutes, and upon
completion the participants were directed to sulith@ir completed Excel file through an

anonymous online web form at http://www.flexibilggtech.edu/submit.php.
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As detailed in Table 49, the process of obtainimg dppropriate human subjects
research training, applying for the needed web domand preparing the survey
materials began in April 2011. The intended fivaision of the survey was submitted to
the Georgia Institute of Technology Institutionadvikw Board (IRB) on May 31. The
anonymity of the survey permitted the protocol edpproved and classified as exempt
from further IRB review on June 23. Survey invtas were sent via E-mail on June 27-
28, a reminder E-mail was sent on July 12, andeyisrwere compiled for analysis on

July 15.

Table 49. Survey Activity Timeline.

Date Event
April 12, 2011 CITI Human Subjects Training Complét
April 19, 2011 Survey Domain Assigned (http://wwexibility.gatech.edu)

May 15, 2011 First Draft of Survey and Website Ctetqul
May 31, 2011 Survey Protocol Submitted to GeorgiahilRB
June 23, 2011 Protocol Approved (Protocol No. HR)17
June 27-28, 2011  Survey Invitations Sent

July 12, 2011 Survey Reminder Sent

July 15, 2011 Survey Deadline

The recruitment and reminder E-mails to participaate copied below, as are
screenshots from the submission website (Figure a@® Figure 103) and the survey
Excel file (Figure 104 through Figure 107). Alswluded (Figure 108 and Figure 109)
are screenshots of dialog boxes intended to gsaisitipants in filling out the demand
evolution section of the survey. The dialog boxrigure 108 is activated upon clicking
the “Use Wizard Assistance for Part I” button igéiie 106, and the dialog box in Figure
109 is activated upon clicking the “Use Wizard Assince for Part [I” button in Figure
106. Supporting these dialog boxes and Excel shaet approximately 700 lines of
Visual Basic source code. The survey downloadsamiission website is supported by

approximately 600 lines of HTML and PHP source code
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Recruitment E-mail (June 27-28)

Subject: Expert Inputs for Human Space Exploration Stochastic Decision Modeling

From: Jarret Lafleur (jarret.m.lafleur@gatech.edu)

Greetings,

Based on your experience and expertise in NASA human spaceflight program planning and systems
engineering, | would like to formally invite you to take part in a survey being conducted by the Space
Systems Design Laboratory at the Georgia Institute of Technology. This survey asks you to consider
NASA's need to decide which space systems to develop in order to meet potential future human spaceflight
mission demands or expectations. In particular, you will be asked about the relevance of various figures of
merit as well as the likely evolution of future mission demands. The results collected will be used toward an
example application in the development of a new approach to integrating flexibility in space system design

decisions.

Personally identifiable information is not collected in the course of the survey, and your identity will not be
associated with any results you submit. The total time to complete the survey is estimated at 55 minutes;
note, however, that you will be able to save your work for completion among multiple time increments if

necessary.

Your participation would be very much appreciated. If you choose to participate, please navigate to the

following Internet URL by July 15: http://www.flexibility.gatech.edu/

Thank you in advance. If you have any questions, please feel free to contact me at

jarret.m.lafleur@gatech.edu.

Sincerely,

Jarret Lafleur

jarret.m.lafleur@gatech.edu

Ph.D. Candidate
School of Aerospace Engineering

Georgia Institute of Technology
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Reminder E-mail (July 12)

Subject: Reminder: July 15 Deadline for Human Space Exploration Decision Modeling Survey

From: Jarret Lafleur (jarret.m.lafleur@gatech.edu)

All,

About two weeks ago, you may have received an invitation to participate in a survey regarding human space

exploration figures of merit and the evolution of possible exploration mission demands.

To those who have already submitted survey responses, thank you very much. For those who are
interested in participating but have not yet submitted a survey, your response would be much appreciated by
the end of the day this Friday, July 15. While the survey submission site will remain up and running, surveys

received after this date are not guaranteed to be incorporated into the results.
Personally identifiable information is not collected in the course of the survey, and your identity will not be
associated with any results you submit. The total time to complete the survey is estimated at 55 minutes,

and you will be able to save your work for completion among multiple time increments if necessary.

If you choose to participate, please navigate by July 15 to: http://www.flexibility.gatech.edu/

Thank you in advance. As before, if you have any questions, please feel free to contact me at

jarret.m.lafleur@gatech.edu.

Sincerely,

Jarret Lafleur

jarret.m.lafleur@gatech.edu

Ph.D. Candidate
School of Aerospace Engineering

Georgia Institute of Technology
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- |
Gegroia . Space Systems Design Lab

Expert Inputs for Human Space Exploration Stochastic Decision Modeling

Thank you for volunteering to fill out this survey. Please download the survey file from the link below. After downloading the
file, please open it {with macros enabled) and follows the instructions starting on Worksheet #1 (Consent Form).

Iﬂ Survey Excel File (292 KB)

The instructions will lead you through four worksheets: (1) Consent Form, (2) Figures of Merit, (3) Demand Evolution, and
{41 Finish. Once complete, the final worksheet will lead you to the anonymous submission site at

http: Senened flexibility gatech edufsubmit php. Should you choose to complete this survey, your submission is appreciated by
July 15, 2011,

Flease contact Jarret Lafleur at Jarret. m lafleuri@gatech edu with any guestions or comments.

Geqdh SSDL

Geargia Tech Space Systems Design Labaoratony

Figure 102. Screen Shot of Main Survey Website (ipt//www.flexibility.gatech.edu).

Expert Inputs for Human Space Exploration Stochastic System Decision Modeling. Thank you for taking the time to fill out
this survey, The final step is the following anonymous online submission, Once you have completed the survey, please upload the
Excel file here.

Survey Upload *

Browse..

Please upload your completed Excel survey here,
Security Code: *

4682
Reload Image

Figure 103. Screen Shot of Survey Submission Wetesi
(http://www.flexibility.gatech.edu/submit.php).
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Georgia Institute of Technology
Project Title: Expert Inputz for Human Space Exploration Stochastic System Decizion Modeling
Investigators:  Jarret M. Lafleur, Dr. Joseph H. Saleh

[RESEARCH CONSENT FORM 1

“ou are being asked to be a volunteer in a rezearch study.

PURPOSE

The purpose of this study is to gather expert-opinion inputs on two aspects of human =pace exploration
architecture planning: guantitative figures of merit and the evolution of future mission expectations. I is intended
that your survey rezponses wil be among a =&t of anywhere between 5 and 25 total rezponges. You have been
identified to take part in thiz 2urvey due to your particular experience and expertize in NASA human szpaceflight
program planning and systems engineering.

PROCEDURES
If you decide to be in this study, your part wil invelve two segments of a survey:
(1) a =egment to understand the relative importance you place on several quantitative human space
exploration figures of merit (approx. 10 minuteg), and
(2} a segment to understand your opinion on the likely evelution of future human exploration mis=ien
expectations (approx. 45 minutes).
Thiz study's total estimated completion time iz 55 minutes. Please note that thiz 55 minutes need not be
consecutive; since this survey iz self-contained in a Microsoft Excel file, yvou are welcome to ave your work and
return to it in multiple increments.

RISKS/DISCOMFORTS
The rizks and discomforts involved in thiz study are no greater than tho=e invelved in daily activities such as
rezponding to E-mail or rezponding te an online survey.

BENEFITS

“fou are not likely to benefit directly from joining thiz study. However, your inputs will contribute to the
development of a methoed for integrating flexibility considerations into =pace system design decizsions, with
possible influence on future NASA human space exploration architecture decisions.

COMPENSATION TO YOU
Mo monetary or other form of compenzation is being offered for your participation in this study.

CONFIDENTIALITY
The following procedures will be follewed to keep your personal information confidential in this study:
(1) Minimal infermation iz collected about your identity. Only relevant information =uch as your number
of years of experience in aerozpace and NASA projectz is reguested. The survey iz submited
anonymouslhy via an official website such that yvour name, contact information, and other personal
identifiers are not recorded.

(2) The data collected from this study will be stored at all times on password-protected computers.
Only the study leads and relevant system administraters will have access to the data.
“ou =hould be aware, however, that the survey i= not being run from a "secure” hitps server of the kind typically
used to handle credit card tran=sactions, =0 there iz a =mall possibility that responses could be viewed by
unauthorized third parties (e.g., computer hackers). Alzo, in general the web page =oftware wil log the IP
addrez=s of the machine you uze to acceszs thiz page, e.g.,102.403.506. 807, but otherwize no other information
will be stored unlezs you explicitly enter it.

To make sure that this research iz being carried out in the proper way, the Georgia Institute of Technology IRB will
review study records. The Office of Human Research Protections may alzo look at study records.

COSTSTO YOU
This study involves no menetary cost to you.

IN CASE OF INJURY/HARM

If you are injured as a result of being in this study, please contact Dr. Joseph Saleh at (404) 385-
G711. Meitherthe Principal Investigator nor Georgia Institute of Technology have made provision for
payment of costs associated with any injury resulting form paricipation in this study.

SUBJECT RIGHTS

= Your paricipation in this study is voluntary. You do not have to be in this study if you dontwant to be.
- You have the right to change your mind and leave the study at any time without giving any reasaon,
and

- The file containing this electronic consent form is yours to keep.

= You do not waive any of your legal rights by signing this consent form.

QUESTIONS ABOUT THE STUDY OR YOUR RIGHTS AS A RESEARCH SUBJECT

- Ifyou have any questions about the study, you may contact Mr. Jarret M. Lafleur at (401) 474-1879.
- If you have any questions about your rights as a research subject, you may contact Ms. Melanie
Clark,

Please check this box if you have read {or have had read to you) the information given
in this consent form, and if you would like to be a volunteer in this study.

Save and Continue to Survey

g & e mrantaly Sase e e amd Sedect (e mea ok sheel 11 - Figunes of Menith

Figure 104. Consent Form (Worksheet #1) from SurweExcel File.
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Human Space Exploration Quantitative Figures of Merit

Thank you in advance for taking the time to fill out thiz weluntary survey. The results collected wil be used
toward an example application in the development of a novel approach to integrating flexibility in =pace system
design decizions. In thiz survey, you are azked to consider a =cenario in which NASA must decide which
systems to develop in a given time period in order to meet potential future human spaceflight mizsion needs or
demands. In particular, we are interested in understanding what you feel are important and unimportant
quantitative figures of merit.

Please indicate your approximate number of years of experience in the following areas:
1. “ears of experience in the asrospace industry 30| years
2. ears of experience at NASA 30| vearz
3. Years of experience in systems engineering activities 28| wyears
4. Years of experience in human spaceflight activities 30| vears

Please indicate the relative importance (to you) of each candidate figure of merit with respect to
human space exploration architecture evaluation.
Mote that we are asking for the magnitude but not the "direction” of the importance. For example, if you believe

it iz of high impertance for Total Integrated Program Costs to be low and of high importance for Mumber of Crew-
Dayz in Space to be high, both would receive the =ame "High Importance” rating.

Megligibile Low Moderate Hiagh Faramount
Importance  Importance  Importance  Importance  Importance

wn

. Integrated Program Lifecycle Cost (@] (@] [} ® C

@

Total Spending on Development Activities

~

Total Spending on Production Activities

w

Total Spending on Operations Activities

Costz Previouzly Incurred to Develop Systemsz
not useful toward Current Mission

w

Costs Saved by Reusing Existing Systems for

10. Current Migsion

=

Percentage of Time that Mis=ion can be

M. Achieved with Available Systems

42, Date of Firgt Miz=ion to Leave LEO

13. Time between Missions

14, Time between Viziting New Destinations

-
o

.. Maximum Distance Travelled away from Earth

16. Number of New Destinations Visited

Number of Decadal Survey Science Objectives

7. Fulfilled

Mazz of Extraterrezstrial Material Samples

12 Returned to Earth

Number of Crew-Days Spent at Mizzion

19. Destinations

20.

=

MNumber of Crew-Days Spent in Space

Number of Crew-Days Spent away from Low
Earth Orbit (LEQ)

oo o000 o 0|0 00| 0|0 0000
o/o|o|o|0o oo |O0| 0D |O0 |0 |® |00
/0 @ @ ® ® O ® O 0O 0| ® O 0O 0|0
@ ® oo/ 0 o/ ® |0 @ | ® |0 0|00 @
o/o/ oo o oo |0 00| ® |0 0O ® OO0

21

Additional Comments?

Save Save and Continue to Next Section |

s Flease Sawe mamiai s Sz mrantall and selecd the meny ok stheet (7 - Semand Soitiond

Figure 105. Figures of Merit Section (Worksheet #2from Survey Excel File.

299



Evolution of Human Exploration Mission Expectations

Part I: Expected Timescales Use Wizard Assistance for Part | (rec i] b iady Aacs M wsens must

B vt el ey ety

Plzase consider the evolution of possible future mission demands for human exploration of
the inner =olar system. For each element of the folowing table, please estimate the amount
of time you might expect demand for each mizsion destination to last, depending on whether
the mission iz or is not being achieved.

For example, conzider the fifth row, firzt column. Here, vou are asked, "Given that current
human exploration mizzion demand iz for the Lunar Surface and that this demand is
currently being fulfilled, for how many vears would vou expect thiz demand to last before
it zhifts to another?”

For how many years would you expect this demand to last,
Given that the current before it shifts to another?
mission expectation Scenario 1: Scenario Z:
(or demand) is for: This mission demandis | This mission demand is NOT
currently being fulfilled. currently being fulfilled.
1. Nothing 4llyears 4|years
2. LED 4|years 4|years
3. GEO Senvicing 4|years 4|years
4. Lunar Orbit 1|years 3|years
E. Lunar Surface 10|years 12|years
§. Earth-Moon L1 3|years 6|years
7. Sun-Earth L2 3|years 5|years
8. Venus Orbit 2|years 4|years
5. Near-Earth Object 4|years G|years
10. Mars Orbit 4|years 6|years
11. Martian Moon 4|years 6|years
12. Mars Surface 20|years 25|years

Use Wizard Azsistance for Part Il {rec

Part Il: Transition Pr wil not erase previous work)

Please consider the evolution of possible future mission demands for human exploration of the inner solar system. For each element of the following matrix,
please estimate the approximate probability that the next mission demand wil be for the destination in the column, given that the current mission demand is the
destination in the row and given that this demand is currently being achieved.

For example, conzider the fifth row, second column. Here, you are asked, "Given that current human exploration mizzion demand ig for the Lunar Surface and
that this demand is currently being fulfilled, how likely iz the next mizzion demand to be for LEO?" If done properly, each row should add to 100%, but you
do not need to spend an excessive amount of time trying to meet this constraint precisely.

To
Mizzion Near- -
. GEO Lunar Lunar Earth-  Sun-Earth ‘enus . Martian Marz

Demand Lz LEO Servicing Orbit Surface  Moon L1 L2 Orbit g:;; Mars Orbit Moon Surface
Nothing % 50% o5 0% o5 20% 5%, 5% 5%

LED 50% % 9% 9% 20% % % 2%

GED Servicing 0% 5% 5% 5% 10% % % %

z Lunar Orbit % 80% 10% 10% 10% 10% 2% % %
§ Lunar Surface % 5% 5% RS 10% 10% 20% 20% 20% 70%
E| Earth-Moon L1 5% 10% 10% 10% 0% 10%| 10% 10% 5% 5% 5%
< | SunEarthlL2 10% 10% 10% 10% 10% 100 R 10% 20% 5% 5% 5%
E| enus Orbit 10% 10% 10% 10% 10% 10% 0 N 30% 5% 5%
2| Near-Earth Object 10% 10% 10% 10% 10% 10% 10% 10% 30% 30%
Wars Orbit 10% 10% 10% 10% 10% 10% 10% | 10% 50% B0%
Martian Moon 10% 10% 10% 10% 10% 10% 10%] 10%)| 10% 10% 50%
Mars Surface 10% 10% 10% 10%] 10%| 10% 10%] 10% 10%] 10% 10% ey

For each element of the next matrix, please estimate the approximate probability that the next mission demand will be for the destination in the column, given that
the current miszion demand iz the destination in the row and given that this demand iz NOT currently being achieved.

To
Wigzion Near- 5
- GEO Lunar Lunar Earth-  Sun-Earth ‘Wenus . Martian Mars
Demand LT LEo Servicing Orbit Surface  Moon L1 L2 Orbit g:]:; Mars Orbit Moon Surface
Nothing s % 5% % 2% % 2% % 1% 1%
LEQ 10% 5% ry] 2% 0% s 2% %
Z'| GEO Servicing 50% 5% 5% 5% 5% ) 2% %
E Lunar Orbit 5% 50% 5% 5% 5% 5% ) 2% %
£ | Lunar Surface % 5% RS 10% 10% 10% 5% 5% 5%
=T Earth-Moon L1 5% 10% 10% 10% 10% 10% 10% 10% 5% 5% 5%
5| Sun-garth L2 10% 10% 10% 10% 10% A 10%
< Venus Orbit 10% 10% 10% 10% 10% 10% 10%
£ | MearEarth Object 10% 10% 10% 10% 10% 10%: 10%
E Wars Orbit 10% 10% 10% 10% 10% 10% 10%
Martian Moon 10% 10% 10% 10% 10% 10% 10%
Mars Surface 10% 105 10% 10% 10% 10% 10%

Additional Comments?

Save Save and Continue

Mises: Flease save manvall

M Fawe mramilly e select be et workaheet {4 - S

Yirardmol avadiatie Aoy Maes
Al e mat S o iz
AT el

Figure 106. Demand Evolution Section (Worksheet #3rom Survey Excel File.
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Final Submission

Thank you for taking the time to fill out this survey. The final step is to submit thiz Excel file anonymously online. To do
20, please follow these steps:

(1) Save this file. Save Adac: ucers Flease £ave manal

(2) Go to the following URL: hitp:ifve e, flexibility. gatech. edu/submit. php

(3) At the website, browse to =elect thiz workbook:
| Dr\Documents and Settings\jmlafleu\My Documents\Projects\Flexible Path Analysis\Modeling\Performance\Survey

(4} Type the security verification code on the website, close this Excel file, and click "Submit™.

If you encounter any problems, pleaze contact Jarret Lafleur at (401) 474-1879 or jarret. m.lafleur@gatech.edu. Thank

vou again for your time.
.
(SSDL

pace Systems Design

Labrakary

Figure 107. Final Submission Instructions (Workshet #4) from Survey Excel File

Part |I: Expected Timescales

Given that the current mission expectation {or demand) is for Mars Surface
and given that this mission demand is NOT currently being fulfilled,
For how many years would vou expect this demand ko last, before it shifts bo anather?

our Estimate: 25 years Mext ‘ Previous ‘ Finish ‘

Figure 108. Dialog Box for Part | of Worksheet #3.

Query Sequence

Given that the current mission demand is for Earth-Moon L1,
what is the approximate probability that the next mission demand will be For the Following,
given that the current mission demand is being achieved?

. GED Lunat Lunat Eatth- Sun- Wenus Mear-Earth  Mars Mattian Mars
Mothing LEC Servicing  Orbit Sutface Moonll  Eathlz  Orbit Ohbject Orhit Maon Sutface

[ 5% [ w0% | w% [ wi|a%] 0% [ 0% w%|[ w0 s%[ s% | 5%

Probabilities of Mext Demand given current demand For

JJJJJ BN mm

Mathing GED Lunat Lunat Eatth- Sun-Earth Wenus Mear-Earth Mars Mattian Mars
Servicing bt Sutface Moon L1 L2 bt Object bt Moan Sutface

And what is the approximate probability that the next mission demand will be For the Following,
given that the current mission demand is NOT being achieved?

. GED Lunat Lunat Eatth- Sun- Wenus Mear-Earth  Mars Mattian Mars
Mothing LEC Servicing  Orbit Sutface Moonll  Eathlz  Orbit Ohbject Orhit Maon Sutface

[ s% [ w% [ w% [ w% | w%| 0% [ w% [ 0w | 0% | s%][ 5% [ 5%

Probabilities of Mext Demand given current demand For

«I0 B Bilcmm

Mathing Lunat Lunat Eatth- Sun-Earth Wenus Mear-Earth Mars Mattian Mars
Semclng bt Surface Maon L1 L2 bt Chject bt Moon Surface
et ‘ Presious ‘ Finish ‘

Figure 109. Dialog Box for Part Il of Worksheet #3
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C.2. Results

In total, nine responses were received. The reshdre presented in aggregate
form, reveal several interesting insights for hunspace exploration planning. This
section presents the results in the order in wthely were requested of the participants,
starting with an analysis of participant experiermentinuing with an analysis of figure
of merit importance, and ending with the analysithe expert-elicited demand evolution

Markov chains.

C.2.1. Participant Experience

To understand the experience level of the surveyggaants, four questions were
asked regarding their years of experience in vari@aneas. Aggregate responses in the
form of histograms are shown in Figure 110. Overén each histogram is a box and
whisker plot, where the yellow box indicates théeiquartile range and the whiskers
extend to the minimum and maximum values of theugtagpn. The location of the
median is indicated on each plot by a vertical lbliree, and the mean is indicated by a
vertical gray line. The maximum discrepancy betwtde means and medians agreed in
all cases within 9%, suggesting symmetry to th&itigions. In summary, the average
survey participant possessed about 30 years ofriexpe in the aerospace industry, 25
years of experience at NASA and in human spaceflattivities, and 20 years of

experience in systems engineering activities

" Particularly notable variability exists in termEparticipants’ systems engineering experience,

which shows an interquartile range of 18.8 years.
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Years of experience in the aerospace industry
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5] = -
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Years of experience in human spaceflight activities
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hiedian = 26 yrs, |1QR = 9.5 yrs

=229 yrs, == 863 yrs
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45t . [ I — 7
0 a 10 15 20 25 a0 39 40
Years

Figure 110. Distributions of Participant Years ofExperience.

Figure 111 shows a multivariate plot to illustrabmy existing pairwise
correlations between participant years of expedenceach of the categories in Figure
110. Each dot on each graph indicates one paatitgpset of experiences, and the gray
line indicates the best-fit least-squares regresdioe through the point. The
corresponding linear equation and coefficient dkdaination (R?) value is indicated in
the upper left corner of each graph. In most casesrelations are weak though
generally positive (as expected). The notable gti@e is the correlation between years
of experience at NASA and years of experience imdw spaceflight activities, which
has an R? value of 0.74 and suggests that the gavgrarticipant has nearly 9 years of

human spaceflight experience for every 10 yealdASA experience. The implication
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of this correlation is that survey participants hwit NASA were successfully targeted
from within the human spaceflight domains of exjgert

Also shown in Figure 111 are four large dots ofedént colors which will have
bearing on later analysis. If it is accepted thatideal participant, given the information
available from the survey, would have the maximumoant of experience (here, 40
years) in each category, then a set of experts matikdominated sets of experience can
be attained by applying a Pareto filter. In thelmation of this filter, each participant is
compared with each other participant. If, in thesmparisons, one participant has fewer
years of experience in every category than a sedbed the first is filtered out and does
not become part of the non-dominated set of expérte result is a set of four experts,
three of whom are part of the set because theyepsghe maximum years of experience
in one or more categories. The fourth represemsnadominated balance of experience
(35 years in the aerospace industry, 20 years &@A/A years in systems engineering,
and 23 years in human spaceflight). While the vaajority of the analysis presented
will aggregate the inputs @l survey participants, a small portion of the analysill
examine differences between the overall resultsthose from the non-dominated set of

experts.
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Figure 111. Multivariate Plot lllustrating Years of Experience Correlations.

C.2.2. Figures of Merit

The first major section of the survey requested gaaticipants rate the relative
importance of 17 candidate figures of merit for lmmspaceflight architecture

evaluation. For each figure of merit, participamtere given the option to rate its

importance on a 5-level Likert scale with levelsdied “Negligible”, “Low”, “Medium”,

“High”, and “Paramount”. The aggregate results gtilewn with box-and-whisker plots

in Figure 112. In this figure, each figure of mesiassociated with a single yellow box
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and set of black whiskers. Each box representstbequartile range and each whisker
extends to the minimum and maximum range of theaieses. The median responses are
indicated by vertical red lines, and the meandradieated by vertical gray lines; in cases
where no gray line is visible, the mean responggeistical to the median.

Several interesting observations can be made riegarttiese results. First,
although the responses for the first four cost iIweossess varying interquartile ranges,
all have a median rating of High importanceThe fifth metric (Costs Previously
Incurred to Develop Systems not Useful toward Gurhkdission) is scored consistently at
Low Importance, which is reasonable given that ihisa sunk cost metric. In this
context, however, it is interesting that the congalby similar sixth metric (Costs Saved
by Reusing Existing Systems for Current Missiorpred at High Importance in the
median. It is also notable that the final five nest, themed around quantifiable science
performance and crew productivity and time metreod)ibited substantial variability of
expert opinions. Interquartile ranges for all fig€ these metrics are greater than one
rating level, for example, the range of responses Mass of Extraterrestrial Material
Samples Returned to Earth metric spans the entiadalle range of Negligible to
Paramount.

To analyze the figure of merit results further, Ufg 113 summarizes the
interquartile ranges and median ratings from Figlt8. In this plot, each figure of

merit is represented by a single point, and tharégof merit identification number(s)

" One puzzling detail regarding the cost metricnggiis one participant’s rating of Integrated
Program Lifecycle Cost as Low importance and theiothree cost metrics as Moderate or High
importance. While this participant left no comnwsergxplaining his or her rationale, the
implication for this response would seem to be th&t sum of development, production, and
operations costs is less important than any ofthedividual costs (colloquially, the whole is less
important than any of its parts). However, thiswiappears to be an outlier in the sense that all
other participants rated Integrated Program LifezyC€ost at least as important as the least-

important component cost.
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corresponding to each point are listed below andheright of each. Of particular
interest in this figure are metrics with high medratings and low interquartile ranges, as
these characteristics indicate metrics that aeglras high importance consistently among
the survey participants. Figure 112 shows thatniaimum importance rating (4, or
“High”) and minimum interquartile range (0.25) coite for four figures of merit:
Integrated Program Lifecycle Cost, Total SpendimgRyoduction Activities, Date of
First Mission to Leave LEO, and Time Between Missio Thus, in summary these
results support the prioritization of these fouufies of merit over others within the 17
metrics considered.

To complete the discussion of the figures of meeittion, it should be noted that
one of the nine participants left remarks in thedld&ional Comments” portion of this
section (see the bottom of Figure 105). These resnare reproduced below, unedited.
In some respects, this comment well characterzegybal of this part of the survey to
understand which objective or objectives are maosisstently agreed upon as high in
priority. As the comment suggests, however, tgaré of merit results of this survey

predominantly reflect the preferences of NASA spasem decision-makers.

“The hierarchy of priorities is not dictated byyaone group, but rather a
consolidated set of often disparate stakeholder adesy (WH, Congress,
Industry, Int'l community). Thus, there are oftaaltiple high priorities despite
a constraints in resources and capabalities. ukh,swe are optimizing and

preserving a flexible, open, SOS architecture.”
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1 - Irtegrated Program Lifecycle Cost
2 - Total Spending on Development Activities

3 - Total Spending on Production &ctivities

| i —]

4 - Taotal Spending on Operations Activities

e i ! {11

3 - Costs Previously Incurred to Develop Systems not useful towvward Current Mission

! il : s |

E - Costs Saved by Reusing Existing Systems for Current Mission

[

7 - Percertage of Tine that Mizsion can be Achieved with &vailable Systems

G - Date of First Mizsion to Leave LEO
: ! f il t
9 - Time between Mizsions
10 - Time between Visting Mewy Destinations

11 - Maximum Distance Travelled away from Earth

12 - Mumber of New Destinations Visted
é | t 1T 1 |
13 - Mumber of Decadal Survey Science Ohjectives Fulfilled
| N @
14 - Mazs of Extraterrestrial Material Samples Returned to Earth
— . i
15 - Mumber of Crew-Days Spent at Mission Destinations
| — [ —
16 - Mumber of Crevy-Days Spert in Space

— 1| i E

17 - Mumber of Crewe-Days Spent avway from Low Earth Orbit (LEO)

| | | | |
Megligible Loy MWoderate High Faramount
Figure of herit Importance

[

Figure 112. Aggregate Figure of Merit Rating Resu$. Yellow boxes
represent interquartile ranges and whiskers extentthe minima and
maxima. Red lines indicate medians and gray linégate means.
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Figure 113. Summary of Figure of Merit Response flerquartile
Ranges and MediansCorresponding figure of merit identification
number(s) are listed to the bottom and to the rfigach point.

C.2.3. Markov Chain Estimates

The second major section of the survey requestat plarticipants provide
information regarding the likely evolution of humspace exploration mission demands.
The section consisted of two parts. In the firgitt pparticipants were asked to estimate
the amount of time he or she might expect demandefich of twelve mission
destinations to last, depending on whether theiomds or is not being achieved at some
arbitrary point in the future. The second partasnplementary to the first and asked
participants to populate two matrices, estimatingeach element of each matrix the
probability that the next mission demand will be flee destination in the column given
that the current mission demand is the destinatidhe row and given whether or not the
current demand is being achieved (one matrix cpoeded to each of these binary
achievement possibilities). Graphical user intezfa(see Figure 108 and Figure 109)
were available to guide the participants througtheaput. In effect, when a participant

had completed these 288 inputs, he or she had gteputhe transition rates and
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probability transition matrices of two continuoursk® Markov chains describing mission

demand evolution, each conditional on whether orcoorent demand is met.

C.2.3.1. Result Statistics

Aggregated results are shown in Figure 114 andr€idd5. These figures plot
the histograms of participant responses to bothlisPlarand Il of this section; the
histograms on the diagonal of each figure indithte expected time responses, and all
other histograms indicate the probability responsé&$ie probability responses shown
have been normalized for each participant such that sum of each row of the
participant’s matrix adds to unifyThus, the range of all subplot abscissae is zero t
unity, except for subplots on the diagonal, whiekéha range of O to 30 years. The color
of each subplot indicates the relative amount oiabdlity in the responses, as measured
by the interquartile range, with red being high arden being low. The difference
between Figure 114 and Figure 115 is that Figurk i$lassociated with the condition
that current mission demand is fulfiled, whereaguFe 115 is associated with the

condition that the current mission demand is natdé@lfilled.

" Given that Markov chains are not covered in theicula of many engineering degree programs
and that the survey participants were not likelpeédamiliar with them, the term “Markov chain”

was not used in the survey.

" As Figure 106 indicates, participants were tolat thach row of probabilities should add to
100%, but that they were not required to spendssice time attempting to meet this constraint
precisely. As a result, normalization was requiredost-processing for most rows of participant

probability inputs.
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Figure 114. Summary of probability transition matrix and expected time responses, conditioned on cemt demand being fulfilled. The
range of all subplot abscissae is zero to unitgeex for subplots on the diagonal, which have ageaof 0 to 30 years. The color of each subplot
indicates the relative amount of variability in tresponses, as measured by the interquartile rawgk,red being high and green being low.
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Figure 115. Summary of probability transition matrix and expected time responses, conditioned on camt demand not being fulfilled.
The range of all subplot abscissae is zero to ueitgept for subplots on the diagonal, which ha®e3® year range. The color of each subplot
indicates the relative amount of variability in tresponses, as measured by the interquartile rawgk,red being high and green being low.
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As the colors of the subplots in Figure 114 andufégll5 indicate, response
agreement is generally high. Figure 116 quantties. The histograms on the left in
Figure 116 indicate that among all the non-diagauddplots of Figure 114 and Figure
115, the median interquartile range is 7.7% and9tfepercentile interquartile range is
15.6%. The histograms on the right in Figure Iridicate that among all the diagonal
subplots of Figure 114 and Figure 115, the meditarquartile range is 3-4 years and the
oo" percentile interquartile range is 11-12 years. nskient between Figure 114 and
Figure 115 is that the elements with the highesiabdity are the “Nothing” to “LEO”
mission destination transition probability and thgpected duration of the “Mars

Surface” mission demand.
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Figure 116. Aggregated Interquartile Range Statists from Figure 114 and Figure 115.Yellow lines
indicate medians, solid gray lines indicate 90thcpatile statistics, and dashed gray lines indicai¢h
percentile statistics.
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C.2.3.2. Conversion to a Markov Chain Model

As suggested at the start of this appendix, theamy aim in gathering the data
summarized in Figure 114 and Figure 115 is the [adipm of a probability transition
matrix for a Markov chain describing the evolutiohthe demand environment for the
NASA human space exploration application. In gattr, the Markov chain required by
the framework proposed by the current thesis iserete-time Markov chain. Thus, two
challenges exist given the data in Figure 114 agdr€é 115: First, the data represents
multiple expert opinions and must be reduced intngle representative model. Second,
recalling that the diagonal of Figure 114 and FRegurl5 represents expected time
responses, the data is in the form of a contindmus-Markov chain rather than a
discrete-time Markov chain, and a conversion mestniade.

Treating the second challenge first, the convergibra continuous-time to a
discrete-time Markov chain is known asiformization[86] and has a known solution
given by Egs. (C1) and (C2). In Eq. (CBxrmc andvermc are the probability transition
matrix and transition rate vector for the continsidume Markov chain. In this
application, Pctmc and vermc are gathered directly from the data provided frdma
survey; in the case of the rate vector, it is tmeerse of the vector of expected times
between transitions. The numbein principle can be any rate such that v; Vi. Since
the rates of interest in this application are cantendencies and no mean or median
numbers of expected years fell below 1 year (ands th > 1 yr' Vi), v for this
application is selected as= 1 yr'. The intermediate matri* is then converted
through Eq. (C2) to an equivalent discrete-time Wdar chain probability transition
matrix P referenced to any desired time stépthat is longer in duration thanvl/
Although Eq. (C2) technically requires an infingem, in this application acceptable
results (specifically, all rows of the resultingutsition matrix adding to within 10or

less of unity) were observed by summingte 10.
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P = v
! VCTMC,i . (C1)
- PCTMC,ij ] 7
P(At)= Y Pe™ VAT) (c2)
k=0 k!

With a conversion from a continuous-time to a diseitime Markov chain now
available, the question remains: Which continubmg Markov chain should be
converted? Since many experts contributed to ékalts of Figure 114 and Figure 115,
at least one representative model must be seléxtealry forward. In this thesis, results
are presented for two different models that represeo different sets of the sample
population. The first, on which the primary resulf the thesis are based, is based upon
a central-tendency model for entire populationxqfezt participants. The second, which
is treated in a sensitivity study in Section 6dnsiders a central-tendency model only for

the non-dominated experts discussed in SectioriC.2.

C.2.3.2.1. Central Tendency Model for All Experts

In seeking a model to describe the central tendexfcyhe probabilities and
expected times to transition in Figure 114 and fEdLL5, the two most obvious metrics
to consider are median and mean. While there mhpectively correct choice to describe
the central tendency of the expert opinions, thediare (50" percentile) measure
possesses a certain property of fairness that th@nndoes not. That is, while an
exaggerated individual input might highly skew tresults of a mean measurement
(especially in the case of a small sample), theesamot true for a median measurement.
In using the median, each participant is given gueéinfluence on the determination of
the central tendency measure, and for this redas@nselected as the central tendency

measurement of choice for this application. Fa $hke of comparison, however, this
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section will also show some results that would heen obtained if the mean had been
chosen in lieu of the median.

Taking the median values each result representea figtogram in Figure 114
and Figure 115 and normalizing the probabilitiegdy forms two versions d?ctvc and
Vctme , One version which corresponds to the case irchvburrent demand is fulfilled
and the other which corresponds to the case inhwbigrent demand is not fulfilled.
Applying 4t = 2 years in Eq. (C2) yields the transition masiin Table 34 and Table 35.

Table 34. Discrete-time Markov chain probability ransition matrix for median expert
inputs and At = 2 years, for the condition that current missiordemand is fulfilled.

To
Mission Noth. Lo ~CGEO Lunar Lunar I'\E/I?Jrct)?]- Es:r?h Venus gg?tﬁ Mars = Mars Mars
Demand Serv. Orbit = Surf. Orbit ) Orbit = Moon Surf.
L1 L2 Object

Nothing 0.5180 0.2447 0.0301 0.0311 0.0928 0.0308 0.0027 0.0001 0.0372 0.0043 0.0037 0.0045
LEO 0.0192 0.6784 0.0340 0.0577 0.1028 0.0395 0.0039 0.0002 0.0475 0.0060 0.0052 0.0057
GEO Servicing 0.02610.0489 0.5192 0.0776 0.1483 0.0479 0.0157 0.0002 0.0598 0.0246 0.0190 0.0126
Lunar Orbit 0.0101 0.0326 0.0266 0.3771 0.2868 0.0709 0.0295 0.0003 0.0664 0.0389 0.0338 0.0270
Lunar Surface 0.00050.0046 0.0079 0.0080 0.8261 0.0195 0.0136 0.0002 0.0278 0.0240 0.0231 0.0447
g Earth-Moon L1 0.00950.0346 0.0223 0.0435 0.1491 0.5733 0.0259 0.0003 0.0522 0.0278 0.0255 0.0360
(L |Sun-Earth L2 0.00220.0439 0.0325 0.0466 0.1089 0.0448 0.4550 0.0005 0.1057 0.0637 0.0363 0.0598
Venus Orbit 0.00180.0248 0.0201 0.0290 0.0957 0.0690 0.0447 0.2647 0.1950 0.0826 0.0568 0.1157
Near-Earth Objectf 0.00060.0094 0.0076 0.0138 0.0431 0.0181 0.0141 0.0047 0.7242 0.0540 0.0453 0.0651
Mars Orbit 0.00050.0106 0.0014 0.0024 0.0295 0.0207 0.0171 0.0006 0.0442 0.6123 0.0760 0.1846
Mars Moon 0.0006 0.0100 0.0012 0.0020 0.0290 0.0187 0.0133 0.0007 0.0273 0.0439 0.6133 0.2400
Mars Surface 0.00210.0011 0.0006 0.0009 0.0213 0.0068 0.0057 0.0039 0.0267 0.0025 0.0185 0.9099

Table 35. Discrete-time Markov chain probability ransition matrix for median expert
inputs and At = 2 years, for the condition that current missiordemand isnot fulfilled.

To
Mission GEO Lunar  Lunar Earth- Sy Venus| Near s Mars Mars
Demand gy LEO Serv. Orbit = Surf. Moon Orbit Ea_rth Orbit = Moon Surf.
L1 L2 Object

Nothing 0.1417 0.5730 0.0495 0.0515 0.1171 0.0256 0.0029 0.0000 0.0284 0.0050 0.0029 0.0024
LEO 0.0104 0.8055 0.0209 0.0405 0.0575 0.0234 0.0031 0.0000 0.0270 0.0063 0.0034 0.0019
GEO Servicing 0.01510.1183 0.5203 0.0799 0.1572 0.0471 0.0072 0.0000 0.0436 0.0048 0.0030 0.0035
Lunar Orbit 0.0009 0.0617 0.0267 0.5249 0.2376 0.0523 0.0197 0.0000 0.0417 0.0189 0.0093 0.0062
Lunar Surface 0.00030.0221 0.0120 0.0291 0.8297 0.0220 0.0074 0.0000 0.0292 0.0180 0.0131 0.0170
g Earth-Moon L1 0.00090.0589 0.0269 0.0508 0.1273 0.6136 0.0104 0.0001 0.0501 0.0226 0.0098 0.0287
(L |Sun-Earth L2 0.00150.0813 0.0497 0.0687 0.1126 0.0757 0.3716 0.0001 0.1022 0.0509 0.0380 0.0475
Venus Orbit 0.00150.0879 0.0429 0.0542 0.1325 0.0882 0.0441 0.1356 0.2076 0.0752 0.0521 0.0783
Near-Earth Objectf 0.00040.0267 0.0145 0.0217 0.0608 0.0199 0.0088 0.0001 0.7579 0.0315 0.0267 0.0310
Mars Orbit 0.0004 0.0281 0.0103 0.0219 0.0439 0.0305 0.0097 0.0002 0.0584 0.6743 0.0537 0.0688
Mars Moon 0.00030.0297 0.0074 0.0094 0.0459 0.0094 0.0016 0.0005 0.0619 0.0168 0.6470 0.1701
Mars Surface 0.00020.0192 0.0044 0.0093 0.0258 0.0110 0.0065 0.0037 0.0413 0.0179 0.0356 0.8252
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In order to visualize the conditional Markov chainsable 34 and Table 35 as is
done for the Markov chains in the examples of Chiapd-5 of this thesis, it will be
helpful to extend them over more than one two-y@ae increment. Note that the
probabilities on the diagonals of these matricesl t® quite high due to this short time
step (naturally, as the time step of becomes smalhkel smaller, the probability in
remaining in a particular state would be expectedpproach closer and closer to unity),
and thus a visualization of the Markov chain onttlie-year step would only reveal the
obvious tendency for the system to stay in its entrrdemand state over the coming
period. Extending the time increment to an eigdry step for the purposes of
visualization yields the diagrams in Figure 73 &iglre 74. In these figures, as in those
depicting Markov chains in Chapters 4-5, high-ptolitg transitions are represented as
thick dark links and low-probability transitionsearepresented as thin light links. Also,
from each demand state, a green link identifieshigBest-probability transition; and if
different from the green link, a red link identgi¢he highest probability transition given
departure from a given demand state.

Thus, for example, several differences can be edtisetween Figure 73 and
Figure 74, which themselves represent the diffexemc demand evolution experts
believed would exist if demand itself were fulfdi€in the case of Figure 73) versus not
fulfilled (in Figure 74). Whereas the most likelsansition from LEO is to a Lunar
Surface demand if LEO demand is fulfilled, it isreamain in LEO if that demand is not
fulfilled. Whereas the most likely transition froen Venus Orbit demand is to Mars
Surface if demand is fulfilled, it is to the lesswatious Lunar Surface mission if that
demand is not fulfilled; and similarly, if Mars QrlWemand is not fulfilled, the most
likely demand is to continue Mars Orbit missionthea than progress to Mars Surface
missions. It might also be noticed that the re& from the Lunar Surface mission (the
second most likely next demand) leads to a NeathE2bject mission rather than a Mars

Surface mission in the event that the Lunar Surf@emand is not being met in the
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current period. These are a few examples thaitilite the general characteristic of the
model that the condition of demand being fulfiliedrors progression of demand toward
missions aimed at more ambitious destinations #nat generally farther away from
Earth; conversely, the condition of demand not dpdirifilled tends to favor a constancy

or sometimes regression of demand toward less mmbitlestinations closer to Earth.

1 1y
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-

Ertropy Rate:
211 bits 13 .55 bits

Figure 73. Visualization of the Markov chain of melian expert inputs for the condition that
current mission demand is fulfilled, withAt = 8 years. High-probability transitions are
represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpeebability transition. If different from the
green link, a red link identifies the highest prbligy transition given departure from that state.
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Figure 74. Visualization of the Markov chain of melian expert inputs for the condition that
current mission demand isnot fulfilled, with At = 8 years. High-probability transitions are

represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpeebability transition. If different from the

green link, a red link identifies the highest prbligy transition given departure from that state.

For comparison, Figure 117 and Figure 118 showettplet-year visualizations of
the Markov chains that would have resulted hadntean (instead of the median) been
used as the measure of central tendency. Whilee tlegist some differences in
comparison with Figure 73 and Figure 74, the moddlare many similarities. In
particular, the most-likely and second-most-likdbyreen and red) transitions in the
figures are nearly identical. In the case thatatsms fulfilled (i.e., comparing Figure 73
and Figure 117), the main exceptions are the NgthiEO, and GEO demand states. In
the case of the mean, the most likely next-periechahd is for the LEO and GEO states

to remain in LEO and GEO, respectively; howevee slecond-most-likely links from

319



these states match exactly the most likely linksrfthe median case. In the case that
demand is not fulfilled (i.e., comparing Figure §4d Figure 118), the main exceptions
are that in the mean, the most likely transitimmfrthe Martian Moon mission demand is
to remain in the same demand (with transition tadviBurface demand ranking second,
instead of first as in the median case), and thathé mean, the second most likely
transition from the Mars Surface mission demarto e Lunar Surface mission instead

of to the Near-Earth Object mission.

ool
hars
yi Surface

Ertropy Rate:
2.52 bits 1 3.55 bits

Figure 117. Visualization of the Markov chain of nean expert inputs for the condition that
current mission demand is fulfilled, withAt = 8 years. High-probability transitions are
represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpesbability transition. If different from the
green link, a red link identifies the highest prbligy transition given departure from that state.
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Figure 118. Visualization of the Markov chain of nean expert inputs for the condition that
current mission demand isnot fulfilled, with At = 8 years. High-probability transitions are
represented as thick dark links and low-probabilignsitions are represented as thin light links.
From each state, a green link identifies the higdpeebability transition. If different from the
green link, a red link identifies the highest prbligy transition given departure from that state.
As discussed in Section 4.2.2, the stationary idigion of a Markov chain can
provide the analyst helpful intuition regarding ttieection toward which the demand
will eventually tend as a consequence of the pritibabransition matrix. Toward this
end, Figure 119 and Figure 120 provide the statiodstributions for the Markov chains
in Table 34 and Table 35, respectively. Each Bgoompares the result of using the
median central tendency measure (in red) to usiagrean central tendency measure (in
blue); note the general agreement. The most disten difference between the two

central tendency measures in the long-term statiosanse is that the mean models a

somewhat lower probability of running Mars Surfasssions and a higher probability of

321



running LEO missions; in this sense it is recogaitt@at the median model is somewhat
more optimistic about the demand for Mars Surfadssimns conditioned on other
missions’ success. However, conditioned on lackskion success, Figure 120 shows
that the models agree quite well.

The most distinctive difference between the statigndistributions of either
central tendency model in Figure 119 and Figure i$2he much lower Mars Surface
mission demand probability in Figure 120. Thisresult of the experts’ judgements
regarding the consequences of not fulfilling misstemand, is accompanied by rises in
the probabilities of mission demand for Lunar Scefaand LEO missions. In general,
these three mission destinations of LEO, Lunar &exf and Mars Surface, and to a
somewhat lesser degree Near-Earth Objects, carede t® form a set of long-term
“sinks” for mission demand in the opinion of thgper participants. Not only do these
destinations have long-term demand probabilitigmiBcantly higher than others, but
Figure 73, Figure 74, Figure 117, and Figure 118 te show these destinations as states
with consistently high-probabiliy incoming transeitis and consistently high probabilities
of remaining in their present demand state. Intresh mission demands like Venus
Orbit, Sun-Earth L2, and Nothing tend to act almastransient states for which demand
is rare and, when it does exist, is fleeting.

Before concluding this discussion of stationary batalities, it should be
emphasized that each of the Markov chains in Taland Table 35 is conditioned on
mission achievement. Thus, in a sequence of eveistanlikely mission demand will be
always fulfilled or never fulfilled, and the trug¢atonary distribution (which could in
theory be obtained once a decision policy is defineill fall between the extremes of

Figure 119 and Figure 120.
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Figure 119. Stationary distribution of Markov chain model (both median and mean
versions compared), for the condition that currentmission demand isalwaysfulfilled.
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Figure 120. Stationary distribution of Markov chain model (both median and mean
versions compared), for the condition that currentmission demand isneverfulfilled.

C.2.3.2.2. Central Tendency Model for Non-Domindiggerts
Also considered in this thesis is a Markov chaimded model derived from a
subset of the expert participants of the survegsddbed in Section C.2.1 as a set of four

experts who are non-dominated based on their nurmbgears of experience in the
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relevant experience metrics of interest, this sulsderesults is used to produce two
conditional median Markov chains in the same marasthose described in Section
C.2.3.2.1. The result for tht = 2 year time step is shown in Table 50 and Talile
Visualizations of these chains owtr = 8 year time steps are shown in Figure 121 and
Figure 122, and the stationary distributions arewshin Figure 123 and Figure 124.
Note that there exist relatively few qualitativéfeliences between this model and that of
Section C.2.3.2.1: For example, the relative gfites1of the links in the Markov chain
diagrams are largely the same (the green and m&d &ére nearly all identical), and the
probabilities of the stationary distributions afjrae within 5.5%. The most significant
difference, which is likely responsible for diffex@es in the results observed when this
model is applied to assess sensitivity of the tesug that the non-dominated experts
assign a noticeably higher probability of contirquoemand for missions to LEO in the
event that current mission demand is fulfilled {@85.in Table 50 vs. 67.8% in Table 34
for the same two-year time increment). Adoptionhad model over the general model of
Section C.2.3.2.1 will tend to encourage an optidegision-maker to adopt a policy that,
at least in the short term, develops systems @ikmtore toward this high-likelihood and
easy-to-fulfill LEO objective.

Table 50. Discrete-time Markov chain transition marix for median non-dominated expert
inputs and At = 2 years, for the condition that current missiordemand is fulfilled.

To
Mission Noth. LEO GEO  Lunar Lunar I'\E/I?Jrct)?]- Es:r?h Venus gg?tﬁ Mars = Mars Mars
Demand Serv. Orbit = Surf. Orbit ) Orbit = Moon Surf.
L1 L2 Object

Nothing 0.3716 0.4635 0.0262 0.0342 0.0495 0.0323 0.0008 0.0000 0.0119 0.0046 0.0026 0.0030
LEO 0.0087 0.8568 0.0131 0.0280 0.0390 0.0161 0.0006 0.0000 0.0260 0.0067 0.0022 0.0027
GEO Servicing 0.03070.0324 0.5145 0.1039 0.1465 0.0465 0.0025 0.0000 0.0670 0.0233 0.0208 0.0120
Lunar Orbit 0.0001 0.0143 0.0001 0.5165 0.2248 0.0371 0.0119 0.0002 0.0681 0.0437 0.0407 0.0425
Lunar Surface 0.00000.0065 0.0001 0.0057 0.8232 0.0177 0.0098 0.0003 0.0269 0.0354 0.0247 0.0498
g Earth-Moon L1 0.00010.0110 0.0001 0.0409 0.1228 0.6741 0.0091 0.0002 0.0467 0.0414 0.0229 0.0309
(L |Sun-Earth L2 0.00010.0160 0.0001 0.0448 0.1001 0.0174 0.5158 0.0004 0.0945 0.0884 0.0460 0.0764
Venus Orbit 0.00010.0161 0.0001 0.0029 0.0501 0.0291 0.0129 0.5139 0.1321 0.1118 0.0517 0.0793
Near-Earth Objectf 0.00000.0058 0.0000 0.0127 0.0249 0.0151 0.0048 0.0002 0.8224 0.0532 0.0261 0.0347
Mars Orbit 0.0000 0.0083 0.0001 0.0013 0.0264 0.0157 0.0073 0.0008 0.0411 0.7202 0.0449 0.1340
Mars Moon 0.00000.0081 0.0001 0.0010 0.0188 0.0155 0.0074 0.0011 0.0121 0.0298 0.7200 0.1859
Mars Surface 0.00000.0005 0.0000 0.0009 0.0139 0.0113 0.0096 0.0092 0.0252 0.0031 0.0175 0.9087
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Table 51. Discrete-time Markov chain transition marix for median non-dominated expert
inputs and At = 2 years, for the condition that current missiordemand isnot fulfilled.

To
Mission Noth. LEO GEO Lunar  Lunar I'\E/I%r(t)i;]- E:rr:h Venus gg?tﬁ Mars = Mars Mars
Demand Serv. Orbit = Surf. L1 L2 Orbit Object Orbit | Moon  Surf.
Nothing 0.1398 0.6512 0.0459 0.0488 0.0769 0.0116 0.0009 0.0000 0.0182 0.0044 0.0015 0.0009
LEO 0.0064 0.8306 0.0235 0.0310 0.0531 0.0179 0.0006 0.0000 0.0290 0.0057 0.0012 0.0011
GEO Servicing 0.01580.1262 0.6106 0.0612 0.1119 0.0252 0.0012 0.0000 0.0407 0.0037 0.0021 0.0015
Lunar Orbit 0.0006 0.0696 0.0151 0.5221 0.2104 0.0453 0.0134 0.0000 0.0672 0.0325 0.0175 0.0062
Lunar Surface 0.00020.0286 0.0046 0.0235 0.8592 0.0139 0.0041 0.0000 0.0214 0.0184 0.0139 0.0122
g Earth-Moon L1 0.00040.0579 0.0110 0.0725 0.1121 0.6752 0.0014 0.0000 0.0411 0.0133 0.0027 0.0124
(L |Sun-Earth L2 0.00050.0642 0.0118 0.0363 0.0776 0.0491 0.5659 0.0002 0.0685 0.0494 0.0347 0.0418
Venus Orbit 0.00070.0828 0.0175 0.0240 0.1084 0.0688 0.0295 0.3681 0.1307 0.0633 0.0433 0.0630
Near-Earth Objectf 0.00020.0270 0.0058 0.0166 0.0525 0.0226 0.0098 0.0001 0.8052 0.0228 0.0172 0.0204
Mars Orbit 0.0002 0.0329 0.0010 0.0096 0.0337 0.0178 0.0010 0.0003 0.0674 0.6987 0.0514 0.0859
Mars Moon 0.00020.0346 0.0009 0.0105 0.0275 0.0200 0.0010 0.0005 0.0345 0.0525 0.6748 0.1430
Mars Surface 0.00020.0423 0.0011 0.0090 0.0374 0.0164 0.0071 0.0054 0.0342 0.0026 0.0224 0.8221
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Figure 121. Visualization of the Markov chain of nedian non-dominated expert inputs for
the condition that current mission demand is fulfiled, with At = 8 years. High-probability
transitions are represented as thick dark links &ngprobability transitions are representedas
thin light links. From each state, a green linkemtifies the highest-probability transition. If
different from the green link, a red link identfihe highest probability transition given
departure from that state.
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Figure 122. Visualization of the Markov chain of nedian non-dominated expert inputs for
the condition that current mission demand isot fulfilled, with At = 8 years. High-
probability transitions are represented as thickldinks and low-probability transitions are
representedas thin light links. From each statgreen link identifies the highest-probability
transition. If different from the green link, adrénk identifies the highest probability transitio
given departure from that state.
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Figure 123. Stationary distribution of median Markov chain model for non-dominated
expert inputs and the condition that current missimm demand isalwaysfulfilled.
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Figure 124. Stationary distribution of median Markov chain model for non-dominated
expert inputs and the condition that current missim demand isneverfulfilled.

C.2.3.3. Participant Comments

To complete the discussion of the Markov chainnesties section, it should be
noted that three of the nine participants left nksan the “Additional Comments”
portion of this section (see the bottom of FiguB®)L These remarks are reproduced
below, unedited. Overall, these comments converyi@ps on various topics. All three
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contain reflections on the survey process itselthwwo of the comments explicitly

suggesting the approach of eliciting probabilitiesss overcomplicated and one explicitly
suggesting the approach was overly simplistic. ©Ohehe participants who felt the

survey was overcomplicated suggests that it woalkktbeen less complicated if more
extensive information were added for the participda consider. Another topic covered
is what the participant believes is a misplaced lemsfs within the agency, government,
or society on achieving “firsts”. The third commexiso suggests considering alternate
tools for data collection, the fact that the reswif the survey will be variable, and that

demand evolves as a function of multiple time-vagyfactors.

“l think you are making this way more complicaté@n needed. Be careful to

not over think it............. you can get any answer yowntnay doing that.”

“This seems to be a very overcomplicated way taliptehe interest of various
destinations. | lost interest quickly in answerymur questions because there
isnt enough information provided to answer in a Waat i feel comforatable will
return data worth basing any decisions on. Fptogation, | believe that much
will depend on what we plan to do at each destnati If we go to plant a
flag/say we have been there, very little interedt be created. We need to
consider how we can deliver benefits at each desbim we visit and be sure we
can deliver it, i.e design systems accordingly plash stay times accordingly. |
believe this will create interest in teh next destion. If we think exploration is
about "firsts" and we must keep delivering "firsteén we are not delivering
enough real benefits to justify the expense. hkhihe interest in delivering

"firsts" is seriously misplaced.”

“The concept of demand and the pairwise companssiare probably overly
simplistic and all comparisons are likely not sbiéa | would have chosen a
different tool or setup. The results may not beaic due to variability in

interpretation. The demand is very depenedenbnupultiple factors that are

always dynamic.”
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C.3. Summary

This appendix has documented the approach andtgeassociated with an
extensive survey distributed to 21 personnel withsgantial experience in the field of
human space exploration in June 2011. The aitheo$urvey was to gather information
to support (1) the identification of meaningful quative figures of merit (or surrogate
figures of merit) and (2) the specification of tpeobability transition matrix of the
underlying Markov chain for demand environment atioh for the decision problem in
Chapter 6 of this thesis.

The first aim of the survey yielded an objective among four figures of merit,
which earned the highest median score and lowese saterquartile range: Integrated
Program Lifecycle Cost, Total Spending on Productativities, Date of First Mission
to Leave LEO, and Time Between Missions. In shtingse results support the
prioritization of these four figures of merit ow@hers within the 17 metrics considered.

The second aim of the survey yielded a primary rhdde the Markovian
evolution of mission destination demand for humagrace exploration missions,
converted from the continuous-time Markov chainuinpf the expert participants and
aggregated (with acceptable agreement in advanteficentral tendency via the median
statistic to permit each participant an equal mrfice on the results. A secondary model
for sensitivity studies was generated using a nomdated subset of experts based on
years of experience in different categories of rese Both models suggested (as
expected) that the expert participants felt thdfillfment of current mission demands
tended to result in the progression of next-pergemand toward more ambitious
destinations away from Earth, while failure to ililfurrent demand would tend to result
in either constancy or regression of demand tovessl ambitious destinations closer to
Earth. Both models also suggested that certaitindéi®ns, such as LEO, Lunar Surface,
Mars Surface, and Near-Earth Objects, are ultimatehly likely to be demanded of

NASA, while other destinations, such as Sun-Ea2hdre unlikely to be demanded or
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would be transient if demanded. These observatodsothers throughout this appendix
agree with many expectations that an engineereimnthustry might have for the demands
placed on NASA and help to provide some additivaditlity to the model that has been

developed here to enable a stochastic descriptiduman space exploration mission

demand.
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