
PROBLEM DECOMPOSITION BY MUTUAL
INFORMATION AND FORCE-BASED CLUSTERING

A Thesis
Presented to

The Academic Faculty

by

Richard Edward Otero

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
May 2012

Copyright c© 2012 by Richard Edward Otero

PROBLEM DECOMPOSITION BY MUTUAL
INFORMATION AND FORCE-BASED CLUSTERING

Approved by:

Dr. Robert D. Braun, Co-Advisor
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. Charles L. Isbell
School of Interactive Computing
Georgia Institute of Technology

Dr. Ian G. Clark, Co-Advisor
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. John-Paul Clarke
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Mr. George T. Chen
Group Supervisor for EDL Systems
and Advanced Technologies Group
NASA Jet Propulsion Laboratory

Date Approved:

To my wife

iii

ACKNOWLEDGEMENTS

I come first to my wife Sara Kate Sams Otero. Thank you for your love, support,

and good humor during this whole process. It has made a world of difference and

has given me strength from a true partnership. Family has always been important

to both of us and we have been blessed by two sets of parents we both adore. My

love and thanks to my parents Mayra and Steven Hartofilis for raising a willful and

clever child. Their love, kindness, and wisdom have helped make me the man I am

today. My love as well to my newest parents Dana and Fletcher Sams who have made

a home for me during this entire process in their life and hearts. Dana a wonderful

mother and Fletcher a man I hope Justice emulates. With step-siblings, we now have

three sisters and two brothers. I could not ask for better.

Robert Braun has been an inspiring advisor and teacher. He is a large part

of where I find myself professionally and where I will be in the future. I thank

him for his support, humor and the choice he made in accepting me into the Space

Systems Design Lab (SSDL). To the rest of my thesis committee, Ian Clark was

able to co-advise my work during Bobby’s tenure at NASA. Ian’s insights, advice

and rigorous editing have been deeply appreciated. Charles Isbell provided my first

introduction to Machine Learning and the computational mechanics involved with

Artificial Intelligence. Charles mixes his subjects with a joyful repartee and has

been a friend. My thanks go also to John-Paul Clarke for his feedback and for

his ever heartening presence. George Chen has shown great willingness to help in my

endeavors and has greatly supported the development of the Planetary Entry Systems

Synthesis Tool (PESST) that has been developed as part of this thesis. I look forward

to working with George at JPL. The entire committee has my heartfelt thanks.

iv

The SSDL has served as a lifeline for my desire to work on space systems. The

caliber of the men and women I have met at the lab has been extraordinary and I hope

to keep contact with them into the future. I particularly want to thank Michael Grant,

Bradley Steinfeldt and Patrick Smith for their friendship and work on PESST. Many

thanks to Gregory Lantoine for the low-thrust trajectory talks and to Nitin Arora for

our conversations on the ever increasing potential of GPUs. There are many other

friends that I have been honored to know during my time at Georgia Tech; thank you

for exploring the absurdities of life with me.

When I first selected Systems Design, I joined the Aerospace Systems Design Lab

under Dimitri Mavris. I thank him for making a place for me in his lab while providing

the freedom necessary to take the space design qualifying exam.

I would like to thank the Jet Propulsion Laboratory and the Charles Stark Draper

Laboratory for their sponsorship of the new PESST framework; continuing through

the efforts of Ian Meginnis and Zack Putnum. I am glad for those who have found

continuing use for the framework and for those who will continue development efforts.

My thanks to the GEM Fellowship program which enabled my first masters degree.

They are a wonderful program supporting the efforts of minority students seeking

degrees in engineering and science. Stephen Ruffin, a wonderful teacher who deeply

changed my understanding of gases and computational fluid dynamics, made the

recommendation that led to my Alfred P. Sloan Foundation Graduate Scholarship.

I thank him for his support and the support of the Alfred P. Sloan Foundation.

The National Institute of Computational Sciences partnered with Georgia Tech, Oak

Ridge National Laboratory, NVIDIA and the University of Tennessee to create the

Keeneland cluster. Time on the Keeneland cluster was generously donated to enable

the studies performed in this work.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xiv

LIST OF SYMBOLS OR ABBREVIATIONS xviii

SUMMARY . xxiv

I MOTIVATION, BACKGROUND, AND STUDY OBJECTIVES 1

1.1 Motivation . 1

1.2 Problem Representation . 2

1.3 Methods for Decomposition . 8

1.3.1 Link Importance Discovery 8

1.3.2 Static Decomposition: Pre-Execution Methods 10

1.3.3 Dynamic Decomposition: During-Execution Methods 15

1.4 Research Objectives . 24

1.4.1 Link Importance Heuristic 24

1.4.2 Static Decomposition . 25

1.4.3 Entry, Descent and Landing Design Synthesis 26

1.5 Contributions of Work . 27

1.5.1 Link Importance Heuristic 27

1.5.2 Static Decomposition . 27

1.5.3 Entry, Descent and Landing Design Synthesis 28

1.6 Summary . 29

II METHODOLOGY . 30

2.1 Mutual Information . 30

2.1.1 Mutual Information as a Link Rank Metric 36

vi

2.2 Force-Based Clustering . 38

2.2.1 Determination of Sub-Problem Clusters 42

2.3 Static Decomposition . 43

2.3.1 MIMIC a New Optimizer for Static Decomposition 44

2.3.2 Extension to MIMIC with Continuous PDF Estimation . . . 54

2.3.3 Extension of Results through Decision Tree Learning 60

III IMPORTANCE HEURISTIC: EVALUATION FOR ENGINEERING . . 67

3.1 Validation of Link Rank Heuristic 67

3.1.1 The PESST Framework . 67

3.1.2 Validation on Planetary Entry Problem 68

3.1.3 Advantages/Disadvantages of Proposed Metric 81

3.2 Forced-Based Clustering with Importance Heuristic 82

3.2.1 Low-Thrust Problem Domain 83

3.2.2 Applying Mutual Information to Trajectory Design 84

3.2.3 Application to a Low-Thrust Problem 88

3.3 Summary . 93

IV VALIDATION OF A NEW OPTIMIZER FOR STATIC DECOMPOSI-
TION . 95

4.1 Static Decomposition . 96

4.1.1 Approach for Comparing GA and MIMIC 97

4.1.2 Computational Framework for Comparison Testing 105

4.1.3 Evaluation and Validation of Static Comparison 113

4.2 Generalizing Static Results with Automatic Decision Trees 127

4.3 Summary . 136

V ENTRY, DESCENT AND LANDING SYNTHESIS 138

5.1 Introduction . 139

5.2 Discipline Modules . 140

5.2.1 System Definition . 140

vii

5.2.2 Aerodynamics . 144

5.2.3 Flight Mechanics . 148

5.2.4 Terminal Descent Guidance Algorithms 150

5.2.5 Thermal Response . 153

5.2.6 Mass Estimation . 158

5.3 Comparison to a Historical Mission 162

5.4 Summary . 166

VI SUMMARY AND RECOMMENDATIONS 167

6.1 Summary . 167

6.1.1 Introduction of a Link Importance Heuristic 167

6.1.2 Introduction of a Global Optimizer for Static Decomposition 168

6.1.3 Generalizing Static Results with Automatic Decision Trees . 170

6.1.4 Creation of a Design Synthesis Tool for Entry Design 170

6.2 Recommendations for Future Work 171

6.2.1 Static Decomposition . 171

6.2.2 Force-Based Clustering . 174

6.2.3 EDL Design Synthesis . 175

APPENDIX A THERMAL DATA UTILIZED BY PESST 178

APPENDIX B STATIC PROBLEMS EXAMINED WITH BEST SETTINGS
AND NEAR-BEST RESULTS . 183

APPENDIX C PUBLICATIONS . 232

REFERENCES . 234

viii

LIST OF TABLES

1 Overview of Published Utility Functions used for Problem Decompo-
sition. (Provided in Chronological Order) 12

1 Overview of Published Utility Functions used for Problem Decompo-
sition. (Provided in Chronological Order) 13

1 Overview of Published Utility Functions used for Problem Decompo-
sition. (Provided in Chronological Order) 14

2 Bounds for Average (Thousands of Function Calls) Computed with
95% Confidence. 53

3 Information Theory Attributes for Estimated Variables X and Y . . . 59

4 Information Metric Applied to Venus Entry Skipping 63

5 Bounds on Entry Design Space . 69

6 Events Programmed to Occur During Entry 70

7 Variables Tracked in Design Study 71

8 Ranked Variables for a <1m/s Target at -2.5km 73

8 Ranked Variables for a <1m/s Target at -2.5km 74

8 Ranked Variables for a <1m/s Target at -2.5km 75

9 Orbital Elements for Asteroids used in Problem 85

10 Comparison of Cut Performance on Low-Thrust Problem (90% confi-
dence) . 91

11 Setting Domain Searched for Genetic Algorithms. 98

12 Setting Domain Searched for MIMIC. 99

13 Design of Experiments Breakdown . 100

14 Problem Testbed Selected for Comparison. 103

15 Detailed Static Comparison Results Per Problem (Best Method Settings)115

15 Detailed Static Comparison Results Per Problem (Best Method Settings)116

15 Detailed Static Comparison Results Per Problem (Best Method Settings)117

15 Detailed Static Comparison Results Per Problem (Best Method Settings)118

16 Run-time Breakdown of MIMIC (50-Elements, 10% Links Active) . . 125

ix

17 Current List of DSM Descriptive Metrics. 128

18 TPS Material Density. 158

19 Tank Mass Factors. 160

20 Trajectory and Heating Comparison to Mars Pathfinder. 163

20 Trajectory and Heating Comparison to Mars Pathfinder. 164

21 Mass Comparison to Pathfinder. 165

22 Conversion Factors . 178

23 PICA Density and Reaction Information. [96] 178

24 PICA Heats of Formation and Resin Fraction. [96] 179

25 PICA Virgin Properties for Insulation. [96] 179

26 PICA Char Properties for Insulation. [96] 179

27 PICA Pyrolysis Gas Entropy. [96] . 180

28 FM 5055 Density and Reaction Information. [45] 180

29 FM 5055 Heats of Formation and Resin Fraction. [45] 180

30 FM 5055 Virgin Properties for Insulation. [45] 181

31 FM 5055 Char Properties for Insulation. [45] 181

32 FM 5055 Pyrolysis Gas Entropy. [45] 182

33 Summary of DSM Problems Used for Static Testing 183

34 Confidence Needed to Select Between Methods (Best Settings) 184

34 Confidence Needed to Select Between Methods (Best Settings) 185

34 Confidence Needed to Select Between Methods (Best Settings) 186

35 Confidence Needed to Select Between Methods (Near-Best Settings) . 187

35 Confidence Needed to Select Between Methods (Near-Best Settings) . 188

35 Confidence Needed to Select Between Methods (Near-Best Settings) . 189

35 Confidence Needed to Select Between Methods (Near-Best Settings) . 190

36 Best Settings found for Problems within Searched Setting Domain . . 190

36 Best Settings found for Problems within Searched Setting Domain . . 191

36 Best Settings found for Problems within Searched Setting Domain . . 192

36 Best Settings found for Problems within Searched Setting Domain . . 193

x

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 193

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 194

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 195

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 196

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 197

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 198

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 199

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 200

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 201

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 202

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 203

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 204

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 205

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 206

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 207

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 208

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 209

xi

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 210

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 211

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 212

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 213

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 214

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 215

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 216

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 217

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 218

37 Detailed Static Comparison Results Per Problem (+/- 20% from Best
Method Settings) . 219

38 Details of DSM Problems Used for Static Testing 219

38 Details of DSM Problems Used for Static Testing 220

38 Details of DSM Problems Used for Static Testing 221

38 Details of DSM Problems Used for Static Testing 222

38 Details of DSM Problems Used for Static Testing 223

38 Details of DSM Problems Used for Static Testing 224

38 Details of DSM Problems Used for Static Testing 225

38 Details of DSM Problems Used for Static Testing 226

38 Details of DSM Problems Used for Static Testing 227

38 Details of DSM Problems Used for Static Testing 228

38 Details of DSM Problems Used for Static Testing 229

38 Details of DSM Problems Used for Static Testing 230

xii

38 Details of DSM Problems Used for Static Testing 231

xiii

LIST OF FIGURES

1 Three Equivalent Graphical Representations for a DSM. 3

2 Two Orderings for the same DSM Problem Structure 4

3 Two DSM Orderings for a General Motors Engine[62] 5

4 Two DSM Examples of Aerospace Conceptual Design Problems[81] . 5

5 Pratt and Whitney Manually Arranged DSM for Turbofan Engine[104] 6

6 Two DSM Orderings for Automobile Design Process[15] 7

7 Types of Design Structure Matrices. 7

8 Two Potential Sub-problem Organizations for the same DSM 9

9 Examples of Optimizer Based Decomposition. 11

10 Example GA Binary String. 17

11 Two-point Crossover. 18

12 Two-point Crossover Performed on a Problem with Interleaved Sub-
problems. 19

13 Uniform Crossover. 20

14 Uniform Crossover Performed on a Problem with Interleaved Sub-
problems. 20

15 Neural Net with single hidden layer. 21

16 Two Populations Maintained to Generate Co-evolutionary Modules.[46] 23

17 Entropy in the Case of Two Possibilities with Probabilities p and (1-p). 31

18 Three Cases of Mutual Information Between Two Variables. 33

19 Examples of Correlation and Mutual Information on Joint Distributions. 35

20 DSM Example with No Link Importance Information. 36

21 Importance of Link Ranking to Forming Sub-problem Clusters. 37

22 An Ordered and Unordered DSM Example 39

23 Using Force-Based Clustering to Discover Clusters and Cluster Interfaces 40

24 Sample Connected Graph . 41

25 Example of Force-Based Clustering 42

xiv

26 Overview of MIMIC Iteration Flow. 44

27 Specifying Nodes for Each input Variable. 45

28 Fully Connected Graph Showing Mutual Information Between Each
Node. 46

29 Finding the Maximum Spanning Tree. 47

30 Flow of execution for the MIMIC algorithm. 48

31 Four Peaks (Side View) for an input X̄ of size 100, T=10. 49

32 Four Peaks (Top View) for an input X̄ of size 100, T=10. 51

33 Function Calls Required to Find the Global Optimum. 52

34 MIMIC Function Calls as a Percentage of Two-Point Function Calls. 53

35 Approximation from Five Samples using Gaussian Kernel. (h=0.5) . . 58

36 Kernel Probability Estimation of P(X,Y) using 400 random samples. . 59

37 Design Space for a Venus Skip (BC = 200 kg/m2). 61

38 Automatically Generated Decision Stump for Venus Skipping. 63

39 Automatically Generated Decision Tree for Venus Skipping. 64

40 Accuracies for Three Classification Methods 65

41 Mutual Information of Variables Sampled by Altitude 76

42 Detail for Mutual Information of Variables Sampled by Altitude . . . 77

43 Correlation of Variables Sampled by Altitude 79

44 Detail for Correlation of Variables Sampled by Altitude 80

45 3rd Global Trajectory Optimization Competition Entry by Georgia Tech. 84

46 Trajectory Leg Breakdown for the 3rd GTOC. 86

47 Example of Ballistic PorkChop Plot of Delta-V (DU/TU) 87

48 Flipping and Normalizing PorkChop Plot into Probability Distribution 88

49 PorkChop Plot for Ballistic Earth-Earth Transfers 89

50 Probability Distribution Formed from Earth-Earth PorkChop Plot . . 90

51 Example Initial Configuration for Different Problem Difficulties Exam-
ined. 104

52 Historical Performance Comparison between CPU and GPU. 107

xv

53 Genetic Algorithm Kernel for Video Card. 109

54 MIMIC Kernel for Video Card. 111

55 breadth-First Search of Tree Model, image modified from [35] 112

56 Function Call Performance over Problem Set (Best and Near Best Set-
tings) . 120

57 Mean Function Call Performance over Problem Set (Near Best Results
included in Average) . 121

58 Percentage Not Converged Performance over Problem Set (Best and
Near Best Settings) . 123

59 Mean Percentage Not Converged over Problem Set (Near Best Results
included in Average) . 124

60 Run-time Performance over Problem Set (Best and Near Best Settings) 125

61 Mean Run-time over Problem Set (Near Best Results included in Av-
erage) . 126

62 5-Fold Cross Validation Separation of Training and Validation Sets. . 129

63 Decision Tree for When to Use Either Method with Best Settings (58%
Accuracy using 10-Fold Cross Validation) 130

64 Decision Tree for When to Use Either Method with Settings +/-20%
from Best (80% Accuracy using 10-Fold Cross Validation) 131

65 GA Function Call Performance over Setting Domain for Five Problems
with 50 Elements and 10% Active Links 133

66 MIMIC Function Call Performance over Setting Domain for Five Prob-
lems with 50 Elements and 10% Active Links 134

67 Method Function Call Performance over Setting Domain including All
Problems . 135

68 PESST interaction diagram. 140

69 The Design Structure Matrix for PESST. 141

70 Example of Windward and Shadowed Regions. 142

71 Meshed Geometry for Example Entry Missions. 143

72 Axial-Force Coefficient of 45 degree sphere-cone.[67] 146

73 Reference frame for aerodynamic calculations. 147

74 Entry system free-body diagram. 150

xvi

75 Gravity turn thrust orientation. Lander image from [74]. 151

76 Processes during the ablation of a material [54]. 153

77 Heat of ablation vs. cold wall heat rate. [76, 101] 156

78 Tank Pressure Fits by Engine Type.[40] 159

79 Sizing Fit for Monomethyl Hydrazine (MMH) Engines. Historical data
from [40]. 160

80 Sizing Fit for Monopropellant Hydrazine Engines. Historical data from
[40]. 161

81 Sizing Fit for LOX/Methane Engines. Prototype results from [48]. . . 162

82 DSM Orderings for the Mozilla Browser: Before and After Redesign
Effort[59] . 173

xvii

LIST OF SYMBOLS OR ABBREVIATIONS

a Acceleration magnitude.

A Area.

ats Tauber and Sutton exponential constant.

AZ Azimuth.

B Material constant in Arrhenius relation.

bts Tauber and Sutton exponential constant.

BC Ballistic Coefficient.

C Constant.

CA Axial-Force Coefficient.

CD Force Coefficient of Drag.

CL Force Coefficient of Lift.

CN Normal-Force Coefficient.

CP Pressure Coefficient or Specific heat of TPS material.

CX Force Coefficient along x-axis.

CZ Force Coefficient along z-axis.

Ck Constant used for DGB parachute sizing.

CAD Computer-aided design.

CH4 Methane.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

D Drag.

Do Parachute diameter.

DOF Degree-of-Freedom.

DSM Design Structure Matrix.

E Material constant in Arrhenius relation.

xviii

EDL Entry, Descent and Landing.

F Force.

f() Function of.

fsafety Safety factor.

FM5055 A type of Carbon Phenolic.

FPA Flight path angle.

g Gravitational acceleration magnitude.

gE Unit of Earth gravity.

go Acceleration of Gravity on the Earth’s Surface.

GA(s) Genetic Algorithm(s).

GNU GNU’s Not Unix (recursive acronym).

GPU Graphical Processing Unit.

GRAM Global Reference Atmosphere Model.

GSE Global Sensitivity Equations.

GTS GNU Triangulated Surface.

GUI Graphical User Interface.

H Enthalpy.

Href Reference Enthalpy at 298K.

i An index for the column number.

I Identity matrix.

ISP Specific Impulse.

iid independent and identically distributed.

j An index for the row number.

J Performance index.

JMP Statistical Software (originally John’s Macintosh Project).

k Thermal conductivity.

ksg Sutton-Graves convective heating constant.

xix

KISS Keep It Simple Stupid.

KL Kullback-Leibler.

L Lift magnitude.

LGPL GNU Lesser General Public License.

LOX Liquid Oxygen.

m mass.

MATLAB Matrix Laboratory.

MDAO Multidisciplinary Design Analysis and Optimization.

MIMIC Mutual Information Maximizing Input Clustering.

MMH Monomethyl Hydrazine.

MSI Module Strength Indicator.

n Magnitude of normal vector.

NN Neural Networks.

NP Non-deterministic Polynomial Time.

NV IDIA Producer of graphics cards.

OBD Optimizer-Based Decomposition.

P Pressure.

p probability.

papprox Approximation to the true joint probability distribution.

ptrue True joint probability distribution.

PESST Planetary Entry Systems Synthesis Tool.

PICA Phenolic Impregnated Carbon Ablator.

q Dynamic pressure or Stagnation point heating.

Q∗ Thermochemical heat of ablation.

R Radius.

r Position magnitude.

Rug Universal gas constant.

xx

RSE Response Surface Equation.

s Thickness of material lost from ablation.

SLA− 561v Super Light weight Ablator.

STL Stereolithography.

T Thrust or Temperature.

t Time.

TPS Thermal Protection System.

v Velocity magnitude.

V Volume.

var Stand in for any other variable.

W Weight.

x, y, z Axial directions or unspecified values.

X, Y, Z Random variables.

Greek Symbols.

α Angle of attack.

∆ Change in.

ε Density ratio across shock wave.

η Transpiration coefficient.

γ Ratio of specific heats.

Γ Importance weighting on the final time.

Γresin Resin volume fraction in TPS material.

φ Flight path angle.

φtank Mass factor describing the strength of tank material.

ρ Density.

σSB Stephan-Boltzman constant.

θ Angle between surface and oncoming flow.

ε Emissivity.

xxi

Subscripts.

varA,B,C Identifiers to signify different items.

varAS After shock.

varBS Before shock.

var∞ Value in the free stream.

varair of air.

varburst Value at burst.

varconv Convective.

varcw Cold wall.

vardesign Value used in design.

varentry Regarding value at entry.

varfiber Fiber in TPS material.

varf Final.

vargo To-go.

varmax Maximum value.

varmortar Parachute mortar.

varn Effective nose.

varo Initial.

varpanel With respect to panel.

varpara Parachute.

varrad radiative.

varref Reference.

varresin Resin in TPS material.

varr recovery.

varstruct Structure.

vartank Regarding fuel tank.

vartot Total.

xxii

varv of vaporization.

varw wall.

varx Along x-axis.

vary Along y-axis.

varz Along z-axis.

Superscripts.

¯var Vector.

˙var Time derivative.

varI Inertial frame.

varTw Evaluated at the wall temperature.

varT Transpose.

varrel Planet relative.

xxiii

SUMMARY

The scale of engineering problems has sharply increased over the last twenty years.

Larger coupled systems, increasing complexity, and limited resources create a need

for methods that automatically decompose problems into manageable sub-problems

by discovering and leveraging problem structure. The ability to learn the coupling

(inter-dependence) structure and reorganize the original problem could lead to large

reductions in the time to analyze complex problems. Such decomposition methods

could also provide engineering insight on the fundamental physics driving problem

solution.

This work forwards the current state of the art in engineering decomposition

through the application of techniques originally developed within computer science

and information theory. The work describes the current state of automatic problem

decomposition in engineering and utilizes several promising ideas to advance the state

of the practice.

Mutual information is a novel metric for data dependence and works on both

continuous and discrete data. Mutual information can measure both the linear and

non-linear dependence between variables without the limitations of linear dependence

measured through covariance. Mutual information is also able to handle data that

does not have derivative information, unlike other metrics that require it. The value

of mutual information to engineering design work is demonstrated on a planetary

entry problem. This study utilizes a novel tool developed in this work for planetary

entry system synthesis.

A graphical method, force-based clustering, is used to discover related sub-graph

xxiv

structure as a function of problem structure and links ranked by their mutual infor-

mation. This method does not require the stochastic use of neural networks and could

be used with any link ranking method currently utilized in the field. Application of

this method is demonstrated on a large, coupled low-thrust trajectory problem.

Mutual information also serves as the basis for an alternative global optimizer,

called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the cur-

rent practice demonstrates the use of MIMIC as a global method that explicitly

models problem structure with mutual information, providing an alternate method

for globally searching multi-modal domains. By leveraging discovered problem inter-

dependencies, MIMIC may be appropriate for highly coupled problems or those with

large function evaluation cost. This work introduces a useful addition to the MIMIC

algorithm that enables its use on continuous input variables. By leveraging auto-

matic decision tree generation methods from Machine Learning and a set of randomly

generated test problems, decision trees for which method to apply are also created,

quantifying decomposition performance over a large region of the design space.

xxv

CHAPTER I

MOTIVATION, BACKGROUND, AND STUDY

OBJECTIVES

1.1 Motivation

The scale of multidisciplinary problems in engineering has greatly increased over the

past twenty years; twenty design variables once was typical of a large scale conceptual

problem while now this number can exceed a hundred.[1] The processing power of

computers has roughly followed the prediction of Moore for over thirty years, doubling

at 1.5 year intervals for a computer of the same cost. Computational fluid dynamics

problems that once were examined in doctoral dissertations are now routinely assigned

as homework problems. Yet the fidelity and complexity of examined engineering

design problems has kept track with the rapid rise in processing capability. Higher

fidelity tools are being used in earlier stages of the design process and larger problem

domains are being examined. This is to say that the problems tackled by engineers

continue to evolve towards higher fidelity and wider domain exploration, always on

the edge of current processing capability. Researchers today are presented with the

choice of either waiting for the processing power to deal with their harder problems

or developing methods to handle these problems with today’s hardware.

Decomposition methods expand the problems currently solvable by today’s pro-

cessing capabilities. The philosophy of ‘divide and conquer’ has known as much use

within the battlefield and scientific thought as within the arts. A larger problem is

decomposed into smaller, more tractable, sub-problems of appropriate structure. The

solutions to these smaller problems are then used to either solve or provide insight into

the behavior of the original problem. Historically this process has been performed

1

by human discipline experts and many heuristics have been developed to guide these

decomposition efforts. [42, 79, 80, 100, 103] The problem has always existed of what

to do when either a professional is not available or when a problem does not agree

with an individual’s experiences or expectations.

Large highly coupled problems will become more the norm in the future as higher

fidelity tools move to earlier in the design process and more ambitious problems are

considered in engineering. The complexity of variable interactions between coupled

analyses will provide challenges to human discipline experts seeking to decompose

larger problems into more tractable components. It is proposed that this creates a

need for automated decomposition methods to aid the engineer in discovering useful

sub-problem structure that can be leveraged to understand and better solve their

problems.

The ability to automatically learn the coupling (interdependence) between disci-

plines could lead to large reductions in the time to analyze problems.[50] This time

reduction comes by reducing the combinatorial design space examined for a solu-

tion. Such decomposition methods could also provide insight to an engineer on the

physics driving a problem. This work aims to forward the current state of the art in

engineering decomposition.

1.2 Problem Representation

The most common problem representation used in multidisciplinary design analy-

sis and optimization (MDAO) for engineering design is the design structure matrix

(DSM) or N2 diagram.[15] The design structure matrix was introduced by Steward[91]

as a tool for marking the interactions between analyses.

The analyses can be any programs or modules that accept zero or more inputs

and provide zero or more outputs. Information output from one analysis can serve

as inputs into another. The ordering of the DSM diagonal from top left to bottom

2

right typically provides the general execution ordering for the modules, though ready

modules can be run concurrently. When an analysis provides data to a point lower

in the DSM diagonal, i.e. to an analysis planned by the DSM to run later, it is called

a feed-forward link. When data is passed to a point higher in the DSM diagonal it

is called a feedback link. Three equivalent graphical representations of a DSM are

provided in Figure 1.

A design structure matrix is commonly discussed in engineering classrooms and

is used by most engineering decomposition methods for its ease of implementation.

A DSM is useful as a means to clarify the interactions between analyses. This paper

will follow the DSM format where feedback connections are below the diagonal and

feed-forward connections are shown above the diagonal, Figure 1.

(a) Linked by Weight (b) Linked by Marker (c) Linked by Arrows

Figure 1: Three Equivalent Graphical Representations for a DSM.

This work will primarily use the representation shown in Figure 1(a) as additional

information regarding the strength of the link can be shown in the graph. When

the diagram is used to only display the existence of a link, Figure 1(b) will be used

for clarity. Regardless of the representation used, links above the diagonal show

the forward passing of data to later analyses and links below the diagonal show the

feed-back of information to earlier analyses, shown by arrows in Figure 1(c).

A decomposed (well ordered) DSM better shows the structure of the problem.

Strongly connected analyses can be easily seen and links between analysis clusters

can be evaluated to see if clusters can be treated as separable sub-problems. A

randomly ordered DSM is shown in Figure 2(a). The analysis programs have been

3

randomly ordered along the diagonal of the graph and engineers examining the graph

would have difficulty finding problem structure to leverage towards decomposing the

problem. The exact same problem is shown in Figure 2(b) with an ordering that

helps show possible decompositions for the problem. Four separate closely connected

groups might be separable enough to be considered as sub-problems. This decision

would depend on the strength of links connecting these sub-groups.

(a) Randomly Ordered DSM (b) Decomposed DSM

Figure 2: Two Orderings for the same DSM Problem Structure

Larger coupled problems will experience the same difficulty as Figure 2(a), i.e. the

lack of easily displayed sub-structure. A DSM likely will not begin with an ordering

that makes plain potential sub-structures within the problem. For instance, General

Motors once sought to organize engine sub-system groups into larger composite groups

that could work as independently as possible from other composite groups. Their

original manual attempt at decomposition is shown in Figure 3(a). This attempt at

grouping sub-system groups manually found a set of groupings that still required a

strong amount of communication across the larger groups.[62]

A study was made to rank the frequency of interactions between sub-system groups

as a heuristic for interaction importance. This ranking was performed by question-

ing management, manufacturing engineers and automotive engineers through surveys

where responses for rank could easily differ.[62] A combination of conservative and

averaged estimates for rank weighted the interactions of the DSM. Group clusters

4

(a) Manually arranged DSM (b) Computationally arranged DSM

Figure 3: Two DSM Orderings for a General Motors Engine[62]

with strong requirements for inter-communication were placed into larger composite

groups by computationally rearranging the DSM. The algorithm used in the study

highlighted two heavily connected sub-systems (B and K in Figure 3(b)) that could

open better decoupling by being replicated. This and computational rearrangement

allowed for groups with better interactions, Figure 3(b). This example, while rela-

tively small, was still challenging to manually expose the sub-structure that was later

found through automated decomposition.

Figure 4: Two DSM Examples of Aerospace Conceptual Design Problems[81]

5

Two aerospace conceptual design problems were shown by Rogers, et al.[81] through

work performed at Langley on automated decomposition methods. Both conceptual

design problems are considered in this work to be of medium size and complexity.

The DSM in Figure 4(a) shows roughly 8% of its links active while Figure 4(b) has

over 11% of its links active. This work will examine both smaller and larger problems,

and examine complex problems with 20% of their links active.

Figure 5: Pratt and Whitney Manually Arranged DSM for Turbofan Engine[104]

A large DSM example with 60 analyses is shown by Yu, et al.[104] in Figure 5

for a Pratt and Whitney Turbofan Engine. This DSM was manually decomposed

with information links that were ranked based on collected surveys. This type of

aerospace problem, where manual methods become unpractical, would benefit well

from automated decomposition methods.

The problem of sub-optimum DSM arrangement exists when a designer is schedul-

ing the execution ordering for design tasks. In Figure 6, the design process for an

automobile is reordered to remove a number of feedback links that would each require

an analysis module to be re-executed. Ideally, with no feedback links, every analysis

6

block would only have to be executed once.[15]

(a) Before Rearrangement (b) After Rearrangement

Figure 6: Two DSM Orderings for Automobile Design Process[15]

The next section will examine several heuristics that have been used in engineering

to reorder a DSM into a structure that is more constructive to informing about

problem sub-structure. These heuristics are normally based on expert input and/or

values that can be calculated without running any of the analyses in the DSM (i.e.

a static analysis). In Section 2.3, a static method based on the information theoretic

construct of mutual information will be explained to advance the current state of the

art for reordering DSMs into the more ideal structure seen in Figure 2(b), Figure 3(b)

or Figure 6(b).

A distinction will be made here between DSMs that are used in the literature,

based on the form of their linkage information. As seen in Figure 7, the three distinct

groups are: binary, discrete, and real value weighted DSMs.

(a) Weighted (Binary) (b) Weighted (Discrete) (c) Weighted (Real)

Figure 7: Types of Design Structure Matrices.

7

A binary DSM shows data dependence without information on the weight or im-

portance of the information link. A weighted DSM provides either a discrete or real

valued importance to the information link between analyses. Heuristics incorporating

expert opinion or the number of variables passed (also referred to as the ‘thickness

of the pipe’) typically provide discrete values (1,2,3 or low/med/high, etc). Gradi-

ent based information or other computed metrics often use real values to rank link

importance.

1.3 Methods for Decomposition

1.3.1 Link Importance Discovery

When evaluating how to decompose a coupled problem into sub-problems, a great

challenge has been the correct evaluation of the importance due to each of the in-

terconnections. A highly coupled problem with unimportant connections can be ap-

proximated as a decoupled problem (without interconnections); the connections being

re-added only to refine the final answer.[91] On the other hand, the mislabeling of

a highly important interaction would damage the assumption used to decompose

the problem in this way. A coupled problem, with important interconnected de-

pendencies, may challenge efforts to separate it into smaller tractable pieces. Re-

searchers have hoped to leverage knowledge of dependencies to gain the benefits of

decomposition.[15]

The four closely connected groups are considered as sub-problems in Figure 8(a).

This temporarily assumes that the links between the groups are unimportant enough

to disconnect while four sub-solutions are found. The four groups could then be

reconnected to converge onto a system solution with good initial guesses for the sub-

solutions of the problem. If the links connecting the first two sub-groups in Figure

8(b) are in fact very important towards determining their sub-solutions it might be

better to treat the problem as having three sub-problems. Here, the structure for

8

the sub-problems is based on the inter-dependence of the links. A useful dependence

metric from information theory, mutual information, will be described in Section 2.1

along with its advantages over several current link importance heuristics.

(a) Every Group formed into Sub-problems (b) Composite Sub-problem formed

Figure 8: Two Potential Sub-problem Organizations for the same DSM

Most methods have dealt with decomposing the problem before the running of

an analysis (static decomposition) by: treating all links as equally important[16, 103]

(binary connections), using heuristics such as the number of variables passed through

the link[1], and/or by using survey results from experts to rank linkage importance

with a discrete value (e.g. low/med/high).[80] Weighted DSMs can also have real

values assigned to the links. These values have come from sensitivity calculations[79]

or other metrics used to calculate a real valued importance for the link.[42, 17]

Global Sensitivity Equations have been used at run-time to define the total deriva-

tives of the output responses in terms of the subsystem local sensitivities.[79] This

is an instance where the dynamic importance of the links, given by the output re-

sponse’s sensitivity to changes, is computed at run-time. The method requires that

derivatives can be taken at both the subsystem and global level, but is one of the few

methods that allow the problem behavior to dictate the importance that should be

assigned to interdependencies.[88] This has, for instance, seen use in the multidisci-

plinary synthesis of aircraft.[33]

Future problems will tend to be larger and more complicated following increases

9

to analysis and system fidelity. The ability to explicitly rank the interconnections

between analyses will aid in the real time decomposition of problems as they are

evaluated. Without advancing the methods currently used for decomposition, prob-

lem tractability will primarily depend on currently available hardware. Though the

advancement of computational power is impressive, the opportunity of pairing this

power with real-time (or dynamic) decomposition methods should allow the efficient

solution of larger-scale problems.

1.3.2 Static Decomposition: Pre-Execution Methods

Decomposition methods can be classified by when they act to decompose the problem

being examined. Static decomposition methods seek to separate a problem into sub-

problems before executing any of the component analysis programs. When this is

done, the overhead in decomposing the problem is front loaded so the user does not

have to pay that cost during execution. Expert knowledge can be used to rank the

importance of links in a DSM, without running any of the analyses, and these rankings

can be leveraged to form clusters of related analyses. A potential drawback with this

pre-execution arrangement is that the expert opinion and/or heuristics are assumed

applicable to the particular problem being analyzed.

1.3.2.1 Optimizer-Based Decomposition

One current engineering method for pre-execution decomposition replaces several

links in the design matrix with new constraints that are controlled by an added

optimizer.[10, 28, 97] The analyses can be run without the converted links and the

optimizer seeks to assure that any answer also satisfies an added set of compatibil-

ity constraints.[11, 13] These constraints ensure that, at convergence, variable values

agree between their source and destination analysis blocks.

This method has been used to remove a subset of links in an analysis (partial-

OBD) or to remove all of the links within an analysis (full-OBD), see Figure 9.[69]

10

(a) Original DSM (b) Partial-OBD to Remove Link (c) Full-OBD

Figure 9: Examples of Optimizer Based Decomposition.

Partial-OBD can be used to remove analysis iteration loops from a design problem

while full-OBD would allow each analysis the ability to run concurrently. A drawback

to this method has been that converging each new constraint might take a large

number of iterations; fewer if the former links are well behaved or if their value does

not change the tracked output greatly.[14]

1.3.2.2 Optimizer-Based Heuristic Decomposition

Heuristics continue to be widely used to reorder the analyses in a DSM before the

running of any of the processes.[42, 79, 80, 100, 103] Table 1 is a representative

list of the heuristics that have been used to automatically decompose problems in

engineering.

The list includes several examples of pre-execution decomposition and some later

entries that begin to incorporate during-execution information into a decomposition

(dynamic decomposition). When pre-execution decomposition is used, it utilizes

static heuristics as a stand in for explicitly computing the importance for the infor-

mation links. The incorporation of during-execution data aims to utilize discovered

information to better estimate link placement and importance.

11

Table 1: Overview of Published Utility Functions used for Problem

Decomposition. (Provided in Chronological Order)

Decomp.

Method

Problem

Repres.

Optim.

Method

Utility Metric Description Utility Function Reference

Pre-execution Binary

DSM

Basic GA Minimize the number of feedback connec-

tions; aims to reduce iterations.

min f =
∑n

i=1

∑n
j=i+1 v(i, j) where v(i, j)

is either 0 or 1.1

Steward (1981)

[91]

Pre/During-

execution mix

based on GSE

Sensitivities

Real

value

weighted

DSM

Rule based

logic

Global Sensitivity Equations used to de-

fine the total derivatives of the output re-

sponses in terms of the subsystem local

sensitivities

Normalized local sensitivities; local be-

havior is assumed as differentiable.

Rogers and

Bloebaum [De-

MAID] (1994)

[79]

Pre/During-

execution mix

based on GSE

Sensitivities,

Static Loop

Heuristics

Weighted

DSM

Basic GA GSE generated strengths and a user gen-

erated prediction as to how often a loop

will iterate. Two iterations assumed for

very weak feedbacks; 8 for very strong

feedbacks.

Given estimates for each analysis cost, at-

tempts to find the least costly configura-

tion.

Rogers

[DeMAID-GA]

(1996) [78]

12

Table 1: Overview of Published Utility Functions used for Problem

Decomposition. (Provided in Chronological Order)

Decomp.

Method

Problem

Repres.

Optim.

Method

Utility Metric Description Utility Function Reference

Pre-execution Discrete

DSM

GA with

permuta-

tion based

operators

Links in matrix weighted by the number

of variables passed through each linkage

(thickness of pipe). Each variable seen

as equally important. Considered band-

width concerns and database size.

Objective used to compare against De-

MAID for ‘total length of feedback’ was

f =
∑n

i=1

∑n
j=i+1(j − i)w(i, j) where

w(i, j) is that number of variables present

in the link (i,j).1

Altus et al.

[AGENDA]

(1996) [1]

Pre-execution
Binary

DSM

Basic

GA

Summed distance of 1’s from left of matrix min f =
∑n

i=1

∑n
j=1(i)v(i, j)

Todd (1997) [95]Summed distance of 1’s from bottom of

matrix (concurrency)

min f =
∑n

i=1

∑n
j=1(n− j)v(i, j)

Summed distance of 1’s below diagonal

(reduce feedback)

min f =
∑n

i=1

∑n
j=i+1(j − i)v(i, j) where

v(i, j) is either 0 or 1 (showing link

existence)1

Pre-execution
Discrete

DSM

Basic

GA

Heuristic to maximize the number of

internal module dependencies while

seeking to minimize inter-module

dependencies by using a Module

Strength Indicator (MSI)

MSI = MSIi −MSIe
Whitfield et al. (2002)

[100]
MSIi =

∑n2
i=n1

∑n2
j=n1

wi,j

(n2−n1)
2−(n2−n1)

MSIe =
∑n1

i=0

∑n2
j=n1

wi,j+wj,i

2n1(n2−n1)
+∑N

i=n2

∑n2
j=n1

wi,j+wj,i

2(N−n2)(n2−n1)

13

Table 1: Overview of Published Utility Functions used for Problem

Decomposition. (Provided in Chronological Order)

Decomp.

Method

Problem

Repres.

Optim.

Method

Utility Metric Description Utility Function Reference

Pre-execution Discrete

DSM

Basic GA Heuristics for tasks where a task can oc-

cur in parallel to a later task, often seen

during scheduling. Shows a method to use

rank information, if it is present, but not

how to find it.

Minimize feedbacks, group tasks towards

diagonal, tasks that can execute a section

by themselves should do so.

Whitfield et al.

(2005) [99]

During-

execution

Neural

Net-

works

Genetic op-

erations

Seeks to model subsets of data with NNs

evolved by GAs. Time intensive but very

flexible representation. A population of

neural networks is created with randomly

selected inputs.

Well performing networks are kept and

used to create new population. A sep-

arate population selects for a combining

network, pulling NN modules from the

first population.

Khare (2006)

[46]

During-

execution

Discrete

DSM

Basic GA The use of an information theoretic mea-

sure, Minimum Description Length

Among all models, choose the one that

uses the min length for describing a given

data set well.

Yu et al. (2007)

[105]

1The index i refers to the column number while j refers to the row index.

14

1.3.3 Dynamic Decomposition: During-Execution Methods

Dynamic decomposition seeks to decompose a problem with information gained dur-

ing solution of part or all of the original problem. In learning the unique behavior

of a problem, the first issue is often how to separate the problem into sub-problems.

Three methods that are often used in engineering are examined here: derivative-based

methods, neural networks and the genetic crossover operation. Both neural networks

and genetic crossover seek to find the underlying structure of a problem without a

focus on providing that structure in a human-readable format. The methods provide

answers to their users without an explanatory focus, either stochastically (genetic al-

gorithms) or through back propagation from a large training set (neural networks). In

contrast, derivative-based methods generally provide an explanation to their ranking

of information links that is more understandable to the engineer as a table of partial

derivatives contains structural information on the problem. A list of network node

weights from a neural network graph does not have the same explanatory power as

a table of partials. This work does not address dynamic decomposition directly but

does support the future development of dynamic methods by the introduction of a

flexible link importance metric and a graphical force-based clustering method.

1.3.3.1 Derivative-Based Sensitivity Methods

Global Sensitivity Equations (GSE) are often used in engineering and allow for the

approximation of link importance through the discovery of system analysis sensitivi-

ties to changes in the design variables.[88] An input vector x of design variables are

passed into an analysis which produces a vector of state variables y. The computed

sensitivity dya

dx
represents the change in the state variables from analysis A due to a

change in the design variables from x.[70]

15


I −∂ya

∂yb
−∂ya

∂yc

− ∂yb

∂ya
I −∂yb

∂yc

− ∂yc

∂ya
−∂yc

∂yb
I




dya

dxj

dyb

dxj

dyc

dxj

 =


∂ya

∂xj

∂yb

∂xj

∂yc

∂xj

 (1)

The sensitivity strength of the analysis state variables to the design variables

serves to approximate the importance for the data links for this analysis. The deriva-

tives can be taken either analytically, when possible, or by using finite differences.

This assumes that the variables are either continuous or are discretized versions of

continuous variables. Naturally discrete variables (e.g. engineA, engineB, engineC)

could not be addressed by this method. Ford and Bloebaum [26] developed an algo-

rithm to optimize mixed systems by separating discrete and continuous spaces and

treating the continuous spaces with GSE. It is important to note that the derivatives

refer to the current point in the design space. Moving to a different section of the

design space would generally have different partials.

A decomposition could then be performed by using an optimizer to find a useful

rearrangement of analyses given the ranked linkage information. A ranked list of

links provides suggestions to the reorganization problem with the ability to more

freely manipulate links with low sensitivities to changes in the design variables.

1.3.3.2 The Genetic Crossover Operation

Genetic Algorithms (GAs) are currently an accepted method for searching large mul-

timodal domains that have inexpensive fitness function calls.[38] The requirement

regarding the execution time for the fitness function is needed as GAs often require

several hundred thousand function calls to converge to a solution. A GA attempts

to model the higher performing areas of the solution space by maintaining a popula-

tion of high performing candidate solutions. The biologically inspired operations of

reproduction, crossover and mutation are performed on these solutions to potentially

improve their utility over successive generations (iterations).[30]

16

The representation and genetic operation of crossover present challenges to a ge-

netic algorithm’s indirect modeling of variable interactions. These challenges are ad-

dressed in Section 2.3 by the introduction and extension of a method from Computer

Science.

A candidate solution in genetic algorithms takes the form of an array of values.

In Figure 10, the binary string provides values for eight binary input variables. This

potential solution gives one combination of input values for the problem and will

later be assigned a measure of worth based on a user provided utility function.[38]

The operations in genetic algorithms aim to combine segments from high performing

candidate solutions together to hopefully provide better child solution strings. The

assumption made is that high performing solutions have solved an aspect to the prob-

lem that can be passed on and combined with other sub-solutions to create a better

performing ‘child’. This is sometimes known as the Building Block Hypothesis.[31]

Figure 10: Example GA Binary String.

Input-variable dependencies, for a solution space, provide information on how

inputs might be separated into different sub-problems. This dependency information

is modeled indirectly by GAs. The chromosome representation for GAs and the most

common implementations of the crossover operator assume that coupled variables

appear near each other on the candidate string. This bias of the crossover operation,

will be shown through the examples of this section.

The application of crossover within a GA randomly separates out a sub-solution, to

an unknown sub-problem, from one parent and combine it with a sub-solution from a

second parent. The child, so created, would therefore have the incorporated solutions

developed from each parent and ideally perform better than either parent.[82] GAs

do not compute the explicit relationships between input variables to determine where

17

the best crossover points should be. They randomly select crossovers that are often

not beneficial towards separating the problem into sub-problems without the aid of

many repeated attempts over several generation iterations.

In practice, expert knowledge is sometimes used to place inputs, believed to be

related, next to each other on the candidate chromosome string; increasing the chances

that a single crossover operation will carry forward discovered sub-solutions. While

this approach is reasonable, it assumes that the relationships for this domain will fall

within previously observed behaviors.[89]

An advancement will be presented in Section 2.3 to the common use of genetic

algorithms in problem decomposition. The presented method gains its efficiency

by modeling these inter-variable relationships and leveraging this information when

solving a problem.[41] To provide context for the later advancement in modeling

inter-variable relationships, the following examples explain the three main methods

currently used by genetic algorithms to perform the crossover operation. The implicit

modeling of coupling behavior is suggested as one reason a GA requires a large number

of function calls for successful problem decomposition and the later reconstruction of

a more ideal composite solution.

Figure 11: Two-point Crossover.

Two-point crossover increases the chances that candidates can be separated into

their component sub-solutions during a single generation relative to using one-point

crossover. This can help a discovered decomposition pass on during successive gener-

ations. Both indices are randomly selected and the points between them are swapped

18

to generate two children, Figure 11.[23] Inputs from the start and end of the candi-

date string, that deal with the same sub-problem, have a chance of being transferred

together as one unit to the next generation.

Though the representational power has increased for a single generation, the space

of possible representations to randomly explore has also been increased. With no

explicit means of determining where the crossover points should be, the method still

requires a large number of iterations.[41]

Two-point crossover has a similar type of structural representational constraint

as one-point crossover. With two-point crossover, there is a limit to the ability of

the crossover operation to express the separation of interleaved sub-problems in a

single generation, as in Figure 12. In Figure 12, the same colored inputs deal with

the same sub-problem. Randomly, at least two sets of proper splits must be done for

the sub-problem solution to be separated and passed on to a later candidate.

Figure 12: Two-point Crossover Performed on a Problem with Interleaved Sub-
problems.

The uniform crossover operation further increases the single generation expressive

ability of the crossover operation at the cost of a larger space of representations. Uni-

form crossover has every element within each parent as a starting and stopping index,

inclusively, Figure 13. This means that each element has a chance of being traded

between the parents; independent from the chance that any of the other elements

were traded.[93]

The same colored elements in Figure 12 and Figure 14 represent separable sub-

problems which are desirable to pass forward to the next generation, if possible.

Though uniform crossover makes the transfer possible in one generation, the stochastic

19

Figure 13: Uniform Crossover.

nature of the operation makes it unlikely in one generation.

Figure 14: Uniform Crossover Performed on a Problem with Interleaved Sub-
problems.

Uniform crossover is the most general in terms of its ability to separate sub-

problems, as in Figure 14, but it also has the largest space of possible splits.[93] The

biological inspiration for genetic algorithms is often quoted and is easy for an audience

to grasp. Its easily understood operations, ease of implementation, and increases in

computational power available have made it one of the main methods taught and used

by engineers over multi-modal domains. Each of these three crossover operations is

an unguided random selection of splits that assumes that well performing patterns,

over many iterations, will stably remain within the population. Any increase in

representational power for the expression of sub-problems needs to account for an

increase in the space of all possible splits that must be searched by the random

process; implying that a GA will often require many function calls to converge.

1.3.3.3 Evolving Neural Networks

Work by Khare[46] in 2006 sought to automatically decompose several problems by

evolving neural networks (NN) to represent each sub-problem component. NN take

a networked form inspired by the structure of neurons within the brain. They have

great expressive ability for modeling non-linear functions and have been used widely

20

within control systems and as a non-linear replacement for Response Surface Equa-

tions (RSE).[7] There are a large number of excellent introductions to the topic.[66]

Figure 15: Neural Net with single hidden layer.

A hidden layer is composed of nodes that are not directly fed inputs and do not

directly produce output values, Figure 15. Regarding the expressive power of neural

networks, mathematical proofs have been completed that show that there exists a

network with two hidden layers that can approximate any arbitrary function.[20] A

network with a single hidden layer, such as the network in Figure 15, with a sufficient

(possibly very large) number of hidden nodes can represent any continuous function

and is capable of representing any boolean function.[20] One would use a neural

network when there are a large number of varied examples for the behavior one wants

to learn.

Training is performed by iterating through a training set, of inputs and expected

outputs, multiple times. The inputs for each case are provided to the network and the

resulting outputs are compared with expected results. Differences from the expected

output values are propagated backward, through the network, to update link weights

between nodes. The network regresses to model the behavior of the training set over

several iterations. This set of data may contain errors as the training is robust to

21

noise within the training set.[7] After a network is trained, the run-time evaluation

of the regression is comparable to the speed of a large analytical expression.[37]

A neural network acts as a black box. It is capable, after training, of providing re-

sponses quickly but does not provide a human-readable line of reasoning that explains

how the response was determined. Cases of medical diagnosis, for example, require

an explained set of human-readable reasoning that is not available through a neural

network. Provided a list of patient characteristics and symptoms a trained network

could provide a diagnosis but doctors would also wish to know that the diagnosis was

driven, for instance, by the level of iron in the patient’s blood and his temperature.

The network provides a diagnosis not an explanation for the diagnosis.

A set of validation data is required in addition to the training set to avoid the

network over-fitting during training. Each link has an associated weight that signifies

the importance that should be assigned to a signal being passed through that link.

Training involves the updating of each weight to better predict the set of training

data. When a network over-fits a set of data, both the information and noise from

the training set is fit by the model. The validation set is used to cut off the NN

training once the network no longer improves its prediction of data that was not used

during training. If a validation data set is used to trim links from a network, an

additional validation set should be used to serve as an unbiased judge of the networks

future performance. These additional data sets increase the already large sample data

requirements for the network.[66]

Khare’s work on automatic problem decomposition [46] sought to use neural net-

works to regress the behavior of sub-problems automatically with the addition of

genetic operators. Each module in the Module Population of Figure 16 is given a

randomly chosen subset of the input variables and seeks to regress sub-section behav-

ior by the examples present in the networks training set. This attempts to decompose

those sub-problems that are solvable from global input information alone; as opposed

22

to those that require the output from other modules. All of these models compete

with each other to form the building blocks that are used by the larger modular neural

networks, present in a separate System Population, Figure 16. Here the combining

of the potential sub-problem modules is viewed as a problem in itself.[46]

Figure 16: Two Populations Maintained to Generate Co-evolutionary Modules.[46]

The method randomly assembles sub-system modules that are then randomly as-

sembled into composite system models that are then trained on training data. The

presence of sub-system modules in high performing system models provide a fitness

measure for the module population. The fitness measurement used to judge system

performance is how well the formed networks are able to predict an available valida-

tion data set. One could also have other fitness metrics for the sub-system module

population such as a measure of how often a sub-system module is used in the sys-

tem population. This assumes that the average fitness of the system population will

increase over time and be attributable to increasingly valuable component modules.

The generation of new modules relies on genetically inspired operations to produce

new modules that have a chance to be used by newly assembled systems in the system

population. These would then be trained and ranked again, Figure 16.

The two population model shown in Figure 16 does not scale well with problem

size. The training time required to evaluate the system performance increases with

problem size to where it is inefficient to use genetic operations. The required time

23

for training and validation means that the discovery of the correct number of sub-

problems does not scale well for this method. This is shown by Khare[46], where

the maximum number of sub-problems was set to three, to limit the possible com-

binations to train and search. It was recognized that an automatic decomposition

method should be able to determine the number of sub-problems automatically. The

genetically inspired searching method though was not able to scale well enough to set

the upper limit at some very high number or remove the need for an upper limit.[46]

Modeling the coupling between inputs may aid this method by cutting down on

the number of combinations for the networks to attempt. Large scale aerospace

problems will need a method that scales well with the number of input variables for

the automated discovery of sub-problems.

1.4 Research Objectives

The size of multidisciplinary problems that are considered to be feasible continues

to expand with advances to hardware and decomposition methods. The problems

tackled by engineers continue to evolve towards higher fidelity and wider domain ex-

ploration, always on the edge of current processing capability. To push ahead, toward

solving currently infeasible unseparated problems, better methods and tools for prob-

lem decomposition must be developed. There is need for a new flexible heuristic to

measure link importance so a discovered ranking can better inform dynamic decom-

position efforts. Additionally, the static and dynamic decomposition methods used

to rearrange a DSM into separable modules can be advanced by introducing a better

global optimizer than the current state of the art in engineering.

1.4.1 Link Importance Heuristic

There is a need for flexible heuristics to evaluate the ranked importance of information

links in a design analysis over the entire design space. Ranked links would aid in the

dynamic clustering of internally coupled sub-problems. Any heuristics should be able

24

to handle both continuous and discrete variables. In addition, a heuristic ideally

should be efficient to calculate during the exploration of a design space. The link

importance heuristic would ideally also be easily understood by informed engineers.

For instance, it should be more expressive of the structure of the problem than the

weights of a neural network. This work will provide a heuristic to compute the

importance of variables in a design structure matrix using concepts from information

theory. This heuristic will be applied to an entry study at Mars to judge the relative

importance of analysis links used in the entry systems synthesis tool designed for the

study.

1.4.2 Static Decomposition

Several methods in engineering have attempted to discover problem structure by

rearranging analyses in a design structure matrix. The rearrangement of a DSM can

reveal clustered groups of analyses. If the clusters are weakly linked these can be

treated as separable sub-problems and shorten the required run time for a system

evaluation of the DSM. Most of these methods rely on static heuristics or expert

opinion that can be evaluated before running any of the analyses.

Several published utility functions have been shown for reordering a DSM and are

normally applied to the problem by using a global optimizer. An advancement to

the current practice, suggested by this doctoral work, replaces this global optimizer

with another global method that explicitly models problem structure. By leveraging

problem inter-dependencies, the proposed global method has the potential to reach

useful decompositions with fewer utility function calls. The method, introduced in

Section 2.3, is pulled from Computer Science and has its basis in the information

theoretic construct of mutual information. This method has been further adapted

for use in engineering. The use of automatic decision trees formalizes the optimizer

performance comparison over a wide region of the static problem space.

25

1.4.3 Entry, Descent and Landing Design Synthesis

The Planetary Entry Systems Synthesis Tool (PESST) is a rapid conceptual design

tool that was developed as part of this work for entry, descent, and landing systems.

This framework has the capability to estimate the performance of an entry system

using user-defined geometry, hypersonic aerodynamics, flight mechanics, thermal re-

sponse, and mass estimation. Trade studies can be performed by parameter sweeps

to gain a valuable understanding of the design space for conceptual studies. This

framework is broadly applicable to conceptual studies of Entry, Descent and Land-

ing (EDL) systems and will be used as a realistic test case for the evaluation of the

proposed link importance metric.

Conceptual design decisions are better informed by the early application of physics-

based tools to the design process. First order tools are often fast enough to be used

during parametric studies while still providing information on many of the main ef-

fects and trades that can now be examined, far earlier in the design process, for entry

missions. The application of this type of synthesis tool to early EDL design will

be necessary to understand the system interactions of novel projected EDL mission

concepts.[12] Details are provided in Chapter 5 for the methods used to implement

each discipline module in this thesis.

26

1.5 Contributions of Work

This dissertation advances the state-of-the-art by making significant contributions

across the domains of link importance heuristics, static decomposition, and entry,

decent & landing design synthesis.

1.5.1 Link Importance Heuristic

1. Introduction of a Link Importance Heuristic: A concept from Information

Theory, mutual information, is introduced as a useful link importance metric

for ranking variables utilized in engineering problems. Mutual information is

a novel metric for data passed through engineering design problems and works

on both continuous and discrete data. The metric can measure both the linear

and non-linear dependence between variables without the limitations of linear

dependence measured through covariance. Mutual information is able to han-

dle values that do not have derivative information unlike other metrics that

require it. A graphical method, force-based clustering, is modified to discover

related sub-graph structure as a function of DSM structure and link importance

ranking. In this work, force-based clustering will utilize mutual information to

determine link importance.

1.5.2 Static Decomposition

2. Introduction of a Global Optimizer for Static Decomposition: Ge-

netic Algorithms are a global method typically utilized to apply utility func-

tions for static decomposition. An advancement to the current practice replaces

this global optimizer with another global method that explicitly models prob-

lem structure. By leveraging problem inter-dependencies, the proposed global

method has the potential to reach useful decompositions with fewer utility func-

tion calls. The inclusion of Parzen-window density estimation, performed in

27

this work, allows for the method to treat continuous variables. This global op-

timization method can now be used to operate over many aerospace multimodal

domains containing discrete and continuous variables.

3. Generalizing Static Results with Automatic Decision Trees: The vast

majority of work on decomposition methods in engineering focus on results for

single problem instances, without trying to develop descriptive metrics for quan-

tifying performance over a larger region of the problem space. By leveraging

automatic decision tree generation methods from Machine Learning and a ran-

domly created problem set, a decision tree describing which method to apply

for the static decomposition of the problems examined is created.

1.5.3 Entry, Descent and Landing Design Synthesis

4. Creation of a Design Synthesis Tool for Entry Design: The robustness

of the link heuristic will be tested by application to realistic entry conceptual

design problems. The PESST framework has been developed as part of this

work and will serve to demonstrate link importance calculations on a tool with

realistic discipline behavior. PESST fills an important place in the field of

entry design synthesis by allowing a designer the chance to quickly gain an

understanding of a design space using first-order physical models.

28

1.6 Summary

Though the scale of feasible multidisciplinary problems has been increasing over the

past twenty years, improvements in both processing power and decomposition meth-

ods will be required to push the solution of even larger problems into feasibility.

Further improvement to the currently utilized decomposition methods in engineering

would better advance the capabilities of algorithms to form lower-order sub-problems.

Several of the most commonly used methods in engineering were examined and ar-

eas available for improvement are described in Chapter 2. Chapter 3 examines the

performance of a newly introduced variable importance metric on the design of a con-

ceptual entry mission and the use of force-based clustering to decompose a low-thrust

entry problem. Chapter 4 provides the framework and experimental results on a new

method suggested for static decomposition and its comparison against current prac-

tice. Chapter 5 examines the discipline analysis modules produced for the PESST

framework and Chapter 6 provides a summary of the results from this doctoral work.

29

CHAPTER II

METHODOLOGY

2.1 Mutual Information

Mutual information is suggested as a useful metric for judging the importance of data

links in a design structure matrix. Mutual information comes as a concept from in-

formation theory based on the foundational work of Claude Shannon.[87] It estimates

the amount of shared uncertainty or dependence present between two random vari-

ables. This metric can be easily computed for each of the links in a design structure

matrix. Though several of the techniques used to estimate mutual information could

be adapted to estimate partial derivatives; mutual information measures the global

general dependence between two random variables and can be used with both con-

tinuous and discrete data; this includes naturally discrete data (EngineA, EngineB,

etc) where a derivative is unavailable.

Correlation is commonly used in engineering to measure dependence between ran-

dom variables. Correlation only measures the linear dependence between two variables

while mutual information measures general dependence.[57] For example, a large ran-

dom data set from two variables x and y = sin(x) would have a correlation converging

to zero. A data sample taken from a small region would show a strong positive, weak

positive, neutral, weak negative, or a strong negative correlation depending on the

region sampled; one is using a linear tool to estimate non-linear dependence. Both

linear and non-linear dependence can be analyzed using mutual information.

A partial derivative, as another tool to show dependence at a single point, is not

able to describe the behavior of variables that do not possess meaningful derivatives.

30

Mutual information does not have this limitation. Partials also provide local infor-

mation while mutual information works with the global behavior of the variables. To

better understand the concept of mutual information, the concept of entropy will be

examined briefly.

Figure 17: Entropy in the Case of Two Possibilities with Probabilities p and (1-p).

Entropy is a concept borrowed from chemistry and is considered here as a measure

of the uncertainty associated with knowing the value of a random variable. In the

graph shown in Figure 17, the entropy is highest when there is an equal chance of the

random variable having the value of 0 or 1. When there is a 100 percent chance of

the random variable having a value of 1 there is no entropy, or uncertainty, associated

with the variable. This is also true when the variable has a 100 percent chance of being

equal to 0. It makes intuitive sense that the state containing the most uncertainty is

one where there is an equal chance of any number of values occurring. The formula

to calculate entropy is shown in Equation 2 for continuous variables and in Equation

3 for discrete variables.

H(X) = −
∫
X

p(x) log2(p(x)) (2)

31

H(X) = −
∑
x∈X

p(x) log2(p(x)) (3)

The reader should note that only the marginal probability distribution p(x) is

required to compute the entropy of a random variable. Log base two is used in infor-

mation theory as one normally speaks in terms of a binary encoding of information

transmitted over a communication channel. By presenting entropy this way, it ex-

presses the number of bits required to remove the uncertainty present in the random

variable. By using Equations 2 and 3, one can see that two bits are required to re-

move the uncertainty present in a random variable that possesses four equally likely

options, see Equation 4.

H(X) = −
∑
x∈X

p(x) log2(p(x))

= −[0.25 log2 0.25 + 0.25 log2 0.25 + 0.25 log2 0.25 + 0.25 log2 0.25]

= −[log2 0.25]

= −[−2] = 2 bits minimum to describe option selected (4)

More intuitively, having four options in binary requires at least two bits to name

them, {00, 01, 10, 11}, if all the options are equally likely. If one option is more likely

than the others, there would be less uncertainty regarding the answer and therefore

fewer bits on average would be required to name each option. An encoding for the

case where probabilities for the options fall as (0.5, 0.2, 0.2, 0.1) would have an

average bit length of 1.761 bits as a theoretical minimum. One example encoding

for this case would be 0, 10, 110, and 111 (i.e. 0 is used 50% of the time, 10 used

20%, 110 used 20%, and 111 used 10% of the time). For this example encoding,

(1 bit ×0.5)+(2 bits ×0.2)+(3 bits ×0.2)+(3 bits ×0.1) = 1.8 average bits are used.

This is close to 1.761 bits which was what was calculated as the theoretical minimum

required to describe the data, see Equation 5.

32

H(X) = −
∑
x∈X

p(x) log2(p(x))

= −[0.5 log2 0.5 + 0.2 log2 0.2 + 0.2 log2 0.2 + 0.1 log2 0.1]

= −[−0.5− 0.4644− 0.4644− 0.3322]

= −[−1.7610] = 1.761 bits minimum to describe option selected (5)

The entropy for a random variable can also be viewed as the information present

in that random variable. The number of bits necessary to describe the information

contained in the random variable. If a variable has a 100 percent chance of being

equal to one, there is no new information that would be gained by knowing the value

of that variable. This is a way of quantifying the information that would remove the

uncertainty of a random variable.

Mutual information is the amount of entropy, aka information, that two random

variables share. If two random variables are independent learning the value of one

variable, gaining its information, will not reduce the entropy still possessed by the

other random variable.

Figure 18: Three Cases of Mutual Information Between Two Variables.

The mutual information between the variables A and B, I(A,B), is the shaded

area shown in each of the three cases in figure 18. This is how much information

one random variable tells us about the other. If someone knew B in Case 1, all the

uncertainty in A would be explained. If there is an amount of shared uncertainty, this

is the mutual information. When the value of one random variable becomes known,

33

the uncertainty shared with the other random variable is made certain, lowering

the entropy in the remaining random variable. The amount of information that the

remaining variable can provide has been reduced.

H(X, Y) = −
∫
X

∫
Y

p(x, y) log2(p(x, y)) (6)

H(X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2(p(x, y)) (7)

Calculating the amount of mutual information requires the calculation of the joint

entropy which is the total sum of unique information provided by two random vari-

ables. In Venn diagrams, such as Figure 18, it would be the total area represented by

both circles without double counting any overlap. This can be computed by Equation

6 for continuous variables or equation 7 for discrete variables.

I(A,B) = H(A) +H(B)−H(A,B) (8)

Equation 8 shows that, when calculating the mutual information, one can pictori-

ally consider it as the area of overlapped entropy between two random variables. The

calculation of the mutual information requires knowledge of the marginal probability

distributions for the random variables, to calculate H(A), and the joint probability

distribution between variables, to calculate H(A,B).

The probability distributions used to calculate mutual information can be esti-

mated from a finite set of sampled data allowing for the use of mutual information for

continuous and discrete data. As either continuous or discrete distributions can be

used, the discrete data does not have to come from a discretized continuous range. A

set of values for EngineA, EngineB, etc. works just as well as the set of real numbers.

Figure 19 shows ten examples of joint distributions between the random variables

X and Y. The format of the label for each example is provided in the Figure. The

34

Pearson correlation is calculated for each example. The value computed for mutual

information is the bits of shared entropy between the random variables X and Y. The

mutual information is normalized by the total entropy to show the percentage of the

random variable entropy shared by the other variable.

Figure 19: Examples of Correlation and Mutual Information on Joint Distributions.

The correlation provides directional information that is not present in the value

for mutual information but mutual information is able to provide a measure of de-

pendence for non-linear relationships where correlation could be equal to zero. When

there is no noise between the relationship of X and Y, the mutual information is

100%. All of the uncertainty of X is explained by a value for Y. Random noise lowers

the shared uncertainty between the two variables though it may not always lower the

magnitude of the correlation. For the case where X and Y have no relationship, both

correlation and mutual information agree that there is no dependence relationship.

35

Mutual information does not deal with the local behavior of the variable at one

point.[57] The value for mutual information is measured over the range of the proba-

bility distribution estimated by sampling from the space of solutions. This global view

provides a better general metric when evaluating decisions for the potential decom-

position of larger problems. This type of global information should provide a more

robust decomposition than if one were to have only used locally accurate information.

2.1.1 Mutual Information as a Link Rank Metric

A metric to evaluate the importance of information links between disciplines is valu-

able as one can gain insight into the relationships driving the problem. This data

would be useful when planning which groups should work closely together on a project.

As the structure of a problem is better understood, the problem can often be made

more efficient or a provided solution made more robust. For example, no link in-

formation is known in Figure 20. An engineer seeking separable sub-problems may

wonder what arrangement would lead to the best set in interior connections with the

weakest external connections to other groups. The engineer can either assume that

the links are equally important or seek to estimate the importance that should be

assigned to each link. The more information that is available during a decomposition

process, the more informed a sub-problem separation can become.

Figure 20: DSM Example with No Link Importance Information.

Adding link knowledge is much like adding color to the DSM in Figure 20. Two

closely coupled problems are plainly seen with strong interior links in Figure 21(b).

36

These clusters would have been considered when the links were considered as being

equally weighted but an equal weighting would not have provided guidance on where

analysis 3 should be placed. Link information and structure guides sub-groupings.

Updated link information can be used to update the groupings utilized for the prob-

lem, Figure 21(c). Ideally most of the information required to solve a useful piece

of the problem should be found within a grouping with a minimum of required data

passed into the grouping. This leads to separable sub-problems with the potential

for concurrent evaluation. The decomposition provides insight into the mechanics of

the problem and provides the potential to lower the time involved in finding a system

solution.

(a) Links Weighted (b) Two Sub-problems Marked (c) Updated Link Implies new
Sub-problem Structure

Figure 21: Importance of Link Ranking to Forming Sub-problem Clusters.

Applying this ranking metric to the problem of decomposition, a workable metric

could be used to select better quality sub-problems. A high quality sub-problem repre-

sentation would display groups of strongly connected components, with highly ranked

connections, as opposed to connections that are not as valuable for the requested anal-

yses. A metric could also be used to select links that could be temporarily removed to

create a better performing decomposition; allowing the option to temporarily remove

less important links from an analysis.

The current link metrics examined in Chapter 1 have several drawbacks; for in-

stance, treating all links as having the same importance fails to capture useful in-

formation about the problem that could be used to more effectively decompose the

37

original problem. Experts may not always be available or their intuition may be mis-

leading on a novel problem. The number of variables in the link does not necessarily

relate to the importance of these variables. All of the passed variables in a link could

be unimportant. A metric is needed that can adapt to the problem at hand.

The use of partial derivative information is dynamic to the problem at hand but is

only a good estimate for the local area around the point where the partial derivative

is taken. It provides local importance information and can only be calculated where

a derivative exists; continuous or discretized continuous variables. Naturally discrete

variables that are not discretized from a continuous source (EngineA, EngineB, etc)

can not have their partial taken. Ideally, a workable metric would be able to also

handle these naturally discrete variables. Inexpensive analytical derivatives are also

not often available on realistic engineering problems.

2.2 Force-Based Clustering

Future work on dynamic decomposition is supported by the introduction of force-

based clustering. The graphical clustering method discovers sub-problem structure

based on linkage connections and their ranked importance. A future dynamic method

could use force-based clustering to determine a temporary configuration of clusters

before re-ranking link importance based on computed analysis results. In this work,

mutual information will be used as a calculated importance metric for each of the

links in a design structure matrix. This does not imply that mutual information is

the only metric that could be applied with force-based clustering. The algorithm is

independent of the metric used to rank the importance of links and future metric

developments or past expert-based ranking could also be used as input.

A force-based graphing approach rephrases the problem to something similar to

an n-body problem. Analysis vertices that are closely coupled together by links will

be drawn into clusters while weaker linked vertices will drift farther away from the

38

cluster.[27]

Force-based clustering is demonstrated here by returning to the large DSM prob-

lem that was earlier shown in both a randomized and ordered form in Figure 22.

There is a desire to obtain informative groupings that can be used for the analyses

of the problem and to aid in understanding the processes at work in the problem.

The ordered DSM shown in Figure 22(b) tells much more about the structure of the

problem than the unordered DSM in Figure 22(a).

Force-based clustering works by providing the analysis nodes a repulsive force

towards other nodes. Every link is given an equal attractive force that pulls its end

nodes towards each other. This method forms groupings based on the interconnections

between the analyses.[27] The unmodified method could be used as another method

of decomposing DSMs before executing any of the analyses.

(a) Randomly Ordered DSM (b) Decomposed DSM

Figure 22: An Ordered and Unordered DSM Example

Force-based clustering is a local method that may create an arrangement at a

local minima. The initial locations used for the nodes, before repulsive forces are

applied, will change their final locations in the graph and may change the clarity

of the resulting clusters. The search method though could be leveraged in static

decomposition, when the link rankings are considered as equally important.

Standard force-based methods can be modified slightly to allow for static decom-

position with equally ranked links or for use in dynamic decomposition. The link

39

attractive strength has been modified and made proportional to the importance of

the link, potentially forming different groupings than when using equally ranked links.

When the avoidance of local minima is worth the likely increase in computa-

tional cost of a global method, MIMIC and genetic algorithms provide a means for

reorganizing a DSM. For dynamic decomposition, the assumption is made that a

quick decomposition performed by local force-clustering methods will be sufficient to

update how the problem should be separated between iterations. In dynamic decom-

position the sub-groupings should be flexible, new information regarding the ranking

of a link may change the sub-problem an analysis is assigned to. The sub-groupings

for a problem that are discovered midway towards a solution may not be the final

groupings used when more information is known regarding the problem. The ability

of force-based methods to provide an adequate decomposition based on the current

data can be provided quickly to the scheduler running the execution of the problem.

If a global solution is needed for the organization problem, the MIMIC algorithm or

genetic algorithms are available to future researchers of dynamic methods.

Figure 23: Using Force-Based Clustering to Discover Clusters and Cluster Interfaces

Force-based clustering was used on the randomized DSM problem in Figure 22(a)

and was able to discover a useful decomposition shown in Figure 23 that is equivalent

40

to the ordered DSM in Figure 22(b). For this example, the links were ranked as

equally important and non-varying in time, making this equivalent to solving for the

static reorganization of the DSM problem.

Figure 24: Sample Connected Graph

Using force-based clustering on the problem in Figure 24 creates the graph shown

in Figure 25(a). Here also every edge is considered as equally attracting. The mod-

ification that makes this method useful for future work in dynamic decomposition

is to adjust the attractive force for edges so that they are a function of the edge

importance rank. The leads to potentially different clustering configurations as more

becomes known regarding the problem during execution.

The sub-graphs that have been generated in Figure 25(b) would show the sub-

problems implied by the link ranking. Data from the low-importance interfaces,

between the sub-graphs, could be minimally updated while the sub-graphs converged

on sub-solutions. The graphs would then be recombined to converge onto a solution

in the original problem space. At that point, each sub-problem found would have

been initialized by the sub-domain search and have a potential to dramatically cut

into the combinatorial space of solutions.

41

(a) Example Force Clustered Graph (b) Possible Interface between Clusters

Figure 25: Example of Force-Based Clustering

2.2.1 Determination of Sub-Problem Clusters

When the attractive force of edges are proportional to the mutual information weight

assigned to the edge, clusters will form between analyses that share a large number

of high quality links. Analyses with few low importance links or those with one mid-

importance link will be driven further from the discovered clusters. In Figure 25(b)

and Figure 23 the first links to consider for removal are the longest links in the graph

while the links that are desirable to keep, for clustering, are the shortest links.

If the process of graph link removal is to be automated, a cluster quality metric

is required to judge when removing links is no longer increasing the quality of the

remaining clusters. Cluster quality metrics remain an area of active research but

results to date generally demonstrate the benefit of forming closely coupled groups

of analyses with few interconnections between analyses.[83] Though the discovery of

which clusters to form is normally computationally difficult, the evaluation of a given

cluster can often be done in polynomial time.[83]

42

A link density metric can be used to evaluate sub-graphs created by link removal.

If the sub-graph created by the removal of a link is densely-connected, it is considered

as a high quality cluster. As an example of the difficulty of the problem, the discovery

of a way to partition a graph into n equally-sized sub-graphs where the number of

links to cut has been minimized has been found to be NP-hard.[29]

2.3 Static Decomposition

Pre-execution or static decomposition is a very common set of methods used to au-

tomatically separate engineering problems into sub-problems.[95, 99] Methods are

grouped into this category by their aim to rearrange and separate the problem com-

ponents before executing any of these components. The methods either assume that

all links are equally valuable[91] or that they have values based from metrics that can

be computed without evaluating the connected analysis tools.[78, 79] Expert surveys,

the number of variables handled by the link, and the location of the link in a DSM

are all metrics that have been used to rank link importance. A high performing ar-

rangement for the problem is normally then found using a global optimizer with a

utility function that incorporates these link ranking metrics. In engineering, a genetic

algorithm has most often been utilized for this global search.[1]

A strong improvement to this current state of the art in aerospace engineering

would be to improve the global optimization method utilized to explore the space of

potential problem arrangements when decomposing a problem statically. This op-

timization method is extracted from recent work in Computer Science and displays

several advantages to the use of genetic algorithms when exploring spaces with a

structural relationship between the input variables. The problem of arranging disci-

plines in a design structure matrix has a great deal of structure that can be leveraged

to converge towards better performing solutions with fewer function calls than typi-

cally taken by a GA. Mutual Information Maximizing Input Clustering (MIMIC) is

43

described below and is potentially useful for this and many multimodal domains in

aerospace. Originally demonstrated for problems with discrete input variables, an

addition to the treatment of the variables detailed in this work will enable the use of

MIMIC with continuous input variables.

2.3.1 MIMIC a New Optimizer for Static Decomposition

Mutual Information Maximizing Input Clustering (MIMIC) was designed by taking

a powerful concept from GAs, crossover, and refining it to compute where larger

problems may best be separated into sub-problems. It is not another type of genetic

algorithm. MIMIC is able to more efficiently converge over a large design space,

containing structure that can be leveraged, by explicitly modeling the structural in-

teractions between the input values.[8] It uses prior solutions to build a model of the

solution space that focuses on areas of the space that are likely to contain high per-

forming candidate solutions. It builds a modeled distribution over the solution space

by using statistics from prior samples of the true distribution over all solutions.[5, 8]

Figure 26: Overview of MIMIC Iteration Flow.

The model of the high performing candidates is used to replace poor performing

solutions from the candidate list, see Figure 26. How the model for this high per-

forming region is formed and sampled from is examined in greater detail below. The

44

essential idea is to closely model the regions described by a set of high performing

candidates so that future candidates can be sampled from these regions. This will

improve the average performance of the candidate list over time until the method

registers convergence.

2.3.1.1 Building the Model for a Sampled Region

Equation 9 describes the exact joint distribution between a set of random variables.

By approximating this function through pair-wise relationships, information about

the relationships between the variables can be exploited to search the domain space.

The dependency tree version of MIMIC[5] uses pair-wise conditional probabilities to

create an approximation to the true distribution.

p(X̄)true = p(X1|X2...XN)p(X2|X3...XN)...p(XN−1|XN)p(XN) (9)

This approximation could be made to use ternary conditional probabilities [ie

p(x | Y = y, Z = z)] for a more accurate match to the exact joint distribution but

would require far more data to accurately determine the ternary interactions.[8] Pair-

wise conditional probabilities [ie p(x | Y = y)] are used to approximate the true

joint distribution in Equation 9 as they are easier to determine from a smaller set of

data and was found to be a sufficient approximation to the joint distribution for the

problems examined in this work.

Figure 27: Specifying Nodes for Each input Variable.

To show how the statistical data is used to create a distribution model, each

45

variable is first assigned a node in the graph that will later serve as the approximated

model, Figure 27. The mutual information between each pair of variables i and j

is computed; this only requires knowledge of p(xi) and p(xi given xj). The mutual

information can be calculated from this information and used to weight the links

between the variables. A fully connected graph with computed weights is shown in

Figure 28 for an example problem. Each edge value is the mutual information between

the two variables; this can take any positive value inclusive of zero. Variables with

four bits worth of shared information would have an edge value of four, for instance.

Figure 28: Fully Connected Graph Showing Mutual Information Between Each
Node.

The Kullback-Leibler (KL) distance between the approximated distribution and

the exact or true distribution is a measure of how similar the two distributions are.[51]

By definition, the model with pair-wise statistics that minimizes the KL distance be-

tween it and the true distribution would be the best possible pair-wise approximation

for the true distribution.[18] Chow[18] and Baluja[5] have found that the graph that

minimizes the KL distance in a pair-wise model is a maximum spanning tree where

the edges are weighted by mutual information.

To form this maximum spanning tree, Figure 29, one simply keeps the highest

weighted links between the nodes to form an acyclic tree containing every node. One

can use Prim’s algorithm to automatically discover the tree structure, changing it

to find the maximum spanning tree instead of the traditional minimum spanning

46

Figure 29: Finding the Maximum Spanning Tree.

tree, Figure 29. This is often as simple as changing the less-than symbol used in an

implementation of Prim’s algorithm to a greater-than symbol. Or, equivalently, the

weights can be negated and the minimum spanning tree found.

p(X̄)approx = p(X4)p(X5|X4)p(X1|X4)p(X3|X4)p(X2|X3) (10)

This tree model for the distribution is equivalent to the best pair-wise approxima-

tion for the true distribution and requires only marginal and conditional probabilities.

The tree shown in Figure 29 is equivalent to the distribution described by Equation

10.

2.3.1.2 Sampling from the Created Model

Sampling from the tree model is straightforward. The user selects any node and uses

the probabilities for each option available to that node to select its value. Based on

that value, a depth first transit (follow the path taken by a depth first search) is

performed through the tree. At each node a value for that variable is determined

based on the conditional probability of its value and the value taken by its parent

on the tree. The estimate in Equation 10 is equivalent to the tree shown in Figure

29; The value for X4 is discovered first, then the value for the child X5 based off of

p(X5|X4). If X5 had children their value, for the candidate input vector, would be

computed next.

Now that the solution can be approximated by a joint distribution, the model can

47

Figure 30: Flow of execution for the MIMIC algorithm.

be used to sample from higher performing areas. This model is biased towards the

higher performing areas of the solution space by choosing to only create the model

from the top N percent of the data. In MIMIC, N is typically set to 50 percent.

The comparison with GAs in Chapter 4 is performed over a range of values for N .

Sampling from the model is continued, to replace the lower performing candidates.

The bestN percent from the new candidate list is used to create the model for the next

iteration. This biased model for the domain is focused on the better performing areas

of the solution space. See Figure 30 for the pictorial flow of the MIMIC algorithm.

2.3.1.3 Analytic Demonstration for Leveraging Problem Structure

The four peaks problem is composed of two sub-problems whose solutions can conflict

with each other. When the searching method is able to balance the needs of both

48

solutions, a bonus is provided to the solution utility. This problem serves as an

example to illustrate that MIMIC provides an improvement to the current practice

which utilizes genetic algorithms when the problem displays structure that can be

leveraged.

Figure 31: Four Peaks (Side View) for an input X̄ of size 100, T=10.

The four peaks problem was used by Baluja to describe the behavior of PBIL[4]

and later by DeBonet et al. for MIMIC[8]. This demonstration includes a confidence

bound around the mean performance for MIMIC and Genetic Algorithms which was

not included in earlier work.

The problem has two local minima, a string of all 1’s or all 0’s, and two global

minima; either N-(T+1) leading 1’s, or trailing 0’s, with the remaining T+1 of the

opposite value, see Figure 31. N is the number of values in the candidate string.

T is a specified input that affects the size of the discontinuous raised region shown

49

in Figure 31. The utility of a solution is primarily judged by the longest list of ‘1’

values from the start of the array or the list of ‘0’ values from the end of the array,

depending on whichever is longer. When the lists are balanced so that they are both

above the value of T, there is a reward to the utility function. Leading and trailing

values are explained by example in Equation 11.

Example Candidate :

[
11111︸ ︷︷ ︸
head=5

010110111 000000︸ ︷︷ ︸
tail=6

]
(11)

A mathematical description for the four peaks problem is shown in Equations 12.

The value T is the min number of values in a row from both the head and tail that

must be obtained before the utility reward is provided. For the example in Equation

11 which has N = 20 values, if T = 6 then the utility of the example is 6. If the

problem specified that T = 3, then the solutions for the head and tail are both

sufficiently long for the reward providing a utility of 6 +N = 6 + 20 = 26.

f̄(X̄, T) = max[tail(0, X̄), head(1, X̄)] + reward(X̄, T) (12a)

tail(0, X̄) equals the number of trailing 0s in X̄ (12b)

head(1, X̄) equals the number of leading 1s in X̄ (12c)

reward(X̄, T) =

N if tail(0, X̄) > T and head(1, X̄) > T

0 otherwise
(12d)

This example problem allows scaling of the problem size, by changing the size

of N , and modification of the size of the raised platform in the solution space, by

changing T . For this comparison, T is kept at 10 percent of the size of the input

vector N . The solution space formed by this is shown in Figure 32 for a 100 input

vector N . As the value of each input depends on the values of several other inputs,

methods that explicitly model the inter-dependencies between inputs should be able

to leverage this information to converge with fewer function calls.

50

Figure 32: Four Peaks (Top View) for an input X̄ of size 100, T=10.

A mature third-party implementation of genetic algorithms[58] is compared against

an author created implementation of MIMIC with dependency trees. For the genetic

algorithm, with a population of 100, tournament selection is utilized with the prob-

ability of crossover at 100 percent. Elitism is used to retain the best performing

candidate from the last generation; mutation is kept at 5 percent. An initial search

of GA settings was used to discover settings that consistently performed well across

the range of inputs.

A full factorial search of GA settings was not performed so it can not be stated

definitively that this is the best possible performance for Genetic Algorithms on this

problem. This work also exemplifies the challenge of finding well performing GA

settings.

Figure 33 shows the challenge two crossover operators (single and two-point crossover)

51

Figure 33: Function Calls Required to Find the Global Optimum.

have on the Four Peaks Problem. For small problem sizes, the GA performed well.

However, explicitly modeling the pair-wise inter-dependencies between variables al-

lowed MIMIC to perform more efficiently as the problem size increased. MIMIC

obtained an order of magnitude improvement when working with 80 inputs, Figure

34. The mean performance, for each algorithm, matched well with the behavior seen

in the work of DeBonet et al.[8]

The points in Figure 33 are bounded averages computed with 95% confidence for

all three methods, see Table 2 for computed confidence intervals. For a single run,

function calls were tracked until the method reached one of the two global optima.

As the problem size increased, the MIMIC algorithm required a larger sample

from the domain to model the pair-wise dependencies. The sample used to build

each model was comprised of 300 members for the 20 and 40 input cases. A group

of 500 was used for each 60 input case and a group of 1000 was used to model the

domain at 80 inputs. The total function call count still strongly favored MIMIC as

only an average of 181 iterations where required for 80 inputs as opposed to the 20667

52

Figure 34: MIMIC Function Calls as a Percentage of Two-Point Function Calls.

iterations required to converge using two-point crossover, Table 2.

Table 2: Bounds for Average (Thousands of Function Calls) Computed with 95%
Confidence.

MIMIC GA One-Point GA Two-Point
Inputs Avg +/- Avg +/- Avg +/-

20 8.04 0.55 2.61 0.15 2.74 0.15
40 24.55 0.70 41.77 1.60 54.72 2.50
60 64.77 1.20 260.33 9.00 415.58 15.00
80 181.56 3.20 1298.00 38.00 2066.73 70.50

The one-point crossover operator had the good fortune of having one ‘cut-point’

correctly placed at the first variable, aiding it to potentially separate the two com-

ponents of this problem with its the second cut. This is likely the reason for its

advantage here over the two-point crossover operation. The number of calls required

by MIMIC to create a probabilistic model of the space allows GAs to outperform

MIMIC on small versions of this problem. The pair-wise models become more useful,

in this problem, as the number of variables increase and allow for solutions at a tenth

the cost of the two-point crossover. Since many heuristics use GAs to perform static

53

decomposition, MIMIC could have great impact to the field as a drop in replacement

for GAs on large coupled problems.

The four peaks problem described a coupled multimodal domain that allowed for

adjustment of problem size to measure the scalability for three methods (MIMIC,

GA with One-Point Crossover, and GA with Two-Point Crossover). This problem

shows the potential advantages for using a probabilistic model to approximate the

distribution of the solution domain, automatically grouping inputs to leverage this

information between iterations. In the practice of decomposing a set of analyses, the

correct arrangement of analyses using a user specified metric could be found in a

similar manner.

One strong source of flexibility for MIMIC is that solely a distribution is passed

between iterations. Though the distribution here was initialized as uniform, nothing

in the method prevents a user from pre-conditioning the distribution. This quality

of MIMIC has application to a wide variety of aerospace problems. Generally speak-

ing, knowledge of the physics of an aerospace problem could be used to develop a

reasonable approximate model until the dependencies are better known. A designer

could then apply MIMIC to this approximated model. When the method has de-

veloped a dependency model for the approximated domain, the evaluation function

could be switched to the actual domain. The distribution would then adapt to the

true domain, having been assisted by its prior analysis of the approximated problem.

2.3.2 Extension to MIMIC with Continuous PDF Estimation

The MIMIC algorithm requires calculation of mutual information between pairs of

variables to approximate the joint distribution between all inputs. The estimated

joint distribution provides likely locations for higher performing combinations of in-

puts. The calculation of mutual information between two variables A and B requires

knowledge of three probabilities; P(A), P(B) and P(A,B). MIMIC has been presented

54

as addressing discrete inputs. This allows for these input probabilities to be treated as

histograms where entries are counted and normalized by the total number of entries.

The calculation of mutual information in Section 2.1 was shown to be possible with

either continuous or discrete random variables. A dependence tree (as in MIMIC) can

be used to approximate the full joint distribution between all the input variables once

the mutual information is known.[18] An approximation for the continuous probability

distributions: P(A), P(B), and P(A,B) is required to apply MIMIC to continuous

variables. In this work, a non-parametric method is utilized to estimate continuous

probability distributions.

A method is non-parametric if no knowledge of the true distribution is required

before estimation. One non-parametric method utilized for an extension to MIMIC is

Parzen-window density estimation. Parzen’s work [73] allowed for an estimated dis-

tribution that would converge toward the true distribution as the number of samples

increased. The method has been successfully used in pattern recognition[25], image

restoration[3] and regression[52].

P ≈ k

N
(13)

P =

∫
Rd

p(x̄)dx̄ ≈ p(x̄)

∫
Rd

dx̄︸ ︷︷ ︸
small region Rd

= p(x̄)V (14)

p(x̄) ≈ k/NV (15)

In Equations 13 and 14, P is the probability of a point x existing within a region

R. Given N samples independently drawn from an unknown distribution p(x), if k

samples fall within R an estimate for P would be shown in Equation 13. Assuming

that the region R is small enough that p(x) does not change greatly within it, P could

also be approximated by p(x) times the volume of the region (Equation 14). These

two pieces provide an estimate for the probability density function p(x) in Equation

15.[39]

55

p(x̄) ≈ k/NV =
1

Nhd

N∑
i=1

K

(
x̄− x̄i
h

)
︸ ︷︷ ︸

h is edge for cube of dimension d

(16)

The value k which represents the number of samples appearing within the region

R is often calculated by applying a function K at each sample point, Equation 16.

This function K is referred to in machine learning as a kernel function. Depending

on the kernel selected, each sample point has an opportunity of contributing to the

probability estimate within the region. The region R for simplicity is considered as

a hypercube with an edge length of h. In Parzen-window density estimation, the

parameter h is referred to as the bandwidth or window-width parameter.

K

(
x̄− x̄i
h

)
= 1

2πσxσy
√

1−ρ2
(17)

exp
(
− 1

2(1−ρ2)

[
(xi−x−hµx)2

h2σ2
x

+ (yi−y−hµy)2
h2σ2

y
− 2ρ(xi−x−hµx)(yi−y−hµy)

h2σxσy

])
where x̄ =

x
y


Many kernel functions are available but the one selected for this work is the

Gaussian kernel. The selection of this kernel makes a weak assumption that the true

distribution is smooth. Data distributions meeting this assumption are more easily

modeled by the Gaussian kernel. Uniform and other non-smooth distributions will

still be modeled by the kernel given a sufficient, potentially large number of data

points. Convergence to any arbitrary pdf function is possible.[6] The assumption is

made in this work that the pdf function for continuous data passed between analyses

can be well approximated by a smooth function.

K

(
x̄− x̄i
h

)
=

1

2π
exp

(
−(x− xi)2 + (y − yi)2

2h2

)
︸ ︷︷ ︸

where µx=µy=0, σx=σy=1, ρ=0

(18)

56

The full kernel for a 2-D Gaussian is presented in Equation 18. The model is

simplified by using a standard Gaussian with µ = 0 and a σ = 1 for each point, as in

Equation 18. Each Gaussian is centered on its sample point and the window-width h

appears in the final equation such that modifications to it behave as if changes were

being made to σ, see Equation 19.

The selection of the kernel is not as important as the selection of the window-width

parameter h. Setting it too small will overfit the data, while making it too large will

underfit the data. A method from the work of Botev [9] is utilized to dynamically

select for the parameter h.

p(x̄) = p


x
y


 = p(x, y) ≈ 1

Nh2

N∑
i=1

K

(
x̄− x̄i
h

)

p(x, y) ≈ 1

N

N∑
i=1

1

2π h2
exp

(
−(x− xi)2 + (y − yi)2

2h2

)
(19)

Parzen-window estimation for p(x, y), using a Gaussian kernel, requires the use

of Equation 19 over all available samples. The required estimation of p(x) and p(y)

needed to calculate the mutual information between continuous variables can be cal-

culated by using a 1-D Gaussian kernel and results in Equation 20.

p(x) ≈ 1

N

N∑
i=1

1√
2π h

exp

(
−(x− xi)2

2h2

)
(20)

This can be intuitively considered as a summation of Gaussian distributions, one

placed at each sample point, that is then normalized to create a pdf estimate, Figure

35.

By using Parzen-window density estimation, the components needed by MIMIC

for continuous structural modeling can be found. This allows MIMIC to be applied

to both continuous and discrete variables. The use of kernel density estimation,

specifically Parzen Window Estimation, to calculate probability densities allows for

57

Figure 35: Approximation from Five Samples using Gaussian Kernel. (h=0.5)

the estimation of mutual information between continuous variables.[52] A demonstra-

tion that calculates the mutual information between two continuous random variables

using kernel estimated probability functions is shown in Section 2.3.2.1.

2.3.2.1 Example of Kernel Method Continuous PDF Estimation

The continuous marginal and pair-wise joint distributions of input variables must be

modeled in order to use MIMIC with continuous variables. The modeling method

described here is used to approximate continuous distributions using a finite set of

sample data. The mutual information between continuous and/or discrete variables

can then be solved numerically and utilized by the MIMIC algorithm.

This is a demonstration that calculates the mutual information between two con-

tinuous random variables that were estimated first using kernel probability functions.

This is the crucial step required for MIMIC to operate on continuous variables. Con-

tinuous random variables need to have their marginal and pair-wise probability func-

tions estimated with the information then used to calculate their mutual information.

The rest of the MIMIC algorithm would treat both discrete and continuous variables

equivalently.

58

(a) Kernel Approximation (b) True Distribution

Figure 36: Kernel Probability Estimation of P(X,Y) using 400 random samples.

Four hundred samples from the distribution in Figure 36(b) were taken and

Parzen-window density estimation was used to generate the approximate multimodal

density function shown in Figure 36(a).

Table 3: Information Theory Attributes for Estimated Variables X and Y

Entropy Cross Entropy Mutual Info Mutual Info Diff

(Est) with Y (Est) with Y (Est) Actual

X 13.251 14.324 11.721 12.180 -3.77 %

Y 12.793

These approximations were taken to estimate the mutual information between

the two variables, shown in Table 3. This was compared against the actual computed

mutual information between the two variables. The proximity of the two results indi-

cate that Parzen-window density estimation shows potential for modeling continuous

variables for MIMIC. This will allow the use of MIMIC on the many continuous and

mixed multimodal problems examined in engineering.

59

2.3.3 Extension of Results through Decision Tree Learning

2.3.3.1 Decision Tree Learning

There are several methods available in Machine Learning to automatically generate

decision trees based on a set of training data. The method that was used in this thesis

is called J48 and is an extension on the older C4.5 classification algorithm.[75] The

variable that provides the greatest normalized information (in the information theory

sense) towards determining a classification is placed highest in the tree. The training

set is separated into instances on either side of the tree branch and the process is

repeated to select the variable that will separate the remaining data sets for the

greatest gain in information. Seeking the greatest gain in information at each step is

equivalent to taking choices in the decision tree to lower the remaining uncertainty

in the answer by the greatest amount at each step. Choices that greatly reduce the

uncertainty regarding the final classification will appear earlier in the tree, reducing

the averaged time for the tree to return a classification. Here the variable with the

greatest mutual information to the output variable would reduce the greatest amount

of uncertainty in the output variable when it’s value is set.

Ten-fold cross-validation was used to validate the discovered decision tree. The

data set was randomly separated into ten segments, allowing nine for use as a train-

ing set while one was retained for the validation set to the model. Each possible

combination of the 10 sets into nine training sets and one validation set was then

examined to provide a better averaged estimate for the performance of the decision

tree to unseen data.[63]

To illustrate the use of decision tree learning, a planetary entry example is utilized.

2.3.3.2 Introduction to Decision Tree Example Dataset

The PESST framework described in Chapter 5 was used to simulate an entry body

at Venus over several ballistic coefficients (BC), entry flight path angles (FPA) and

60

entry velocities. The output of concern was whether the vehicle would skip out of the

atmosphere and how the variables would rank as drivers for this process.

The Pioneer-Venus probes were sent in 1978 to gain information regarding the

Venus entry environment.[85] The entry domain used for this study includes the en-

try values for the shallower two Pioneer-Venus probes. The cases for Venus entry

covered the entry conditions utilized by the Pioneer-Venus Sounder and Day probe;

both had an entry velocity of approximately 11.54 km/s and an entry flight path

angle of -32.37◦(Sounder) and -25.44◦(Day).[86] The cases examined entries with bal-

listic coefficients at 150, 200 and 250 kg/m2 both probes had a ballistic coefficient of

approximately 200 kg/m2.

Figure 37: Design Space for a Venus Skip (BC = 200 kg/m2).

When a variable has a uniform distribution, the entropy associated with the vari-

able is a function of the number of potential values it can take. Ballistic coefficient,

61

entry velocity and entry FPA were all equally distributed in a full factorial experi-

ment over the domain. The output boolean variable for skipping has a lower entropy

than a 50/50 choice as the domain had a higher percentage of non-skipping cases.

The important measurement here is the amount of shared entropy between the input

and output variable, shown by the calculated mutual information. The mutual infor-

mation is highest for those variables that provide the greatest amount of information

regarding the value of the output; entry FPA is the most important variable regard-

ing skip out, then entry velocity and finally ballistic coefficient. The results returned

did not show any difference in skip out status due to the ballistic coefficient making

these results independent over the Venus domain specified. This result says nothing

regarding heating, lowest altitude attained, or time required to exit; only that the

final fact of the vehicle leaving the atmosphere was not effected by ballistic coefficient

over the domain specified.

2.3.3.3 Demonstration of Decision Tree Generation

This work develops descriptive metrics to predict performance over a region of the

design space instead of only showing static decomposition methods applied to specific

problems. After the generation of data sets covering the comparison between MIMIC

and GA on a number of different DSM problems, machine learning methods are

utilized to generate decision trees. These trees provide guidance to a user regarding

which method should be used on similar problems.

The two strongest variables affecting skip out for a range of Venus entries was

shown to be entry FPA and entry velocity. The relationship of these variables to skip

out over the domain is shown graphically in Figure 37. No cases were shown to skip

out for the domain examined below negative nine degrees. Numerically Table 4 shows

that entry FPA shared the greatest amount of information with the output variable

for skip out.

62

Table 4: Information Metric Applied to Venus Entry Skipping

Entropy Cross Entropy Mutual Information

with Skip with Skip

Ballistic Coefficient 1.585 2.236 0.000

Entry Velocity 3.700 4.317 0.035

Entry Flight Path Angle 5.129 5.289 0.492

Skip 0.651

Provided with these inputs and asked to create a decision tree, the input with that

provides the greatest amount of information would be selected as the root node for the

tree. In this case, the entry flight path angle provides the most information regarding

whether a Venus entry will skip over the domain of interest. After assigning a range of

values to the flight path angle, the variables are reexamined to discover which would

most greatly reduce the uncertainty towards knowing if the entry skipped.

Figure 38: Automatically Generated Decision Stump for Venus Skipping.

A decision stump for the data set is shown in Figure 38. A decision stump is

composed of one choice that separates a group of cases into two sub-groups. The

variable selected for the choice node is selected automatically from the input variables.

The variable with the greatest ability to separate the cases into classes is selected as

the node that provides the largest reduction in uncertainty associated with the answer.

Referring back to the earlier discussion on information theory, this variable provides

the greatest information gain when its value is known. The first variable selected has

the greatest mutual information with the output classification.

The automatically created stump selected entry flight path angle first as it has

63

Figure 39: Automatically Generated Decision Tree for Venus Skipping.

the greatest amount of mutual information with whether the vehicle will skip out of

the atmosphere, see Table 4. The next branch for the tree would be selected with the

value of the next most important input variable; specified by the one with the next

highest amount of mutual information with the output.

One last important remark on the decision stump in Figure 38 is that the value

used to separate the cases into two branches was selected by the algorithm as 9

degrees. The chart shown in Figure 37 demonstrates that this is an excellent value

to separate two segments of the entry design space. The value separates over 80% of

the design space that did not skip from the other segment that has a probability of

skipping. This shows that the automated process is able to develop reasonable values

for continuous input variables during the creation of a decision tree. This decision

stump was able to correctly classify 93.8% of the cases during 10-fold cross-validation.

Allowing the tree to generate sub-branch structure allows for the method to seek

a more complicated representation to better classify the cases presented as training

data. The larger tree in Figure 39 is able to correctly classify 99.9% of the cases

as measured by 10-fold cross-validation. This is compared against the accuracy of a

64

(a) Single Rule (83.3%) (b) Decision Stump (93.8%)

(c) Decision Tree (99.9%)

Figure 40: Accuracies for Three Classification Methods

simple rule to always guess the most likely classification ‘Does not Skip’ in Table 40.

The comparison between a decision stump and a larger decision tree demonstrates

how additional accuracy can be obtained at the cost of increasing model complexity.

An appropriate balance between model complexity and predicted performance can be

balanced by modifying the amount of branch pruning allowed by the method. The

amount of branch pruning applied to decision tree generation effects the complexity

of the resulting decision tree by setting the minimum number of cases at a leaf node

required before generating a new branch.

The matrices in Table 40 describe the number of cases that are correctly classified

along the horizontal, the number of category A that are correctly classified as category

A. The two off diagonal locations in red show the number of incorrectly classified cases.

Category A is used for ‘Does not Skip’ while B is used for ‘Does Skip’. A single rule

to always pick the most likely option in the domain obtains an accuracy of 83.3%

in Figure 40(a) while a decision stump is able to increase this accuracy to 93.8%.

The stump is able to provide a good deal of guidance while not being a complicated

structure. This serves as a proof of concept that a decision tree can be created with

an input data set, its accuracy and complexity balanced to serve as a guide to users.

The method of generating decision trees based on generated data sets is flexible and

could be used to provide guidance in generalizing DSM comparison results to a larger

65

portion of the design space.

66

CHAPTER III

IMPORTANCE HEURISTIC: EVALUATION FOR

ENGINEERING

The value of mutual information as an importance heuristic for engineering design

is examined first on a realistic first order design tool developed as part of this work.

The design tool will allow the examination of the heuristic on a trade study for a

planetary entry problem. Mutual information is compared with correlation through

their use in understanding the trade study.

3.1 Validation of Link Rank Heuristic

The link importance metric proposed by this work, mutual information will be ex-

amined in this section and validated on a planetary entry problem. The planetary

entry problem was examined through the creation of the PESST framework that was

created as part of this work (described in Chapter 5).

3.1.1 The PESST Framework

The Planetary Entry Systems Synthesis Tool (PESST) was developed to be a usable

conceptual design tool for spacecraft entry studies of Earth, Mars and Venus.[71] The

tool incorporates discipline models for geometry, hyper-sonic aerodynamics, guid-

ance algorithms, trajectory simulation, thermal environment and sizing to converge

conceptual entry vehicles. The majority of PESST was written by the author with

excellent analysis contributions in guidance from Brad Steinfeldt and Michael Grant;

Patrick Smith later contributed parametric analysis functionality to automatically run

PESST through a user specified design space. A detailed discussion of the models

utilized for PESST are included as part of this thesis work in Chapter 5.

67

For the demonstration experiment, the PESST tool is used to analyze a Martian

entry design space. The ranks for several variables over the design space will be com-

puted based on the mutual information that the variable provides towards objective.

The entries are classified by whether they were able to successfully reduce their speed

to below 1 m/s. Each variable over the design space was examined as to how well

a knowledge of that variable, at an altitude, would have increased the knowledge of

whether the vehicle would be able to meet its velocity target. Variables that have only

one value per trajectory (e.g. Total Propellant Mass) would have constant mutual

information values over the trajectory. Variables that change during the trajectory

(e.g. Velocity) could see their mutual information with the targeted objective change.

In the case where several variables are ranked for a single link, the highest ranked

variable passed in the link will be used to estimate the importance of the link as a

worst case estimate. Variables that have a vector of values for each trajectory will

have the maximum absolute value used to represent a worst case.

3.1.2 Validation on Planetary Entry Problem

The PESST framework was used to validate using mutual information as a method

of ranking DSM links for a conceptual design study. This is not an analysis of what

variables are important to all EDL missions. It focuses on one design study explained

below and ranks the DSM links based on the returned data. The same technique

could be used over other design spaces to rank link importance.

A list of input variables and inter-disciplinary variables were formed in order to

have coverage over most of the links of the PESST DSM for the study. A Mars

entry domain was specified that spanned different entry conditions and sphere-cone

geometries, Figure 5. The evaluation of the mutual information metric will then be

compared against the use of correlation to rank the same variables. The advantages

and disadvantages to the method are discussed after displaying study results.

68

Table 5: Bounds on Entry Design Space

Input Variable Lower
Value

Middle
Value

Upper
Value

Atmosphere (Temp, Density, Pressure)1 Low Aver High

Nose Radius (m) 0.5 0.65 0.8

Cone Half Angle (◦) 50 65 80

Entry Velocity (m/s) 7500 8500 9500

Entry Flight Path Angle (◦) -13 -15.5 -18

Maximum Thrust of Engines (N) 5000 10000 15000

Isp of Engines (s) 300 310 320

Initial Temp of TPS (◦C) -85 -75 -65

Number of Cases Examined 38 = 6561

The 6561 cases from the design domain in Figure 5 are all examined to determine

if they were able to reduce their velocity to less than 1m/s at an altitude of −2500m.

The details for the entry event time-line and triggers follow in the next section.

3.1.2.1 Planetary Entry Problem Events and Tracked Variables

The domain limits in Figure 5 were selected to generously bound the entry conditions

and geometry selections for a general direct entry Mars mission with a final gravity

turn performed by liquid-based propulsion. The event framework in PESST works

by the specification of a start and completion trigger for events that span a period

of time. Events, as a heatshield drop, require only a single trigger. Many options

are available for the triggering variable but only one variable value can be used for

triggering an event. Parachutes, for instance, could be triggered by Mach number or

dynamic pressure but not by a combination of both variables.

The events specified over the domain space and the event triggers that have been

selected are shown in Figure 6. The parachute uses a Mach trigger as the value shown

1Low, Average and High atmospheric profiles were produced through Mars GRAM for an entry
at latitude 22.63◦and longitude 338◦(Pathfinder entry location) during October 5, 2011.

69

is nearing the limits of current parachute technology. Relative triggers are available

so the heatshield can be dropped a number of seconds after parachute deployment.

The gravity turn seeks to target a final velocity of less than 1m/s at −2500m. It

specifically targets a velocity of 0m/s but any velocity under 1m/s was accepted as

near enough.

Table 6: Events Programmed to Occur During Entry

Event Start Trigger End Trigger

Parachute Deployment Mach = 2.5 Altitude = −1500m

Heatshield Drop Drop 5 seconds after
parachute deploys

N/A

Gravity Turn Start 1 second after
parachute event ends

Altitude = −2500m targets
velocity = 0m/s

The events for this entry are closely interrelated which is realistic. If one event fails

to trigger other closely connected events will likely also fail to trigger. For the events

in Figure 6, if the trajectory never falls below Mach 2.5, then the parachutes will

never open. This would cause the heatshield to fail to drop as the event is triggered 5

seconds after parachute deployment. Without the parachute event, the gravity turn

event would fail to start due to the fact that the parachute event never ended.

A number of variables were tracked during the analysis over the design space, Fig-

ure 7. These variables included design study variables, converged subsystem masses,

variables that change over the course of the trajectory and variables dealing with the

thermal protection system. The selection of variables spanned most of the links in

the PESST DSM and were recorded 0.1 second intervals along the trajectory.

The variables from Figure 7 were recorded at specified altitude marks to provide

a stable frame of reference from which to judge variable values over the design space.

Converged total system masses do not change over the course of a trajectory. The

actual mass present at the vehicle will change with time but the converged total

parachute system mass at entry will not change given a trajectory.

70

Table 7: Variables Tracked in Design Study

Design Variables

Cone Half Angle Entry FPA Entry Velocity

Initial Temp of TPS Isp of Engines Max Available Thrust

Nose Radius Planet Atmosphere

Mass Breakdown

Backshell Mass Entry Mass Heatshield Mass

Landed Mass Parachute Mass Propellant Mass

Propulsion Sys Mass

Thermal Protection System

Recession Thickness TPS Thickness

Trajectory Variables Sampled with Respect to Time

Altitude Angle of Attack Azimuth

Ballistic Coefficient Bank Angle CD

CdA Convective Heatload Convective Heatrate

Crossrange Density Downrange

Drag Dynamic Pressure Flight Path Angle

Latitude Lift/Drag Longitude

Mach Radiative Heatload Radiative Heatrate

Sensed Deceleration Thrust Time

Total Heatload Total Heatrate Vehicle Mass

Velocity

The variables that only have one value per trajectory will have constant mutual

information. In this work, altitude was used to decide the point of comparison over

the design space. Mach number or time could have been selected as well. To compare

consistently over all points in the design space, the user should select a variable to

use as a reference that appears in all domain cases. If half the points in the design

space never reach Mach 2 then only the mutual information of the remaining values

can be computed at Mach 2.

71

3.1.2.2 Evaluation of Proposed and Standard Metric

A comparison was performed between correlation and mutual information on the same

trajectory data. A very common from of correlation used in engineering, Pearson’s

correlation, measures the linear dependence between two variables. The tendency

of two variables to vary their values in either the same direction (positive number)

or opposing direction (negative number). There is directional information that is

provided by the sign of the number provided. Mutual information provides a measure

of the non-linear dependence of two random variables but there is no concept of slope

or direction to the number provided. The mutual information will always be zero or

higher, reflecting the number of bits that could be used to describe the information

shared between the two variables.

Table 8 was formed by calculating the mutual information and correlation between

each variable and the system objective along the trajectory. The largest dependence

recorded was used as the variables entry in the table.

The values for all trajectory variables were taken at 15 set points along the tra-

jectory. Altitude was used to set these points at 110km, 90km, 70km, 50km, 40km,

30km, 20km, 10km, 5km, 3km, 1km, 0km, −1km, −2km and −2.5km. The drawback

to selecting a reference variable in this way is that changes in the variable can’t be

measured to determine either its correlation or mutual information to the objective.

Beyond numerical noise, all the values being measured for altitude in this case

are equal, during one batch of trajectory sampling, regardless of the final ability

to meet the velocity objective. For mutual information, altitude would therefore

provide no knowledge to the trajectories ability to meet the final goal making the

mutual information equal to zero. The value should be zero or, with numerical error,

close to zero for correlation. This is seen to be so for both cases in Table 8.

The maximum value obtained by the variables during their trajectory was used

for Table 8. The top six variables were plotted as a function of altitude to show their

72

behavior over the trajectory. Variables that only have one value for each trajectory

(e.g. total propulsion mass) have a constant value on the graph. Variables that

contain a vector of values for every trajectory are plotted as a function of altitude

to show how the mutual information calculated between the variable and the system

target change over the coarse of the trajectory.

Table 8: Ranked Variables for a <1m/s Target at -2.5km

Max MI Label Max

Corr

Label

0.8614 Velocity 0.5758 Total Propellant Mass

0.8195 Drag -0.51 Azimuth

0.5595 Dynamic Pressure -0.4498 Max Available Thrust

0.5551 Thrust 0.3751 Thrust

0.5462 Total Propellant Mass -0.3471 Velocity

0.5260 Total Propulsion System

Mass

-0.3471 Mach

0.3962 Azimuth -0.3016 Vehicle Mass

0.3182 Flight Path Angle -0.281 CD

0.2570 Time 0.2803 CdA

0.2004 BC -0.2802 BC

0.1742 Landed Mass -0.2793 Dynamic Pressure

0.1623 Max Available Thrust -0.2791 Sensed Deceleration

0.1598 Vehicle Mass -0.279 Drag

0.1489 Total Heatload -0.2742 Convective Heatrate

0.1340 Convective Heatload -0.2742 Total Heatrate

0.1302 Convective Heatrate -0.2719 Flight Path Angle

0.1300 Radiative Heatload 0.2679 Entry Mass

73

Table 8: Ranked Variables for a <1m/s Target at -2.5km

Max MI Label Max

Corr

Label

0.1260 Downrange -0.1757 Parachute Mass

0.1198 Total Heatrate -0.1643 Radiative Heatrate

0.1181 Crossrange 0.162 Time

0.0970 Parachute Mass 0.1442 Cone Half Angle

0.0961 Entry Mass -0.1394 Total Propulsion System

Mass

0.0889 Mach -0.0776 Radiative Heatload

0.0874 CdA 0.0742 Altitude

0.0853 Sensed Deceleration 0.0694 Entry FPA

0.0727 Radiative Heatrate -0.0694 Longitude

0.0314 CD -0.0665 Heatshield Mass

0.0251 Heatshield Mass 0.0654 Landed Mass

0.0218 Cone Half Angle 0.0636 Downrange

0.0092 Longitude -0.0625 Latitude

0.0058 Entry FPA -0.0602 Crossrange

0.0058 Latitude -0.0495 Recession Thickness

0.0021 Planet Atmosphere -0.0407 Density

0.0013 TPS Thickness -0.0391 Planet Atmosphere

0.0010 Recession Thickness 0.0354 Convective Heatload

0 Nose Radius 0.0354 Total Heatload

0 Entry Velocity -0.0149 TPS Thickness

0 Isp of Engines -0.0107 Nose Radius

0 Initial Temp of TPS -0.0081 Entry Velocity

74

Table 8: Ranked Variables for a <1m/s Target at -2.5km

Max MI Label Max

Corr

Label

0 Backshell Mass -0.0069 Initial Temp of TPS

0 Altitude -0.0012 Isp of Engines

0 Lift/Drag 0 Backshell Mass

0 Density 0 Lift/Drag

0 Angle of Attack 0 Angle of Attack

0 Bank Angle 0 Bank Angle

No information is gained by the value of thrust during the early segment of the

trajectory that would help determine if the system reaches its final velocity target.

That is why the mutual information between the thrust variable and the velocity

target is zero during the early segment of the trajectory. Knowing the value of thrust

at 50km tells one nothing about whether the final velocity target will be reached, see

Figure 41.

The total propellant mass and total propulsion system mass are design drivers due

to the importance of the gravity turn event. The gravity turn event was triggered to

start one second after the parachute event ended. The parachute is told to trigger

at Mach 2.5 and end at an altitude of −1.5km. If the vehicle fails to meet Mach 2.5

before −1.5km then the parachute will open but never hit its release trigger. The

parachute will be active for the rest of the trajectory and the guidance event will fail

to ever become active.

The parachute changes the aerodynamics of the vehicle strongly, greatly increasing

75

Figure 41: Mutual Information of Variables Sampled by Altitude

the vehicle drag. Cases in the design space exist where the triggers used force the

parachute to remain active below its release altitude of −1.5km. The failure of the

guidance event to fire will mean a total propellant mass of zero and a much lower

total propulsion system mass as the system is told to size tanks for zero propellant.

The value of the sized propellant and propulsion system then dictates whether

the system reaches its final velocity target. The importance of drag is indicated by

the parachute event straying into altitudes lower than 1.5km. If the value of the drag

variable is large at these low altitudes the system is almost certain to not hit its

velocity target as the guidance event will not fire.

The system target of whether the vehicle could reduce its velocity to under 1m/s

76

Figure 42: Detail for Mutual Information of Variables Sampled by Altitude

is a binary choice. If the design space had an equal number of successes to failures

on this system metric (i.e. 50% yes and 50% no) than this variable would require

at least one full computer bit to describe each result in the design space. This is a

measurement of the random variable’s entropy which is described in the discussion

of mutual information (i.e. shared entropy) in Section 2.1. This point is important

because it means that the worst case entropy for a binary variable is 1 bit. This means

that the largest shared entropy that can be had with a binary variable is equal to 1

bit. Given this, velocity and drag in Figure 42 are both able to almost completely

remove any uncertainty regarding the value of system target metric. The system

metric is not split in a 50/50 manner over the design space so the target entropy is

instead just above 0.9.

77

These results highlight the importance of mutual information in a realistic con-

ceptual design study. Mutual information provided a measurement of how important

each variable was by measuring how much uncertainty the knowledge of each variable

would reduce in the target. Examining the graph quickly showed that something

important, to our target metric, was happening with the guidance system. Tracing

the ’why’ behind the importance of drag would reveal the parachute event as being

active below its release altitude. This demonstrates its use as a tool for better under-

standing the results from design studies, allowing an additional use as a debugging

tool. Velocity is calculated as the most important variable which makes a measure of

intuitive sense as the system target metric is based off of the final velocity.

This is now contrasted with design knowledge obtained by using linear correlation

to examine the same design space and points. Correlation provides a direction to the

linear relationship that is missing from the mutual information metric but does not

perform as well at revealing the relationships and dependencies discovered though

mutual information.

In Figure 43, Mach decreases as the chance of obtaining the target velocity in-

creases. The linear slope follows a reasonable direction but it is ranked by mutual

information a being the 23rd most important variable tracked for the trajectory with

respect to being able to determine if the velocity target is met. There is no question

that Mach is decreasing for all trajectories traveling through the atmosphere but this

information does not include how important the direction of the relationship is to

meeting the system target. The mutual information measure lacks this directional in-

formation is it measures both linear and non-linear dependence. Mutual information

though measures the amount of the system target uncertainty explained by knowing

the value of the other variable.

As the total propellant mass in Figure 43 increases, obtaining the target velocity

78

Figure 43: Correlation of Variables Sampled by Altitude

becomes more likely. The listing of the total propulsion mass agrees with the cal-

culation of mutual information but the total propulsion system mass is 22nd in the

correlation list even though it is directly affected by a lack of sized propulsion mass.

This is another example that shows the difference between correlation and mutual

information. Correlation is valuable for determining the direction of relationships

but mutual information should be used when one wants to measure how dependent

the value of one random variable is on another. The linear dependence of the to-

tal propulsion system mass might be low but it is directly dependent on the total

propellant mass sized for the system. Mutual information was able to recognize this

dependence while linear correlation was not.

79

Events in the simulation have the opportunity to start and end at discrete inter-

vals (e.g. every 0.2 seconds). The guidance event is set in the study to wait until

the maximum available thrust is required to meet the targeted velocity. Given the

discretization of the start/end time a lower maximum available thrust would make

the constant uncertainties in firing times lead to smaller uncertainties in the final

targeted velocity. A 15kN engine firing for an extra 0.2 seconds leads to a larger

change in velocity than the same extra time spent with a 5kN engine. Though the

direction of the relationship makes sense, the strength of the linear relationship does

not translate to a high mutual information ranking. The maximum available thrust

appears as 12th on the list of important variables with respect to the obtaining the

targeted velocity.

Figure 44: Detail for Correlation of Variables Sampled by Altitude

80

The importance computed by mutual information corresponds with the corre-

lation strength calculated for thrust. The presence of increasing thrust is directly

proportional to obtaining the targeted velocity but then the direction of the relation-

ship changes at the end of the trajectory, Figure 44. This change may be due to

the linearization of the relationship or to the thrust value serving as a stand in for

the value of the maximum allowable thrust. One group of cases with failed guidance

firings would have a thrust value of zero while successfully begun guidance firings

would be subjected to time discretization errors that provide finer velocity targeting

to vehicles using a lower maximum available thrust. This is a complex relationship

that correlation calculates as falling linearly towards a negative correlation. Mutual

information does not have difficulty determining that, regardless of directionality, the

value of thrust removes a sizable degree of uncertainty regarding whether the system

targeted velocity was reached.

3.1.3 Advantages/Disadvantages of Proposed Metric

The computational cost for calculating link importance requires the estimation of

a marginal probability distribution and a joint probability distribution. These are

formed by tracking and storing values as they are generated by the DSM. As long as

the time and/or number of required analyses calls is significantly larger than those

required to estimate the probability distributions this is a workable method for de-

termining dependence. For the PESST framework example, a single case takes 15-30

seconds to run meaning several hours for the full domain of data points. The eval-

uation of the mutual information is on the order of seconds making estimated inter-

mediate rankings workable for this conceptual design tool after a sufficient number of

full cases.

This heuristic has a great deal of flexibility toward working with different types of

data and can be computed on-the-fly or post-processed after a design of experiments.

81

An engineer may wish to use this metric as another way to understand the dependence

existing between variables in a study, as an alternative to correlation.

Correlation provides valuable information regarding the direction of a linear rela-

tionship that is not available through mutual information. Mutual information only

focuses on the amount of uncertainty in one random variable explained by knowledge

of another variable’s value. Something could have a strong correlation without being

a major driver that strongly determines a target’s value. There is though a strong

value to having calculated linear relationships that can be used for estimating the

rank of response strength.

3.2 Forced-Based Clustering with Importance Heuristic

Dynamic decomposition involves the discovery and utilization of problem structure in-

formation obtained while a problem is solved. While static decomposition uses heuris-

tics to predict future discipline behavior, dynamic decomposition seeks to leverage

run-time data to separate a problem into sub-problems. This increases the run-time

cost of the decomposition with the benefit of accessing the actual problem’s behavior.

Heuristics developed for static decomposition (e.g. minimizing feedbacks) may not

be the most applicable to the problem being solved. By recording and leveraging

problem behavior, problem performance can suggest a tailored decomposition to use.

This work demonstrates a method that can be used with future work on dynamic

decomposition and demonstrates the method on a low-thrust trajectory problem.

This problem will be decomposed to discover sub-problem structure using force-based

clustering with mutual information. As the analyses are connected in a linear fashion,

with no feedback loops, common heuristics from static decomposition would find the

problem challenging. For example, the problem already has a minimum number of

feedback loops and the distance of links from the diagonal of the DSM is already

minimized. The only way to select a decomposition is to either blindly split the

82

problem into equal pieces or to rank the importance of the individual links. The

clustering here is enabled by assigning each information link with an importance value

calculated from the current run-time behavior. Mutual information is proposed, as

part of this thesis work, to serve as the appropriate heuristic and force-based clustering

is used to determine where the split should occur.

3.2.1 Low-Thrust Problem Domain

The 3rd Global Trajectory Optimization Competition (GTOC) solution presented by

the Georgia Tech team was used as an example for trajectory decomposition. The

decomposition method is not designed to determine which combination of asteroid

targets should be visited by a vehicle. The method presented is geared to discover

how a given trajectory should be separated into sub-problems in order to reduce the

negative impacts of decomposition (e.g. solving sub-problems that do not help to

solve the original problem).

Selection of the solution determined by the team allows for the knowledge that

a solution for the problem exists. No information was known a priori on where the

trajectory would be best cut to minimize computational time. The trajectory, Figure

45, involves a rendezvous at three asteroids or at least 60 days. Two flyby passes of

Earth occur before a final rendezvous at Earth. The same ballistic guess was used

for solving the entire trajectory as was used to solve each segment of the trajectory.

Typical practice would be to separate the problem into two or more equal segments

depending on the number of orbital transfers.

The full trajectory is shown in Figure 45. The trajectory is described as E-49-

E-37-85-E-E. Where the vehicle leaves the Earth and travels to asteroid 49, flyby of

Earth, rendezvous at asteroid 37, etc. The orbital elements used for the asteroids

listed are described in Table 9.

The full trajectory is challenging to compute and takes over 33 minutes to compute

83

Figure 45: 3rd Global Trajectory Optimization Competition Entry by Georgia Tech.

using the OPTRAIN low thrust trajectory solver developed by Gregory Lantoine.[53]

Learning how to separate this trajectory into smaller components that could be used

to solve for the original problem is the goal of this section.

3.2.2 Applying Mutual Information to Trajectory Design

The advantages of mutual information will be shown by demonstration on this low-

thrust trajectory problem. The decomposition suggested will be compared against:

ranking all links equally and attempting to solve the original problem without decom-

position. As the original low-thrust problem is normally computationally intensive to

solve (e.g. 15-30 minutes per function call), standard practice is to approximate the

84

Table 9: Orbital Elements for Asteroids used in Problem
No. Name Epoch a ecc inc arg.

Peri
Node M

(MJD) (AU) (deg) (deg) (deg) (deg)

37 2004-
QA22

54200 0.9508977 0.12172568 0.57414 28.54873 175.15217 55.2451141

49 2000-
SG344

54200 0.9774002 0.06697124 0.11024 274.9223 192.31139 180.3781477

85 2006-
BZ147

54200 1.023656 0.09861161 1.40819 95.17529 140.15053 318.8393785

physics of the domain by creating a simplified approximate domain. For example, us-

ing ballistic transfers between asteroids rather than low-thrust transfers will decrease

computational time to less than a second per ballistic transfer. This approximated

ballistic domain provided guesses that were later converged and examined in the true

domain.

The dependence information between contributing analyses for this problem (i.e.

first visited asteroid, second visited asteroid, etc.) are used to cluster the contributing

analyses using mutual information. Links between clusters had their values temporar-

ily frozen while each cluster was run in the true low thrust domain. The sub-solutions

found were then reassembled and the total problem solution was refined to provide a

measurement of the total run-time when using the decomposition.

The individual legs of the trajectory are shown in Figure 46. Each transfer involves

less than two complete revolutions before coming to the next body in the trajectory.

The question of how to compute the mutual information of a trajectory transfer was

answered by converting porkchop plots into a form that would be meaningful for

mutual information.

A porkchop plot describes the change in velocity required to transfer from one

orbit to another. The lower areas of the plot describe more favorable windows of

opportunity for a transfer, see Figure 47. Two main assumptions are made when

85

Figure 46: Trajectory Leg Breakdown for the 3rd GTOC.

using these plots as tools for estimating the mutual information between two orbiting

bodies. As the plots in this work are based off of ballistic calculations, the assumption

is made that the low thrust trajectory is workably approximated by the ballistic

calculation. Future could be performed to create plots for this method that are not

based on ballistic calculations but on other low thrust approximations (e.g. spiral

fitting, etc). The second assumption is that, lacking any knowledge regarding when a

transfer will begin, a good estimate for when the transfer begins will be based off of

minimizing the required energy to perform the transfer. If one does not know when

the transfer leg will start; it is a good estimate to assume that it will likely occur

within or near to one of the ”launch windows” of low delta-V.

86

Figure 47: Example of Ballistic PorkChop Plot of Delta-V (DU/TU)

By inverting and normalizing a porkchop plot, a joint probability distribution is

formed between the departure date and time of flight. This form stresses those areas

of the launch space that would lead to a low delta-V during the transfer. In the

distribution, an area is less or more likely in direct relation to the cost of the transfer

it describes. Now that the transfer is described generally in the form of a distribution,

the mutual information between both random variables can be computed.

This method looks at the trajectory leg as a probability distribution over a range of

potential values. The difficulty of a leg can be estimated here through the distribution.

Even legs with complicated transfer windows can be compared and ranked against

each other.

A transfer that shows insensitivity between launch date and time of flight, such

as the plot shown in Figure 49, would have a much lower mutual information than

a more complicated chart that only allowed for certain small transfer windows. This

follows as it is relatively easy to tack on an extra Earth flyby without changing any

transfers from earlier in the trajectory; unless the solution is constrained by total

time constraints.

87

Figure 48: Flipping and Normalizing PorkChop Plot into Probability Distribution

Figure 50 shows the probability distribution formed for an Earth-Earth transfer.

The mutual information computed is quite low as there is not much shared informa-

tion to change the marginal distribution when one random variable becomes known

completely. Changing the launch date does not change the marginal distribution for

the time of flight variable.

This way of considering transfers that allows a numerical calculation of the depen-

dence between launch date and time of flight. With it, one can numerically estimate

the difficulty of trajectory legs which can greatly assist designers who wish guidance

while breaking longer trajectories down into more tractable components. Many meth-

ods could be developed to add fidelity to the plots used without the need of modifying

how the plots are converted to calculate for the mutual information.

3.2.3 Application to a Low-Thrust Problem

Standard practice when confronted by a number of legs is the arbitrarily split the

trajectory into smaller pieces that could be run separately; hoping that the consoli-

dated solutions can lead to a final answer for the original problem. The developers of

Mystic, a high fidelity low thrust code developed by NASA, suggest that trajectories

88

Figure 49: PorkChop Plot for Ballistic Earth-Earth Transfers

with more than 3 flybys separated by interplanetary distances or those with more

than 6 close flybys should be optimized in a piece-wise manner.[98] No guidance is

provided as to how a trajectory should be best separated.

89

Figure 50: Probability Distribution Formed from Earth-Earth PorkChop Plot

90

Table 10: Comparison of Cut Performance on Low-Thrust Problem

(90% confidence)

Label Level

One

RT

+/- Status at Completion Level

Two

RT

+/- Status at Completion Total

RT

+/- MI

Rank

(s) (s) (s) (s) (s) (s)

E-49-E-37-85-E-E N/A N/A N/A N/A N/A Iter. limit; Accuracy Not

Achieved; Could not be

Improved

2029.7 53.0 -

E-49-E-37 1093.9 15.6 Could not be improved
474.6 7.1 Optimal Found 1568.6 22.7 First

85-E-E 145.4 2.9 Optimal Found

E-49-E 6.6 0.1 Optimal Found
2321.9 167.4 Iter. limit; Optimal Found 2612.9 170.1 Second

37-85-E-E 291.0 2.7 Optimal Found

91

The most straight forward method is to separate the trajectory equally into

tractable components so this will be used as the example of current acceptable prac-

tice. With seven elements, this trajectory could be separated roughly equally in one

of two ways. Here the mutual information between the links will be used to aid a

designer who would like guidance regarding which is the better decomposition.

Table 10 shows the behavior of the low thrust trajectory problem for both near

equal decompositions and for the calculation of the complete trajectory. Mutual

information is here calculated or the 37-85 transfer and for the E-37 transfer to see

which has a lower mutual information. A cut to the 37-85 connection is suggested by

mutual information and performs better than the other equally sized cut. All cuts are

run on the same ballistic initial conditions used for the calculation of the complete

trajectory. After both segments are solved, their sub-solutions are consolidated into

an initial guess for the original problem.

Solving for the original problem is challenging and the program needed to be rerun

with its produced updated guess two times. The first time it had reached an iteration

limit; its self-produced updated guess was then used to continue the program. The

second time it found a near solution but had yet to converge it to the accuracy

requested in the input file. The third run was able to converge onto a point that

could no longer be improved. Optimality conditions tracked by the software did not

call this point an optima but the masses at each asteroid were found to be close to

the other solutions found in a piece-wise fashion.

The second row containing E-49-E-37 and 85-E-E took a long time to solve but, as

their sub-solutions were more representative of the answers required by the original

problem, consolidating both answers was considerably faster. Here mutual informa-

tion provided a valuable insight that could be leverage into selecting a better decom-

position for the problem. The process itself could be automated and the construction

of porkchop plots could be easily parallelized.

92

The last row of Table 10 for the decomposition E-49-E and 37-85-E-E found sub-

solutions extremely quickly but these were not compatible towards solving for the

original problem. The rework during consolidation increased the total run-time to

where less time was spent on the un-separated problem.

In this section, a low thrust trajectory problem was separated into two sub-

problems using force-based clustering. These were solved separately and later com-

bined to potentially speed the solution of the original trajectory problem. To rank the

importance of each link, a method was created to calculate the mutual information

of a trajectory link.

3.3 Summary

This chapter introduced a useful new metric for the evaluation of variable importance.

This has wide application to design studies and towards a more complete understand-

ing of variable interaction that often can be non-linear. This metric was compared

against correlation and though mutual information on a realistic conceptual design

study using the PESST framework for entry system design. A Mars entry trade study

was performed to better understand the strengths and weaknesses of mutual informa-

tion when compared to the standard use of correlation in understanding trade study

results.

Though mutual information does not provide directional information on a relation-

ship, it was shown to be able to measure both the linear and non-linear dependence

between variables. The metric was able to correctly determine that total propulsion

mass was as important as total propulsion system mass (e.g. both are strong indi-

cators for the triggering of the guidance event). Linear correlation was unable to

determine the high importance of total propulsion system mass while mutual infor-

mation was able to correctly determine the most important variables.

This metric provides the ability to better understand the driving variables of a

93

design study. With a better understanding of modeled behavior, synthesis studies can

tell engineers more about the systems they model and more quickly expose weaknesses

within these model. Here an example showed how mutual information could expose

the importance of triggering for the guidance event and the most important driving

variables towards meeting the specified objective function.

Force-based clustering was adapted to assist in the decomposition of large prob-

lems. Force-based clustering leveraged calculated link importance information to

perform a selection between two competing decompositions for a large coupled tra-

jectory problem. A flexible technique for judging the difficulty of trajectory transfers

was also presented based on pork-chop plots and mutual information.

The large trajectory problem selected for this example was the Georgia Tech solu-

tion for the 3rd Global Optimization Trajectory Competition. Low-thrust trajectories

are challenging and time intensive to optimize making the potential to usefully de-

compose the problem valuable. Standard practice suggests cutting the trajectory into

equally sized tractable pieces; this problem had two potential cut-points that would

lead to near-equal sub-problems. Force-based clustering was able to successfully de-

termine which cut-point to use and led to a 20% reduction to the total run-time of

the trajectory solver.

In the domain of low-thrust problems, designers are often forced to cut long trajec-

tories to meet the computational limitations of the solvers available to them. Force-

based clustering and the mutual information metric could provided guidance to where

a decomposition should be performed.

94

CHAPTER IV

VALIDATION OF A NEW OPTIMIZER FOR STATIC

DECOMPOSITION

Static decomposition is often used to find a better scheduling of analyses and to

uncover closely grouped clusters of analyses that could signify a sub-problem. This

type of information can be applied to the structuring of project teams, planning

lines of communication between discipline groups, or can reveal physics driving the

larger problem by determining problem sub-structure. With a knowledge of sub-

structure, there is a potential to speed the execution of larger problems by leveraging

newly discovered information. For instance, specialized solvers could be used on sub-

problem clusters to discover sub-solutions in the solution to the larger problem.

In static decomposition, the problem is commonly represented as a design struc-

ture matrix. This structure is manipulated by an optimizer to find better configura-

tions. The fitness evaluations utilized are performed without run-time data form the

contributing analyses. The computational expense of computing the decomposition is

preloaded; allowing for a decomposition determination before any contributing analy-

ses are run. No time is required for the run-time calculation of sub-problem structure

allowing for the run-time focus of computational resources to be on the execution of

analysis codes.

A global optimizer, commonly a Genetic Algorithm, is used with a given fitness

function to discover these better performing matrix configurations. GAs are able to

search over multimodal solution spaces which contain many local minima that would

trap a local gradient based optimizer. These genetically inspired algorithms are also

simple to implement and have a long history of use in engineering for searching

95

multimodal domains. The large number of fitness function calls typically required for

GAs leads to the common use of inexpensive utility function calls. For the domain

of static decomposition, a few common fitness functions are to: limit the number

of feedback links or to prefer links that are close to the analyses along the DSM

diagonal. When a link is close to the DSM diagonal, the disciplines the link connects

are closer to each other on the diagonal. Links to distant analyses are assumed to

potentially lead to DSM iteration loops that involve a larger number of analysis block

recalculation.

A new global optimizer based on mutual information may provide a number of

benefits to suggest adapting it to the field. Two benefits investigated for MIMIC are

its ability to converge to high performing solutions using fewer function calls and its

potential to more reliably converge to good solutions while using non-optimal settings.

Reliability of performance with sub-optimal settings is important as the ideal settings

to use on a problem are never known a priori. A preferred method would have its

performance be less sensitive to lack of knowledge regarding the settings used.

It would additionally be valuable to know which types of decomposition problems

are solved best by the standard GA technique or MIMIC. By testing problems of

varying size and complexity, it is desirable to determine where one dominates, where

the best can not be decided from current experimental data and where the problem

is challenging to both methods. This type of analysis will help direct future method

development and provide more information regarding the behavior of the problem

domain itself.

4.1 Static Decomposition

This work compares the use of MIMIC to the standard GA for the problem of static

decomposition. In this section, this comparison is explained and results from the

96

comparison testing are shown. These results are evaluated as to whether they vali-

date the supposition that a method which models problem structure with probability

distributions, MIMIC, can show a marked improvement over a region of the problem

domain. The sensitivity of method performance to using near-optimal settings will

be examined as a metric for the reliability of the method when applied in a realistic

environment.

4.1.1 Approach for Comparing GA and MIMIC

The techniques that follow were required to determine which method converged to

a targeted solution fastest. Both methods are stochastic, requiring multiple runs to

average their performance on any examined problem. As such, averaged performance

is used to judge convergence speed. The experimental plan is also designed to deter-

mine which method is more robust regarding sub-optimal method settings. Optimizer

performance is sensitive to the settings used to solve a problem but this sensitivity

will differ between methods and between problems. The sweep of problems examined

will aid in determining averaged sensitivity characteristics for GAs and MIMIC.

The optimization of a function can be challenging for Genetic Algorithms. GAs

assume a building block hypothesis where sub-solutions can be used as building blocks

to larger solutions.[36] Most crossover techniques used assume that building blocks

share a close proximity on the candidate string that is often true. Additionally, it

has been observed in practice and literature that method settings are not reliably

transferable between similar problems.[102] The method that is more robust to non-

optimum settings or the method with problem settings that are easily predictable is

desired for the challenge of static decomposition.

To measure the sensitivity of methods to an imperfect knowledge of their settings

one needs to compute cases over a range of different settings. The best settings to use

in that range for the problem are found and examined to determine the performance

97

when the settings are near but not at this best performing point.

4.1.1.1 Examined Domain of Optimizer Settings

The ranges utilized for each of the methods are outlined in this section. These ranges

are over three settings for each of the methods. Population size, crossover percentage

and mutation rate are modified for Genetic Algorithms. Meanwhile the candidate list

size, percentage used for modeling and a noise parameter are examined for MIMIC.

The best settings for the optimizer, within the stated setting domain, was determined

by the exploration of 45 points in the setting domain selected by a mixed Latin

Hypercube and 2-level Full Factorial Design of Experiments. The best performing

point was taken as the best set of settings for this region. To measure the near-best

performance of the optimizers, a cube centered about the best found point was used

to calculate performance when using near-best settings.

Table 11: Setting Domain Searched for Genetic Algorithms.

Method Setting Low Mid High

Population Size 100 200 300

Crossover Likelihood 70% 85% 100%

Mutation Likelihood 5% 10% 15%

When crossing two different arrangements of analyses, each analysis can only ap-

pear once in the child. This spurred the development of several different crossover

types that maintain this restriction. Two crossover types commonly used for arrange-

ment problems, order-based crossover and cycle-based crossover were examined in this

study. Cycle crossover consistently performed better than order-based crossover in

preliminary tests over the range stated in Table 11. As a result, cycle crossover was

used as the default approach for this investigation.

Preliminary testing over the test problems was used to generate conservative

98

bounds for the setting regions used. The crossover likelihood in Table 11 was an-

chored on one side by the value 100 as a high crossover rate is common for Genetic

Algorithms. A range of population sizes from 100-300 was selected for Genetic Al-

gorithms. Later plotting of all results over this domain of settings showed that the

population size setting was not a main driver of performance for this problem range.

The likelihoods selected for both the crossover and mutation settings were found to

be far more important and will be examined later.

For MIMIC, the candidate list size is similar in function to the population size in

genetic algorithms. The name is kept different to avoid the mistake of thinking that

MIMIC relies on genetic operations or is another type of GA. The main difference

between them is that the size of the candidate list determines the maximum possible

sample size that could be used to calculate probability tables in MIMIC. The Per-

centage of List used for Model setting in Table 12 determines what percentage of the

total potential sample size is used to calculate these probability models.

Table 12: Setting Domain Searched for MIMIC.

Method Setting Low Mid High

Candidate List Size 100 1550 3000

Percentage of List used for Model 35% 50% 65%

Probability Noise Percentage 1% 6% 11%

There is always the risk that the sampled candidates do not possess the informa-

tion needed to converge onto better performing solutions. To help avoid over-fitting

probabilities from the use of a finite sample size, a noise setting is added. The noise

parameter determines the percentage of the final distribution that comes from a uni-

form probability over all currently available options. For the stored marginal and

conditional probabilities used by MIMIC, a composite probability is calculated as

shown in Equation 21. 100% minus the noise percentage comes from the learned

distribution.

99

probcomposite = (1− noise) probfrom model + (noise) probuniform (21)

The work of Bonet et al.[8] set the percentage of candidates used for model building

to 50%. Therefore a range was specified of 35%-65%.

The variance in performance about the best performing settings can be measured

by examining a cube of points centered about the best performing set of settings.

By using the same number of settings for each method, the dimension of the cube

formed about the best performing point is the same for both methods (i.e. a 3D

cube). This aids in having an apples-to-apples comparison when examining the range

of performance within this cube. Points were taken outside of the regions in Table

11 and Table 12 in case the best performing point was found to rest along one of the

region boundaries. In that case, the best performing point in the reported region is

used to center the cube.

Table 13: Design of Experiments Breakdown

Category Number
of Points

2-Level Full Factorial 8

32 point Latin Hypercube 32

Randomly Generated Points 5

Total 45

Table 13 describes the Design of Experiments (DOE) that was used to examine

the range of settings in Table 11 and Table 12. The DOE is based initially on a 2-level

full factorial design that places its experimental points along the edges of the design

space. Sampling from the interior is performed by using a 32-point Latin Hypercube.

Five randomly scattered samples from the domain are recorded for validating any

potential model created of the domain behavior. This amounts to reserving 12.5% of

the points generated for model validation.

100

As stated earlier, the stochastic nature of the methods require that any combina-

tion of settings should be independently tested multiple times to record their averaged

performance. Every one of the 45 setting combinations in the DOE from Table 13 are

independently reinitialized and rerun ten times to record both the mean and mean

confidence bounds. This amounts to 45 × 10 = 450 individual cases that must be

separately run to determine the settings that produce the best discovered averaged

performance for one method and one problem. This was repeated for each method

and problem considered.

The forty five problems investigated for this study were randomly generated. A

target fitness value for judging convergence was calculated by attempting to solve for

each problem by the GA ten times. The best found fitness value was used as a target

for both optimization methods. A combination of settings is considered as converged

if the problem target value was met or surpassed before reaching an upper function

call limit of 2 million calls that is used to bound the computation. The combination of

settings that leads to the lowest number of unconverged cases and then to the lowest

run-time was used to select the best performing point. The number of unconverged

cases, number of function calls used, and run-time was compared between the two

optimizers for both speed and reliability are important attributes for an optimization

method.

4.1.1.2 Test Requirements for Pseudo-Random Number Generation

Pseudo-random number generators are used to generate simulated random values

that are imitations of independent and identically distributed (iid) values.[55] These

are deterministic algorithms that generate random numbers whose behavior is meant

to be very hard to statistically distinguish from truly random numbers. In order to

run several repeated experiments, high quality pseudo-random numbers are required

101

to ensure independent results. Analysis results could not be considered as iid with-

out high quality random numbers. Additionally, confidence intervals computed on

this averaged behavior would be much harder to compute and defend without iid

experimental results.

Programmatic methods to simulate randomness will begin to repeat after a known

number of generated pseudo-random numbers. Methods each have different perfor-

mance characteristics when tested for statistical randomness, for instance the default

rand function in MATLAB and C have historically been too poorly random for use

in Monte Carlo analysis.[43] Researchers normally switch to other pseudo-random

number generators that are better able to simulate random properties. An example

generator often used for Monte Carlo analysis is the Mersenne Twister algorithm.[61]

The Keep It Simple Stupid (KISS) algorithm from Marsaglia[43] is used in this

study to generate pseudo-random numbers. It generates high quality random num-

bers and is one of the simplest methods to pass the DieHard[60] series of tests for

random number generators. It is composed of three different types of pseudo-random

number generation methods where the weaknesses of one method type over a region

are negated by the other two method types over the same region. A stronger combined

method results that is still straight forward to implement.[43]

For this study, one KISS generator is initialized with four seeds from highly en-

tropic data normally stored on a Linux computer within /dev/random. This file stores

random information from when drives are read, files accessed, etc. Programs take

longer to generate numbers from this source but they are of very high quality.[21, 43]

This initial KISS generator, initialized from /dev/random, is used to generate seeds

for all other KISS generators used.

One independent KISS generator is used for each candidate solution in the pop-

ulation for each method. This is to better ensure high quality randomness and, by

providing one generator for each candidate, no read/write conflicts occur during the

102

concurrent modification of the currently used seeds. This means that no software

locks are required to control access to the memory used by the seeds allowing for

simpler and potentially faster code at the cost of a larger memory footprint.

4.1.1.3 Problem Set Utilized for Study

Characteristics of the problems selected for this comparison study are examined here.

For the study, it is desirable to examine problems over a range of size and complexity.

Three difficulty levels (small, medium, large) were applied to size and to the level of

coupling present in the problem. The numerical values associated with these levels

are specified in Table 14 for a total of nine problem characteristic combinations.

Table 14: Problem Testbed Selected for Comparison.

Attribute Small Medium Large

Problem Size 15 25 50 3 steps

Links Active 5% 10% 20% 3 steps

Total Configurations 9

Random Problems Generated per Configuration 5

Total Randomly Generated Problems 45

Graphically, an example problem showing each of these configurations is shown in

Figure 51. The links active metric describes the percentage of potential link locations

in the DSM that are active. The blue boxes specify the locations of contributing

analyses. Tying these DSM sizes to the literature, the larger problem presented for a

General Motors Engine from Chapter 1 in Figure 3(b) is composed of 24 contributing

analyses while a provided example for an automobile design process had 15 analyses,

Figure 6(b).[15, 62] As such, 50 contributing analyses was selected to represent a large

problem for this work.

When creating the problems, the link placement for each problem was randomly

selected using a KISS generator with the only restriction being the specified problem

size and the total number of links present. This method was used to prevent the

103

Figure 51: Example Initial Configuration for Different Problem Difficulties Exam-
ined.

cherry-picking of problems that might give the impression of bias to the study. This

problem set is sampled from the complete set of problems of that size and complexity.

Five different randomly created problems are created for each combination of size

and complexity characteristics to form a set of 45 problems. Repetitions of each size-

complexity configuration were used to average comparison results for each problem

configuration.

Both methods are provided with a target utility that was determined for each

problem. Once the target value is found the method stops and performance metrics

are taken. This aims to provide a fair comparison between the methods that would

not exist if one or the other were allowed to converge to a weaker solution. The

performance metrics are all with reference to when the method obtained a utility

104

value that is at least as good as the specified target value. To find the target utility

for a randomly created problem, all of the problems were initially solved multiple

times by a genetic algorithm and the best discovered solution used as the targeted

utility. Once the target value or a better utility is found, the method is considered

as converged

A maximum number of function calls has been set at 2 million. This is to avoid a

potential infinite loop if a method becomes trapped within a poor local optima. As

each method uses a different number of function calls for each iteration, a function call

limit was a more fair way of capping the computation between the methods. If either

method reaches this maximum number of function calls it is recorded as unconverged.

It is valuable to compare the number of unconverged cases to see the propensity of a

method to become stuck within lower performing minima, within the setting domain

explored for this study.

4.1.2 Computational Framework for Comparison Testing

This section will describe the software framework developed for the comparison of

these two methods and explain how each method was written to utilize parallel com-

putation. Given the number of cases examined, parallel computation provides the

computational power to perform a detailed comparison between these methods for

Static Decomposition. This should be useful for others who wish to create parallel

implementations of these algorithms.

4.1.2.1 Need for Parallelization

With 45 setting combinations, each run ten times for statistical measurements and

for two methods, a total of 900 cases need to be run for each of the 45 examined

problems. Each case does not rely on the calculation of any other case and could be

run concurrently. These cases would take years if calculated in a serial manner which

105

is one reason that this type of comparison is rarely seen in the literature and is com-

pletely novel for the analysis of the MIMIC algorithm. Advances in both hardware

and programming interfaces have made massively parallel programming greatly more

available to researchers. Inexpensive and highly parallized hardware is starting to

become more available though recent developments in graphical programming units.

These developments are leading to drastic reductions in computational time for stud-

ies that can utilize this available hardware. NVIDIA graphics hardware was utilized

for this research with the Compute Unified Device Architecture (CUDA).

4.1.2.2 Processing using CUDA

CUDA is a parallel architecture for utilizing the parallel processing abilities of NVIDIA

graphics cards. In practice, it serves as an extension to the C language which en-

ables the specification of parallel code that will be run using multiple threads on the

graphics card. The first release of the CUDA application programming interface in

2007 greatly aided programming to NVIDIA hardware. The CUDA 2.0 framework

was utilized for this study.

The processing capability of graphics cards has out paced CPUs over that last

several years (Figure 52). Though CPU cores are more flexible in terms of what

types of processes they are optimized to run, GPU cores have been specialized for

numerical calculation which makes them well suited for many scientific applications.

Historically this specialization was driven by the large parallel numerical calculations

typically required during the rendering of graphics for progressively more intricate

video games.

Current hardware limitations on the GPU guide algorithm development on the

cards. While numerical calculation is rapid on the GPU cores, there is a potential

bottleneck in the time it takes to transfer data to/from the graphics card. Data traffic

106

Figure 52: Historical Performance Comparison between CPU and GPU.

between the card and hosting computer could strongly limit the benefits of paralleliz-

ing the software. It is much slower to transfer data than to execute instructions on

the card. This has guided the development of the parallel implementations of genetic

algorithms and MIMIC by the intention to minimize data traffic to the card.

Both genetic algorithms and MIMIC are made to run start-to-finish on the graph-

ics card, minimizing the transfer of data between the host system and card. All

required data is transferred to the card during problem initialization and then the

method, from that point, completely executes on the card only transferring back the

final answer or to have a different set of threads initialized. If control needs to be

passed back to the CPU, for it to call another GPU routine, only pointers to data

structures already on the graphics card are passed between the GPU and CPU. This

allows the next GPU routine to continue execution on the same data while only pass-

ing a few bytes between the GPU and CPU. By utilizing parallel hardware and a

107

parallel implementation for these algorithms, a comparison is enabled that is unusual

given the massive computational effort that would normally be required.

4.1.2.3 Parallel Implementation of Genetic Algorithm

For this study, several genetic operators have been implemented to run on an NVIDIA

video card. Reproduction has been implemented to use tournament selection to pass

on individuals that win the pair-wise fitness comparison. Here elitism is used to

always preserve the best performing candidate between generations. Two crossover

methods suggested from the literature for scheduling problems were examined prelim-

inarily: order-based and cycle crossover. Cycle crossover was selected as the method

to use over the range of settings in Table 11 as it consistently performed better over

the region and problems examined. Finally, mutation has been implemented by the

random selection of two DSM analyses and swapping their locations in the DSM.

GPU bandwidth limitations have been minimized in the algorithm by reserving

the memory required by the algorithm during initialization. The entire GA is then run

on the graphics card until it converges or hits the maximum fitness call limit. Genetic

algorithms are well suited for parallel computation. Each candidate is handled by a

separate computational thread that performs each genetic operation on the candidate.

Fitness evaluations, tournament selection and mutation are trivially parallelizable

for an individual in the population. The crossover operation was parallelized by

holding two populations in memory; the current population and the population for

the next iteration. This allowed multiple threads to modify individuals during the

crossover operation without the need for memory locking as the original individuals

were preserved in the current population for reading by all threads.

108

Figure 53: Genetic Algorithm Kernel for Video Card.

109

Figure 53 shows how the GA could be separated out to run through several threads

on the graphics card. Each individual in the population is handled by one thread

throughout the running of the method. Every block of threads, on the card, represent

a separate case that can be run concurrently on the GPU. Every thread has access

to its own KISS random number generator.

4.1.2.4 Parallel Implementation of MIMIC

The implementation of the MIMIC algorithm also followed the technique of keeping

the list of candidate solutions in the memory space of the video card during the entire

run of the method. This was done again to limit the interaction between the card

and main memory. The challenge with MIMIC parallel implementation came when

implementing two different steps, model building and fitness function evaluation, in

the algorithm these were best written using a different number of threads.

It was most straight forward, when model building, to use one thread for each

of N vertices in the initial fully connected graph, by Table 14 N is between 25 and

50 inputs (i.e. vertices). Each thread needs to compute the mutual information

between itself and the N − 1 other vertices. As the links are undirected, only half of

the full N × (N − 1) links need to be calculated during the creation of the model.

Additionally, the mutual information calculation only requires read access to the

list of candidate solutions to be modeled. This allows for multiple threads to use

the candidate solutions concurrently without the run-time penalty of data locking.

A parallel minimum spanning tree algorithm has been adapted to create a parallel

maximally connected tree algorithm. The parallel minimum spanning tree algorithm

that was modified is described in the work of Harish et al.[35].

Fitness function evaluation is easiest to implement when there is one thread for

every candidate solution so while the number of vertices N might be 50, the number

of candidate solutions could be 300. This suggested a need to change the number of

110

Figure 54: MIMIC Kernel for Video Card.

threads used for each action. To use different thread numbers, two approaches were

considered. The first was to specify the use of the largest number of threads that

would be required by the method steps. This was rejected as it would inefficiently

leave many threads unused during execution. The second and more efficient solution

was to temporarily shift control to the CPU where it could set a different number

of threads to perform the next action. The possible data transfer penalties were

mitigated by only passing pointers to data that already existed on the graphics card.

In Figure 54, every dashed line to signify synchronization also passed control back to

the CPU where it could call the CUDA kernel for the next step in the method with

an appropriate number of threads.

The parallel implementation for new candidate generation, from the formed model,

111

Figure 55: breadth-First Search of Tree Model, image modified from [35]

utilizes a breadth-first search through the formed tree model. Here one thread is used

for every node in the tree model where nodes that have the required data to calculate

will compute an input value for every new candidate. At the start, only one node,

start, has enough data to calculate its value. After the start node has been computed,

every one of its children will have the information required to run and record their

sections of the new candidate solutions, see Figure 55. The usual technique used

by MIMIC, when using one thread, is to use a depth-first traversal of the tree. A

breadth-first traversal is suggested here as an improved means of generating new

candidates when using multiple threads. Instead of the depth-first traversal which

takes N iterations, the number of breadth-first iterations is only N for the worst

case tree where the start node is at the end of a straight chain of nodes. Normally,

breadth-first will be much faster as more than one node could be completed per

iteration.

Comparing the implementation difficulty to genetic algorithms, MIMIC is more

challenging to implement but not greatly so. Probability is needed for both though

112

with MIMIC probability tables need to be kept. A maximum spanning tree algo-

rithm needs to be found or implemented. Several implementations for finding the

minimum spanning tree are available and only small changes are required to make

such an algorithm solve instead for the maximum spanning tree. The greatest chal-

lenge for MIMIC relative to GAs is simply in understanding the steps required for

implementation of the algorithm and the reasoning behind them.

4.1.3 Evaluation and Validation of Static Comparison

This study was performed on the Keeneland computer cluster which is managed

by the Georgia Institute of Technology, Oak Ridge National Lab, the University of

Tennessee-Knoxville, and the National Institute for Computational Sciences; funded

in large part by the National Science Foundation. The cluster has 120 computer

nodes that make available 240 Intel Westmore hex-core CPUs and 360 NVIDIA 6GB

Fermi GPUs. All stated run-times are on these NVIDIA Fermi GPUs.

This work far surpasses the current practice of only using a few problems for

testing that are often not generated randomly. This work was enabled by months of

computational time on the Keeneland cluster. Quantitative problem behavior of a

higher fidelity could be obtained by a larger selection of problem sizes, complexity

measurements, and a larger number of randomly generated problems for each config-

uration. This exhaustive analysis is beyond the current hardware capability of our

systems. The selection of problems and configurations used for this work provide

valuable trend information to aid in selecting a method for static decomposition.

This work provides the highest fidelity comparison between Genetic Algorithms and

MIMIC currently in the literature.

GA and MIMIC performance, over the range of settings investigated, will include

a comparison of function calls required to meet a target utility value, the percentage

of cases that did not converge by 2 million function calls, and the total averaged

113

run-time taken by the methods during the execution of the problems.

A search over a setting domain was used to discover a best-found set of settings

for each method. Results for each performance metric are provided for this best set

of settings. An additional analysis that is rare for the literature is provided where the

performance of both methods are also provided for a margin from this best-found set

of settings. This will provided the user with knowledge of how either method fairs

when near-best settings are utilized. As the knowledge of the best settings are not

available in practice, near-best performance is a more realistic comparison of method

performance.

4.1.3.1 Results using Best and Near-Best Settings

The 45 problems in Table 15 were randomly created to have the one of nine con-

figurations of element number and link complexity. This provided for five different

problems for each explored configuration, see Table 14. These five problems were

used to develop averaged performance estimates for each of the nine problem types

examined.

114

Table 15: Detailed Static Comparison Results Per Problem (Best

Method Settings)

90% Confidence Interval on Average 90% Confidence Interval on Average

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

46 15 5 0 0 140.7 20.66 155 27.92 10.58 1.907 1.798 0.3239

47 15 5 0 0 156 23.03 215 43.48 13.03 2.381 2.08 0.4207

48 15 5 0 0 261 42.68 370 60.97 33.63 6.214 2.823 0.4651

49 15 5 0 0 278.5 46.12 355 81.36 35.87 6.656 2.786 0.6385

50 15 5 0 0 278.5 45.35 365 69.87 37.05 6.762 2.79 0.534

0 25 5 0 0 5.05E+03 404.3 1.20E+03 217.6 1.18E+02 9.446 1.16E+01 2.103

9 25 5 0 0 5.94E+03 427.7 1.54E+03 138.8 1.26E+02 8.635 1.22E+01 1.097

18 25 5 0 0 9.06E+03 1419 3.93E+03 385.1 2.02E+02 30.57 1.81E+01 1.773

27 25 5 0 30 3.19E+04 16130 6.27E+05 339900 7.41E+02 370.8 2.01E+03 1088

36 25 5 0 0 3.80E+03 515 9.75E+02 94.63 1.07E+02 15.79 1.04E+01 1.004

1 50 5 0 0 5.95E+04 5229 1.26E+04 1093 1.20E+04 1052 1.53E+02 13.24

10 50 5 0 45 4.55E+05 76720 1.24E+06 321300 2.37E+04 3986 1.02E+04 2645

19 50 5 20 50 8.37E+05 348200 1.24E+06 298400 6.74E+04 28040 3.33E+04 7987

28 50 5 20 55 1.08E+06 330300 1.24E+06 325300 1.20E+05 36570 1.40E+04 3687

115

Table 15: Detailed Static Comparison Results Per Problem (Best

Method Settings)

90% Confidence Interval on Average 90% Confidence Interval on Average

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

37 50 5 40 55 1.18E+06 406200 1.42E+06 290000 1.97E+05 68130 7.14E+04 14600

51 15 10 0 0 3085 351.2 6270 2030 225.2 25.8 15.26 4.941

52 15 10 0 0 3614 1181 3825 430.9 161.6 52.09 10.24 1.153

53 15 10 0 0 964.5 137.3 1150 176.2 85.15 11.75 5.581 0.8549

54 15 10 0 0 2945 1485 3538 740.9 308.6 155.2 9.956 2.085

55 15 10 0 20 9728 2826 4.26E+05 2.98E+05 436.6 126.2 1108 774

3 25 10 0 15 4.13E+04 5246 4.30E+05 253300 1.11E+03 140.4 1.42E+03 836.3

12 25 10 0 0 1.30E+04 945.7 4.94E+03 1097 2.99E+02 21.3 3.06E+01 6.802

21 25 10 0 25 2.94E+04 3225 5.82E+05 313100 2.10E+03 230.1 2.08E+03 1120

30 25 10 0 25 4.75E+04 4594 6.85E+05 299400 1.38E+03 134.3 1.18E+04 5145

39 25 10 0 15 2.23E+04 3567 3.31E+05 265200 5.80E+02 92.42 1.17E+03 936

4 50 10 0 55 5.77E+05 203200 1.36E+06 297100 4.15E+04 14640 3.13E+04 6858

13 50 10 0 20 3.60E+05 43400 9.59E+05 277500 2.81E+04 3385 9.96E+03 2883

22 50 10 0 0 1.80E+05 29210 6.12E+04 21400 5.86E+04 9529 7.14E+02 249.6

31 50 10 0 55 3.35E+05 37080 1.26E+06 317700 2.41E+04 2668 3.78E+04 9549

116

Table 15: Detailed Static Comparison Results Per Problem (Best

Method Settings)

90% Confidence Interval on Average 90% Confidence Interval on Average

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

40 50 10 20 55 8.28E+05 363400 1.43E+06 264800 4.01E+04 17580 7.49E+04 13910

56 15 20 0 10 1.17E+04 1799 2.49E+05 2.23E+05 597.9 91.51 518.8 463.3

57 15 20 0 10 1.08E+04 1213 2.53E+05 2.25E+05 678.8 76.77 537.5 477.1

58 15 20 0 0 1.21E+04 2720 7.55E+04 8.76E+04 800.9 182.3 517.7 601.2

59 15 20 0 0 4835 946.5 4066 585 220.8 42.78 12.99 1.869

60 15 20 0 0 7088 692.1 3.62E+04 2.65E+04 264.8 25.22 78.49 57.61

6 25 20 0 10 5.99E+04 6232 4.00E+05 234600 1.33E+03 137.6 1.63E+03 957

15 25 20 0 0 5.60E+04 6839 1.89E+05 78260 1.70E+03 208.5 7.56E+02 313.7

24 25 20 0 5 2.98E+04 3328 3.06E+05 193400 7.22E+02 81.08 1.53E+03 963.2

33 25 20 0 0 3.38E+04 2903 3.85E+04 23340 1.01E+03 86.81 1.78E+02 107.7

42 25 20 0 0 3.69E+04 3134 1.70E+05 144200 1.10E+03 94.68 7.36E+02 624.3

7 50 20 0 0 2.14E+05 31450 1.22E+05 31330 1.66E+04 2433 2.01E+03 513.9

16 50 20 0 60 1.23E+06 172600 1.43E+06 279000 1.89E+05 26610 2.32E+04 4509

25 50 20 0 20 3.13E+05 38910 8.75E+05 265600 1.28E+04 1585 1.34E+04 4051

34 50 20 0 75 1.26E+06 100500 1.72E+06 202400 1.46E+05 11650 2.64E+04 3115

117

Table 15: Detailed Static Comparison Results Per Problem (Best

Method Settings)

90% Confidence Interval on Average 90% Confidence Interval on Average

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

43 50 20 0 35 6.78E+05 172400 1.14E+06 299400 5.07E+04 12900 1.54E+04 4030

118

The method comparison shown in Table 15 used the best settings discovered for

each method. The best found settings used to generate these results are provided in

Table 36 in Appendix B. These results show both method’s performance over a range

of different problems. This was done to discover the areas of the problem domain

that are better solved by either method. In addition to the best settings found, a

cube of points in the setting domain were computed around these best performing

points to determine the sensitivity of both methods to near-best settings. The points

of the cube were set at +/-20% from the best found settings specified in Table 36.

The best set of settings are never known in practice before a problem is executed.

The comparison over near-best settings is aimed to provide a more realistic estimate

to the performance of either method. One method is considered as superior when

the confidence interval of the difference does not cross zero. If the confidence interval

of the difference crosses zero than the experimental results cannot rule out the null

hypothesis that their behavior is equivalent for the problem investigated. If the null

hypothesis can be ruled out, by not crossing zero, then the method with a better

average performance is considered as superior. Unless otherwise stated, the confidence

bounds on the mean is 90%. Comparison results for different confidence intervals can

be determined from Table 34 when using the best settings or from Table 35 for near-

best performance behavior. These Tables are available in Appendix B.

4.1.3.2 Function Call Comparison Between Optimizers

Function calls are used to determine how well the methods utilize the data they

obtain through examining the problem. As the cost of function calls increase, this

performance metric becomes one of the most important to the run-time of the method.

Each of the nine problem configurations examined is shown in Figure 56 as a circle.

Each of the circles is separated into five segments that represent the five problems

examined with those problem characteristics. The superior method is noted by the

119

color of the segment. ‘Unknown’ is used if there is insufficient statistical information

to differentiate between the methods to a 90% confidence on the mean.

Figure 56: Function Call Performance over Problem Set (Best and Near Best Set-
tings)

When using the best settings found for function call performance, Figure 56,

MIMIC is superior on the four configurations with medium to high size and medium to

high complexity. When assuming knowledge of the best performing method settings,

the genetic algorithm is superior on the loosely coupled version of the medium sized

problem configuration.

The near best settings used in Figure 56 show the averaged function call per-

formance when one uses near-best settings within +/-20% of the best settings from

Table 36. This estimate assumes that a user with some idea of which settings to use

would fall within 20% of the best settings that would be found through a thorough

search. The differences between the best and near-best performance is explained by

both a larger sensitivity of GAs to the settings used and the slightly better perfor-

mance of MIMIC on several of the problems. Though the confidence bounds are

overlapped for several of the individual problems, MIMIC consistently has the bound

120

that ranges lower. Now the advantage GAs experienced on loosely coupled medium

sized problems becomes inconclusive to a 90% confidence when near-best settings are

used.

Figure 57: Mean Function Call Performance over Problem Set (Near Best Results
included in Average)

The averaged function call performance using near best settings is shown in Figure

57. This is equivalent to the averaging of each of five problems from Figure 56 and

allows the reader to see the confidence bounds for each method over the range of

problem types. MIMIC, the method shown in red, is consistently lower and has

either tighter or equivalent confidence bounds when near best results are included in

the performance average.

MIMIC was shown to better utilize the information gained from each function call.

121

This will become useful for problems with more expensive function calls assuming that

the convergence behavior seen here is roughly indicative of the behavior on a different

utility function.

The number of function calls used by the GA for the 50 element problem though

was almost always greater than MIMIC. This comes from the fact that roughly 50-

60% of the cases run by the GA at the large problem size failed to converge. Even

if a method were to take more function calls, it would be allowable if it had a better

chance of reliably converging onto the answer. The higher expense can be forgiven for

the sake of higher reliability. For these problems, MIMIC could both more reliably

converge and have a lower total function call count.

4.1.3.3 Convergence Comparison Between Optimizers

To measure the reliability of both methods, the percentage of cases that failed to

converge within the two million function call limit was tracked. When the confi-

dence bounds on the difference between both method distributions crosses zero, the

determination of a winner is stated as ‘Unknown’ as it was above.

MIMIC surpasses GAs in convergence reliability when using the best settings

found in Figure 58. The near best settings create some overlap in the computed

confidence intervals but MIMIC remains as either the superior or equivalent choice.

MIMIC in the averaged near-best results, Figure 59, are low and tight for the 25

element problems while GAs had less reliable behavior. The GA had roughly 30% of

problems fail to converge for 25 element problems of medium complexity while MIMIC

had a low percentage of unconverged cases for all 25 element problems tested. For

large sized problems, GAs were challenged as 40-60% failed to converge compared

to a more reliable performance from MIMIC. Convergence performance within the

function call limit actually improved with MIMIC as the percentage of active links

increased.

122

Figure 58: Percentage Not Converged Performance over Problem Set (Best and
Near Best Settings)

4.1.3.4 Run-time Comparison Between Optimizers

The current modeling of pair-wise interactions that enables improved function call

and convergence reliability comes at a cost of run-time performance. The Genetic

Algorithm solidly performed better than MIMIC in run-time performance; even when

the GA failed to converge at all and needed to hit the two million function call limit.

The many cases where the GA failed to converge, for problems of large size, had

MIMIC and the GA with a similar run-time performance, see Figure 60.

The 25 element problems had instances of equivalent run-time between MIMIC

and GAs that was due to the fact that MIMIC performed so much better as far as

function call use and convergence that it was able to converge with fewer iterations.

For cases of light coupling, genetic algorithms was clearly superior in execution speed.

The averaged run-time performance in Figure 61 shows that though there are

several configurations where the run-time performance overlaps with MIMIC; the

GA is the faster method to reach the function call limit. The function call used for

123

Figure 59: Mean Percentage Not Converged over Problem Set (Near Best Results
included in Average)

this study was, by design, one that took only a few milliseconds to calculate.

Table 16 breaks down the time spent by the MIMIC algorithm on problem 4, which

is representative of the other problems with 50 elements and 10% of links active. It

is provided to display how the run-time overhead of the algorithm spends over 90%

of the time on items that are not related to function call evaluation. Function call

evaluations compose only around 9% of the algorithm run-time. One important point

to keep in mind is that the absolute time used by the overhead (90%) will stay constant

regardless of the cost of the fitness function. The calculation of the mutual information

does not take any longer if a function call takes one second or one minute. Therefore,

as the cost of evaluating the fitness function grows, the constant overhead will decline

124

Figure 60: Run-time Performance over Problem Set (Best and Near Best Settings)

Table 16: Run-time Breakdown of MIMIC (50-Elements, 10% Links Active)

Category Percent
Run-time

Time to Create Initial Candidate List <<1%

Time to Evaluate and Sort Candidates 9%

Time to Calculate Probabilities 4%

Time to Calculate Mutual Information 9%

Time to Calculate Maximum Spanning Tree 6%

Time to Generate New Samples from Tree 72%

in importance. The method that most reliably converges, using the fewest function

calls, will be the preferred method. These results have shown that MIMIC would

excel on medium and large static decomposition problems and relax computational

constraints on function call development.

In call cases examined, MIMIC used lower mean number of function calls while

Genetic Algorithms typically had a faster run-time. The function call run-time cost

that would allow MIMIC to have a shorter total run-time was 11 ms on the GPU

hardware specified earlier. Comparing a user’s GPU hardware to the hardware used in

125

Figure 61: Mean Run-time over Problem Set (Near Best Results included in Aver-
age)

this study would allow conversion of the crossover function evaluation cost to other

hardware systems. When the function call cost was above that number the lower

number of function calls required by MIMIC would result in a lower total run-time.

This situation will be common for any non-trivial fitness function call such as a metric

that requires a past state stored in memory to calculate the utility of the current state.

Any hybrid metric that uses some discipline information, such as averaged run-time

of an analysis, could cost 100’s of milliseconds by running an analysis and dividing

that run-time by the number of function calls that can use that data.

Beyond run-time considerations, a more costly analysis is acceptable if the method

is less prone to falling into local minima. This analysis has shown that MIMIC is

126

better than Genetic Algorithms at avoiding local minima over the region of problems

tested by this study. This is useful as the rearrangement of DSM problems, trajectory

design, technology selection, and many other applications in aerospace are multi-

modal in nature.

4.2 Generalizing Static Results with Automatic Decision
Trees

A more detailed view of these results is possible through the use of additional problem

descriptive metrics. A Machine Learning Open-Sourced library Weka [34] has been

found that can perform the automatic creation of decision trees given a training data

set. The accuracy of decision tree generation is demonstrated through cross-validation

in Section 2.3.3.3. The data set required by this method was generated from the

comparison cases that were generated during the performance comparison between

Genetic Algorithms and MIMIC. The mutual information between the descriptive

DSM metrics and the performance of the methods will be used to determine the most

valuable metrics. The most pertinent metrics from Table 17 will be discovered by

the decision tree generation algorithm automatically. Instead of the current practice

of only showing decomposition methods applied to a specific DSM problem, method

performance over a region of the DSM problem space has been examined. A decision

tree for which static method to apply to the DSM problems examined has been

created.

Table 17 contains a list of the metrics calculated for every problem that was

randomly generated. These potential metrics are investigated to see if they might

explain the behavior of MIMIC over the range of problems investigated. Items such

as number of feedback or feedforward links initially in the DSM were calculated. A

problem with the same size and link structure can still be randomly reordered to

a different starting condition for both optimizers but that would lead to different

values for the metrics in Table 17. The post-processed metrics that are most useful

127

Table 17: Current List of DSM Descriptive Metrics.

Metric Key Used
in Tree

Percentage of links that are feedback connections perFB

Percentage feedforward connections (i.e. 1-perFB) perFF

Ratio of feedback to feedforward connections FB2FF

Percentage of total possible links that are active perLinks

Ratio of number of contributing analyses to num active links ele2Links

Number of circularly connected pairs of analyses (i.e. A→B
and B→A)

numCycles

Number of feedback connections numFB

Number of feedforward connections numFF

Number of contributing analyses connected in the DSM numEle

Number of active links numLinks

for describing method performance will be discovered by the decision tree learning

method. The metrics that possess a higher mutual information to the performance

of either method will appear earlier in the decision tree.

The decision trees learned from the space are tested using 10-fold cross-validation

to estimate the performance of the trees on untrained regions of the DSM problem

space. Cross validation works by separating the set of samples into a number of

groups (i.e. for 5-fold there are 5 groups). In figure 62, five separate models are

created from the same data and each is validated by the data unused in training the

model. The validation error is averaged between the models created to provide a final

error estimate.

The results from 45 DSM problems were separated by 10-fold cross validation.

Forty one DSM problems were used for the tree model while 4 were reserved for model

validation. The size of the validation set is calculated by rounding down from a tenth

of 45. This created a total of 10 different models from the data, each validated against

data that it was not trained on, providing the averaged performance of a generated

128

Figure 62: 5-Fold Cross Validation Separation of Training and Validation Sets.

tree to new data. This measure of averaged accuracy is provided for the decision trees

provided.

129

Figure 63: Decision Tree for When to Use Either Method with Best Settings (58% Accuracy using 10-Fold Cross Validation)

130

The decision tree generated from the results using the best settings, Figure 63,

demonstrates the most valuable metrics found to classify which method should be

used on a problem. The number of samples that reached each leaf in the tree and the

number of samples from the training set that were misclassified are shown in the leaf

labels i.e. (total samples / number misclassified). The most valuable metric when

using the best settings found was the number of analyses divided by the number of

active links (i.e. ele2Links). This value is unique between each of the nine config-

urations. The tree branches to the right in Figure 63 if the user has a 25 element

problem with 10% or fewer links active. The branch to the left is taken for all other

problem configurations.

The numEle node on the left branch of the Figure 63 decision tree reveals some-

thing of interest regarding the performance of the MIMIC algorithm. At this level of

the tree, the two simplest problem configurations have already been classified. This

branch of the tree deals with how the remaining region should be classified between

either MIMIC or UNKNOWN (i.e. the null hypothesis that the methods have equiva-

lent performance is not disproven by experimental data). The percentage of links that

are feedbacks and the number of feedforward links were both metrics automatically

selected as helpful to classifying which method would show better performance.

Figure 64: Decision Tree for When to Use Either Method with Settings +/-20%
from Best (80% Accuracy using 10-Fold Cross Validation)

131

A more practical decision tree, Figure 64, is one that includes the near best setting

performance. This decision tree only assumes that the user is able to fall within 20%

of the best found settings for the method. Using cross validation, this tree was able

to obtain an 80% predicted accuracy on data that the tree was not trained against.

The metric found to best reduce uncertainty was the percentage of active links; if

the percentage of active links is above 5% MIMIC is the preferred method. The

last metric found suggests that the number of pair-wise cycles between analyses may

also be an indicator of when MIMIC will outperform Genetic Algorithms. MIMIC

is strongly represented in the decision tree and is shown to be an advancement over

the standard use of GAs on static decomposition problems. This assumes that one is

able to come close to a set of well performing settings for either method being used.

The following serves as guidance to aid in the selection of settings for either method.

132

Figure 65: GA Function Call Performance over Setting Domain for Five Problems with 50 Elements and 10% Active Links

133

Figure 66: MIMIC Function Call Performance over Setting Domain for Five Problems with 50 Elements and 10% Active Links

134

The charts in Figure 65 and Figure 66 show the function call performance for

each of the five problems for the problem configuration with 50 elements and 10% of

active links. The performance over the range of GA settings is far more multimodal

than the better behaved setting domain shown for MIMIC. This initial search of the

MIMIC setting domain was necessary to realize that the noise parameter should be

set in the region near or below 5% for this problem. The setting domain search was

expanded to bound the performance at lower noise values.

Figure 67: Method Function Call Performance over Setting Domain including All
Problems

Averaging the performance of all examined settings over all problems provides

Figure 67. The graph provides guidance to MIMIC users who wish to set reasonable

values for either noise or the percentage of candidates that should be used for model-

ing. The performance of GA settings is more complicated but still implies that larger

mutation rates and the neighborhood of 90% crossover is reasonable for this type of

problem.

135

4.3 Summary

This work has served to introduce a new method for static decomposition called

MIMIC that seeks to explicitly model problem structure at each iteration to reli-

ability converge to high performing solutions using fewer function calls. A mixed

Latin-Hypercube and 2-level Full Factorial design was created to search the domain

of settings. Five randomly generated problems were created from six different con-

figurations of difficulty. To run the cases within a reasonable amount of time, both

methods were parallelized and run on a cluster of GPU processors. The recent ad-

vances in GPU computing were leveraged to deliver a comparison uncommon in the

literature.

MIMIC was shown to strongly out perform Genetic Algorithms on the number

of function calls required to reach a specified target value and was less prone to fall

into local optima. The Genetic Algorithm was able to out perform MIMIC on the

run-time required for loosely coupled problems (i.e. 5% active links). A run-time

breakdown of the MIMIC algorithm showed that the greater run-time required by

MIMIC for these problems came from a computational overhead that was not sensitive

to the cost of a fitness function. The fitness function used in this comparison study

took milliseconds to compute. Based on the averaged convergence behavior seen

though this work, as the cost of the fitness function increased, MIMIC would perform

with better run-time performance for even loosely coupled problems. Even with the

inexpensive function call used in this study, the run-time performance is competitive

with Genetic Algorithms over large and strongly coupled problems due to MIMIC’s

speed of convergence through the efficient use of function calls. This demonstrates

MIMIC’s strong potential for large and highly coupled problems and for problems

with a large function evaluation cost.

The performance of the MIMIC algorithm was also shown to be more robust than

Genetic Algorithms when using settings within 20% of the best settings found for

136

either optimizer. This is important as the ideal settings to use on a problem are

never known in practice. Getting near the ideal setting for a Genetic Algorithm was

shown to provide performance that was less predictable than when using near-best

settings with MIMIC. Parzen-window density estimation was also shown to perform

adequately to allow the method to also treat continuous variables.

Several published utility functions have been shown for reordering a problem and

are normally applied by using a global optimizer. A global optimizer is generally

used as this domain contains many local optima. The efficiency of MIMIC relaxes

the computational constraints that have been present for researchers. The algorithm

provides a marked advancement for researchers as a replacement to the standard

practice of using Genetic Algorithms for utility function research.

Machine learning algorithms were utilized to automatically generate decision trees

to generalize results obtained during the static decomposition comparison between

MIMIC and Genetic Algorithms. Useful descriptive metrics were developed that

could predict when one optimizer would be better for a given decomposition problem.

The large data set generated during the optimizer comparison was used to train the

decision trees. The tree structure was pruned automatically to leave a well performing

structure that was tested for accuracy through 10-point cross-validation.

With imperfect knowledge of the ideal settings, the most important predictor of

which method to use was the degree of coupling present in the problem. All medium

and strongly coupled problems were predicted as being better served by use of the

MIMIC optimizer. These results clarify the comparison charts and provide a user with

descriptive metrics that could be used on other problems to determine if the problem

might perform well using MIMIC, Genetic Algorithms, or if the best optimizer could

not determined by this study to within a 90% confidence.

137

CHAPTER V

ENTRY, DESCENT AND LANDING SYNTHESIS

Conceptual design of entry, descent, and landing (EDL) systems requires models

over several disciplines as well as knowledge regarding the interactions between these

disciplines. To facilitate the conceptual development of an EDL mission segment

and to explore the mission design space, the Planetary Entry Systems Synthesis Tool

(PESST) was created. The PESST framework estimates the performance and mass

of an entry system using: user-defined geometry, aerodynamics, flight mechanics,

terminal descent guidance, thermal response and mass estimation models. Trade

studies can be performed by parameter sweeps to gain an understanding of the design

space for conceptual studies.

Several standard atmospheres are available, and either a user-defined or global

reference atmosphere model (GRAM) may be used. In its present form, PESST

may be applied to entry studies for Earth, Mars and Venus missions; planets for

which PESST has implemented radiative heating models. This framework is broadly

applicable to the conceptual study of EDL systems and is used in this work to provide

a realistic application of link importance ranking for conceptual design work.

A detailed presentation of the PESST tool and each discipline model is provided

along with a comparison for the Mars Pathfinder mission. The PESST framework for

system level sizing and synthesis allows for the impact of technologies such as guided

terminal descent propulsion to be examined at the mission design level. Closing

conceptual designs about these major discipline analyses models the effects of design

changes on entry mass, peak deceleration, propellant mass, payload mass, and other

mission level design constraints.

138

This tool has been developed as part of this work to show the determination

of link importance in a conceptual design DSM with realistic discipline behavior.

The analysis performed in Section 3.1 showed mutual information to be a useful

importance metric for conceptual design by utilizing the PESST design tool. The

individual analyses that compose PESST will be described in full detail here and

together serve as a contribution to EDL design synthesis.

5.1 Introduction

The Planetary Entry Systems Synthesis Tool (PESST) is a rapid conceptual design

tool for entry, descent, and landing systems. This framework has the capability to

estimate the performance of an entry system using user-defined geometry, hypersonic

aerodynamics, flight mechanics, thermal response, and mass estimation. Earth, Mars,

and Venus atmospheric models are preloaded with the additional ability to use either a

user-defined or global reference atmosphere model.[44] Trade studies can be performed

by parameter sweeps to gain an understanding of the design space for conceptual

studies. This framework is broadly applicable to conceptual studies of EDL systems

and will be used as a realistic test case for ranking discipline inter-dependence.

Figure 68 displays the interactions that the user can have with the framework.

Users that desire a graphical interface can use a Java interface that writes input files

for the PESST computational core. This core executable can be run either through

the graphical interface or from the command line; allowing the scripting of PESST

into a larger conceptual design and optimization process. The executable core has

been written with Fortran 95, utilizing object-oriented programming to promote code

reuse and maintainability. The desired addition of a parametric capability also placed

a high priority on the rapid completion of cases. This supported complementing

the strength of Java in interface design with the computational speed and libraries

available for Fortran 95.

139

Figure 68: PESST interaction diagram.

5.2 Discipline Modules

PESST has seven primary modules: geometry, planetary models, aerodynamics, guid-

ance, trajectory analysis, thermal response, and weights and sizing. Each of these

modules is responsible for a separate component of the analysis and interact with one

another. The modeled passing of information is shown in Figure 69 and displays the

design structure matrix (DSM) for this framework.

5.2.1 System Definition

5.2.1.1 Atmospheric Models

Atmospheric models in the tool are represented through tables of temperature, pres-

sure and density each as a function of altitude. Three atmospheric profiles are pro-

vided by the tool: a Mars atmosphere determined from Viking measurements [84],

the 1976 U.S. Standard Atmosphere for Earth [65], and an averaged model for Venus

140

Figure 69: The Design Structure Matrix for PESST.

from Pioneer-Venus data and several of the Russian Venera missions [68]. The reader

is referred to these references for the assumptions applied by these models.

PESST has the capability of running a GRAM model and will generate an atmo-

spheric profile for a user-provided entry latitude, longitude, and date. The tool will

then use this profile for the trajectory sequence through the atmosphere. The user

can also manually specify and modify the atmospheric files used.

5.2.1.2 Geometry

Analytical expressions exist for the hypersonic aerodynamics of capsules, sphere-cones

and biconic shapes. These expressions are computationally quick but regions of the

vehicle that are shadowed from the flow can be a challenge to characterize analytically.

The reader is referred to Regan and Anandakrishnan [77] for expressions on geometries

with an unshadowed forebody. The work of Grant and Braun [32] is a reference for

analytic expressions that characterize vehicles with a shadowed area in the forebody

region.

141

The PESST aerodynamics module is designed to utilize a panel-based method

to determine the hypersonic aerodynamics of a shape instead of using an analytical

expression. The benefit to paneling a shape is the ease in determining the shadowed

region of the geometry. A panel is considered shadowed when there is not an acute

angle between the normal vector for the panel and the freestream velocity vector, v∞.

Vehicle shapes with windward pointing panels, that are shadowed by another body-

region in a non-convex body, would not be correctly modeled by this rule, Figure

70.

Figure 70: Example of Windward and Shadowed Regions.

An unstructured triangular meshing algorithm was utilized to panel the surface of

all shapes examined by the framework. The panel-based mesh allows for one general

aerodynamic treatment for both standard and complex entry bodies. Geometrical

meshing and aerodynamic calculation takes less than 5 percent of the current exe-

cution time involved in a run which is normally dominated by the time to size the

thermal protection system (TPS).

The mesh of panels for both the standard and arbitrary bodies are generated by

the Open Sourced GNU Triangulated Surface (GTS) Library. This LGPL Library

can generate a mesh from a descriptive equation or accept an input geometry file.

142

Figure 71: Meshed Geometry for Example Entry Missions.

A user can describe their entry body geometry using a CAD package and save the

drawing in the common stereolithography (STL) format. The STL format contains

a description of the body surface in triangular panels and is available through most

CAD programs. A script from the GTS library converts the STL format to the GTS

format of triangular panels used by the library. The PESST aerodynamics module

utilizes the grid generated by the GTS library to calculate hypersonic aerodynamics

for the described geometry.

The geometry module enables the aerodynamic method by paneling a shape into

a large number of flat plates. When a user-defined mesh is not specified through the

use of a STL file, the shape of the paneled surface mesh is described by providing

a 3-D field equation to the GTS Library. For example, the equation for a sphere,

x2 + y2 + z2 − R = C, describes a 3-D surface mesh. The shape equations within

PESST specify surfaces where the constant C = 0.

143

Equations of this nature were created for capsules, sphere-cones, and biconic

shapes. The user input of forebody information provides the needed inputs for these

equations to properly specify the shape of their surfaces (see Figure 71 which shows

the required information to generate the displayed meshes). The GTS Library sam-

ples from the space, places points where it finds that the field equation is equal to

zero, and connects the generated points to form a triangular mesh over the discovered

surface of the body. This makes the addition of a new standard entry shape a simple

matter of formulating the proper equation to describe the surface shape. The point

discovery and mesh generation are so handled by the specialized library and are ap-

plied to each available entry body option. A STL mesh can be equivalently provided

by the user for the aerodynamics module.

5.2.2 Aerodynamics

PESST enables the use of either classical or modified Newtonian aerodynamics to

characterize the vehicle’s aerodynamic coefficients. For Newtonian theory, all of the

momentum from a fluid particle pointed normal to the surface of a plate is transferred

to the plate while any momentum tangential to the plate is left unchanged. Inappro-

priate for the subsonic flows that Newton originally designed it for, the theory has

been found to serve as an excellent approximation for hypersonic flow where these

assumptions are more accurate.[2] The hypersonic behavior of a flat panel is well

understood by the use of this theory. By paneling a vehicle’s surface, treating each

flat panel individually, and adding the accumulated forces together; the hypersonic

aerodynamics for arbitrary shapes can be approximated. The assumption placed on

these paneled shapes is that windward facing panels are not shadowed by another

region of the entry body, Figure 70.

The aerodynamic pressure coefficient along the shadowed side of an entry vehicle

is assumed to be zero. This means that only panels that are facing the flow should be

144

evaluated. The triangles formed from the geometric meshing module are each treated

as an individual panel for the Newtonian aerodynamic approximation; each windward

facing panel is considered as contributing to the hypersonic aerodynamics.

5.2.2.1 Hypersonic Aerodynamics

The pressure coefficient acting on an individual panel is shown in Equation 22 where

θ is the angle of the panel surface to the oncoming flow. Cpmax is set to 2 for classical

Newtonian flow which is typically better for slender bodies while a modification from

Lees, modified Newtonian flow, refined the model to better approximate blunt body

hypersonic aerodynamics.[56]

Cppanel
= Cpmax sin2 θpanel (22)

At high Mach numbers, the modified Newtonian approximation for Cpmax can be

found by using the ratio of specific heats (γ) after the hypersonic shock. The ratio

of specific heats cannot be assumed as constant across the shock; especially when

assuming the strong shocks typically seen during an entry.[56]

Cpmax = 2− ε ≈ 2− γAS − 1

γAS + 1
=
γAS + 3

γAS + 1︸ ︷︷ ︸
for large Mach numbers

(23)

The PESST framework estimates this value initially by assuming the classical

Newtonian value for maximum Cp (Cpmax = 2) to calculate the aerodynamics. If

modified Newtonian aerodynamics is selected, a run of the trajectory module calcu-

lates the density increase behind the shock during the hypersonic portion of the entry.

An average for (ε = ρBS/ρAS) is used to update the maximum possible Cp (Cpmax)

and the aerodynamics is refined to a tolerance.

The maximum Cp has a slight Mach dependence that is discounted. Cp becomes

essentially independent of Mach at hypersonic speeds, Figure 72 shows the growing

insensitivity of the axial-force coefficient to Mach through the hypersonic regime.

145

Figure 72: Axial-Force Coefficient of 45 degree sphere-cone.[67]

The axial-force coefficient is a function of pressure coefficient so the diagram also

demonstrates the insensitivity of Cp at larger Mach numbers.

After evaluating the pressure coefficient for the triangular plate, the components

of the force acting in the x and z directions are found to place the force into the body

frame of the entry vehicle, refer to Figure 73. The normal vector for the plate (n̄) is

used to determine the component of Cp that should be applied to each component

direction in the body frame. The contribution for each windward panel in the shape

is then summed to obtain the contribution over the entire body, Equations 24 and

25.

CXtot =
∑

windward panels

−Cppanel
Apanel

nx
| n̄ |

(24)

CZtot =
∑

windward panels

−Cppanel
Apanel

nz
| n̄ |

(25)

The forces in the body frame are divided by the reference area to find for CA

146

Figure 73: Reference frame for aerodynamic calculations.

which is axial to the body and CN which is the coefficient normal to the body axis,

Equations 26 and 27.

CA =
−CXtot

Aref
(26)

CN =
CZtot

Aref
(27)

Forces are now translated from the body frame to the aerodynamic frame of the

vehicle where the drag vector is parallel to the incoming velocity vector, taking the

body to be stationary with respect to the reference frame in Figure 73. The angle of

attack α is used for the rotation between the body and aerodynamic frames, Equations

28 and 29.

CL = CN cosα− CA sinα (28)

CD = CN sinα + CA cosα (29)

147

Users are also able to specify their own aerodynamics for this module. For exam-

ple, the deployment of inflatable aerodynamic decelerators or parachutes are specified

by aerodynamic files that can be activated during the trajectory analysis. The cal-

culated aerodynamics for the vehicle are temporarily replaced by the aerodynamics

from the specified files. Using the same mechanism, the users can define their own

aerodynamics to override the computed aerodynamics during a trajectory evaluation.

5.2.3 Flight Mechanics

Several books and references have used planet-relative kinematic equations for hy-

personic entry bodies that describe the time derivatives of longitude, latitude, radial

distance, azimuth, flight path angle, and velocity.[47, 77] When using this planet-

relative approach to determine the derivatives for azimuth and the flight path angle,

the equations are divided by the current velocity (i.e., ȦZ ∼ 1
V

and φ̇ ∼ 1
V

). During

terminal descent, when the velocity becomes small, the trajectory equations become

poorly behaved and are not valid for determining the thrust vector to command.

PESST has moved away from this approach after incorporating terminal descent

guidance algorithms into the framework.

In the present implementation, the equations of motion are switched to a planet-

centered inertial reference frame, this will be referred to as the inertial frame. When

converting to/from this reference frame the transformation matrix is considered as

being solely a function of the planet’s rotation about a stationary z-axis during the

entry. The vector formulation for the equations of motion in the inertial frame is well

behaved, over all velocities, and it does not experience the equation singularities that

can appear with certain angles in planet-relative equations.


˙̄rI

˙̄vI

ṁ

 =


v̄I∑
F̄ I/m

−
∣∣T̄ ∣∣ /(go ISP)

 (30)

148

PESST now utilizes three degree-of-freedom (DOF), with bank angle modulation,

equations of motion to determine the time history of the entry system’s state, Equa-

tion 30. The trajectory is propagated using a variable-step 4th-order Runge-Kutta

integrator with 5th-order error truncation over a fixed time-span from a set of planet

relative initial conditions (altitude, velocity, flight path angle, azimuth angle, lati-

tude, longitude, angle of attack, and bank angle) until the end of the simulation. The

starting condition is transformed to inertial space and the movement of the vehicle

is integrated inertially. As the PESST framework converts angles to/from inertial

coordinates, the framework does not experience angular singularities; it is effectively

post processing to get the flight path angle or any other angle.

This treatment allows for forces to be easily added or removed from the entry

vehicle; as only the inertial summation of forces on the body is required for each time

step through the integration. The forces tracked by the framework, shown in Figure

74, are: drag, lift, the weight vector due to gravity, and a thrusting vector if guidance

is active. The method is more maintainable and extendable than the use of angular

derivatives. For example, the addition of wind effects could be enabled through the

manipulation of the velocity vector. Alternatively, a buoyancy force, useful for Titan

entries, could also be easily appended to the summation of forces.

L = −q CL Aref (31)

The lift magnitude is determined from Equation 31. The reference area of the

vehicle is Aref and q is the dynamic pressure. The direction of the lift vector is

perpendicular to the velocity vector and is rotated, about the velocity vector, by the

bank angle specified for the vehicle.

D̄ = −q CD Aref
v̄rel

|v̄rel|
(32)

The vector for vehicle drag is parallel to the planet relative velocity vector and is

149

Figure 74: Entry system free-body diagram.

specified by Equation 32.

ṁ =
−
∣∣T̄ ∣∣

go ISP
(33)

The momentum thrust equation is used to estimate the instantaneous mass loss

during propulsive maneuvers, Equation 33. Discrete mass drop events, such as the

drop of a heat shield, are modeled by a discontinuous drop to the system mass at the

drop point.

5.2.4 Terminal Descent Guidance Algorithms

5.2.4.1 Gravity Turn

PESST allows for the specification of a constant thrust gravity turn event. In a gravity

turn, the thrust vector is in the opposing direction from the current velocity vector,

Figure 75. This causes the vehicle to turn toward a vertical descent from the effect

of gravitational force on the vehicle. This method targets for a specified velocity at

a given altitude. A constant thrust gravity turn was utilized for the terminal descent

of Lunar Surveyor and other missions.

An analytic equation for the thrust magnitude can be obtained if a small nadir

angle is assumed. PESST avoids the small nadir angle assumption by numerically

150

Figure 75: Gravity turn thrust orientation. Lander image from [74].

determining how well the constant thrust value meets specified targets. This is imple-

mented by specifying an initial fixed thrust magnitude and propagating the equations

of motion to determine how well that thrust value meets the velocity and altitude tar-

gets. Newton iteration is used to converge towards the fixed thrust magnitude needed

for the desired final altitude and velocity magnitude. Specifying the maximum thrust

magnitude for the engine would allow the calculation of the latest possible ignition

time that could successfully match the velocity and altitude target.

5.2.4.2 Analytical Control Law

The work of D’Souza [24] developed an analytic control law that assumes a planar

non-rotating planet with no atmosphere. This was found to be suitable for Martian

applications that required a first-order model for pinpoint landing. This analytic

method is an unconstrained energy-optimal propulsive terminal descent algorithm

that meets the necessary and sufficient conditions for an optimal control law.[90]

151

J = Γ tf +
1

2

∫ tf

to

āT ā dt (34)

The D’Souza algorithm seeks to minimize the performance index shown in Equa-

tion 34. For the current PESST implementation, the weighting on the final time Γ

has been set to zero. It has been shown that the control law which minimizes this per-

formance index is given by Equation 35, given the vector definitions from the vector

Equations in 36.[24]

ā = −4
∆v̄

tgo
− 6

∆r̄

t2go
− ḡ (35)

∆r̄ =


rx − rxf

ry − ryf

rz − rzf

 ∆v̄ =


vx − vxf

vy − vyf

vz − vzf

 ḡ =


0

0

g

 (36)

The time-to-go, tgo, is provided as the real positive root to equation 37. This equa-

tion is solved by Newton iteration which provides rapid convergence while mitigating

the numerical issues that can be associated with analytical root equations.[90]

t4go − 2
∆v̄T∆v̄

Γ + g2

2

t2go − 12
∆v̄T∆r̄

Γ + g2

2

tgo − 18
∆r̄T∆r̄

Γ + g2

2

= 0 (37)

The thrust that is commanded by the guidance algorithm at each point in time is

given by Equation 38. When the guidance event is active, the thrust is computed in

a closed loop sense at each timestep through the equations of motion. The reader is

referred to the work of Steinfeldt, et al. for performance and accuracy comparisons

with this analytic control law.[90]

T̄ = m

(
−4

∆v̄

tgo
− 6

∆r̄

t2go
− ḡ
)

(38)

152

5.2.5 Thermal Response

Modeling of a thermal protection system (TPS) requires the modeling of an energy

balance that involves some subset of the processes that occur during the ablation of the

TPS material. PESST currently models three ablative materials: SLA-561v, PICA

and Carbon Phenolic (FM5055). Figure 76 shows some of the energy and mass-related

processes that are involved during an ablative entry. In the PESST thermal modeling,

stagnation point convective and radiative fluxes will be explicitly modeled, while

surface recession will be indirectly modeled by the use of an experimental correlation

called the heat of ablation.

Figure 76: Processes during the ablation of a material [54].

The problem of estimating the TPS thickness required for an entry is decomposed

into two sub-problems; the thickness that will be ablated during the descent and the

thickness required to insulate the vehicle. Both thicknesses are assumed to consist

of the same user-selected ablative TPS material. The two thicknesses are added

together to estimate the composite thickness required by the TPS material to both

survive ablation and retain adequate insulation for the vehicle.

153

5.2.5.1 Heating Environment

The Sutton-Graves heating relationships are used to estimate the degree of convective

stagnation point heating.[92] The form of this relationship is shown in Equation 39

where v̄rel is the planet relative velocity and Rn is the effective nose radius of the vehi-

cle. The Sutton-Graves convective constant ksg is a function of the composition of the

atmosphere. The convective relation was designed for an arbitrary atmosphere.[92]

PESST currently uses pre-computed values for Earth, Mars and Venus but future

work could dynamically calculate the convective constant from the user’s specifica-

tion of the atmospheric composition.

q̇conv = ksg

√
ρ
∣∣v̄rel∣∣3
√
Rn

(39)

q̇rad = C Rats
n ρbts f(

∣∣v̄rel∣∣) (40)

A general radiative relation for an arbitrary atmosphere is an open problem. Ra-

diative relations for Earth and Mars are supplied by the work of Tauber and Sut-

ton, the form of the relation is shown in Equation 40.[94] The constants C, ats, bts,

and a function of the planet relative velocity v̄rel are defined for Earth or Mars. A

pre-publication radiative expression for Venus was provided by Dr. Tauber through

correspondence. The data he used to generate the Venus relation can be found from

the work of Page and Woodward.[72]

The total stagnation point heating is considered as the summation of the radiative

and convective stagnation point heating, Equation 41.

q̇tot = q̇conv + q̇rad (41)

154

5.2.5.2 Thickness Ablated

The heating from the surface into the material is required to size the insulation

thickness required from the TPS material. Equation 42 is an energy balance where the

left hand side of the equation represents energy (heat) traveling into the material and

the right hand side represents the other processes occurring at the ablating surface.

−k∂T
∂x

= −q̇cw Hr−HTw
air

Hr
+ (42)

σSB ε T
4
w + (43)

ρ ṡ ∆Hv + (44)

ρ ṡ η
(
Hr −HTw

air

)
(45)

The right side of Equation 42 shows the convective net heat flux into the surface

without ablation.[22] The term from Equation 43 shows the heat flux re-radiated from

the surface of the heat shield. The term from Equation 44 calculates the amount of

energy absorbed through the vaporization of the ablating material. The last term,

Equation 45, shows the amount of heat absorbed through the transpiration of ablation

gases into the flow.[22]

(
k
∂T

∂x

)
ss

= ρṡ Cp (Tw − To) (46)

Assuming steady state ablation, the equation for the heat traveling into the ma-

terial simplifies to Equation 46. Substituting Equation 46 into Equation 42 forms

Equation 47.

q̇cw

(
Hr −HTw

air

Hr

)
− σSBεT 4

w = ρṡ (Cp∆T + ∆Hv + η∆H) (47)

Manipulating the terms for the equation forms the definition for the experimental

relation Q∗, the heat of ablation. The central terms of Equation 48 are composed of

155

values that can be tested in a laboratory setting. It is through experimental testing

that a curve for Q∗ is found.

Q∗ =
q̇cw

(
Hr−HTw

air

Hr

)
− σεT 4

w

ρṡ
= (Cp∆T + ∆Hv + η∆H) (48)

As a simple ablation relationship is desired, an approximation is made to the

experimental curve found for the heat of ablation. The rate of thickness lost due to

steady state ablation ṡ is less than the value shown in Equation 49. q̇cw is the rate

of cold wall heating at the surface; this is taken as equal to the total rate of heating

computed in Equation 41. Given a curve for Q∗ vs. q̇cw a conservative estimate

can be made for the rate of thickness lost due to steady state ablation by assuming

an equality in Equation 49. This calculation could be integrated throughout the

trajectory to calculate the estimated total thickness lost due to ablation.

ṡ <
q̇cw
ρ Q∗

(49)

Several experimental curves for Q∗ vs. q̇cw are shown in Figure 77.

Figure 77: Heat of ablation vs. cold wall heat rate. [76, 101]

156

5.2.5.3 Thickness used for Insulation

The computed temperature at the surface of the heat shield serves as a boundary con-

dition to calculate the transient in-depth temperature behavior through the material.

This is used to calculate the thickness of the material required to insulate the struc-

ture behind the TPS system to a specified boundary temperature limit. The 1-D heat

conduction equation where density, specific heat (Cp) and the thermal conductivity

(k) vary with position is given by Equation 50.

∂

∂x

(
k
∂T

∂x

)
= ρCp

∂T

∂t
(50)

This in depth temperature equation can be solved by either an explicit or implicit

method. Here an implicit method has been used to track the response of the material

to the application of surface heating. The Crank-Nicolson implicit method used is

unconditionally stable and the finite difference approximation has a truncation error

of order O[(∆t)2, (∆x)2].

∂ρ

∂t
= f (ρ, T) (51)

The decomposition rate from Equation 51 is modeled by a three component Ar-

rhenius relation shown by Equation 52. The constants required to use the equation

for PICA and Carbon Phenolic are provided in Appendix A.

∂ρ

∂t

)
x

= −B exp

(
−E
RugT

)
ρo

(
ρ− ρr
ρo

)
(52)

To compute the density for the composite material, the densities for each compo-

nent need to be included, Equation 53.

ρ = Γresin (ρAresin + ρBresin) + (1− Γresin) ρCfiber (53)

157

Refer to the tables in Appendix A for thermal material information used by the

PESST framework to perform these calculations.

5.2.6 Mass Estimation

5.2.6.1 Thermal Protection System Sizing

The ablation rate ṡ is integrated over the trajectory to estimate the thickness lost

from ablation. The stagnation heat conducted into the material is used to size the

minimum thickness required to keep the interior wall of the material below a user

specified bondline temperature. Both processes are considered as decoupled so the

thicknesses are added to give a final uniform heatshield thickness.

mstruct = 0.08mentry (54)

mheatshield = mstruct + Atps thicknesstps ρtps (55)

The heatshield mass is computed from the provided area covered by the heatshield

A, the density of the heatshield ablative material ρtps (Table 18), and the computed

total thickness due to the heating history of the stagnation point region.

Table 18: TPS Material Density.

TPS Material Density
(kg/m3)

PICA 227.4

SLA-561v 264.3

Carbon Phenolic
(FM5055)

1435.4

The structural mass of the heatshield is estimated by the relationship shown in

Equation 54. The structural mass is added to form the final estimate for a constant

thickness heatshield, see Equation 55.

158

5.2.6.2 Propulsion System Sizing

Any thrust events performed during the trajectory add to the budgeted fuel require-

ment by integrating the ṁ computed through the momentum thrust equation, see

Equation 33. The density for the fuel and oxidizer and O-F ratio are used to deter-

mine the volume requirements for each liquid.

Figure 78: Tank Pressure Fits by Engine Type.[40]

The operating pressure for the tank is determined from the engine type and tank

volume using the data regression in Figure 78 to historical data of different engine

types. This operating pressure is used to size the volume of Helium required to act

as a pressurant for this tank, in pressure-fed systems. The reader is referred to [40]

for further details.

mtank =
fsafety Ptank Vtot

g0 φtank
(56)

The pV/W method is utilized to calculate the tank mass without specified tank

dimensions. This method requires the specification of a tank mass factor φtank that

159

Table 19: Tank Mass Factors.
Tank Material Tank Mass Factor (m)

Al 2500

Ti 5000

Ti with Carbon Fiber 10000

describes the strength of the tank material. A completely metallic tank has a tank

factor equal to 2500 m; with reinforcing materials the tank factor can rise to 10000

m.[40] The values used by PESST for the three available tank materials are shown in

Table 19.

The pV/W method uses the burst pressure for the tank Pburst = fsafetyPtank (Pa),

tank volume Vtot (m3), and tank factor φtank (m) to calculate for the tank mass in

kilograms. The burst pressure for the tank is estimated in PESST as the operating

pressure times a safety factor equal to 1.5. This method is utilized to determine the

mass for the fuel, oxidizer, and potential pressurant tanks.

Figure 79: Sizing Fit for Monomethyl Hydrazine (MMH) Engines. Historical data
from [40].

Regressions through historical engine mass data are used to size for the engine

based on the engine maximum thrust and fuel type. The equations in Figures 79,80,81

160

Figure 80: Sizing Fit for Monopropellant Hydrazine Engines. Historical data from
[40].

use x in kN to compute the dry weight of the engine in kg on these semi-log charts.

The LOX/CH4 engine weight data provided from [48] cited the engine wet weight,

i.e. the engine weight with fuel filled lines. Six percent of the weight cited in the paper

was removed to regress the estimated dry weight, Figure 81. The lines and valves for

the engine are assumed to weigh as much as the engine itself.

The summation of the masses for the fuel tanks, pressurization system (pressurant

+ pressurant tank), engine, lines and valves is given for the propulsion system mass.

5.2.6.3 Parachute System Sizing

Fmax = Ck qdeploy CD A

Fdesign = fsafety Fmax (57)

The parachute sizing module models an infinite mass inflation with the peak load

occurring at full parachute inflation. The parachute is sized based on this peak load

with a safety factor equal to 1.5. The Ck method was utilized with a Ck = 0.6 for DGB

parachutes and the area A = π
(
Do

2

)2
. The material properties for kevlar are used to

161

Figure 81: Sizing Fit for LOX/Methane Engines. Prototype results from [48].

size for the radials, lines and riser. The tensile strength of Nylon fabric and Fdesign,

from Equation 57, is used to determine the thickness required for the parachute

fabric. After the parachute is sized, a mortar is sized by mmortar = 1.48 m0.5
para which

was derived from historical mortar data.[49] PESST currently assumes that a mortar

is used for the main parachute though larger parachutes typically have a drogue chute

instead, released by a smaller mortar.

5.2.6.4 Backshell Sizing

mbackshell = 6.7582m0.4116
entry (58)

The backshell mass is estimated by Equation 58 and assumes that the backshell is

integrated with the structure of the vehicle. For smaller vehicles, where the regression

would extrapolate, the mass fraction for the backshell and primary structural mass

is capped at 25%.

5.3 Comparison to a Historical Mission

PESST predictions for a historical mission is included to display the suitability and

flexibility of the framework for conceptual design.

162

Table 20: Trajectory and Heating Comparison to Mars Pathfinder.

Event Units Flight POST PESST Diff from Diff from

Reconstruction

[19, 64]

POST

(%)

Reconst.

(%)

Initial Conditions

Time from Entry s 0 0 0 - -

Altitude km 128.0 128.0 128.0 - -

Relative Velocity m/s 7479.0 7479.0 7479.0 - -

Flight Path Angle deg -13.65 -13.65 -13.65 - -

Peak Heat Rate Conv (Rad) W/cm2 118.0 (5.5) 115.5 (-) 115.3 (4.8) -0.2 (-) -2.3 (-12.4)

Time from Entry s 66.0 62.3 62.2 -0.2 -5.8

Altitude km 42.3 40.4 40.8 0.9 -3.7

Relative Velocity m/s 6589.6 6512.9 6552.2 0.6 -0.6

Heatload Conv (Rad) J/cm2 3800.0 (88.7) 4335.0 (-) 4330.7 (84.2) -0.1 (-) 14.0 (-5.0)

Peak Deceleration Earth-g 15.8 16.3 16.3 -0.3 2.7

Time from Entry s 77.8 72.9 73.4 0.7 -5.6

Altitude km 33.1 31.8 31.8 -0.1 -4.1

Relative Velocity m/s 5055.3 5032.9 5029.2 -0.1 -0.5

Parachute Full Inflation Earth-g 6.0 7.5 6.0 -20.3 0.0

Time from Entry s 173.2 161.3 163.0 1.1 -5.9

Altitude km 7.6 8.2 8.2 -0.4 7.4

163

Table 20: Trajectory and Heating Comparison to Mars Pathfinder.

Event Units Flight POST PESST Diff from Diff from

Reconstruction

[19, 64]

POST

(%)

Reconst.

(%)

Relative Velocity m/s 338.5 369.8 360.6 -2.5 6.5

Heatshield Drop

Time from Entry s 192.2 182.6 192.0 5.1 -0.1

Altitude km 6.9 6.5 5.9 -9.7 -15.0

Relative Velocity m/s 94.3 82.2 79.0 -3.8 -16.2

Trajectory Termination

Time from Entry s 298.0 290.0 285.2 -1.7 -4.3

Altitude m 130.7 128.6 127.4 -0.9 -2.5

Relative Velocity m/s 63.3 53.7 56.9 6.0 -10.1

164

The reconstruction for Mars Pathfinder comes from the work of Christian, et

al. [19] which created a Pathfinder reconstruction using an extended Kalman filter.

Heating information is taken from Milos, et al. [64]. The reconstructed Pathfinder

atmosphere is used for both the PESST and POST trajectory. Both PESST and

POST specify the same dynamic pressure trigger for parachute inflation and the same

aerodynamics for the Disk-Gap Band parachute. Differences in the implementation of

the infinite mass parachute inflation model may explain the discrepancy between the

two tools. Otherwise, all three show good agreement for the purposes of conceptual

design, Tables 20 and 21.

Table 21: Mass Comparison to Pathfinder.

Element
(kg)

Flight
Mass

PESST Diff Flight
(%)

Flight
Mass (%)

Entry Mass 585.3 585.0 -0.1 -

Heatshield 64.4 75.0 16.5 11.0

Backshell and
Structure

56.9 93.0 63.4 9.7

Parachute 9.8 17.0 74.4 1.7

Payload1 360.0 360.0 0.0 61.5

Remainder 94.2 40.0 -57.6 16.1

Any conceptual design tool needs to predict the full system with enough accuracy

to inform initial design decisions. Martian mission designers can be used to designing

probes to withstand 20 gE but PESST can allow them to better understand a new

entry environment, such as Venus, where missions may experience 250 gE. In this

way, the framework is broadly applicable to better understanding EDL systems. The

validation case for Pathfinder shows that this is a realistic conceptual design tool for

entry vehicles. Using the tool as an example for link importance ranking will assist

in validating the method by grounding the results to realistic design cases.

1Specified by user

165

5.4 Summary

Conceptual design decisions are better informed by the early application of physics-

based tools to the design process. First order tools are often fast enough to be

used during parametric studies while still providing information on many of the main

effects and trades that can now be examined, far earlier in the design process, for

entry missions. PESST fills an important place in the field of entry design synthesis

by allowing a designer the chance to quickly gain an understanding of a design space

by using first-order physical models. A detailed examination was made into the

methods used to implement each of the entry discipline modules, allowing for the

widespread use and critique of these models for entry systems.

166

CHAPTER VI

SUMMARY AND RECOMMENDATIONS

6.1 Summary

Though the scale of feasible multidisciplinary problems has been greatly increasing

over the past twenty years, improvements in processing power and decomposition

methods will be required to push even larger problems into feasibility. Further im-

provement to the currently utilized decomposition methods are required to efficiently

solve complex engineering problems. This investigation advances the state-of-the-art

in importance heuristics, static decomposition and EDL system synthesis.

6.1.1 Introduction of a Link Importance Heuristic

Mutual information was introduced as a useful new importance heuristic for ranking

link variables. The metric was shown to measure both linear and non-linear depen-

dence between variables. Mutual information was compared to the standard use of

correlation by applying both to a realistic conceptual design study. The Planetary

Entry Systems Synthesis Tool (PESST) was utilized to perform this design study on

a Mars entry. A design space of entry conditions and vehicle geometries was explored

and trajectory variables were made available to ranking at set altitudes.

The metric was able to correctly determine that total propulsion mass was just

as important as total propulsion system mass as both are strong indicators for the

triggering of the guidance event. Linear correlation was unable to determine the high

importance of total propulsion system mass while mutual information was able to

correctly determine the most important variables.

This metric provides the ability to better understand the driving variables of a

design study. With a better understanding of modeled behavior, synthesis studies can

167

tell engineers more about the systems they model and more quickly expose weaknesses

within these model. Here an example showed how mutual information could expose

the importance of the triggering of the guidance event and the most important driving

variables towards meeting a specified objective function.

The use of force-based clustering on the low thrust trajectory problem selected

showed the value of mutual information for ranking potential cut points in long tra-

jectory problems. Force-based clustering was able to discover useful sub-problem

structure that led to a 20% reduction to the total run-time of the trajectory solver.

6.1.2 Introduction of a Global Optimizer for Static Decomposition

A robust comparison was performed between MIMIC and Genetic Algorithms for

static decomposition. This comparison introduces MIMIC as an optimizer well suited

for the static decomposition domain. Both methods are stochastic requiring a large

number of runs to compare averaged behavior and requires a search over a specified

setting domain to find proper settings for each method. A mixed Latin-Hypercube

and 2-level Full Factorial design was created to search the domain of settings. Five

randomly generated problems were created from six different configurations of dif-

ficulty. To run the cases within a reasonable amount of time, both methods were

parallelized and run on a cluster of GPU processors. The recent advances in GPU

computing were leveraged to deliver a comparison uncommon in the literature.

This comparison was enabled by new advances in parallel computing hardware. A

comparison was made regarding the ease of parallel implementation for both methods.

The largest shortcoming to the parallel implementation of MIMIC is remedied by

the explanation of the method in this work and the information theoretic concepts

involved. A time breakdown for each element of the method is provided to forewarn

individuals who wish to try to develop new implementations and adjustments to

the method. Areas to focus on for future implementations are suggested during the

168

discussion on future work.

MIMIC was shown to strongly out perform Genetic Algorithms on the number

of function calls required to reach a specified target value and was less prone to

fall into local optima. The Genetic Algorithm was able to out perform MIMIC on

the run-time required for loosely coupled problems (i.e. 5% active links). A run-

time breakdown of the MIMIC algorithm showed that the greater run-time required

by MIMIC for these problems came from a computational overhead that was not

sensitive to the cost of a fitness function. The fitness function used in this comparison

study took milliseconds to compute. Based on the averaged convergence behavior

seen though this work, as the cost of the fitness function increased, MIMIC would

perform with better run-time performance for even loosely coupled problems. Even

with the inexpensive function call used in this study, the run-time performance is

competitive with Genetic Algorithms over medium and strongly coupled problems

due to MIMIC’s speed of convergence though the efficient use of function calls. This

makes the algorithm potentially applicable for problems with large function evaluation

costs or for large highly coupled problem domains.

The performance of the MIMIC algorithm was also shown to be more robust than

Genetic Algorithms when using settings within 20% of the best settings found for

either optimizer. This is important as the ideal settings to use on a problem are

never known in practice. Getting near the ideal setting for a Genetic Algorithm was

shown to provide performance that was less predictable than when using near-best

settings with MIMIC. Parzen-window density estimation was also shown to perform

adequately to allow the method to also treat continuous variables.

Several published utility functions have been shown for reordering a problem and

are normally applied by using a global optimizer. A global optimizer is generally

used as this domain contains many local optima. The efficiency of MIMIC relaxes

the computational constraints that have been present for researchers. The algorithm

169

provides a marked advancement for researchers as a replacement to the standard

practice of using Genetic Algorithms for utility function research.

6.1.3 Generalizing Static Results with Automatic Decision Trees

Machine learning algorithms were utilized to automatically generate decision trees

to generalize results obtained during the static decomposition comparison between

MIMIC and Genetic Algorithms. Useful descriptive metrics were developed that

could predict when one optimizer would be better for a given decomposition problem.

The large data set generated during the optimizer comparison was used to train the

decision trees. The tree structure was pruned automatically to leave a well performing

structure that was tested for accuracy through 10-point cross-validation.

With imperfect knowledge of the ideal settings, the most important predictor

of which method to use was the degree of coupling present in the problem. All

medium and strongly coupled problems were predicted as being better served by

use of the MIMIC optimizer. The number of pair-wise coupled analyses (e.g. A

→ B and B → A) was also determined to be a useful descriptive metric to method

performance. High pair-wise coupling of analyses was better handled by MIMIC while

lower degrees of pair-wise coupling showed averaged performance that was too similar

to determine which method to use within a 90% confidence. These results clarify the

comparison charts and provide a user with descriptive metrics that could be used on

other problems to determine if the problem might perform well using MIMIC, Genetic

Algorithms, or if the best optimizer could not determined by this study to within a

90% confidence.

6.1.4 Creation of a Design Synthesis Tool for Entry Design

The Planetary Entry Systems Synthesis Tool (PESST) is a rapid conceptual design

tool that was developed as part of this work for entry, descent, and landing systems.

This framework has the capability to estimate the performance of an entry system

170

using user-defined geometry, hypersonic aerodynamics, flight mechanics, thermal re-

sponse, and mass estimation. Trade studies can be performed by parameter sweeps

to gain a valuable understanding of the design space for conceptual studies. This

framework is broadly applicable to conceptual studies of EDL systems and has been

used as a test case for the evaluation of the proposed link importance metric. PESST

fills an important place in the field of entry design synthesis by allowing a designer

the chance to quickly gain an understanding of a design space by using first-order

physical models.

6.2 Recommendations for Future Work

6.2.1 Static Decomposition

MIMIC has been compared here against Genetic Algorithms on a static decomposition

problem in order to appropriately schedule the analyses on the DSM based on a utility

function. The MIMIC algorithm may also have many other applications on problems

normally solved by the use of a Genetic Algorithm. On multimodal domains with non-

trivial function calls; MIMIC should be strongly considered as an optimizer. As an

example, the method could be applied as an down-selection tool for globally searching

a multimodal trajectory problem before the use of a local optimizer.

The MIMIC method is composed of three adaptable components: Model building,

Sampling, and Evaluation. The modeling of the joint distribution is the key to the

method. Any method could be used to model the joint distribution, MIMIC as

it is implemented here forms the best possible model out of pair-wise relationships.

Another model could be used instead that took advantage of more complex relations to

yield a higher fidelity model of the joint distribution. For instance, instead of pair-wise

Chow Lu trees to model discrete distributions one could use a t-cherry junction tree

to approximate the true joint distribution using triplet interactions. T-cherry trees

have been shown to reduce the KL-distance to true distributions when compared to

171

Chow Lu trees. Essentially, future work replacing Chow Lu trees with t-cherry trees

would not hurt the approximation and might help it over more complicated joint

distributions. Several potential drawbacks to the model replacement would need to

be explored regarding the potential increase in computational complexity, the number

of samples required to generate a model, and how the parallelizability of the addition

compares to Chow Lu trees.

Sampling from the created model takes the majority of time in the current im-

plementation (i.e. +70%). This percentage increases as the problem size increases

and decreases as the function call cost increases. It was seen that when the averaged

function call cost surpassed 11 ms, the cost of sampling did not prevent MIMIC from

becoming the faster algorithm.

To lower this averaged crossover function call cost of 11 ms, the sampling method

used by MIMIC could be adapted to more efficiently execute conditional statements.

Conditional statements are not currently performed as efficiently on a GPU due to

the lack of predictive scheduling that is normally utilized on general purpose CPUs.

Tree structures contain many conditional statements that must be executed as the

tree is traversed; i.e. take left branch if true else take right branch. Sampling involves

the repeated traversal of the built tree model which is one factor to consider when

designing a more efficient sampling component. The author predicts that GPUs will

become more efficient in evaluating conditional statements just as CPUs have been

incorporating the idea of having ‘many-cores’ into their framework. Further work on

a GPU parallized sampling component will require a thorough understanding of GPU

limitations and capabilities.

For instance, a warp is a basic thread group in the NVIDIA CUDA framework. If

a warp of threads is able to travel through the same conditional choices together than

all threads can execute in parallel. If one thread in the warp needs to travel through a

different conditional choice, all threads in the warp are currently required to execute

172

in series. If the model could be made into one that required fewer conditional choices

or if formed warps were composed of threads likely to make the same selections; the

time required for sampling can be drastically reduced when using a GPU framework.

One example of composing warps likely to make the same selections can be realized

by sampling along the tree in a step-wise fashion with all threads initially computing

the root node. At that point, threads could be grouped based on the path determined

from the value generated at the root node. Each child node with a group of threads

would have these threads executed in parallel and then grouped by their membership

with lower-level nodes, based on the computed value.

(a) Mozilla DSM Before Redesign (b) Mozilla DSM After Redesign

Figure 82: DSM Orderings for the Mozilla Browser: Before and After Redesign
Effort[59]

Future work could also examine the use of static decomposition as a guide for the

modular redesign of large aerospace software applications. The modular design of

software and systems aids in the maintenance, reuse and testing of the system. An

earlier version of the Mozilla browser had a large number of interconnections between

software components, Figure 82(a). A redesign effort was able to create a more stable

modular design shown in Figure 82(b) with fewer connections between modules.[59]

173

There are many complex interconnected projects in Aerospace (e.g. guidance systems,

computational fluid dynamics simulations, high fidelity heatshield sizing, etc.) that

would benefit from the adapted use of static decomposition during a redesign effort.

6.2.2 Force-Based Clustering

The method developed in this work to first create pork-chop plots, transform them

into probability distributions, and then calculate the mutual information for each

transfer is promising but much more work is needed to mature the method. The

work performed on one trajectory problem should be applied to a wide sweep of

randomly created trajectory problems as was performed for the static decomposition

comparison. The wide selection of problem would help determine which types of

trajectory problems are best addressed by mutual information link ranking.

When using pork-chop plots as a method for determining the mutual information

of a trajectory link, a great number of variables need to be further examined. The

time period that the plots cover should be examined. The plots could run over one

synotic period or could each span a year with the assumption that the vehicle would

likely meet a target once a year. The plots could be pre-generated or run for a set

period from the exact date the vehicle leaves one body. Users with the capability

to utilize massively parallel computational hardware such as graphics cards would

be aided by the decomposable nature of the pork-chop plot computation. Ballistic

pork-chop plots will not be applicable to all trajectories. Other types of plots could

be used in the same way to determine an importance rank for each trajectory linkage.

When the attractive force of edges are proportional to the mutual information

weight assigned to the edge, clusters will form between analyses that share a large

number of high quality links. Analyses with few low importance links or those with

one mid-importance link will be driven further from the discovered clusters. The first

links to consider for removal during dynamic decomposition could be the longest links

174

in the graph while the links that are desirable to keep, for clustering, are the shortest

links.

If the process of graph link removal is to be automated for future work with

dynamic decomposition, a cluster quality metric is required to judge when removing

links is no longer increasing the quality of the remaining clusters. Cluster quality

metrics remain an area of active research but results to date generally demonstrate

the benefit of forming closely coupled groups of analyses with few interconnections

between analyses.[83] Force-based clustering can be a flexible method for future work

on dynamic decomposition.

6.2.3 EDL Design Synthesis

The PESST framework is composed of many discipline modules that each possess a

different level of fidelity. While all are conceptual design tools there is a definite dif-

ference between mass estimating relationships and 1-D thermal conduction equations.

The 1-D conduction equations are dependent on a correct description of the heating

environment from stagnation point heating approximations. It is suggested that any

framework involving hybrid fidelity components should have some way of tracking

that fidelity and how each component’s variance could effect a system wide analysis.

This would be valuable towards forming a prioritized list of which components should

be refined in order to best increase the accuracy of system calculations.

PESST development would benefit from added functionality to increase module

flexibility. Currently, if modules did not exist within the tool, a user would need to

contact the maintainer to have them create the needed functionality. The usefulness

of a conceptual design framework would be greatly benefited by decentralizing the

task of module development. Users should be able to develop and plug-in their own

modules to those existing in the framework, potentially allowing for the developing

of a community supported EDL module library.

175

Another advancement towards the future development of the framework would be

the addition of an automated component and system testing framework. Component

tests are essential and components should fall within an acceptable margin from higher

fidelity tools. A testing suite could be automatically run when changes are performed

to confirm that all tests have been passed. The initial set up time would be well

repaid by frequent automated testing that would increase robustness going forward

as components are continually adapted into the future.

The most time intensive component in PESST is the TPS sizer. The time taken

by this component is directly proportional to the number of trajectory data points

passed through the thermal input file. The current component assumes equidistant

time-steps in the conduction equations which means that the number of total time-

steps is driven by the size of time-step needed to describe the most variable region

of the trajectory. A short Martian entry can use 0.01 second time-steps but a Venus

mission normally experiences its heating spike during the first minute of an hour long

entry. This either provides a large number of needless points to the TPS sizer, greatly

increasing its run-time, or drives the developer to set an arbitrary limit as to only

use the first 2000 time-steps. The setting of a time-step limit potentially cuts off the

heating pulse of a skip entry where the second entry could occur after the time-step

cutoff. The real solution is frame the CFD problem so the step sizes are equal in the

domain of computation but unequal physically. The points passed to the sizer would

then be based on a percentage rule. For example, only passing points that are a set

percentage of change from the highest value seen so far. This would drastically reduce

the time taken to compute the TPS thickness; potentially cutting the total time of

execution by more than half. It would also increase the robustness of the code for

skipping entries by allowing the consideration of heating over the entire trajectory.

The current PESST framework only examines the first 2000 time-steps for the heating

environment. This is suitable for most missions but might not be suitable for skipping

176

trajectories.

The aerodynamics tool (AeroMesh) was developed for PESST and was created as

a separate executable for stand alone use. It can calculate hypersonic aerodynamic

coefficients given a provided vehicle geometry. By incorporating the AeroMesh mod-

ule into the main PESST executable, trade studies could be performed over ranges

of vehicle geometry. A first draft of a PESST version that does this is available from

the main development branch of the PESST repository but requires further testing

and refinement before public release.

Currently the PESST framework can fly a given shape at a specified angle of

attack but no analysis is currently performed as to whether the angle of attack is

stable. An adaptation to the current AeroMesh program would be able to analyze

the trim-line for the specified trim angle of attack (i.e. where CM = 0) and compute

the derivative of CM with respect to angle of attack.

177

APPENDIX A

THERMAL DATA UTILIZED BY PESST

Useful tables of public domain TPS material information, that are both unclassified

and approved for universal release, have been included for the ease of the reader.

This material property data is utilized by PESST when calculating the amount of

TPS material required to insulate the vehicle from entry heating. The factors used

to covert the original Imperial units to SI have been included in Table 22.

Table 22: Conversion Factors
SI Imperial

1 kg/m3 6.242782×10−2 lbm/ft3

1 kJ/kg-K 2.388459×10−1 Btu/lbm-R

1 W/m-k 1.604969×10−4 Btu/ft-s-R

1 kJ/kg 4.299208×10−1 Btu/lbm

Table 23: PICA Density and Reaction Information. [96]

Component Initial
Density

Residual
Density

Pre-
exponential
Factor

Density
Expo-
nent

Acti-
vation
Energy

Min Re-
action
Temp

(kg/m3) (kg/m3) (s−1) (K) (K)

Resin
(Comp A)

228.26 0.00 1.400E+04 3.0 8555.56 555.56

Resin
(Comp B)

973.12 792.92 4.480E+09 3.0 20444.45 333.33

Fiber Rein-
forcement

160.18 160.18 0.000E+00 0.0 0.00 50000.00

178

Table 24: PICA Heats of Formation and Resin Fraction. [96]

Resin Vol-
ume Frac-
tion

Virgin
Heat of
Formation

Char Heat
of Forma-
tion

Pyrolysis Gas
Heat of For-
mation

Datum Temp
for Zero En-
thalpy

(kJ/kg) (kJ/kg) (kJ/kg) (K)

0.0646 -875.7 0.0 0.0 297.8

Table 25: PICA Virgin Properties for Insulation. [96]

Temp Cp k ε α

(K) (kJ/kgK) (W/mK)

222.2 1.44863 5.48584E-01 0.80 0.80

527.8 1.93430 5.85968E-01 0.80 0.80

833.4 2.34042 6.25887E-01 0.80 0.80

1650.6 2.46603 1.08696E+00 0.80 0.80

2467.8 2.46603 1.54366E+00 0.80 0.80

2608.2 2.46603 1.56327E+00 0.80 0.80

2748.6 2.46603 1.60968E+00 0.80 0.80

2888.9 2.46603 1.64362E+00 0.80 0.80

3333.3 2.46603 1.68100E+00 0.80 0.80

Table 26: PICA Char Properties for Insulation. [96]

Temp Cp k ε α

(K) (kJ/kgK) (W/mK)

294.4 2.93076 9.78212E-01 0.90 0.90

425.0 3.76812 9.90673E-01 0.90 0.90

555.6 4.60548 1.00313E+00 0.90 0.90

833.3 4.60548 1.17136E+00 0.90 0.90

1666.7 4.60548 1.33959E+00 0.90 0.90

3333.3 4.60548 1.71343E+00 0.90 0.90

179

Table 27: PICA Pyrolysis Gas Entropy. [96]

Temp (K) Enthalpy (kJ/kg)

400 -9.0172E+03

800 -6.1716E+03

1200 -2.2682E+02

1600 1.2874E+03

2000 2.8954E+03

2400 5.2126E+03

2800 9.7202E+03

3200 1.9148E+04

3600 3.3278E+04

4000 4.4557E+04

4400 5.0000E+04

4800 5.3161E+04

Table 28: FM 5055 Density and Reaction Information. [45]

Component Initial
Density

Residual
Density

Pre-
exponential
Factor

Density
Expo-
nent

Acti-
vation
Energy

Min Re-
action
Temp

(kg/m3) (kg/m3) (s−1) (K) (K)

Resin
(Comp A)

247.97 0.00 2.171E+01 1.92 4627.22 297.78

Resin
(Comp B)

0.00 0.00 1.000E+00 1.00 0.56 5500.00

Fiber Rein-
forcement

2231.06 1905.88 9.535E+10 3.10 19333.33 560.56

Table 29: FM 5055 Heats of Formation and Resin Fraction. [45]

Resin Vol-
ume Frac-
tion

Virgin
Heat of
Formation

Char Heat
of Forma-
tion

Pyrolysis Gas
Heat of For-
mation

Datum Temp
for Zero En-
thalpy

(kJ/kg) (kJ/kg) (kJ/kg) (K)

0.4010 -911.1 0.0 0.0 297.8

180

Table 30: FM 5055 Virgin Properties for Insulation. [45]

Temp Cp k (Across Ply) ε (est) α (est)

(K) (kJ/kgK) (W/mK)

311.1 0.96296 0.85 0.85

338.9 8.09984E-01 0.85 0.85

366.7 1.19324 0.85 0.85

422.2 1.29791 9.22136E-01 0.85 0.85

477.8 1.37327 9.78212E-01 0.85 0.85

533.3 1.44445 1.02183E+00 0.85 0.85

588.9 1.48631 1.04052E+00 0.85 0.85

644.4 1.00937E+00 0.85 0.85

Table 31: FM 5055 Char Properties for Insulation. [45]

Temp Cp k (Across Ply) ε (est) α (est)

(K) (kJ/kgK) (W/mK)

311.1 0.85829 0.85 0.85

366.7 1.00483 9.53289E-01 0.85 0.85

422.2 1.13881 0.85 0.85

477.8 1.23511 1.17136E+00 0.85 0.85

533.3 1.33978 0.85 0.85

588.9 1.44445 1.35828E+00 0.85 0.85

644.4 1.50725 0.85 0.85

700.0 1.57005 1.51405E+00 0.85 0.85

755.6 1.62448 0.85 0.85

811.1 1.67472 1.64489E+00 0.85 0.85

866.7 1.71659 0.85 0.85

922.2 1.75846 1.67604E+00 0.85 0.85

977.8 1.77520 0.85 0.85

1033.3 1.79614 0.85 0.85

1088.9 1.80870 1.67604E+00 0.85 0.85

181

Table 32: FM 5055 Pyrolysis Gas Entropy. [45]

Temp (K) Enthalpy (kJ/kg)

294.44 -3661.6

555.56 -2734.0

833.33 -1547.0

1111.1 -153.5

1200.0 351.2

1388.9 1093.2

1666.7 2046.9

1944.4 2930.8

2250.0 3981.4

2500.0 5036.0

2750.0 6298.1

3000.0 7944.0

3250.0 10186.1

3500.0 13254.8

3750.0 17358.5

4055.6 22602.8

182

APPENDIX B

STATIC PROBLEMS EXAMINED WITH BEST

SETTINGS AND NEAR-BEST RESULTS

Table 33: Summary of DSM Problems Used for Static Testing

Number of
Elements

% of Links
Active

DSM Problems Generated
with these Characteristics

15 5 5

15 10 5

15 20 5

25 5 5

25 10 5

25 20 5

50 5 5

50 10 5

50 20 5

Total Problems 45

183

Table 34: Confidence Needed to Select Between Methods (Best

Settings)

ProbID Size Links

Active

Best for Conver-

gence

Best for Function

Calls

Best for

Run-time

Confidence Needed for

Function Call Choice

Confidence Needed for

Run-time Choice

(inputs) % % %

46 15 5 UNK MIMIC GA 50.2 99.9+

47 15 5 UNK MIMIC GA 95.1 99.9+

48 15 5 UNK MIMIC GA 98.4 99.9+

49 15 5 UNK MIMIC GA 82.2 99.9+

50 15 5 UNK MIMIC GA 91.2 99.9+

51 15 10 UNK MIMIC GA 98.9 99.9+

52 15 10 UNK MIMIC GA 21.8 99.9+

53 15 10 UNK MIMIC GA 82.8 99.9+

54 15 10 UNK MIMIC GA 44.3 99.8

55 15 10 MIMIC MIMIC MIMIC 97.9 84.1

56 15 20 MIMIC MIMIC GA 92.1 21.7

57 15 20 MIMIC MIMIC GA 92.4 36.9

58 15 20 UNK MIMIC GA 76.6 54.2

59 15 20 UNK GA GA 74.4 99.9+

60 15 20 UNK MIMIC GA 92.8 99.9+

0 25 5 UNK GA GA 99.9+ 99.9+

184

Table 34: Confidence Needed to Select Between Methods (Best

Settings)

ProbID Size Links

Active

Best for Conver-

gence

Best for Function

Calls

Best for

Run-time

Confidence Needed for

Function Call Choice

Confidence Needed for

Run-time Choice

(inputs) % % %

9 25 5 UNK GA GA 99.9+ 99.9+

18 25 5 UNK GA GA 99.9+ 99.9+

27 25 5 MIMIC MIMIC MIMIC 99.6 93.1

36 25 5 UNK GA GA 99.9+ 99.9+

3 25 10 MIMIC MIMIC MIMIC 98.8 45.2

12 25 10 UNK GA GA 99.9+ 99.9+

21 25 10 MIMIC MIMIC GA 99.6 2.3

30 25 10 MIMIC MIMIC MIMIC 99.9+ 99.9+

39 25 10 MIMIC MIMIC MIMIC 94.4 69.8

6 25 20 MIMIC MIMIC MIMIC 98.3 39.0

15 25 20 UNK MIMIC GA 99.5 99.9+

24 25 20 MIMIC MIMIC MIMIC 98.1 83.1

33 25 20 UNK MIMIC GA 25.8 99.9+

42 25 20 UNK MIMIC GA 87.1 65.7

1 50 5 UNK GA GA 99.9+ 99.9+

10 50 5 MIMIC MIMIC GA 99.9+ 99.9+

185

Table 34: Confidence Needed to Select Between Methods (Best

Settings)

ProbID Size Links

Active

Best for Conver-

gence

Best for Function

Calls

Best for

Run-time

Confidence Needed for

Function Call Choice

Confidence Needed for

Run-time Choice

(inputs) % % %

19 50 5 MIMIC MIMIC GA 85.2 94.6

28 50 5 MIMIC MIMIC GA 43.0 99.9+

37 50 5 MIMIC MIMIC GA 57.1 99.7

4 50 10 MIMIC MIMIC GA 99.9+ 70.1

13 50 10 MIMIC MIMIC GA 99.9+ 99.9+

22 50 10 UNK GA GA 99.9+ 99.9+

31 50 10 MIMIC MIMIC MIMIC 99.9+ 97.7

40 50 10 MIMIC MIMIC MIMIC 97.2 98.9

7 50 20 UNK GA GA 99.9+ 99.9+

16 50 20 MIMIC MIMIC GA 68.4 99.9+

25 50 20 MIMIC MIMIC MIMIC 99.9+ 17.9

34 50 20 MIMIC MIMIC GA 99.9+ 99.9+

43 50 20 MIMIC MIMIC GA 97.2 99.9+

186

Table 35: Confidence Needed to Select Between Methods (Near-

Best Settings)

ProbID Size Links

Active

Best for

Conver-

gence

Best for

Function

Calls

Best for

Run-time

Confidence Needed

for Convergence

Choice

Confidence Needed

for Function Call

Choice

Confidence

Needed for Run-

time Choice

(inputs) % % % %

46 15 5 UNK MIMIC GA 99.9+ 99.9+ 99.9+

47 15 5 UNK MIMIC GA 99.9+ 99.5 99.9+

48 15 5 UNK MIMIC GA 99.9+ 99.7 99.9+

49 15 5 UNK MIMIC GA 99.9+ 93.4 99.9+

50 15 5 UNK MIMIC GA 99.9+ 99.7 99.9+

51 15 10 MIMIC MIMIC GA 25.8 15.5 99.9+

52 15 10 MIMIC MIMIC GA 93.4 98.8 76.4

53 15 10 UNK GA GA 99.9+ 56.4 89.4

54 15 10 GA MIMIC GA 45.4 11.0 91.4

55 15 10 MIMIC MIMIC GA 99.9+ 99.9+ 90.0

56 15 20 MIMIC MIMIC GA 99.9+ 99.9+ 92.8

57 15 20 MIMIC MIMIC GA 99.9+ 99.9+ 96.2

58 15 20 MIMIC MIMIC GA 94.1 98.6 99.5

59 15 20 MIMIC MIMIC GA 63.4 68.3 97.1

60 15 20 MIMIC MIMIC GA 99.7 99.9+ 97.6

187

Table 35: Confidence Needed to Select Between Methods (Near-

Best Settings)

ProbID Size Links

Active

Best for

Conver-

gence

Best for

Function

Calls

Best for

Run-time

Confidence Needed

for Convergence

Choice

Confidence Needed

for Function Call

Choice

Confidence

Needed for Run-

time Choice

(inputs) % % % %

0 25 5 UNK GA GA 99.9+ 99.9+ 99.9+

9 25 5 UNK GA GA 99.9+ 91.4 99.9+

18 25 5 MIMIC MIMIC GA 86.9 91.7 92.8

27 25 5 MIMIC MIMIC GA 99.9+ 99.9+ 99.5

36 25 5 UNK MIMIC GA 99.9+ 64.1 81.3

3 25 10 MIMIC MIMIC GA 99.9+ 99.9+ 94.5

12 25 10 UNK MIMIC GA 99.9+ 44.5 99.9+

21 25 10 MIMIC MIMIC GA 99.9+ 99.9+ 51.1

30 25 10 MIMIC MIMIC MIMIC 99.9+ 99.9+ 36.5

39 25 10 MIMIC MIMIC MIMIC 99.9+ 99.9+ 97.6

6 25 20 MIMIC MIMIC GA 95.8 98.6 84.8

15 25 20 MIMIC MIMIC GA 99.8 99.9+ 94.1

24 25 20 MIMIC MIMIC GA 99.4 99.9+ 80.3

33 25 20 MIMIC MIMIC GA 88.9 94.5 89.9

42 25 20 MIMIC MIMIC GA 16.1 85.4 99.0

188

Table 35: Confidence Needed to Select Between Methods (Near-

Best Settings)

ProbID Size Links

Active

Best for

Conver-

gence

Best for

Function

Calls

Best for

Run-time

Confidence Needed

for Convergence

Choice

Confidence Needed

for Function Call

Choice

Confidence

Needed for Run-

time Choice

(inputs) % % % %

1 50 5 UNK GA GA 99.9+ 99.9+ 99.9+

10 50 5 MIMIC MIMIC GA 99.9+ 99.9+ 99.7

19 50 5 MIMIC MIMIC GA 99.6 99.8 99.9+

28 50 5 MIMIC MIMIC GA 98.7 22.5 99.9+

37 50 5 MIMIC MIMIC GA 98.9 97.5 99.9+

4 50 10 MIMIC MIMIC GA 99.9+ 99.9+ 70.5

13 50 10 MIMIC MIMIC GA 99.9+ 99.9+ 99.9+

22 50 10 MIMIC MIMIC GA 84.3 26.5 97.3

31 50 10 MIMIC MIMIC GA 99.9+ 99.9+ 87.6

40 50 10 MIMIC MIMIC GA 99.3 99.9+ 97.1

7 50 20 UNK GA GA 99.9+ 7.4 32.7

16 50 20 MIMIC MIMIC GA 99.9+ 85.9 99.9+

25 50 20 MIMIC MIMIC MIMIC 99.9+ 99.9+ 3.4

34 50 20 MIMIC MIMIC GA 99.9+ 91.2 36.5

189

Table 35: Confidence Needed to Select Between Methods (Near-

Best Settings)

ProbID Size Links

Active

Best for

Conver-

gence

Best for

Function

Calls

Best for

Run-time

Confidence Needed

for Convergence

Choice

Confidence Needed

for Function Call

Choice

Confidence

Needed for Run-

time Choice

(inputs) % % % %

43 50 20 MIMIC MIMIC MIMIC 99.9+ 99.9+ 12.1

Table 36: Best Settings found for Problems within Searched Setting

Domain

ProbID Size Links

Active

MIMIC

Candidates

MIMIC Percent

Modeled

MIMIC Percent

Noise

GA Pop-

ulation

GA Percent

Crossover

GA Percent

Mutation

(inputs) % % % % %

46 15 5 100 63.0645 7.45161 100 100.00000 15.00000

47 15 5 100 65 1 100 95.16130 7.58065

48 15 5 100 65 1 100 100.00000 5.00000

49 15 5 100 65 1 100 100.00000 15.00000

50 15 5 100 65 11 100 95.16130 7.58065

0 25 5 1000 50 5 100 70 15

190

Table 36: Best Settings found for Problems within Searched Setting

Domain

ProbID Size Links

Active

MIMIC

Candidates

MIMIC Percent

Modeled

MIMIC Percent

Noise

GA Pop-

ulation

GA Percent

Crossover

GA Percent

Mutation

(inputs) % % % % %

9 25 5 1000 35 1 140 93.7584 13.292

18 25 5 1000 35 1 267 85.1832 7.23748

27 25 5 1000 35 1 294 83.5484 11.4516

36 25 5 1000 65 1 100 100 5

1 50 5 1000 35 1 300 100 15

10 50 5 2742 49.5161 1.96774 300 100 15

19 50 5 1452 53.3871 1 229 92.2581 9.19355

28 50 5 2935 44.6774 4.87097 184 89.3548 12.4194

37 50 5 2161 47.5806 3.58065 100 100 15

51 15 10 229 54.3548 4.54839 300 100.00000 15.00000

52 15 10 294 41.7742 9.70968 300 100.00000 15.00000

53 15 10 100 35 11 133 87.41940 14.67740

54 15 10 113 46.9417 7.54668 268 100.00000 7.90323

55 15 10 616 45.6452 3.25806 176 91.21400 10.11930

3 25 10 1036 44.0935 7.60683 294 83.5484 11.4516

12 25 10 1000 35 1 184 89.3548 12.4194

191

Table 36: Best Settings found for Problems within Searched Setting

Domain

ProbID Size Links

Active

MIMIC

Candidates

MIMIC Percent

Modeled

MIMIC Percent

Noise

GA Pop-

ulation

GA Percent

Crossover

GA Percent

Mutation

(inputs) % % % % %

21 25 10 1000 50 5 274 73.871 9.83871

30 25 10 1323 64.0323 2.93548 197 77.7419 15

39 25 10 1013 46.9417 7.54668 300 70 15

4 50 10 2613 60.1613 2.29032 113 72.9032 13.0645

13 50 10 1516 45.6452 3.25806 267 85.1832 7.23748

22 50 10 1000 65 1 300 100 15

31 50 10 2613 60.1613 2.29032 242 86.4516 14.0323

40 50 10 2484 38.871 1.64516 300 93.2258 14.3548

56 15 20 745 48.5484 6.16129 300 93.22580 14.35480

57 15 20 874 56.2903 3.90323 300 100.00000 15.00000

58 15 20 810 59.1936 7.12903 261 76.77420 13.38710

59 15 20 294 42 10 235 97.09680 13.70970

60 15 20 681 36.9355 1.32258 300 70.00000 15.00000

6 25 20 1516 45.6452 3.25806 300 100 15

15 25 20 1323 64.0323 2.93548 294 83.5484 11.4516

24 25 20 1452 53.3871 1 242 86.4516 14.0323

192

Table 36: Best Settings found for Problems within Searched Setting

Domain

ProbID Size Links

Active

MIMIC

Candidates

MIMIC Percent

Modeled

MIMIC Percent

Noise

GA Pop-

ulation

GA Percent

Crossover

GA Percent

Mutation

(inputs) % % % % %

33 25 20 1000 50 5 300 93.2258 14.3548

42 25 20 1323 64.0323 2.93548 300 100 15

7 50 20 1581 36.9355 1.32258 300 93.2258 14.3548

16 50 20 2871 55.3226 5.19355 300 70 15

25 50 20 3000 35 1 300 100 15

34 50 20 2511 37.0328 6.64588 300 100 15

43 50 20 2613 60.1613 2.29032 300 70 15

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

46 15 5 0 0 140.7 20.66 155 27.92 10.58 1.907 1.798 0.3239

193

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

46 0 0 153 19.58 222 41.2 10.4 2.188 2 0.3711

46 0 0 174 21.36 204 32.34 14.94 2.8 1.955 0.31

46 0 0 204 29 222 41.2 12.65 1.798 1.927 0.3575

46 0 0 180 22.64 258 43.61 9.253 1.164 2.077 0.3512

46 0 0 152 30.04 160 30.19 23.29 6.247 1.988 0.3751

46 0 0 126 21.49 196 51.83 16.89 4.221 2.196 0.5807

46 0 0 160 19.09 232 54.76 15.06 1.798 2.347 0.554

46 0 0 140 18.79 212 30.6 12.39 1.663 2.232 0.3221

47 0 0 156 23.03 215 43.48 13.03 2.381 2.08 0.4207

47 0 0 219.9 34.87 276 60.93 29.41 6.664 2.217 0.4894

47 0 0 174 24.96 270 45 17.1 3.952 2.192 0.3653

47 0 0 265 41.24 288 48.35 19.9 3.145 2.224 0.3735

47 0 0 218.6 31.79 300 63.24 14.8 2.193 2.282 0.4811

47 0 0 161 25.73 224 40.05 28.43 6.252 2.308 0.4127

47 0 0 146.6 23.25 200 36.35 24.62 5.578 2.209 0.4015

47 0 0 173.6 30.31 216 35.85 17.26 3.049 2.207 0.3662

194

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

47 0 0 181.4 28.08 184 42.8 18.23 2.854 2.065 0.4803

48 0 0 261 42.68 370 60.97 33.63 6.214 2.823 0.4651

48 0 0 338.7 64.92 438 62.87 55.63 13.24 2.859 0.4104

48 0 0 284.7 30.55 462 85.06 45.4 6.342 2.975 0.5477

48 0 0 276.6 46.48 330 83.35 20.19 3.443 2.35 0.5936

48 0 0 299.8 32.39 402 74.79 22.91 2.508 2.666 0.496

48 0 0 216.8 33.44 296 40.62 48.49 9.385 2.729 0.3744

48 0 0 252.8 36.35 320 62.61 56.22 9.788 2.868 0.5611

48 0 0 317.9 87.06 356 68.5 37.88 10.44 3.035 0.5839

48 0 0 247.7 47.72 728 425.1 30.01 5.828 4.81 2.809

49 0 0 278.5 46.12 355 81.36 35.87 6.656 2.786 0.6385

49 0 0 352.2 93.41 1056 818.1 59.86 19.54 5.28 4.09

49 0 0 346.8 60.32 672 332.9 59.98 12.88 3.805 1.885

49 0 0 520.2 239.6 828 395.3 46.77 21.7 4.271 2.039

49 0 0 305.6 46.74 1800 1694 24.48 3.794 7.758 7.302

49 0 0 279.8 43.28 1080 1081 67.23 12.34 6.842 6.849

195

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

49 0 0 391.4 87.55 352 106.5 104.6 26.36 3.069 0.9283

49 0 0 571.4 377.4 1912 1817 70.78 46.92 10.66 10.13

49 0 0 727.4 536 6768 9321 92.95 68.68 33.63 46.31

50 0 0 278.5 45.35 365 69.87 37.05 6.762 2.79 0.534

50 0 0 371.1 55.91 336 63.4 66.9 12.26 2.475 0.4671

50 0 0 319.8 42.8 396 60.93 53.79 9.069 2.684 0.4129

50 0 0 305.6 46.74 618 59.52 24.02 3.723 3.496 0.3367

50 0 0 386.8 46.12 546 94.43 32.73 3.943 3.187 0.5512

50 0 0 303.2 47.96 328 44.68 80.87 14.96 2.895 0.3944

50 0 0 272.6 39.21 348 55.89 65.34 11.21 3.044 0.4889

50 0 0 271.1 37.78 388 55.89 32.51 4.565 3.153 0.4542

50 0 0 275 36.65 436 231.8 32.63 4.38 3.31 1.76

51 15 10 0 0 3085 351.2 6270 2030 225.2 25.8 15.26 4.941

51 0 0 20230 20880 74680 112300 2021 2093 140.5 211.3

51 0 0 78840 117100 18900 21290 7337 10910 37.26 41.98

51 0 0 18200 13560 14740 11850 1059 787 28.96 23.29

196

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

51 0 0 127200 138000 44230 47940 7044 7636 80.84 87.63

51 5 0 103600 164200 18140 11540 12440 19730 43.63 27.75

51 0 10 47240 45030 209300 225300 5991 5717 462.1 497.6

51 5 0 143500 163300 39410 37000 11890 13540 89.46 84

51 5 10 153900 162000 346300 239800 12100 12740 753.2 521.4

52 0 0 3614 1181 3825 430.9 161.6 52.09 10.24 1.153

52 0 0 3274 358.2 6354 3279 166 18.16 14.47 7.468

52 0 0 3592 453.6 68980 106600 183.5 23.17 130.5 201.7

52 0 0 4861 2459 90970 96290 176.4 87.12 169.2 179.1

52 0 0 4530 1353 16420 10980 160.6 46.76 31.87 21.32

52 0 0 5462 2221 3804 854.6 360.2 146.4 11.08 2.49

52 0 10 3350 950.8 253000 226100 217 61.56 573.8 512.8

52 0 5 4568 1667 106400 164000 212.6 76.27 241.2 371.8

52 0 5 13360 13010 106700 164000 634 613.9 235 361.4

53 0 0 964.5 137.3 1150 176.2 85.15 11.75 5.581 0.8549

53 0 0 1212 183.5 1272 164.8 101.8 15.16 5.621 0.7282

197

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

53 0 0 1114 207.9 1544 206.8 93.83 17.21 6.555 0.8778

53 0 0 1199 223.3 1520 155.7 77.63 13.83 6.162 0.6312

53 0 0 1007 145.2 1640 270 66.66 9.119 6.529 1.075

53 0 0 1058 202.7 1118 135.9 132.3 25.01 6.414 0.7797

53 0 0 1128 299.6 2109 726.4 140.3 36.8 10.23 3.523

53 0 0 1582 713.1 1431 276.1 157.3 69.32 7.328 1.414

53 0 0 17850 21080 2274 1529 1558 1835 10.33 6.947

54 0 0 2945 1485 3538 740.9 308.6 155.2 9.956 2.085

54 0 0 3448 1549 5522 1688 368.5 166.3 13.43 4.106

54 0 0 2104 458.6 61580 87740 225.2 49.46 121.8 173.6

54 0 0 4012 2461 18140 12380 315 191.6 36.84 25.15

54 0 0 4360 4182 5812 2123 325.5 309.8 13.45 4.911

54 0 5 4070 2989 180100 198100 638.7 470.1 432.6 475.7

54 0 0 9966 10900 31990 26070 2134 2336 78.83 64.22

54 5 0 102700 164300 6934 3408 13770 22030 18.57 9.127

54 5 0 150500 170900 3734 974.3 18340 20830 10.91 2.845

198

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

55 0 20 9728 2826 426000 297500 436.6 126.2 1108 774

55 0 30 11120 2350 737700 338400 640.1 136 1750 802.7

55 0 25 26970 26260 648300 332100 1595 1557 1504 770.6

55 0 35 28700 25310 760100 345600 1170 1024 1743 792.5

55 5 45 171100 186900 977500 352100 7575 8265 2194 790.4

55 5 35 106900 163900 854600 328200 6534 10030 2622 1007

55 5 50 116300 163300 1117000 354800 7088 9958 3359 1067

55 10 45 252700 222800 987400 348900 9951 8767 2944 1040

55 0 65 106900 137900 1329000 346300 4218 5438 3883 1012

56 15 20 0 10 11730 1799 249400 222700 597.9 91.51 518.8 463.3

56 0 20 14130 1049 408600 300300 953.3 71.49 784.1 576.3

56 0 25 12860 927.7 594600 317900 862.7 62.94 1112 594.7

56 0 30 14620 3883 728200 338000 674 176.5 1358 630.5

56 0 30 18620 11030 656600 334700 872.6 511.5 1201 612

56 0 30 58140 74630 750900 344900 8951 11510 2614 1201

56 5 35 120800 163200 749400 348600 12060 16310 1745 811.8

199

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

56 0 35 48450 59460 764200 346500 5490 6719 2274 1031

56 5 40 174700 179900 826600 362000 7906 8134 2481 1087

57 0 10 10830 1213 253200 224700 678.8 76.77 537.5 477.1

57 0 0 13390 1335 64440 54700 1484 152.1 130.9 111.1

57 0 20 19160 11070 527300 295800 1693 998 1739 975.9

57 0 20 24070 12300 436800 298300 2366 1203 839 572.9

57 5 10 130900 165100 269800 224900 9405 11850 500.8 417.4

57 0 40 9166 702.8 848800 355900 1610 126.9 2080 872.2

57 0 30 33090 24320 689700 337200 5051 3740 1640 801.8

57 0 40 15060 6898 829700 361800 1800 820.4 1983 864.7

57 5 35 169900 179300 788900 342800 10430 11000 1845 801.9

58 0 0 12100 2720 75470 87640 800.9 182.3 517.7 601.2

58 0 10 29310 24930 346700 243200 2849 2458 727.6 510.3

58 0 30 21020 11000 653800 337000 2037 1087 1338 689.5

58 5 10 121600 162900 212100 225100 7613 10200 430.9 457.2

58 5 30 134200 163500 718100 340300 8374 10200 1435 679.9

200

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

58 5 5 115400 163300 183500 185500 11490 16290 1007 1018

58 0 20 215300 140300 540800 305800 20530 13400 1410 797.4

58 5 10 143800 162900 285700 226500 7430 8415 747.7 592.9

58 30 15 610000 343600 540900 268500 31950 17990 1375 682.3

59 0 0 4835 946.5 4066 585 220.8 42.78 12.99 1.869

59 0 0 6212 705 26400 27900 341.5 38.75 60.39 63.84

59 0 0 5097 656.4 5132 1080 264.5 34.05 14.28 3.005

59 0 0 4648 497.2 52180 55510 279.9 29.19 110.9 118

59 5 5 105600 164000 108100 163900 4305 6681 226.7 343.7

59 0 5 4695 1093 109400 163900 319.7 74.42 305.8 458.4

59 0 0 53050 81270 8751 7538 5424 8308 26.91 23.18

59 5 0 103800 164200 11430 9125 7207 11390 34.17 27.28

59 0 15 23640 26740 310000 268100 1156 1303 849.4 734.5

60 0 0 7088 692.1 36160 26540 264.8 25.22 78.49 57.61

60 0 5 10100 1202 106600 163900 800.1 94.4 209.7 322.6

60 0 5 19650 18940 122700 163400 1286 1234 518.8 690.7

201

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

60 0 5 26850 24850 275800 220000 961.8 879.2 528.8 421.8

60 0 10 15100 9255 233900 224000 532.1 319 439.3 420.7

60 5 15 107200 163900 349100 263300 4826 7372 859.3 648

60 5 25 116300 163400 514100 323900 9631 13520 1522 959.2

60 5 10 135200 164800 287500 222300 7613 9260 684.3 529

60 5 20 113700 163400 525400 290100 4156 5964 1720 949.6

0 25 5 0 0 5050 404.3 1200 217.6 118 9.446 11.6 2.103

0 0 0 6190 905.7 1670 281.7 148 22.55 13.6 2.288

0 0 0 5420 822.3 1410 108.9 127 20.18 12 0.9255

0 0 0 6100 723.7 1720 258.6 118 13.46 13.3 2.003

0 0 0 6240 728 3460 2315 122 13.68 22.5 15.05

0 0 0 4960 450.8 1360 275.4 161 15.13 14.8 2.998

0 0 0 4640 384.4 4640 4192 150 12.85 40.1 36.29

0 0 0 4640 576.6 1680 404 113 13.51 16.6 3.995

0 0 0 3970 667.9 1500 251.9 92.7 15 15.1 2.542

9 0 0 5940 427.7 1540 138.8 126 8.635 12.2 1.097

202

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

9 0 0 8020 1204 1970 179.4 167 24.43 13.6 1.243

9 0 0 7880 822.1 2090 233.4 161 16.39 14.4 1.603

9 0 0 7770 568.5 2140 214 143 9.804 14 1.398

9 0 0 7250 635.6 2290 326.6 132 10.79 14.5 2.075

9 0 0 5810 407.1 2180 950.6 148 10.17 17.9 7.786

9 0 0 5810 566.6 15400 17550 149 14.19 97.4 111.1

9 0 0 5870 578.9 2000 434.8 130 12.1 16.4 3.57

9 0 0 5290 442.2 6180 4160 117 9.181 41.9 28.17

18 0 0 9060 1419 3930 385.1 202 30.57 18.1 1.773

18 0 0 10400 778.4 5090 865.4 218 16.01 21.4 3.643

18 0 5 10900 1564 107000 164000 232 32.6 311 476.2

18 0 0 11100 1042 10600 7278 211 18.97 36.2 24.9

18 0 0 9840 947.5 5520 501.8 188 17.14 21.4 1.944

18 0 0 7570 645.7 37800 30070 196 16.46 146 115.9

18 0 0 7850 726.8 18900 17350 203 18.52 74.5 68.3

18 0 0 6910 634.8 7950 4267 160 13.97 34 18.27

203

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

18 0 5 7140 760.6 106000 164000 164 16.62 371 576.6

27 0 30 31900 16130 627000 339900 741 370.8 2010 1088

27 20 35 438000 428900 1060000 346400 17800 17440 3130 1026

27 20 50 436000 429300 1030000 368400 18700 18450 2940 1052

27 20 35 440000 428800 832000 354300 20100 19540 2380 1013

27 20 45 495000 420900 967000 357400 10600 9034 4680 1729

27 30 40 697000 487500 954000 330000 20000 13970 3860 1334

27 40 40 893000 506400 1040000 337900 26300 14910 5210 1700

27 30 50 661000 482700 1160000 347500 55800 40690 4200 1261

27 40 50 1060000 507100 1070000 352100 87900 41930 3760 1234

36 0 0 3800 515 975 94.63 107 15.79 10.4 1.004

36 0 0 4900 289.5 1230 308.1 170 11.64 10.9 2.739

36 0 0 5320 283.7 1070 100.1 188 11.45 9.92 0.9304

36 0 0 5230 647.3 2360 1756 113 14.15 17.2 12.77

36 0 0 4770 524.7 99000 158400 96.9 10.76 524 838.8

36 0 0 3550 537.7 12100 17670 173 30.08 96.6 140.7

204

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

36 0 0 3510 572.9 3360 2921 171 32 29.5 25.65

36 0 0 3410 336.9 2420 2338 90.1 8.981 22.2 21.49

36 0 0 3640 500.1 3850 3006 416 57.68 32.9 25.73

3 25 10 0 15 41300 5246 430000 253300 1110 140.4 1420 836.3

3 0 20 57400 7072 583000 295100 1520 187.3 4180 2115

3 0 25 140000 139900 713000 316900 3770 3771 2100 934.5

3 0 50 177000 100300 1170000 327600 4000 2266 4680 1317

3 20 30 479000 423600 872000 312700 11100 9808 2480 888.6

3 0 35 260000 250000 783000 342700 9270 8927 3060 1340

3 10 60 231000 323400 1400000 322800 7300 10240 5280 1219

3 10 15 253000 320800 452000 272000 6740 8540 1710 1029

3 10 40 262000 319200 986000 348400 7500 9122 5650 1997

12 0 0 13000 945.7 4940 1097 299 21.3 30.6 6.802

12 0 0 15700 1192 5490 1020 350 26.32 31.4 5.826

12 0 0 14400 1376 5910 2478 323 30.42 32.6 13.65

12 0 0 15000 733.9 5770 608.3 302 14.26 31 3.268

205

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

12 0 0 13800 1042 14200 8259 276 20.05 62.9 36.55

12 0 0 10500 1407 90000 133000 287 37.89 502 741.3

12 0 0 10700 993.2 10500 6305 295 26.97 63.3 38.18

12 0 0 11200 747.4 13100 6825 268 17.37 77.5 40.34

12 0 0 11100 821.2 13800 7028 269 19.36 78.5 39.9

21 0 25 29400 3225 582000 313100 2100 230.1 2080 1120

21 0 20 110000 120200 604000 306100 3320 3648 2020 1023

21 0 45 77400 63570 1120000 345900 2180 1798 3530 1093

21 0 30 37100 5786 729000 342000 983 152.4 2360 1107

21 10 65 230000 323700 1330000 347400 6010 8442 6090 1593

21 10 45 226000 324300 972000 357900 15200 21830 6600 2429

21 10 45 227000 324200 1030000 339300 15000 21470 8150 2678

21 0 45 34800 23240 1010000 346700 2980 1978 4160 1429

21 0 55 51000 41930 1150000 357100 3970 3252 4510 1404

30 0 25 47500 4594 685000 299400 1380 134.3 11800 5145

30 0 55 54100 7273 1170000 351100 1890 258.1 8930 2691

206

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

30 0 50 43200 4355 1100000 350200 1500 154 8330 2662

30 0 35 149000 161200 937000 337100 3550 3859 10400 3729

30 10 40 289000 320200 966000 329100 6470 7171 3760 1283

30 0 50 36100 4314 1060000 356400 1710 207.4 5760 1938

30 10 35 320000 336000 892000 334800 14800 15620 4700 1763

30 30 35 730000 483200 913000 332600 23600 15630 11100 4041

30 20 50 470000 425800 1290000 346100 15900 14390 19500 5221

39 0 15 22300 3567 331000 265200 580 92.42 1170 936

39 0 10 32200 2615 213000 224900 856 69.89 700 739.7

39 0 20 29900 4725 451000 299000 793 125.8 1410 934

39 0 25 29000 2960 538000 320900 635 64.09 1680 999.6

39 0 20 25100 6531 454000 294100 549 141.2 1380 895.6

39 0 10 24000 2601 284000 224700 817 89.12 1180 934

39 0 45 23700 8759 948000 364200 800 296.5 3800 1461

39 0 15 21800 1616 464000 289800 593 43.46 1880 1171

39 0 40 24500 3506 837000 359600 664 94.27 7400 3181

207

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

6 25 20 0 10 59900 6232 400000 234600 1330 137.6 1630 957

6 0 0 70500 5542 67700 31640 1610 126.4 266 124.4

6 0 15 66100 8133 631000 254200 1490 183.9 2230 898.7

6 0 10 55900 2846 348000 220300 998 50.34 1280 807.7

6 30 15 642000 487700 416000 258100 12100 9187 1440 891.9

6 20 35 443000 427000 772000 345300 13000 12510 3710 1658

6 10 40 422000 357700 1140000 334800 12800 10870 5200 1532

6 0 40 46600 5807 927000 344200 1090 135.4 7290 2708

6 20 30 599000 468700 778000 324200 14000 10950 6700 2792

15 0 0 56000 6839 189000 78260 1700 208.5 756 313.7

15 0 20 68800 10060 542000 289000 2540 375.5 2660 1417

15 0 15 149000 136600 430000 268000 5450 5035 2670 1668

15 0 20 72300 15100 640000 307200 1740 363.3 2250 1079

15 10 15 249000 320100 449000 250900 6050 7781 1500 841

15 0 10 69600 31370 435000 247500 3530 1605 2050 1167

15 20 30 449000 425700 835000 310000 23000 21840 3810 1413

208

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

15 10 10 244000 321100 367000 230800 7310 9627 1680 1054

15 0 25 234000 307600 661000 303500 6560 8641 2950 1355

24 0 5 29800 3328 306000 193400 722 81.08 1530 963.2

24 0 15 98800 95530 453000 269500 2540 2464 5560 3311

24 10 45 233000 323000 1220000 316600 5950 8247 8020 2076

24 0 25 37700 3063 676000 329300 759 61.18 6630 3229

24 20 20 428000 431200 646000 281700 14500 14550 6720 2927

24 20 15 471000 425700 565000 294100 24700 22320 7810 4065

24 10 35 227000 324200 925000 340200 10800 15440 8100 2978

24 0 15 43200 30320 459000 266200 4850 3389 2750 1596

24 20 35 581000 446100 825000 330500 25700 19700 4720 1889

33 0 0 33800 2903 38500 23340 1010 86.81 178 107.7

33 0 0 40100 4967 56500 43150 1190 148.2 233 177.6

33 0 0 35900 3755 148000 114500 1070 112.7 575 445.2

33 0 0 40800 4328 141000 159400 962 101.5 548 619.1

33 0 0 195000 264400 111000 117600 5700 7724 432 457.1

209

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

33 0 10 28100 3064 301000 241100 1870 205.2 1540 1238

33 0 15 234000 305300 483000 279000 11800 15410 2380 1375

33 0 5 31200 6558 276000 213200 4150 866.5 1400 1078

33 10 20 266000 323600 529000 287900 31700 38590 2540 1381

42 0 0 36900 3134 170000 144200 1100 94.68 736 624.3

42 10 5 244000 321100 205000 193100 9240 12210 794 750.3

42 0 5 47300 3873 148000 166100 1720 143.4 568 638.7

42 0 0 49300 5453 91900 45050 1180 130.7 361 176.7

42 10 0 235000 322600 78600 42570 5790 7935 302 163.5

42 0 0 66100 38540 91200 67340 3220 1891 474 349.7

42 0 5 35800 3965 265000 216800 1830 205.8 1300 1066

42 10 0 227000 324000 138000 92710 6950 9915 697 469

42 0 20 35400 4178 542000 289400 1010 119.7 2600 1388

1 50 5 0 0 59500 5229 12600 1093 12000 1052 153 13.24

1 0 0 97300 14980 16700 3947 7650 1176 179 42.21

1 0 0 69700 7002 15700 2231 5430 544.1 168 23.93

210

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

1 0 0 83100 16690 15800 1424 5990 1196 164 14.81

1 0 0 73600 23900 16300 1562 5300 1710 164 15.68

1 0 0 69100 17310 41300 43620 6590 1648 440 465.3

1 0 0 71100 16970 16200 4507 6710 1598 195 54.15

1 0 0 48300 7078 24300 8239 4040 587.8 265 89.83

1 0 0 69700 39200 24500 9157 5780 3235 259 96.88

10 0 45 455000 76720 1240000 321300 23700 3986 10200 2645

10 20 50 881000 311300 1220000 330900 48000 16950 9130 2482

10 20 50 777000 341400 1280000 308100 42200 18540 23400 5626

10 30 40 1180000 374000 1010000 323600 42700 13560 22100 7089

10 20 60 698000 360900 1410000 289900 25500 13130 21300 4394

10 50 60 1190000 444700 1410000 292400 87700 32680 33800 7003

10 10 70 602000 287400 1580000 274500 44100 21040 33500 5832

10 40 40 1080000 416400 1160000 321400 58300 22460 26300 7292

10 0 55 395000 113600 1290000 304800 21200 6079 12000 2826

19 20 50 837000 348200 1240000 298400 67400 28040 33300 7987

211

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

19 40 70 1070000 434700 1590000 244800 88500 36100 13300 2048

19 60 95 1520000 378300 1940000 103600 310000 77200 35000 1873

19 70 65 1740000 252000 1540000 280700 268000 38770 29800 5445

19 50 75 1160000 472500 1600000 263800 196000 79620 35800 5905

19 40 85 958000 469100 1830000 173200 284000 138800 20500 1946

19 70 95 1450000 465200 1960000 73620 349000 112400 21100 794.4

19 80 75 1630000 407000 1650000 242600 303000 75660 18200 2683

19 50 75 1170000 459400 1680000 235400 686000 269900 95500 13380

28 20 55 1080000 330300 1240000 325300 120000 36570 14000 3687

28 40 60 1400000 325400 1280000 334000 88100 20510 13000 3391

28 30 80 1260000 291400 1670000 253100 144000 33130 42800 6468

28 70 65 1730000 244600 1430000 300200 142000 20010 41000 8598

28 50 60 1440000 326200 1650000 208200 128000 29120 41700 5254

28 40 50 1320000 310700 1240000 314200 219000 51550 51600 13050

28 70 70 1700000 273800 1500000 297000 245000 39540 47300 9402

28 20 55 1210000 330900 1280000 325500 163000 44470 51600 13160

212

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

28 60 65 1500000 350900 1590000 248900 412000 96550 20800 3261

37 40 55 1180000 406200 1420000 290000 197000 68130 71400 14600

37 50 80 1290000 390700 1690000 238700 83600 25230 25200 3572

37 60 85 1430000 388000 1730000 239300 206000 55890 24900 3428

37 60 90 1560000 351700 1830000 195300 182000 41100 27300 2921

37 60 70 1390000 421600 1560000 257500 175000 53040 22200 3664

37 70 75 1590000 351200 1580000 282000 333000 73660 32800 5871

37 60 100 1500000 372800 2000000 0 331000 82240 40100 0

37 90 85 1820000 297100 1780000 214300 301000 49050 36700 4415

37 80 80 1710000 325500 1640000 274900 112000 21370 70000 11750

4 50 10 0 55 577000 203200 1360000 297100 41500 14640 31300 6858

4 10 75 777000 245200 1630000 247200 60700 19170 32900 4976

4 10 70 647000 255500 1640000 222200 50400 19920 31900 4319

4 0 90 496000 108300 1810000 214500 22800 4974 36700 4344

4 20 60 742000 348100 1540000 244800 33900 15890 29800 4729

4 30 75 1070000 349900 1680000 226700 98100 32190 48000 6463

213

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

4 20 85 901000 326300 1770000 215100 83300 30180 48800 5916

4 20 80 834000 345100 1780000 202700 56600 23390 50400 5755

4 30 75 970000 428600 1670000 254000 65600 28990 101000 15290

13 0 20 360000 43400 959000 277500 28100 3385 9960 2883

13 10 55 720000 243100 1410000 276500 56400 19010 13100 2572

13 0 80 501000 65000 1690000 236200 39200 5092 15200 2123

13 10 70 721000 270200 1620000 248500 46000 17210 14800 2282

13 20 80 701000 358200 1620000 284000 44300 22610 14500 2536

13 10 70 518000 275400 1620000 245400 48100 25560 20400 3095

13 20 95 693000 363600 1910000 147200 64000 33580 23400 1802

13 40 70 1040000 433300 1480000 302400 82200 34240 18500 3780

13 20 65 996000 372200 1580000 266700 77700 29010 19100 3229

22 0 0 180000 29210 61200 21400 58600 9529 714 249.6

22 0 0 291000 39180 156000 89050 45700 6155 1560 886.8

22 0 5 254000 49240 431000 236300 38300 7440 4020 2201

22 0 10 265000 52360 327000 222500 48900 9645 3180 2161

214

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

22 0 10 197000 45110 276000 217500 42700 9791 2530 2000

22 10 5 402000 294500 198000 162600 189000 138900 7930 6528

22 10 15 403000 298900 564000 258100 188000 139800 13000 5960

22 10 10 450000 314300 424000 241400 116000 80920 11100 6340

22 10 25 488000 355900 736000 290500 519000 379100 132000 51930

31 0 55 335000 37080 1260000 317700 24100 2668 37800 9549

31 20 55 720000 355400 1290000 314200 56200 27740 21200 5161

31 20 65 695000 360400 1430000 298000 77200 40090 14700 3061

31 10 65 555000 269900 1450000 298700 45800 22200 15600 3221

31 0 60 454000 144100 1470000 262500 20800 6617 15000 2676

31 20 60 727000 352400 1490000 286700 121000 58470 69300 13310

31 20 85 658000 369800 1800000 188300 116000 65270 70200 7367

31 10 85 617000 337700 1820000 201800 42100 23030 70700 7853

31 20 80 615000 382000 1720000 241800 41700 25870 23900 3368

40 20 55 828000 363400 1430000 264800 40100 17580 74900 13910

40 20 60 849000 326600 1360000 308400 39600 15190 13800 3140

215

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

40 50 65 1210000 433200 1490000 276000 55700 19890 13200 2444

40 60 55 1380000 419500 1270000 315000 49600 15090 11700 2907

40 60 60 1380000 420400 1530000 238100 49000 14900 13500 2090

40 40 60 1030000 437900 1500000 273200 70900 30230 54000 9811

40 20 60 682000 363000 1590000 218000 47200 25090 54000 7395

40 30 70 1090000 410800 1660000 251300 58200 21960 52300 7915

40 80 90 1690000 350800 1880000 140100 89000 18520 22100 1649

7 50 20 0 0 214000 31450 122000 31330 16600 2433 2010 513.9

7 0 0 283000 34370 160000 54620 21200 2571 6980 2380

7 0 5 227000 25170 327000 203800 16900 1872 4540 2827

7 0 5 318000 54970 296000 166800 18700 3228 4240 2389

7 10 10 412000 290900 368000 214900 23600 16610 4970 2905

7 0 10 231000 28730 363000 232800 20900 2592 7010 4501

7 10 5 370000 300600 325000 195200 31900 25970 5990 3593

7 20 0 576000 394700 299000 121600 44800 30700 5720 2327

7 10 15 360000 300700 677000 270900 27900 23250 128000 51210

216

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

16 0 60 1230000 172600 1430000 279000 189000 26610 23200 4509

16 50 45 1850000 93570 1210000 296600 130000 6550 17500 4297

16 0 55 1250000 155500 1510000 240000 87600 10910 21000 3331

16 20 80 1510000 187600 1700000 228700 63600 7887 24500 3295

16 0 65 911000 82300 1440000 293500 38300 3458 20000 4068

16 10 45 1500000 175700 1180000 299300 133000 15630 23200 5854

16 0 90 1050000 125100 1860000 164400 94100 11270 34700 3072

16 10 45 1380000 175400 1310000 271200 87500 11120 25800 5331

16 0 75 853000 212600 1620000 254400 53000 13200 30500 4785

25 0 20 313000 38910 875000 265600 12800 1585 13400 4051

25 0 25 464000 50510 823000 305100 22100 2407 11400 4219

25 10 35 581000 264200 970000 324900 22100 10050 12700 4248

25 0 20 343000 50820 602000 275800 10500 1556 8210 3762

25 0 40 454000 113400 1120000 315300 13900 3462 14600 4110

25 30 45 999000 423500 1210000 309400 89300 37820 50300 12870

25 0 50 263000 35610 1230000 307400 34600 4680 49900 12530

217

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

25 20 15 615000 380800 560000 256500 63000 38930 46700 21380

25 30 55 892000 402900 1270000 316200 246000 111000 323000 80480

34 0 75 1260000 100500 1720000 202400 146000 11650 26400 3115

34 70 90 1870000 123500 1830000 199100 97400 6393 25000 2726

34 10 80 1290000 166200 1770000 214300 62000 7982 23100 2806

34 60 75 1840000 145200 1770000 171400 70300 5520 24400 2364

34 30 65 1540000 210300 1520000 302700 58200 7952 19900 3964

34 0 80 1800000 76770 1720000 213400 301000 12870 88800 11000

34 30 95 1280000 276800 1960000 74460 262000 56530 86800 3307

34 50 65 1700000 189400 1380000 320900 267000 29600 87000 20270

34 30 80 1250000 321600 1800000 200800 70000 18000 636000 70860

43 0 35 678000 172400 1140000 299400 50700 12900 15400 4030

43 10 30 959000 210400 855000 296000 78400 17200 10400 3602

43 10 55 812000 224600 1400000 275600 66000 18290 16200 3196

43 10 35 857000 232100 1140000 280900 41200 11150 14000 3437

43 0 35 542000 73160 1120000 278600 26100 3526 13100 3238

218

Table 37: Detailed Static Comparison Results Per Problem (+/-

20% from Best Method Settings)

ProbID Size Links

Active

MIMIC

Not Conv

GA Not

Conv

MIMIC

Calls

+/- GA

Calls

+/- MIMIC

time

+/- GA

time

+/-

(inputs) % % % ms ms ms ms

43 20 65 1050000 329300 1540000 270300 101000 31820 64800 11400

43 0 50 517000 78190 1400000 294600 50500 7648 60500 12720

43 0 50 558000 61350 1280000 286200 40000 4391 63600 14240

43 0 65 455000 101900 1510000 259900 32300 7217 267000 45930

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

0 25 30 5 2

Problem -1 -1 -1 14 5 2 7 -1 -1 10 15 3 11 -1 10 3 15 7 23 9 -1 -1 -1 -1 9 13 0 19 -1 -1 10 -1 11 24 -1 15 -1 -1 3 -1 -1 -1 -1 2 10 12 11 21

-1 -1 -1 -1 10 15 -1

1 50 122 5 13

Problem 22 -1 3 13 -1 41 37 -1 41 21 -1 40 20 31 -1 6 -1 20 -1 5 32 36 -1 -1 15 32 21 48 47 10 3 49 35 22 -1 -1 -1 47 13 5 17 36 23 -1 -1

8 49 -1 -1 48 35 -1 2 8 30 43 26 19 -1 32 22 33 37 12 11 -1 -1 36 -1 28 11 -1 -1 42 11 35 33 -1 22 5 34 25 -1 -1 16 -1 6 48 40 35

20 45 12 49 42 -1 35 -1 1 18 16 0 20 -1 45 -1 1 44 38 -1 0 36 48 35 42 14 -1 8 14 45 -1 -1 30 37 1 41 10 -1 -1 12 20 38 9 39 13

219

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

30 -1 -1 5 42 -1 9 -1 9 44 -1 -1 19 26 40 -1 -1 22 18 40 23 -1 -1 10 -1 19 -1 1 29 3 42 27 2 38 47 9 -1

3 25 60 10 6

Problem 24 15 -1 -1 9 3 4 6 -1 -1 -1 -1 -1 15 0 19 16 5 10 -1 -1 22 16 15 7 -1 11 16 -1 17 21 19 8 -1 8 23 4 19 -1 3 2 -1 -1 17 0 18

-1 13 3 12 22 4 1 5 19 23 -1 -1 2 -1 9 11 13 5 -1 0 10 2 13 -1 0 19 1 17 -1 11 13 -1 18 19 6 7 -1 23 -1

4 50 245 10 40

Problem -1 36 5 18 8 -1 45 -1 48 33 16 9 -1 1 11 38 25 3 -1 20 27 24 29 37 25 13 15 14 22 46 21 33 -1 12 29 37 24 16 -1 -1 28 15 4 -1

4 18 26 11 36 41 24 2 17 39 13 12 35 46 25 10 -1 -1 -1 19 1 7 -1 37 -1 0 30 21 42 5 6 1 10 38 4 43 37 39 -1 3 2 25 16 6 27 40

28 10 47 21 -1 6 14 27 15 31 26 32 5 23 33 28 22 0 -1 36 34 31 -1 19 37 38 17 16 11 -1 23 9 -1 11 -1 44 10 25 31 18 22 8 14 -1

10 -1 44 31 34 40 2 14 46 3 6 32 29 22 0 25 11 39 26 35 37 -1 23 4 28 12 33 -1 8 40 -1 38 37 -1 26 35 11 4 9 42 -1 -1 38 34 44

25 24 26 12 30 18 -1 -1 17 40 34 5 38 -1 47 40 25 33 49 23 -1 47 41 14 -1 33 3 9 24 26 19 4 17 25 -1 -1 -1 32 48 28 13 2 -1 8

22 41 32 2 26 44 16 47 25 31 11 33 0 15 12 -1 -1 17 21 27 39 31 20 29 23 -1 45 2 28 39 35 23 10 31 -1 19 29 -1 38 -1 14 29 -1

48 2 -1 3 21 48 40 35 39 -1 16 -1 15 25 -1 10 32 29 27 3 39 36 42 44 20 34 6 14 -1

6 25 120 20 21

Problem 5 10 2 9 -1 22 15 0 9 24 -1 1 3 6 14 22 20 9 -1 -1 11 -1 14 12 -1 2 0 21 10 20 9 8 7 4 -1 23 9 -1 4 12 3 19 5 18 2 -1 5 -1 4 6

8 -1 20 17 6 9 4 -1 1 17 9 24 5 15 -1 20 11 3 22 -1 11 20 15 21 -1 2 16 4 24 -1 10 6 22 3 5 -1 7 4 10 19 20 18 22 2 -1 10 19 2

1 6 7 17 13 23 24 21 12 -1 22 7 10 9 11 20 2 0 1 -1 9 14 1 13 21 4 15 -1 5 4 8 14 -1 1 -1 11 14 16 5 -1 3 13 18 10 9 4 -1

7 50 490 20 88

Problem 23 7 46 13 31 5 17 14 11 36 26 -1 49 16 37 11 14 -1 13 41 24 21 35 40 29 -1 25 29 11 0 -1 26 0 12 14 36 -1 -1 13 44 19 12 4 18

42 47 -1 -1 12 19 4 30 48 28 44 26 21 24 5 49 46 3 0 17 41 27 6 35 -1 29 4 14 48 37 49 38 36 23 8 11 25 19 7 0 15 10 33 41 2

220

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

24 46 12 43 34 40 45 20 27 6 28 16 32 26 -1 15 40 26 8 48 6 12 22 9 16 3 5 27 4 17 14 2 0 42 25 36 33 19 47 1 32 7 38 31 37

11 39 21 -1 25 -1 28 48 39 9 6 14 45 43 16 41 -1 41 2 25 28 -1 48 23 21 -1 33 39 7 32 38 -1 5 23 33 21 20 25 11 28 39 45 2 -1

47 41 8 48 -1 4 23 32 39 17 13 19 44 14 11 22 48 47 49 15 8 7 9 30 20 12 5 26 41 42 46 38 29 43 33 -1 33 -1 31 26 17 45 47 32

28 46 49 2 13 30 42 12 8 24 38 -1 -1 23 46 31 43 9 5 28 6 39 18 38 -1 41 20 2 22 48 7 33 11 42 -1 28 34 40 -1 0 29 41 48 -1 27

34 38 44 24 10 12 2 25 -1 3 41 0 13 1 46 40 38 32 30 29 43 -1 0 14 20 40 19 5 47 18 49 46 38 23 27 17 42 3 37 35 31 21 -1 7 31

37 11 14 9 -1 20 35 15 33 17 45 21 12 7 38 8 34 16 49 42 5 6 -1 5 32 39 27 16 29 6 45 8 26 49 30 41 40 20 15 12 48 34 7 24 -1

9 37 1 2 22 -1 12 37 14 1 21 5 36 13 9 7 34 49 35 -1 13 47 23 2 15 33 48 29 36 32 9 22 -1 4 31 -1 26 -1 39 13 3 1 8 -1 41 18

37 28 30 32 22 9 14 19 46 40 34 2 45 15 13 25 10 24 44 31 48 7 26 29 3 39 49 6 17 20 5 4 1 8 0 36 23 47 35 12 11 33 -1 49 48

-1 7 10 3 28 36 0 17 48 9 47 46 16 26 -1 -1 38 12 14 25 39 -1 16 6 19 25 14 35 23 22 47 17 -1 10 9 12 8 40 31 33 14 2 20 37

30 6 43 34 -1 38 11 49 2 32 -1 49 42 16 35 7 -1 45 19 42 8 24 46 2 25 27 -1 34 45 8 1 0 38 41 30 21 29 10 -1 46 2 34 41 14 48

7 5 -1

9 25 30 5 1

Problem 21 -1 13 20 -1 6 15 18 -1 -1 -1 -1 -1 2 -1 10 -1 3 24 11 -1 18 -1 9 24 16 2 -1 -1 -1 -1 12 18 14 -1 -1 -1 -1 10 20 16 -1 10 14 16 3

-1 23 6 -1 14 23 -1 -1 -1

10 50 122 5 13

Problem 39 -1 -1 45 19 4 15 3 49 32 16 40 17 46 -1 1 24 -1 -1 19 25 14 28 18 38 27 33 31 -1 24 46 5 43 23 -1 9 20 17 -1 -1 16 27 11 26

43 22 46 17 -1 39 -1 3 42 -1 15 13 -1 29 10 27 -1 46 40 23 5 34 -1 44 30 19 14 21 1 -1 13 7 47 -1 13 16 38 2 -1 -1 -1 -1 -1 48 26

-1 -1 45 -1 31 16 40 -1 28 -1 -1 30 -1 36 34 41 -1 36 -1 29 16 5 9 43 21 25 3 -1 39 22 29 -1 42 -1 25 1 32 44 5 17 -1 9 46 -1 37

221

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

-1 22 32 -1 37 45 6 -1 10 37 26 5 44 16 -1 32 46 26 48 -1 -1 -1 7 47 -1 -1 6 3 -1 41 30 21 -1 1 -1 -1 25 -1

12 25 60 10 7

Problem -1 12 -1 17 -1 5 20 14 17 16 -1 10 17 -1 8 22 -1 10 18 -1 16 9 23 6 -1 12 1 17 18 2 21 -1 4 -1 9 16 -1 20 -1 -1 6 -1 24 -1 14 0 8

24 -1 -1 4 0 3 20 -1 16 23 13 17 -1 21 8 23 17 13 3 16 9 7 0 2 -1 23 -1 5 -1 -1 20 5 10 21 6 8 -1 -1

13 50 245 10 36

Problem 46 19 22 -1 -1 7 -1 14 36 1 17 41 22 30 24 8 19 34 37 -1 20 16 32 7 10 37 35 2 -1 0 4 41 22 -1 17 29 19 34 44 33 37 35 13 12

45 9 5 -1 -1 -1 16 2 29 34 44 23 -1 3 19 6 27 -1 38 -1 24 32 -1 -1 42 46 28 34 13 15 37 4 30 33 45 36 11 2 32 0 -1 31 47 22 32

44 37 17 8 16 34 24 -1 4 26 2 31 38 6 20 45 37 49 44 25 33 39 -1 15 38 27 20 5 22 16 28 -1 46 11 15 24 -1 35 17 -1 2 9 49 -1

10 8 14 26 -1 42 48 13 -1 -1 10 -1 -1 12 -1 34 33 4 18 36 39 47 11 -1 23 0 14 47 -1 30 16 11 33 47 -1 46 -1 46 38 25 -1 31 24 -1

-1 28 47 14 4 -1 37 34 47 32 5 31 49 2 3 38 40 48 -1 -1 30 12 48 -1 6 17 20 25 26 16 41 15 -1 15 23 3 49 37 40 44 12 -1 34 14

19 -1 44 14 20 32 7 23 22 47 31 -1 0 -1 13 32 8 48 9 45 -1 -1 18 14 38 26 1 37 3 11 12 4 -1 43 23 10 42 24 1 35 30 49 18 -1 42

3 4 9 37 -1 45 6 34 39 27 4 14 30 28 33 46 41 25 35 49 42 15 18 9 -1 41 30 14 -1

15 25 120 20 25

Problem 12 5 16 19 -1 10 21 6 7 18 -1 24 9 6 0 17 14 8 -1 7 12 16 17 24 -1 7 24 19 17 6 15 9 2 22 -1 10 4 16 3 -1 21 11 -1 0 22 10 6 16

8 20 3 5 2 14 -1 2 9 24 21 18 6 -1 23 24 15 -1 6 8 -1 -1 -1 7 -1 21 1 20 18 19 -1 6 20 16 1 2 -1 12 19 10 -1 -1 3 12 9 23 6 22 14

1 7 19 15 16 -1 6 9 5 21 24 14 1 -1 11 18 5 12 -1 9 6 22 0 20 10 23 11 4 13 -1 11 13 7 2 8 -1 7 -1 14 6 5 21 15 12 19 18 7 -1

16 50 490 20 95

Problem 28 20 14 -1 4 29 34 42 5 28 30 12 2 24 26 9 23 32 33 27 48 49 40 -1 9 23 0 3 41 47 35 19 43 28 14 21 33 36 4 18 32 6 11 20 29

34 38 1 7 39 48 10 45 5 15 25 -1 -1 -1 9 34 27 49 -1 14 -1 36 18 19 39 8 48 9 47 45 -1 11 48 17 41 13 28 33 26 36 20 18 44 43

222

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

27 -1 19 28 48 38 39 16 21 24 8 2 -1 37 19 8 41 0 23 32 16 35 12 33 30 14 2 39 47 15 49 9 -1 27 13 7 -1 47 6 4 35 25 -1 -1 48

18 40 23 17 47 9 15 7 35 26 20 2 25 33 42 16 41 27 4 28 43 22 34 36 45 0 12 29 37 5 39 8 1 32 30 38 6 10 11 19 -1 20 -1 40 43

8 18 36 47 14 12 29 25 24 1 6 26 4 28 46 19 27 22 5 32 45 21 42 34 31 20 23 0 3 30 -1 14 1 45 22 19 41 32 28 31 40 48 30 11

18 -1 12 16 38 6 -1 39 9 33 46 26 -1 16 25 19 36 44 0 47 40 33 30 13 29 35 3 11 28 8 5 31 37 14 24 26 34 23 43 18 -1 36 0 32

47 45 29 15 28 6 12 39 49 -1 16 46 12 24 17 41 6 40 39 -1 37 4 39 33 32 13 25 49 -1 25 45 23 28 22 -1 11 -1 32 10 25 48 24 35

22 -1 37 20 1 3 46 23 48 8 -1 -1 20 16 0 5 -1 9 41 -1 21 10 34 -1 49 36 10 11 14 41 5 27 21 25 12 29 20 23 37 33 48 1 43 16 26

-1 32 14 23 36 11 -1 46 40 21 35 18 29 24 6 -1 46 38 47 21 43 27 2 7 37 33 30 32 29 24 49 5 20 36 -1 27 41 1 4 18 29 7 45 -1

16 32 8 33 22 14 4 -1 40 47 13 29 19 33 41 46 2 -1 44 30 23 9 29 15 37 42 25 7 21 43 27 -1 34 -1 0 31 42 48 16 26 30 17 47 34

40 19 45 43 15 9 14 39 -1 38 0 40 21 11 25 18 22 37 -1 2 41 19 45 35 14 12 3 18 23 -1 37 38 33 28 49 40 5 45 35 24 26 27 3 10

47 23 39 1 -1 15 10 27 4 14 38 18 31 6 2 30 0 16 40 28 24 32 37 -1 37 40 20 17 25 14 -1 -1 47 18 4 29 42 30 43 21 37 6 26 24

-1 39 25 13 6 17 23 16 -1

18 25 30 5 1

Problem -1 11 5 -1 18 9 -1 10 6 -1 -1 16 11 -1 -1 2 -1 -1 -1 -1 15 -1 16 19 7 -1 -1 -1 11 22 -1 -1 -1 15 -1 -1 16 3 6 -1 19 18 10 3 -1 -1 16

24 0 -1 21 9 20 17 -1

19 50 122 5 11

Problem 20 6 2 29 16 37 41 -1 2 11 17 22 -1 43 24 -1 -1 19 -1 39 21 10 11 0 -1 48 -1 45 27 6 -1 16 36 40 26 23 5 17 -1 -1 -1 13 31 21 30

35 -1 -1 4 5 0 31 42 -1 29 16 1 19 11 8 42 27 5 -1 -1 -1 36 0 3 -1 23 11 26 6 -1 43 -1 31 -1 -1 38 -1 -1 41 33 1 23 3 14 -1 40 -1

27 -1 33 19 35 20 43 -1 16 10 44 42 12 -1 24 -1 48 45 -1 19 -1 48 33 26 45 15 44 39 -1 -1 -1 -1 -1 1 29 31 28 -1 21 25 -1 26 14

223

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

-1 37 49 -1 40 14 19 -1 -1 31 18 41 -1 45 -1 30 39 24 -1 38 3 42 9 39 8 16 17 6 24 13 -1 41 -1 -1 2 29 -1

21 25 60 10 5

Problem 11 -1 17 20 21 0 -1 -1 23 0 -1 2 -1 -1 24 -1 8 22 13 -1 -1 19 2 7 6 22 16 14 -1 7 21 -1 -1 -1 6 17 20 18 23 7 21 -1 19 2 -1 5 13

21 18 23 0 16 24 6 19 -1 -1 19 13 2 24 12 5 7 -1 -1 1 11 8 20 -1 -1 18 17 -1 5 -1 18 24 12 -1 6 1 10 -1

22 50 245 10 33

Problem 28 23 46 47 37 48 -1 42 40 -1 8 37 28 9 48 39 47 33 42 36 45 -1 29 -1 11 38 3 -1 31 49 13 42 18 25 44 -1 43 28 0 39 -1 -1 26 39

43 29 7 25 46 13 34 12 38 6 0 35 -1 -1 13 30 -1 -1 17 -1 30 45 19 6 -1 42 -1 46 32 14 44 2 25 29 20 -1 8 44 9 7 42 -1 39 -1 8

29 14 16 3 20 35 41 25 -1 25 35 16 -1 19 35 1 -1 18 11 1 -1 49 15 -1 40 19 12 37 2 8 47 21 26 20 10 43 1 -1 28 2 25 19 44 18 42

6 35 46 5 -1 40 46 29 -1 46 15 -1 1 -1 14 48 36 6 27 2 9 1 49 -1 16 27 19 -1 47 4 24 -1 5 39 9 47 36 42 26 32 22 17 34 13 0 49

19 4 43 -1 42 2 7 -1 29 42 4 7 44 -1 26 43 1 27 39 32 42 5 24 11 35 25 20 19 38 31 33 9 49 46 -1 47 19 6 10 23 48 2 11 9 31 24

45 43 44 15 4 16 12 40 0 26 17 8 30 49 -1 17 29 8 28 -1 8 -1 48 14 36 19 30 -1 -1 19 8 28 -1 26 8 23 -1 31 -1 28 27 -1 -1 14

20 46 -1 22 29 7 49 -1 49 17 -1 1 13 4 28 49 47 16 -1 13 11 34 30 19 -1

24 25 120 20 16

Problem 23 13 -1 5 21 -1 13 9 17 0 23 11 6 18 4 15 5 19 1 12 -1 21 -1 -1 -1 8 7 4 21 12 5 3 16 20 24 11 15 -1 13 17 18 21 1 -1 3 -1 15

14 21 5 24 20 10 2 22 16 8 23 6 13 1 11 17 -1 12 -1 24 23 21 5 13 14 -1 21 23 20 11 3 -1 14 -1 19 0 12 2 15 6 1 23 10 -1 3 17

-1 17 4 10 1 8 23 18 6 5 -1 -1 19 20 15 10 3 -1 -1 -1 22 5 24 13 9 6 11 10 0 20 15 14 4 12 7 3 23 2 -1 -1 1 15 24 11 -1 9 15 19

11 0 6 -1

25 50 490 20 98

Problem 21 3 34 13 -1 38 21 12 23 6 0 16 33 41 36 17 -1 16 18 32 13 4 -1 20 10 46 -1 38 24 10 31 45 40 1 30 32 43 12 15 19 27 -1 21 8

224

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

49 -1 23 -1 49 -1 49 12 14 34 44 -1 19 42 43 -1 0 40 49 4 48 26 -1 45 9 10 31 -1 49 47 46 48 23 26 40 20 7 -1 -1 8 11 21 43 38

-1 32 14 9 24 43 39 35 7 41 -1 19 43 7 4 40 39 27 6 12 17 9 42 33 46 15 37 48 28 24 38 -1 43 46 10 20 22 13 48 14 40 36 1 44

33 18 0 19 25 32 23 38 4 29 35 12 2 3 15 39 45 26 -1 20 5 23 13 29 43 41 6 -1 45 -1 48 40 22 46 33 5 18 39 26 37 43 17 19 47

6 3 24 34 38 4 41 14 29 8 16 44 31 10 36 30 32 0 35 -1 39 -1 31 41 40 45 20 37 39 3 36 24 13 25 47 48 21 -1 33 39 47 0 19 9

31 30 18 24 6 16 26 40 28 21 7 5 34 46 45 -1 49 9 12 42 47 3 20 37 8 30 2 7 19 4 5 33 13 23 40 14 44 39 32 6 10 46 11 28 35

36 -1 24 20 38 49 34 15 -1 -1 -1 29 38 7 44 14 4 -1 34 44 45 15 23 36 -1 -1 23 12 44 26 3 25 27 2 8 0 34 33 48 28 18 11 1 49

32 47 10 45 -1 22 6 21 17 40 5 -1 43 16 -1 14 24 35 18 9 0 27 4 25 37 7 39 44 28 19 -1 31 -1 47 27 23 28 22 19 9 31 42 11 17

45 0 32 40 12 2 5 18 7 46 20 13 48 43 29 38 6 25 16 -1 28 15 16 32 21 14 31 33 43 22 41 24 2 0 39 -1 46 14 35 44 20 33 26 19

6 23 -1 5 41 46 30 16 0 48 17 24 15 13 12 27 25 14 45 47 10 20 8 32 44 43 1 4 31 26 18 36 7 21 -1 29 8 46 30 35 11 41 34 -1 11

8 9 0 10 37 -1 28 5 45 -1 27 -1 33 14 49 41 47 29 0 27 4 37 42 16 26 3 38 6 32 9 17 46 21 20 39 23 -1 27 22 8 20 16 32 26 12

6 7 19 25 0 41 40 31 30 21 23 10 -1 42 3 29 7 31 13 35 9 17 43 1 45 36 37 16 4 0 38 20 24 -1 41 2 13 25 1 35 46 33 17 -1 -1

24 17 21 25 11 43 10 -1

27 25 30 5 0

Problem 21 19 -1 5 23 16 -1 14 -1 -1 -1 -1 -1 13 2 9 14 10 1 -1 17 22 -1 10 16 -1 14 18 20 -1 -1 5 22 -1 21 8 -1 -1 2 5 -1 -1 23 9 -1 11 -1

-1 12 -1 -1 -1 -1 13 -1

28 50 122 5 11

Problem 12 13 33 -1 -1 -1 31 5 32 -1 40 -1 14 -1 42 -1 32 8 0 33 17 48 43 19 13 -1 49 36 -1 15 17 43 12 45 35 30 -1 30 15 26 16 17 -1 46

15 -1 13 32 -1 4 40 10 -1 15 13 49 -1 -1 6 28 42 46 -1 4 -1 29 -1 40 39 24 36 -1 -1 18 47 -1 34 49 -1 26 36 14 37 9 -1 28 11 2 20

29 31 9 22 0 21 33 7 1 41 14 -1 -1 -1 39 -1 11 -1 21 -1 0 47 35 -1 44 43 38 26 28 41 49 0 19 46 25 9 -1 5 -1 16 -1 46 49 32 -1 -1

225

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

-1 -1 31 -1 -1 47 46 44 9 41 -1 49 -1 -1 5 11 4 9 49 -1 -1 37 26 35 -1 40 -1 31 -1 -1 37 15 44 14 45 31 -1

30 25 60 10 5

Problem 21 14 19 24 11 7 9 -1 10 -1 15 12 -1 -1 18 23 11 22 -1 -1 22 -1 8 14 15 3 11 -1 20 2 24 -1 2 -1 -1 -1 20 19 0 -1 1 -1 18 12 4 13

10 8 -1 11 20 13 1 14 22 17 24 -1 10 22 -1 5 14 22 15 20 16 -1 9 19 15 10 20 -1 4 -1 -1 -1 5 -1 -1 15 3 12 -1

31 50 245 10 35

Problem 45 5 32 15 46 -1 39 32 22 27 -1 21 8 19 47 37 44 -1 25 40 36 -1 3 38 -1 2 26 -1 37 42 21 -1 -1 4 21 6 14 0 -1 -1 41 -1 18 7 29

22 35 17 26 33 23 12 40 10 41 -1 46 11 -1 3 5 11 4 -1 29 37 2 11 17 41 -1 -1 13 34 14 0 20 26 41 17 39 42 9 25 1 29 23 -1 33 -1

16 1 8 44 31 29 43 19 33 -1 20 28 18 15 17 23 -1 30 -1 25 49 -1 -1 45 2 29 -1 31 18 -1 -1 -1 24 -1 8 34 24 42 47 38 17 6 30 1 3

46 35 0 40 45 -1 8 -1 42 4 37 24 49 8 47 12 22 13 18 5 38 46 25 11 32 26 33 0 10 23 1 48 39 -1 43 -1 3 31 8 0 6 -1 39 43 8 -1

37 1 15 17 49 -1 2 -1 16 11 19 17 31 14 -1 47 36 28 30 41 35 12 -1 44 -1 12 34 31 43 5 11 16 30 15 2 44 8 42 9 -1 49 23 44 16

36 9 46 39 25 -1 31 -1 33 -1 4 34 20 21 22 35 3 32 0 28 9 37 1 16 -1 43 37 4 31 48 29 33 14 49 10 5 15 26 7 32 47 24 19 -1 11

7 34 3 44 4 21 36 10 -1 37 44 9 39 2 42 29 43 -1 -1 -1 28 41 43 45 -1

33 25 120 20 19

Problem 4 9 12 22 21 -1 22 -1 6 15 8 21 -1 21 13 10 24 15 14 11 22 20 -1 -1 0 -1 11 10 5 23 21 8 -1 11 10 15 22 9 12 14 24 13 23 2 20

17 -1 22 4 6 16 0 13 19 14 12 7 24 20 1 3 17 11 -1 2 22 12 18 21 15 3 7 10 16 8 -1 14 11 4 13 23 19 8 3 -1 17 19 18 -1 17 2 19

-1 -1 4 16 5 -1 3 9 16 8 7 10 -1 20 11 12 14 18 3 10 2 -1 7 19 22 16 12 14 24 -1 2 13 14 7 11 -1 15 -1 15 13 -1 -1 12 5 4 -1 -1

10 4 13 20 11 -1

34 50 490 20 88

Problem 16 4 -1 7 12 41 -1 23 19 45 42 14 30 37 -1 48 29 11 1 0 2 -1 9 7 42 20 21 3 25 -1 26 49 0 8 14 16 31 33 11 35 39 4 43 1 48 27

226

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

28 13 -1 39 24 17 42 29 23 30 -1 24 11 -1 7 46 39 41 10 26 12 45 25 30 5 48 16 43 15 -1 17 -1 15 40 20 4 44 27 5 18 25 0 21 45

34 29 17 13 48 36 26 -1 12 -1 11 14 48 37 6 1 4 7 2 41 9 45 3 19 24 49 38 34 5 10 29 43 -1 -1 13 -1 2 23 -1 2 7 4 15 11 46 -1

14 24 5 48 47 3 31 11 8 20 15 33 4 43 27 6 1 30 7 29 -1 44 -1 20 13 10 -1 48 32 46 36 33 29 42 41 0 -1 24 44 26 30 39 27 -1 16

30 26 20 31 45 19 42 15 33 11 35 32 29 43 7 34 38 -1 10 0 24 42 9 46 12 11 44 8 34 26 38 15 31 -1 19 38 18 28 21 -1 7 49 26

35 24 32 36 42 21 39 33 13 48 41 43 10 9 15 12 29 4 20 28 14 2 44 18 5 47 31 11 6 19 8 22 -1 -1 14 1 37 39 18 41 -1 17 39 23

11 9 47 7 41 6 16 8 10 19 48 0 22 -1 42 4 48 1 0 34 7 5 39 20 44 21 16 49 12 33 43 3 14 37 47 23 35 17 28 13 45 27 24 31 9 19

18 30 25 26 6 2 15 22 11 -1 20 8 41 44 24 26 39 45 48 -1 17 29 16 9 46 2 5 -1 39 43 8 9 37 11 34 28 42 10 48 4 41 29 19 3 25 1

17 35 38 23 27 24 36 16 7 14 46 40 26 33 -1 10 1 3 14 11 8 32 21 9 22 46 47 4 29 42 23 25 -1 42 32 29 18 44 49 45 13 48 -1 1

43 39 10 3 18 48 22 47 -1 3 40 38 -1 46 22 24 30 12 0 9 17 39 35 -1 24 34 16 0 44 7 49 -1 41 14 45 44 35 -1 48 36 26 34 4 0 13

42 25 6 2 -1 30 -1 1 6 38 11 15 2 9 26 31 17 41 45 14 4 7 22 37 5 16 10 21 25 28 48 -1 31 35 44 6 4 16 -1 38 4 6 -1 9 30 38 24

3 29 -1 20 9 8 23 36 42 24 7 38 -1 8 49 30 20 4 21 17 32 -1 30 49 5 15 24 28 46 6 7 19 31 18 25 3 13 23 0 39 -1 37 18 -1

36 25 30 5 2

Problem 23 1 -1 24 15 -1 23 21 -1 10 12 -1 18 14 -1 7 22 19 6 23 12 -1 12 1 7 18 -1 -1 -1 8 -1 3 16 -1 -1 -1 -1 -1 -1 -1 8 -1 6 -1 -1 -1 18

8 12 15 9 -1 -1 -1 -1

37 50 122 5 7

Problem -1 28 -1 -1 1 -1 28 13 17 24 10 40 11 -1 3 26 -1 3 18 -1 19 27 25 47 -1 13 14 25 -1 15 43 0 -1 -1 -1 39 3 -1 -1 22 47 -1 30 -1 -1

-1 20 1 21 -1 37 -1 -1 4 30 -1 4 2 24 -1 -1 3 -1 3 -1 -1 17 10 45 1 -1 49 26 -1 43 -1 45 -1 33 -1 26 37 -1 23 18 7 30 0 47 40 -1 30

26 -1 28 33 42 -1 15 -1 31 1 -1 40 24 2 42 19 -1 12 14 36 3 45 17 26 48 5 6 47 27 -1 12 38 43 28 0 14 29 26 8 6 10 48 -1 7 4 6

227

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

47 39 37 -1 29 48 32 19 7 21 44 27 2 -1 26 38 29 8 -1 7 38 6 10 19 -1 -1 43 -1 -1 -1 45 13 34 -1

39 25 60 10 4

Problem 16 12 4 11 9 -1 -1 20 18 -1 9 7 18 5 8 -1 -1 -1 21 -1 20 2 19 11 6 3 24 5 13 12 18 0 4 -1 3 24 0 1 16 6 23 4 -1 7 23 16 -1 17 18

9 8 -1 15 -1 3 10 -1 15 -1 20 -1 -1 -1 23 -1 -1 -1 -1 1 9 10 -1 9 19 12 4 1 -1 -1 2 22 16 0 6 -1

40 50 245 10 34

Problem 42 9 31 28 39 48 7 -1 -1 41 21 -1 49 17 35 31 40 29 0 7 11 45 24 -1 22 28 39 33 40 9 -1 -1 29 39 -1 -1 0 41 48 21 11 35 3 2 18

26 44 12 20 10 16 23 37 47 49 46 32 -1 -1 20 6 7 25 48 -1 7 45 37 9 33 44 8 39 26 46 -1 -1 -1 13 49 -1 -1 10 44 11 46 -1 14 23

13 -1 43 2 6 11 15 49 47 21 31 10 38 36 33 16 45 4 13 0 -1 13 32 15 16 43 7 17 -1 4 19 46 25 27 33 -1 19 31 0 40 -1 45 8 24 42

26 13 20 16 2 9 3 38 44 10 49 25 33 -1 20 -1 -1 22 20 -1 24 -1 1 -1 41 -1 16 23 9 21 18 39 30 -1 17 -1 -1 18 0 -1 6 44 23 38

27 28 43 29 4 37 20 35 7 15 8 24 3 -1 47 49 40 -1 15 46 29 10 48 43 -1 -1 24 38 -1 28 26 35 29 2 22 32 30 -1 35 15 33 -1 43 -1

29 36 30 11 44 1 45 -1 21 33 32 46 1 3 -1 23 41 4 13 28 26 38 12 5 14 33 8 -1 5 20 38 33 -1 28 47 22 6 2 41 21 32 42 17 -1 32

15 19 12 21 28 17 9 -1 22 41 48 29 38 46 0 31 12 2 -1 11 37 49 20 4 2 -1 20 -1

42 25 120 20 16

Problem 7 -1 12 13 0 23 4 6 7 9 2 -1 16 -1 13 16 19 17 5 24 14 23 21 10 6 7 0 1 8 11 4 20 18 15 -1 20 22 5 3 14 17 16 19 10 18 1 15 12

8 0 9 -1 20 7 24 -1 -1 16 8 13 23 4 -1 2 6 1 22 -1 13 20 7 24 21 0 17 23 -1 -1 23 -1 11 17 4 1 7 19 16 8 6 9 22 21 24 -1 3 -1

8 -1 -1 -1 6 8 0 24 9 1 -1 11 23 -1 16 21 0 18 2 -1 1 -1 7 0 14 23 4 8 9 16 2 12 -1 12 1 5 15 16 13 -1 12 5 -1 0 1 11 18 14 -1

43 50 490 20 94

Problem -1 25 30 33 42 27 4 49 48 11 45 8 -1 40 35 27 9 4 3 46 7 12 47 1 8 25 31 24 33 -1 -1 43 28 21 41 15 29 40 39 32 -1 4 23 47 -1

31 21 25 20 -1 6 9 8 18 36 1 38 26 49 42 20 48 19 27 10 11 14 40 -1 -1 18 25 40 14 36 35 44 12 6 15 -1 37 31 -1 17 16 43 47 41

228

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

1 22 15 20 10 14 34 3 13 44 -1 43 32 40 16 31 5 29 25 33 14 4 22 7 49 36 10 26 19 -1 6 -1 15 10 19 36 -1 31 0 4 5 11 23 3 41 7

26 48 36 24 25 9 33 12 47 43 35 29 -1 -1 29 33 26 -1 0 45 19 36 16 48 -1 14 37 -1 39 40 29 44 13 6 8 21 49 38 31 9 2 11 17 12

22 27 30 0 24 7 34 36 26 32 28 -1 2 38 47 27 34 18 11 12 13 45 36 15 31 -1 49 14 43 45 32 48 20 34 16 23 42 44 -1 9 16 -1 30

47 17 -1 -1 -1 32 33 17 8 35 38 45 19 23 31 43 36 10 7 47 39 21 20 6 30 16 -1 42 17 14 38 16 33 15 -1 33 30 -1 38 1 41 37 22

7 14 23 20 19 13 -1 28 34 -1 26 12 -1 42 36 40 12 27 39 41 -1 3 25 2 -1 15 7 44 30 42 43 38 6 46 -1 26 -1 -1 3 2 6 15 37 25 22

33 34 20 9 13 21 14 -1 0 5 4 30 43 35 -1 24 7 41 37 -1 6 31 26 15 9 1 5 4 10 3 39 29 46 34 25 23 21 20 30 -1 0 24 35 30 16 43

34 10 14 46 39 37 27 18 6 1 -1 40 32 10 7 9 21 1 25 39 18 24 38 16 2 22 31 46 14 28 42 23 27 26 48 15 3 30 0 11 33 5 49 20 29

41 -1 35 45 15 0 -1 35 26 44 15 14 16 21 42 38 13 19 46 31 30 43 9 18 37 47 4 22 0 25 -1 20 24 35 8 11 37 19 7 33 25 39 2 31

36 32 38 4 26 41 18 34 48 16 -1 15 23 6 13 45 44 21 19 22 10 7 34 36 43 11 28 8 42 49 -1 15 16 12 10 41 49 33 29 27 32 5 40

18 46 36 7 42 1 28 6 19 26 -1 43 34 25 19 33 17 36 3 13 11 18 8 39 41 5 2 46 35 24 29 47 4 10 32 6 20 26 12 38 15 40 48 45 21

23 1 22 44 37 16 -1

46 15 11 5 2

Problem -1 13 -1 -1 -1 -1 13 -1 5 7 -1 6 9 10 -1 -1 -1 -1 -1 13 -1 2 5 11 -1 -1

47 15 11 5 1

Problem 6 -1 -1 -1 7 -1 -1 1 4 -1 -1 10 -1 -1 -1 7 -1 8 9 -1 -1 5 -1 8 9 -1

48 15 11 5 1

Problem -1 14 -1 5 -1 2 -1 -1 2 -1 -1 9 -1 10 -1 -1 3 5 7 -1 3 -1 -1 2 -1 -1

229

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

49 15 11 5 1

Problem -1 -1 -1 -1 -1 8 14 -1 3 14 -1 12 -1 13 14 -1 0 3 -1 -1 -1 7 -1 9 -1 -1

50 15 11 5 0

Problem 3 9 -1 -1 -1 -1 -1 -1 2 -1 10 -1 0 1 4 -1 -1 11 -1 3 -1 11 -1 -1 3 -1

51 15 21 10 0

Problem 6 11 -1 -1 6 9 -1 -1 1 3 14 -1 2 6 11 12 -1 7 -1 -1 0 12 -1 12 -1 8 -1 1 2 -1 1 -1 -1 3 13 -1

52 15 21 10 2

Problem 8 -1 12 -1 1 14 -1 -1 1 9 -1 6 12 -1 -1 0 12 -1 0 -1 1 3 -1 1 13 -1 -1 1 2 11 -1 7 14 -1 9 -1

53 15 21 10 1

Problem 1 14 -1 8 13 -1 -1 4 13 -1 1 7 9 -1 2 13 -1 13 -1 8 -1 -1 2 7 -1 -1 6 -1 1 4 13 -1 4 -1 6 -1

54 15 21 10 2

Problem 7 -1 2 5 11 -1 3 8 9 -1 6 7 -1 5 -1 1 -1 -1 -1 6 10 -1 6 -1 1 12 13 -1 2 -1 1 8 -1 6 -1 -1

55 15 21 10 1

Problem -1 2 6 11 12 -1 14 -1 1 6 10 -1 3 9 10 -1 13 -1 5 -1 3 13 -1 3 -1 0 -1 -1 6 -1 -1 2 4 -1 11 -1

56 15 42 20 4

Problem 7 13 -1 -1 6 8 13 -1 1 5 6 11 -1 0 6 13 -1 6 -1 -1 1 9 12 13 14 -1 1 2 3 10 -1 3 6 8 -1 0 1 5 9 13 -1 1 2 7 9 -1 1 8 10 -1

1 5 8 -1 8 12 -1

230

Table 38: Details of DSM Problems Used for Static Testing

Problem ID Number of Elements Number of Links Percent of Total Links Active Target Number of Feedbacks

57 15 42 20 4

Problem 5 7 14 -1 0 -1 4 -1 1 2 6 -1 2 3 6 -1 9 -1 13 14 -1 3 10 -1 1 4 -1 0 2 3 4 6 8 12 13 14 -1 1 2 5 -1 0 2 6 14 -1 0 3 8 10 11

13 -1 3 -1 3 -1

58 15 42 20 6

Problem 4 7 8 11 -1 5 6 14 -1 0 1 10 -1 1 8 14 -1 0 1 3 9 14 -1 0 7 8 11 -1 2 7 8 -1 6 11 -1 -1 2 14 -1 5 11 12 14 -1 2 13 -1 11 -1

5 6 7 9 10 -1 4 -1

59 15 42 20 4

Problem 11 -1 2 3 5 7 10 -1 3 4 8 -1 0 -1 7 -1 3 12 -1 0 10 -1 -1 0 4 6 7 -1 0 1 4 8 -1 3 4 5 7 8 14 -1 2 9 -1 3 4 10 -1 1 3 4 5 8

11 -1 1 3 -1

60 15 42 20 10

Problem 1 2 7 10 11 -1 5 8 12 -1 1 5 6 -1 5 -1 0 8 9 11 14 -1 0 1 9 -1 1 -1 3 4 -1 6 10 13 -1 1 5 6 -1 0 1 4 5 9 -1 0 12 -1 0 3 10

-1 4 -1 3 12 -1

231

APPENDIX C

PUBLICATIONS

C.1 Published Work

C.1.1 Thesis Relevant Conference Papers

1. Otero, R.E. and Braun, R.D.; “Calculating Data Importance using Mutual In-

formation for Engineering Design,” AIAA 2010-9323, 13th AIAA ATIO/ISSMO

Conference, Fort Worth, TX, September 2010.

2. Otero, R.E. and Braun, R.D.; “The Planetary Entry Systems Synthesis Tool

(PESST): A Conceptual Design and Analysis Tool for EDL Systems,” 2010

IEEE Aerospace Conference, Big Sky, MT, March 2010.

3. Otero, R.E. and Braun, R.D.; “The State of Problem Decomposition in En-

gineering Design,” AIAA 2009-2188, 5th AIAA Multidisciplinary Design Opti-

mization Specialist Conference, Palm Springs, CA, May 2009.

4. Otero, R.E.; Grant, M.J.; Steinfeldt, B.A.; and Braun, R.D.; “Introducing

PESST: A Conceptual Design and Analysis Tool for Unguided/Guided EDL

Systems,” 6th International Planetary Probe Workshop, Atlanta, GA, June

2008.

C.1.2 Other Conference Papers

1. Norton, C.D.; Fang, H.; Michel, T.; Moussessian, A.; Schiermeier, J.; Springer,

P.; and Otero, R.E.; ”Model-Based Verification and Validation of Component

Structures for RF and Optical Experimental Systems,” 2008 IEEE Aerospace

Conference, Big Sky, MT, March 2008.

232

2. Joyner, R.; Osburg J.; Lentati, A.; Cole, B.; Otero R.E.; ”Evolving Conceptual

Propulsion Design Using Preliminary Multidisciplinary Design Analysis and

Optimization” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference,

Sacramento, CA, July 2006.

C.2 Planned Work

1. A journal article that combines the static decomposition and optimizer com-

parison work between Genetic Algorithms and MIMIC. This will also include

results from the dynamic decision tree generation. Paper will be targeted to an

MDAO journal.

233

REFERENCES

[1] Altus, S. S., Kroo, I. M., and Gage, P. J., “A genetic algorithm for
scheduling and decomposition of multidisciplinary design problems,” Journal
of Mechanical Design, vol. 118, pp. 486–489, 1996.

[2] Anderson, J. D., Hypersonic and High Temperature Gas Dynamics. AIAA,
August 2000.

[3] Awate, S. P., Adaptive, Nonparametric Markov Models and Information-
Theoretic Methods for Image Restoration and Segmentation. PhD thesis, Uni-
versity of Utah, December 2006.

[4] Baluja, S. and Caruana, R., “Removing the genetics from the standard ge-
netic algorithm,” in 12th International Conference on Machine Learning, Mor-
gan Kaufmann Publishers, 1995.

[5] Baluja, S. and Davies, S., “Using optimal dependency-trees for combinato-
rial optimization: Learning the structure of the search space,” in Proceedings
of the International Conference on Machine Learning, pp. 30–38, 1997.

[6] Biernes, H. J., Advances in Econometrics: Fifth World Congress, Volume 1.
Cambridge University Press, 1987.

[7] Bishop, C. M., Pattern Recognition and Machine Learning. Springer Science
and Business Media, LLC, 2006.

[8] Bonet, J. D., Isbell, C., and Viola, P., “Mimic: Finding optima by es-
timating probability densities,” in Advances in Neural Information Processing
Systems (NIPS), pp. 424–430, 1997.

[9] Botev, Z. I., Grotowski, J. F., and Kroese, D. P., “Kernel density
estimation via diffusion.” To appear in Annals of Statistics., 2010.

[10] Braun, R. D., Collaborative Optimization: An Architecture for Large-scale
Distributed Design. PhD thesis, Stanford University, May 1996.

[11] Braun, R. D., Gage, P., Kroo, I., and Sobieski, I., “Implementation
and performance issues in collaborative optimization,” in Proceedings of the
Sixth AIAA / NASA / ISSMO Symposium on Multidisciplinary Analysis and
Optimization, (Bellevue, WA), Sept 1996.

[12] Braun, R. D. and Manning, R. M., “Mars exploration entry, descent, and
landing challenges,” Journal of Spacecraft and Rockets, vol. 44, pp. 310–323,
March-April 2007.

234

[13] Braun, R. D., Powell, R., Lepsch, R., Stanley, D., and Kroo, I.,
“Comparison of two multidisciplinary optimization strategies for launch vehicle
design,” Journal of Spacecraft and Rockets, vol. 32, pp. 404–410, May - June
1995.

[14] Brown, N., “Evaluation of multidisciplinary optimization (mdo) techniques
applied to a reusable launch vehicle,” Master’s thesis, Georgia Institute of Tech-
nology, 2004.

[15] Browning, T. R., “Applying the design structure matrix to system decom-
position and integration problems: A review and new directions,” IEEE Trans-
actions on Engineering Management, vol. 48, pp. 292–306, 2001.

[16] Chen, L. and Li, S., “Analysis of decomposability and complexity for de-
sign problems in the context of decomposition,” Journal of Mechanical Design,
vol. 127, pp. 545–557, 2005.

[17] Cho, S.-H. and Eppinger, S. D., “A simulation-based process model for
managing complex design projects,” IEEE Transactions on Engineering Man-
agement, vol. 52, pp. 316–328, August 2005.

[18] Chow, C. K. and Liu, C. N., “Approximating discrete probability distri-
butions with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, pp. 462–467, May 1968.

[19] Christian, J. A., Verges, A. M., and Braun, R. D., “Statistical re-
construction of mars entry, descent, and landing trajectories and atmospheric
profiles,” in AIAA SPACE 2007 Conference & Exposition, (Long Beach, CA),
18-20 September 2007. AIAA 2007-6192.

[20] Cybenko, G., “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303–314, December
1989.

[21] Davis, D., Ihaka, R., and Fenstermacher, P., “Cryptographic random-
ness from air turbulence in disk drives,” Lecture Notes in Computer Science,
vol. 0839, pp. 114–120, 1994.

[22] Dec, J. A. and Braun, R. D., “Ablative thermal response analysis using the
finite element method,” in 47th AIAA Aerospace Sciences Meeting Including
The New Horizons Forum and Aerospace Exposition, January 2009. AIAA
2009-259.

[23] DeJong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

[24] D’Souza, C., “An optimal guidance law for planetary landing,” in AIAA,
1997. AIAA 97-3709.

235

[25] Duda, R., Hart, P., and Stork, D., Pattern Classification. Wiley, 2001.

[26] Ford, J. and Bloebaum, C., “A decomposition method for concurrent de-
sign of mixed discrete/continuous systems,” Advances in Design Automation,
Proceedings, 19th ASME Design Automation Conference, vol. 65, no. 2, 1993.

[27] Fruchterman, T. M. J. and Reingold, E. M., “Graph drawing by force-
directed placement,” Software - Practice and Experience, vol. 21, pp. 1129–1164,
November 1991.

[28] Gage, P., New Approaches to Optimization in Aerospace Conceptual Design.
PhD thesis, Stanford University, 1995.

[29] Garey, M. R., Johnson, D. S., and Stockmeyer, L. J., “Some simplified
np-complete graph problems,” Theoretical Computer Science 1, vol. 3, pp. 237–
267, 1976.

[30] Gen, M. and Cheng, R., Genetic Algorithms & Engineering Design. John
Wiley & Sons, Inc., 1997.

[31] Goldberg, D. E., Genetic Algorithms in Search Optimization and Machine
Learning. Addison Wesley, 1989.

[32] Grant, M. J. and Braun, R. D., “Analytic hypersonic aerodynamics for
conceptual design of entry vehicles,” in 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, 2010.

[33] Hajela, P., Bloebaum, C. L., and Sobieszczanski-Sobieski, J., “Ap-
plication of global sensitivity equations in multidisciplinary aircraft synthesis,”
Journal of Aircraft, vol. 27, no. 1, pp. 1002–1010, 1990.

[34] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,
and Witten, I. H., “The weka data mining software: An update,” SIGKDD
Explorations, vol. 11, no. 1, 2009.

[35] Harish, P., Vineet, V., and Narayanan, P. J., “Large graph algorithms
for massively multithreaded architectures,” tech. rep., International Institute of
Information Technology Hyderabad, 2009.

[36] Hart, W. E. and Belew, R. K., “Optimizing an arbitrary function is hard
for the genetic algorithm,” Proceedings of the Fourth International Conference
on Genetic Algorithms, vol. 1, pp. 190–195, 1991.

[37] Haykin, S., Neural Networks: A Comprehensive Foundation. Prentice Hall,
2 ed., 1998.

[38] Holland, J. H., “Genetic algorithms: Computer programs that “evolve” in
ways that resemble natural selection can solve complex problems ever their
creators do not fully understand,” in Scientific American, Nature Publishing
Group, 1992.

236

[39] Hong, X., “Parzen windows.” www.personal.reading.ac.uk/ ∼sis01xh/ teach-
ing/ CY2D2/ Pattern2.pdf.

[40] Humble, R. W., Henry, G. N., and Larson, W. J., Space Propulsion
Analysis and Design. McGraw-Hill, 1995.

[41] Isbell, C. L., “Randomized local search as successive estimation of probability
densities.” A longer tutorial version of the 1997 paper on MIMIC that includes a
derivation for MIMIC with trees. Can be accessed at http://www.cc.gatech.edu/
∼isbell/ tutorials/ mimic-tutorial.pdf.

[42] Ishikawa, M. and Yoshino, K., “Automatic task decomposition in mod-
ular networks by structural learning with forgetting,” in Proceedings of 1993
International Joint Conference on Neural Networks, pp. 1345–1348, 1993.

[43] Jones, D., “Good practice in (pseudo) random number generation for bioin-
formatics applications,” tech. rep., UCL Bioinformatics Group, 2010.

[44] Justh, H. L., Justus, C. G., and Keller, V. W., “Global reference atmo-
spheric models, including thermospheres, for mars, venus and earth,” in AIAA
/ AAS Astrodynamics Specialist Conference and Exhibit, (Keystone, Colorado),
August 2006. AIAA 2006-6394.

[45] Keyhani, M., “Verification of thermal analysis codes for modeling solid rocket
nozzles,” NASA Contractor Report NASA-CR-195248, The University of Ten-
nessee, May 1993. Unclassified, No Copyright, Unlimited, Publicly available.

[46] Khare, V. R., Automatic Problem Decomposition using Co-Evolution and
Modular Neural Networks. PhD thesis, University of Brimingham, Birmingham,
UK, 2006.

[47] Kipp, D. M., Dec, J. A., Wells, G. W., and Braun, R. D., “Development
of a planetary entry system synthesis tool for conceptual design and analysis,”
in Proceedings of the 3rd International Planetary Probe Workshop, (Athens,
Greece), June 2005.

[48] Klepikov, I. A., Katorgin, B. I., and Chvanov, V. K., “The new gen-
eration of rocket engines, operating by ecologically safe propellant ”liquid oxy-
gen and liquefied natural gas (methane)”,” Acta Astronautica, vol. 41, no. 4,
pp. 209–217, 1997.

[49] Knacke, T. W., Parachute Recovery Systems Design Manual. Para Pub, 1992.

[50] Kodiyalam, S. and Sobieszczanski-Sobieski, J., “Multidisciplinary design
optimization - some formal methods, framework requirements, and application
to vehicle design,” International Journal of Vehicle Design, vol. 25, pp. 3–22,
2001.

237

[51] Kullback, S. and Leibler, R. A., “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[52] Kwak, N. and Choi, C.-H., “Input feature selection by mutual information
based on parzen window,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, pp. 1667–1671, December 2002.

[53] Lantoine, G., A Methodology for Robust Optimization of Low-Thrust Trajec-
tories in Multi-Body Environments. PhD thesis, Georgia Institute of Technol-
ogy, 2010.

[54] Laub, B., “Ablative thermal protection: An overview,” in 55th Pacific Coast
Regional and Basic Science Division Fall Meeting, October 2003. Unclassified,
No Copyright, Unlimited.

[55] L’Ecuyer, P., “Random number generation,” tech. rep., Department
d’Informatique et de Recherche Operationnelle, Universite de Montreal, 2004.

[56] Lees, L., “Laminar heat transfer over blunt-nosed bodies at hypersonic flight
speeds,” Jet Propulsion, pp. 259–269, 1956.

[57] Li, W., “Mutual information functions versus correlation functions,” Journal
of Statistical Physics, vol. 60, no. 5-6, pp. 823–837, 1990.

[58] Luke, S., Panait, L., Bassett, J., Hubley, R., Balan, C.,
and Chircop, A., “Ecj: A java-based evolutionary computation
and genetic programming research system,” 2002. Version: 18,
http://www.cs.gmu.edu/ eclab/projects/ecj/.

[59] MacCormack, A., Rusnak, J., and Baldwin, C., “Exploring the structure
of complex software designs: An empirical study of open source and proprietary
code,” in Harvard Business School Working Paper 05-016, 2005.

[60] Marsaglia, G., “Diehard battery of tests of randomness.” Electronic, 1995.

[61] Matsumoto, M. and Nishimura, T., “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator,”
ACM Transactions on Modeling and Computer Simulation, vol. 8, pp. 3–30,
January 1998.

[62] McCord, K. R., “Managing the integration problem in concurrent engineer-
ing,” Master’s thesis, Massachusetts Institute of Technology, May 1993.

[63] McLachlan, G. J., Do, K.-A., and Ambroise, C., Analyzing microarray
gene expression data. Wiley-IEEE, 2004.

[64] Milos, F. S., Chen, Y.-K., Congdon, W. M., and Thornton, J. M.,
“Mars pathfinder entry temperature data, aerothermal heating, and heatshield
material response,” Journal of Spacecraft and Rockets, vol. 36, pp. 380–391,
May-June 1999.

238

[65] Minzner, R. A., Reber, C. A., Jacchia, L. G., Huang, F. T., Cole,
A. E., Kantor, A. J., Keneshea, T. J., Zimmerman, S. P., and Forbes,
J. M., “Defining constants, equations, and abbreviated tables of the 1975 u.s.
standard atmosphere,” Tech. Rep. TR R-459, NASA, May 1976.

[66] Mitchell, T. M., Machine Learning. The McGraw-Hill Companies, Inc. and
MIT Press, 1997.

[67] Mitcheltree, R. A., Moss, J. N., Cheatwood, F. M., Greene, F. A.,
and Braun, R. D., “Aerodynamics of the mars microprobe entry vehicles,”
Journal of Spacecraft and Rockets, vol. 36, pp. 392–398, May-June 1999.

[68] Moroz, V. I., “The atmosphere of venus,” Space Science Reviews, vol. 29,
pp. 3–127, March 1981.

[69] Morrisey, B. J., Multidisciplinary Design Optimization of an Extreme Aspect
Ratio HALE UAV. PhD thesis, California Polytechnic State University, 2009.

[70] Olds, J., “System sensitivity analysis applied to the conceptual design of a
dual-fuel rocket ssto,” in AIAA Paper, (Panama City Beach, FL), September
1994.

[71] Otero, R. E. and Braun, R. D., “The planetary entry systems synthesis
tool (pesst): A conceptual design and analysis tool for edl systems,” in IEEE
Aerospace Conference, (Big Sky, MT), March 2010.

[72] Page, W. A. and Woodward, H. T., “Radiative and convective heating
during venus entry,” AIAA Journal, vol. 10, pp. 1379–1381, 1972.

[73] Parzen, E., “On the estimation of a probability density function and the
mode,” Annals of Mathematical Statistics, vol. 33, pp. 1065–1076, 1962.

[74] Portree, D. S. F., “Mir hardware heritage,” tech. rep., Johnson Space Cen-
ter, March 1995. NASA RP-1357.

[75] Quinlan, J. R., C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1992.

[76] Rasky, D. J. and Tran, H. K., “Low-cost entry systems for future planetary
exploration missions,” Acta Astronautica, vol. 45, pp. 347–355, August 1999.

[77] Regan, F. J. and Anandakrishnan, S. M., Dynamics of Atmospheric Re-
entry. AIAA, 1993.

[78] Rogers, J. L., “Demaid/ga - an enhanced design manager’s aid for intelli-
gent decomposition (genetic algorithms),” in 6th AIAA/NASA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, pp. 1497–1504, Septem-
ber 1996. AIAA-96-4157.

239

[79] Rogers, J. L. and Bloebaum, C. L., “Ordering design tasks based on cou-
pling strengths,” tech. rep., NASA, July 1994. TM-109137.

[80] Rogers, J. L., “Tools and techniques for decomposing and managing complex
design projects,” Journal of Aircraft, vol. 36, pp. 266–274, January-February
1999.

[81] Rogers, J. L., McCulley, C. M., and Bloebaum, C. L., “Integrating a
genetic algorithm into a knowledge-based system for ordering complex design
processes,” Tech. Rep. 110247, NASA Technical Memorandum, April 1996.

[82] Rothlauf, F., Representations for Genetic and Evolutionary Algorithms.
Springer, 2006.

[83] Schaeffer, S. E., “Graph clustering,” Computer Science Review, vol. 1,
pp. 27–64, 2007.

[84] Seiff, A., “Post-viking models for the structure of the summer atmosphere of
mars,” Advances in Space Research, vol. 2, no. 2, pp. 3–17, 1982.

[85] Seiff, A. and Kirk, D. B., “Structure of the venus mesosphere and lower
thermosphere from measurements during entry of the pioneer venus probes,”
Icarus, vol. 49, pp. 49–70, January 1982.

[86] Seiff, A., Kirk, D. B., Young, R. E., Blanchard, R. C., Findlay,
J. T., Kelly, G. M., and Sommer, S. C., “Measurements of thermal struc-
ture and thermal contrasts in the atmosphere of venus and related dynamical
observations: Results from the four pioneer venus probes,” Journal of Geophys-
ical Research, vol. 85, pp. 7903–7933, December 1980.

[87] Shannon, C. E., “A mathematical theory of communication,” ACM SIGMO-
BILE Mobile Computing and Communications Review, vol. 5, pp. 3–55, January
2001. Special issue reprinting Shannon’s 1948 work with his corrections.

[88] Sobieszczanski-Sobieski, J., “Sensitivity of complex, internally coupled sys-
tems,” AIAA Journal, vol. 28, no. 1, pp. 153–160, 1990.

[89] Srinivas, M. and Patnaik, L. M., “Genetic algorithms: A survey,” Com-
puter, vol. 27, pp. 17–26, June 1994.

[90] Steinfeldt, B. A., “Guidance, navigation, and control technology system
trades for mars pinpoint landing,” Master’s thesis, Georgia Institute of Tech-
nology, May 2008.

[91] Steward, D. V., Systems Analysis and Management: Structure, Strategy and
Design. Petrocelli Books, 1981.

[92] Sutton, K. and Graves, R. A., “A general stagnation point convective-
heating equation for arbitrary gas mixtures,” tech. rep., NASA, November 1971.
TR R-376.

240

[93] Syswerda, G., “Uniform crossover in genetic algorithms,” in Proceedings 3rd
International Conference on Genetic Algorithms, Morgan Kaufmann Publish-
ing, 1989.

[94] Tauber, M. E. and Sutton, K., “Stagnation-point radiative heating rela-
tions for earth and mars entries,” Journal of Spacecraft and Rockets, vol. 28,
pp. 40–42, Jan-Feb 1991.

[95] Todd, D., Multiple Criteria Genetic Algorithms in Engineering Design and
Operation. PhD thesis, University of Newcastle, Tyne, UK, October 1997.

[96] Tran, H. K., Johnson, C. E., Rasky, D. J., Hui, F. C. L., Hsu, M.-
T., Chen, T., Chen, Y. K., Paragas, D., and Kobayashi, L., “Phenolic
impregnated carbon ablators (pica) as thermal protection systems for discovery
missions,” Tech. Rep. NASA TM-110440, NASA, April 1997. Unclassified, No
Copyright, Unlimited, Publicly available.

[97] Wakayama, S. and Kroo, I., “Subsonic wing planform design using mul-
tidisciplinary optimization,” Journal of Aircraft, vol. 32, no. 4, pp. 746–753,
1995.

[98] Whiffen, G. J., “Mystic : Implementation of the static dynamic optimal
control algorithm for high-fidelity, low-thrust trajectory design,” in AIAA/AAS
Astrodynamics Specialists Conference, 2006.

[99] Whitfield, R. I., Duffy, A. H. B., and Gartzia-Etxabe, L. K., “Iden-
tifying and evaluating parallel design activities using the design structure ma-
trix,” in International Conference on Engineering Design 2005, (Melbourne,
Australia), August 2005.

[100] Whitfield, R. I., Smith, J. S., and Duffy, A. H. B., “Identifying com-
ponent modules,” in 7th International Conference on Artificial Intelligence in
Design (AID02), (Cambridge, UK), July 2002.

[101] Williams, S. D. and Curry, D. M., “Thermal protection materials - ther-
mophysical property data,” tech. rep., NASA, December 1992. NASA RP-1289,
Unclassified - Unlimited.

[102] Wolpert, D. H., “No free lunch theorems for optimization,” tech. rep., IBM
Almaden Research Center, 1996.

[103] Yu, T.-L., Yassine, A., and Goldberg, D. E., “A genetic algorithm for
developing modular product architectures,” tech. rep., University of Illinois at
Urbana-Champaign, October 2003.

[104] Yu, T.-L., Yassine, A., and Goldberg, D. E., “An information theoretic
method for developing modular architectures using genetic algorithms,” tech.
rep., University of Illinois at Urbana-Champaign, April 2005. IlliGAL Report
No. 2005014.

241

[105] Yu, T.-L., Yassine, A. A., and Goldberg, D. E., “An information the-
oretic method for developing modular architectures using genetic algorithms,”
Research in Engineering Design, vol. 18, no. 2, pp. 91–109, 2007.

242

