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SUMMARY

A study has been performed to determine the advantages and disadvantages of vari-

able thrust and variable Isp trajectories for solar system exploration. Relative to traditional

high thrust/low Isp or even low thrust/high Isp trajectories, these variable thrust missions

have a potential to positively impact trip times and propellant requirements for solar system

exploration.

There have been several numerical research efforts for variable thrust, variable Isp,

power-limited trajectory optimization problems. All of these results conclude that variable

thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant

thrust, constant Isp (constant specific impulse, or CSI) engines. That means VSI engines

can achieve a mission with a smaller amount of propellant mass than CSI engines. However,

most of these research efforts assume a mission from Earth to Mars, and some of them further

assume that these planets are circular and coplanar. Hence they still lack the generality.

This research has been conducted to answer the following questions:

• Is a VSI engine always better than a CSI engine or a high thrust engine for any mission

to any planet with any time of flight considering lower propellant mass as the sole

criterion?

• If a planetary swing-by is used for a VSI trajectory, how much fuel can be saved? Is

the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or

high thrust swing-by trajectory?

To support this research, an unique, new computer-based interplanetary trajectory cal-

culation program has been created based on a survey of approaches documented in available
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literature. This program utilizes a calculus of variations algorithm to perform overall opti-

mization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel

consumption for interplanetary travel between two planets. It is assumed that the propul-

sion system is power-limited, and thus the compromise between thrust and Isp is a variable

to be optimized along the flight path. This program is capable of optimizing not only vari-

able thrust trajectories but also constant thrust trajectories in 3-D space using a planetary

ephemeris database. It is also capable of conducting planetary swing-bys.

Using this program, various Earth-originating trajectories have been investigated and

the optimized results have been compared to traditional CSI and high thrust trajectory

solutions. Results show that VSI rocket engines reduce fuel requirements for any mission,

or they shorten the transfer time compared to CSI rocket engines. Fuel can be saved by

applying swing-by maneuvers for VSI engines, but the effects of swing-bys due to VSI

engines are smaller than that of CSI or high thrust engines.
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CHAPTER I

INTRODUCTION

1.1 Problems of Variable Thrust, Variable Isp Trajectory

Optimization

Conventional propulsion systems are roughly classified into two types: high thrust rockets,

and low thrust rockets. Table 1 shows examples of spacecraft propulsion systems. For a

launch vehicle, high thrust rockets such as solid rockets or bipropellant liquid rockets must

be used at the present time. This is because the thrust-to-weight ratio must be greater than

one to vertically launch the vehicle from the ground. If a high thrust rocket is used for an

interplanetary mission, the rocket is initially fired for a short period of time to accelerate

the vehicle to the proper speed to reach the destination. If the spacecraft is to be placed in

the desired parking orbit without an aerocapture maneuver, a second firing of the engine is

used near the destination to decelerate the vehicle. Most of the fuel is consumed by these

two burns. During the rest of the transfer time the engine is turned off and the vehicle

coasts around the Sun without any propulsive energy added.

Table 1: Examples of Spacecraft Propulsion Systems[4][42].

Method Isp(sec) Thrust (N) Duration

Chemical 0.1 – 1.2×107 minutes
Liquid
Monopropellant 140 – 235
Bipropellant 320 – 460
Solid 260 – 300
Hybrid 290 – 350

Electric 0.0001 – 20 months – years
Electrothermal 500 – 1,000
Electromagnetic 1,000 – 7,000
Electrostatic 2,000 – 10,000

Nuclear thermal 800 – 1,100 up to 1.2×107 minutes

VASIMR 1,000 – 30,000 40 – 1,200 days – months

VASIMR – VAriable Specific Impulse Magnetoplasma Rocket.
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On the other hand, low thrust rockets cannot be used for a launch vehicle because the

thrust-to-weight ratio of the engine alone is less than one. Low thrust rockets do provide

an advantage for interplanetary missions. Low thrust engines typically have higher specific

impulse than higher thrust engines. This higher specific impulse results in less fuel being

consumed when compared to high thrust rockets. Due to the low thrust level, trip times

are typically longer for low thrust rockets when compared to the high thrust engines. This

is especially true if the spacecraft has to leave the gravity well of the Earth or if it has to

conduct an orbital insertion at the destination planet using its engines.

The comparison between low thrust systems and high thrust systems can be thought

of in the same way as the comparison between a car driving in low gear and a car driving

in high gear. A car starting from rest or climbing up a hill requires high thrust, and a

driver chooses low gear to exert high thrust at the expense of high fuel consumption. In

contrast, a car cruising on a highway needs high fuel efficiency rather than high thrust, so

a car cruising with high speed uses its top gear to save fuel.

A conventional propulsion system cannot modulate its specific impulse. So, depending

on the purpose of the mission, a mission designer must select the rocket type.

The concept of modulating thrust and specific impulse has been theoretically evaluated

since the early 1950’s[9][25]. Currently there are several projects ongoing worldwide relevant

to rocket engines that can modulate their thrust and Isp. This research includes mechanical

tests at ground facilities as well as trajectory simulations with computers. However, a ques-

tion emerges: “What are the advantages of having a propulsion system that can modulate

its specific impulse depending on the operational condition?”

The study of trajectory optimization problems is very important for space development.

If a trajectory can be optimized by either minimizing fuel consumption or finding the

best launch opportunity that minimizes time from Earth to another planetary body, that

trajectory will save operational costs as well as increase the probability of success of a

mission.

For high thrust engines, the interplanetary trajectory is nearly a conic section that is
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Figure 1: Future Interplanetary Flight with VASIMR[5].

determined only by the time of flight and the positions of departure planet and arrival

planet. Therefore only the times of departure and arrival are optimized. Because there are

two orbits passing through the departure planet to the arrival planet with the prescribed

time of flight, the orbit that requires less fuel is normally chosen.

For trajectories with CSI engines, the thrust direction should be controlled so that the

spacecraft reaches the target planet with the prescribed time of flight. Therefore finding

an optimal trajectory for CSI engines is the same as finding a history of the best thrust

direction. If the engine has a capability of turning the engine on and off, switching times

(on → off or off → on) should be appropriately determined.

For trajectories with VSI engines, because the thrust level and Isp are variable, finding an

optimal trajectory for this type of rocket means finding a history of the best thrust direction

and a history of the best thrust level (possibly including zero thrust) that minimizes the fuel

consumption for entire mission. The trajectory is calculated from initial conditions (initial

mass, initial position and velocity), final conditions (final position and velocity), time of

flight, and the vehicle’s available power level.

1.2 Motivation for Research

For interplanetary missions, finding a trajectory that minimizes the fuel consumption is

important. Reducing the fuel consumption not only saves cost for fuel but also cost for

launch from the ground, and therefore the cost for the entire mission decreases.

Selecting a suitable engine type for a mission is also important. So far, high thrust
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Figure 2: Transfer Trajectory from Earth to Mars with Thrust Direction.

engines and constant Isp low thrust engines have been used for interplanetary missions. If a

variable Isp engine, which is under development, could be used for a mission, it may reduce

the mission cost. Analyzing trajectories with variable Isp engines and comparing them to

trajectories with constant Isp engines or high thrust engines should help in selecting the

engine type.

There have been several numerical research efforts for variable thrust, variable Isp (vari-

able specific impulse, or VSI), limited-power trajectory optimization problems [25][49][20]

[69][61][72]. Both indirect methods and direct methods have been used to evaluate this

problem. Most of the research efforts assume a human mission to Mars, and all of these

results conclude that VSI engines are superior to constant thrust, constant Isp (or CSI)

engines. That means VSI engines require less amount of propellant than CSI engines for a

mission.

This research started with the following questions:

• Does a VSI engine always require less fuel than a CSI engine or a high thrust engine

for any mission to any planet with any time of flight?

– If the answer is yes, is it possible to find a qualitative relationship between fuel

consumption and other parameters such as power level, time of flight, or semi-

major axis of the transfer orbit?
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– If the answer is no, in what situations are CSI or high thrust better than VSI?

• If a planetary swing-by is used for a VSI trajectory, how much fuel can be saved

relative to the non swing-by case? Is the fuel saving of the VSI swing-by trajectory

better than that of a CSI swing-by trajectory or a high thrust swing-by trajectory?

To answer the above questions, a study of a variable thrust, variable Isp rocket engine,

particularly focusing on the optimization of interplanetary trajectories with this type of

rocket engine, is conducted in this research. A number of interplanetary trajectories with

different combinations of departure date, time of flight, and target planet are simulated

numerically and the fuel consumption for VSI, CSI, and high thrust engines are compared.

1.3 Research Goals and Objectives

The primary goal of this research is to demonstrate the advantages and disadvantages of

VSI engines over conventional engines such as CSI engines and high thrust engines that are

currently used for interplanetary missions. If the merits and demerits of using a VSI engine

over a CSI engine and a high thrust engine are parameterized, this data can be used to

determine the engine type for a particular mission. Therefore, the goal of this research is

to establish a generalized rule that:

1. Qualitatively states the advantages and disadvantages of a VSI engine.

2. Quantitatively determines the fuel savings by using a VSI engine over a CSI or a high

thrust engine.

For example, goal 1 may be written as, “to travel from Earth to Mars, VSI is always

better than other types of engines, but as the trip time increases the merit of using a VSI

engine gradually decreases.” Similarly, goal 2 may be written as, “going from Earth to

Jupiter in 3 years with a VSI engine saves about 20% of the total fuel over a CSI engine

and 33% over a high thrust engine.”
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To support the goal described above, numerical analyses should be conducted. As far as

the author knows, there are currently no programs available that can calculate interplan-

etary trajectories with all of VSI, CSI, and high thrust engines. Therefore, an additional

goal is to create an interplanetary trajectory optimization program that can calculate the

trajectories to conduct this research.

The program should have the capability of calculating transfer trajectories from one

planet to another, and it should be used for any type of engine including VSI, CSI, and

high thrust. The program also should be able to calculate swing-by trajectories with those

same types of engines. The program should be robust, accurate, and fast.

1.4 Approach

To achieve the above research objectives, several steps were taken in this research.

At first, to become familiar with interplanetary optimization problems, a literature

review was conducted. This work included finding and studying a proper method to solve

this kind of problem, understanding orbital mechanics and methods of solving optimization

problems, and addressing the contribution of this research to the field of interplanetary

trajectory optimization problems.

Next, proof-of-concept study was conducted that was designed to be simple, yet still

representative of the problems. A simple two-dimensional trajectory was used to compare

fuel consumption of VSI, CSI, and high thrust engines by integrating equations of motion.

Then an interplanetary trajectory optimization software application was created using

a method learned during the literature review. The application was developed to be easy

to use, run quickly, and produce accurate results.

Using this application, a preliminary study was conducted to confirm the implementation

of the application. Assuming that the orbits of planets around the Sun are circular and

coplanar, two-dimensional trajectories from Earth to other planets were calculated. With

this research, a large database was obtained regarding fuel requirements. A rule of thumb for

the relationship between fuel requirements and the distance from Earth to target planets as

well as the relationship between fuel requirements and time of flight for each type of engine

6



was established.

Finally, “real world” examples were considered to check if the relationships obtained in

the previous step can be applied to the actual three-dimensional interplanetary trajectories.

Planet positions and velocities are given as functions of time that are obtained from actual

observations. Using the position and velocity data for planets, simulations for transfer

trajectories were conducted.

1.5 Organization of the Thesis

This thesis is organized into nine chapters and four appendices:

• Chapter 2 is an overview of trajectory optimization problems. Examples of general

trajectory optimization problems are presented. Then several research efforts for low

thrust trajectories that have been done by other researchers are introduced from the

literature review.

General optimization problems are also described in this chapter. At first, several

optimization methods are introduced. The method of calculus of variations that is

then applied to different types of optimization problems is presented.

• Chapter 3 briefly describes an engine that is capable of modulating thrust and specific

impulse. In this chapter, as an example of a VSI engine, the mechanism of the

VASIMR engine that is currently under development at NASA Johnson Space Center

is presented. Then this chapter provides a mathematical way of finding the best power

level to be operated throughout the mission.

• Chapter 4 presents the preliminary, proof-of-concept study with simple trajectories.

Using 2D simple spiral trajectories between two attracting bodies, the fuel consump-

tion of high thrust, low thrust with constant Isp, and low thrust with variable Isp are

compared.

• Chapter 5 describes general interplanetary trajectory optimization problems. The

assumptions made to conduct this research are first defined, and then the required

equations of motion to solve the optimization problems are determined.
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• Chapter 6 explains the development of the software application SAMURAI in detail.

Capabilities of this application, C++ classes and schemes, and example inputs and

outputs are shown. A brief explanation of VRML that displays the trajectory on the

web browser is also described.

• Chapter 7 shows the preliminary results from SAMURAI. Two-dimensional transfer

trajectories between planets are calculated. Planets are assumed to be orbiting around

the Sun with zero eccentricity and zero inclination. The results of this computation

are presented.

• Chapter 8 shows the “real world” numerical examples. Using three-dimensional actual

ephemeris data of planets, transfer trajectories from Earth to other planets with and

without swing-bys are computed. Then a summary and the knowledge obtained from

this data are presented.

• Chapter 9 closes the thesis with conclusions and recommendations for future work.

• There are four appendices: Appendix A shows the results for the preliminary study

obtained in Chapter 7, Appendix B provides the additional equations used in the

application.

Chapter C introduces all the programming techniques required to solve the problems

proposed in this research. The examples of techniques introduced in this section are

optimal control programming, line search, Powell’s method, and penalty functions.

Appendix D is the users’ manual for the application SAMURAI.
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CHAPTER II

A BRIEF DESCRIPTION OF LOW THRUST

TRAJECTORY OPTIMIZATION

2.1 Trajectory Optimization in General

Trajectory optimization can be defined as finding the “best” path from an initial condition

to some final condition based on a certain performance index [79]. Finding the best path in

this case could be rephrased as finding the best thrust history (direction and magnitude)

for a given mission. The performance index depends on the characteristics of the problem.

For a minimum-fuel, fixed-time, and fixed-initial mass problem, we would like to maximize

the final mass of the space vehicle at the end of transfer time. The objective function to be

minimized is the negative of the final mass of the vehicle. Whereas, for a minimum-time

problem, transfer time from one point to another will be of interest, so the performance

index is the transfer time. combination of a minimum-time problem and a minimum-fuel

problem. If the operating cost is a function of the transfer time and they are proportional

to each other, we would like to minimize the transfer time to minimize the cost. But to

achieve the minimum transfer time we need large amount of fuel. Therefore, for example, if

we would like to minimize the cost, the following problem should be solved: “Find the best

launch opportunity for a transfer orbit from Earth to Mars that minimizes the cost. This

cost is the combination of fuel consumption and transfer time if we leave Earth between year

2005 and 2020.” For this type of problem, a grid search may be necessary at the beginning

of the analysis with the launch date and time of flight as parameters. The results gained

from the grid search will allow a more precise optimization to be performed.

2.2 Solution Methods for Optimization Problems

Solution methods for trajectory optimization problems are typically identified as either

direct methods or indirect methods. In this section the characteristics of these methods are
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presented.

Direct methods discretize the optimization problem through events and phases, and

the subsequent problem is solved using nonlinear programming techniques[55]. These tech-

niques include shooting, multiple shooting, and transcription or collocation methods. In

the shooting method, the control history is discretized as a polynomial, with the trajectory

variables as functions of the integrated equations of motion. In the collocation method, the

trajectory is discretized over an entire trajectory as a set of polynomials for both state vari-

ables and control variables[55]. Solutions obtained with these direct methods are generally

considered sub-optimal due to the discretization of either the state or controls, or both[69].

Indirect methods use calculus of variations techniques to characterize the optimization

problem as a two-point boundary value problem. The optimal control scheme is an indirect

method. The optimal control uses a first variation technique to determine necessary condi-

tions for an optimum, and second variation techniques are used to determine whether the

point is the minimum, the maximum, or a saddle point[17]. This method involves applying

calculus of variations principles and solving the corresponding two point boundary value

problem[51]. Initial estimates of the Lagrange multipliers must be provided, but since they

do not have physical meanings, guessing the initial values of the Lagrange multiplier is

difficult and may lead to problems with convergence.

There also exist hybrid methods that numerically integrate the Euler-Lagrange equations

(and control the spacecraft based on the primer vector). These methods solve a nonlinear

programming problem where the Lagrange multipliers of the indirect method and the rel-

evant mission parameters form part of the parameter vector while extremizing a general

scalar cost function[69].

Each of the above methods have pros and cons: indirect methods are difficult to formu-

late, whereas with direct methods, mathematical suboptimal solutions are obtained. In this

research, an indirect method is selected since they calculate an optimal solution rather than a

suboptimal solution. The equations of motion used in this research are not very complicated

and can be implemented into the application without difficulties. Also, there are several
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excellent literature available for programming with indirect methods[17][49][69][41][57].

2.3 Indirect Methods – Calculus of Variations

The calculus of variations is concerned with the problem of minimizing or maximizing

functionals, a functional being a quantity whose value depends upon the sets of values

taken by certain associated functions over domains of their variables for which they are

defined[54]. In this section, some methods to solve different types of optimization problems

are described.

2.3.1 Problems without Terminal Constraints, Fixed Terminal Time

Consider the dynamic system is described by the following nonlinear differential equations:

x = ḟ [x(t), u(t), t], x(t0)given, t0 ≤ t ≤ tf , (1)

where x(t), an n-vector function, is determined by u(t), an m-vector function. Suppose we

wish to choose the history of control variables u(t) to minimize the performance index J

(scalar) of the form

J = φ[x(tf ), tf ] +

∫ tf

t0

L[x(t), u(t), t] dt (2)

where φ[x(tf ), tf ] is a scalar function that will be minimized, and L[x(t), u(t), t] is the

Lagrangian. By adjoining the system differential equations Eqn. 1 to J with multiplier

functions λ(t) and modifying it, we get the following equation:

J̄ = φ[x(tf ), tf ] +

∫ tf

t0

[L[x(t), u(t), t] + λT (t)f [x(t), u(t), t] − ẋ]dt

= φ[x(tf ), tf ] +

∫ tf

t0

[L[x(t), u(t), t] + λT (t)f [x(t), u(t), t]]dt−
∫ tf

t0

λT ẋdt

= φ[x(tf ), tf ] +

∫ tf

t0

H[x(t), u(t), t]dt−
∫ tf

t0

λT ẋdt

= φ[x(tf ), tf ] +

∫ tf

t0

H[x(t), u(t), t]dt− [λTx]
tf
t0

+

∫ tf

t0

λ̇Txdt

= φ[x(tf ), tf ] +

∫ tf

t0

{H[x(t), u(t), t] + λ̇Tx}dt+ λT (t0)x(t0) − λT (tf )x(tf ) (3)

where H is the Hamiltonian

H[x(t), u(t), t] = L[x(t), u(t), t] + λT (t)f [x(t), u(t), t]. (4)
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Now consider the variation in J̄ due to variations in u(t) for fixed times t0 and tf ,

δJ̄ =

[(

∂φ

∂x
− λT

)

δx

]

t=tf

+ [λT δx]t=t0 +

∫ tf

t0

[(

∂H

∂x
+ λ̇T

)

δx+
∂H

∂u
δu

]

dt. (5)

At a stationary point δJ̄ = 0, so we should choose multipliers and variables of this

equation so that δJ̄ becomes zero. If the multiplier λ(t) is chosen

λT (tf ) =
∂φ

∂x(tf )
(6)

λ̇T (t) = −∂H
∂x

= −∂L
∂x

− λT
∂f

∂x
, (7)

Eqn. 5 becomes

δJ̄ = λT (t0)δx(t0) +

∫ tf

t0

∂H

∂u
δu dt. (8)

When x(t0) is given, δx(t0) = 0. Therefore for an extremum, δJ̄ must be zero for arbitrary

δu(t), and this can only happen if

∂H

∂u
=
∂L

∂u
+ λT

∂f

∂u
= 0, t0 ≤ t ≤ tf . (9)

Therefore, to find a control variables u(t) that produces the stationary value of J , differential

equations 1 and 7 should be solved with boundary conditions 6 with x(t0) given, then u(t) is

determined by Eqn. 9. Note that for any state x, the associate costate λx evaluated at time

t represents the sensitivity of the optimum J (denoted J ∗) with respect to perturbations in

the state x at time t, i.e.

λx =
∂J∗

∂x(t)
(10)

2.3.2 Some State Variables Specified at a Fixed Terminal Time

If xi, the i-th component of the state vector x, is prescribed at terminal time tf , δxi at tf

is zero. Then the first term of Eqn. 5 vanishes. Also, if all of n components of x are given

at initial time ti, then the second term of this equation also vanishes because δxi(ti) = 0.

Suppose that q components of x are prescribed at tf , then φ = φ[xq+1, · · · , xn]tf . Then

using a n-component vector p, Eqn. 8 becomes

δJ =

∫ tf

t0

[

∂L

∂u
+ pT

∂f

∂u

]

δu dt (11)
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where

ṗ = −
(

∂f

∂x

)T

p−
(

∂L

∂x

)T

(12)

pj(tf ) =















0, j = 1, · · · , q

(∂φ/∂xj)|t=tf , j = q + 1, · · · , n.
(13)

These equations determine the influence functions p for the performance index.

Next, suppose a performance index J = xi(tf ), the i-th component of the state vector

at the final time. This will make influence functions for xi(tf ) by substituting φ = xi(tf )

and L = 0 in Eqn. 11. Then by expressing the influence functions in the n× q matrix form

R, Eqns. 11, 12, and 13 become

δxi(tf ) =

∫ tf

t0

RTi
∂f

∂u
δu dt, i = 1, · · · , q (14)

where

Ṙi = −
(

∂f

∂x

)T

Ri (15)

Rij(tf ) =















0, i 6= j

1, i = j, j = 1, · · ·n,
(16)

where Ri are components of i-th column of matrix R.

Now, we can construct a δu(t) history that decreases J . δu(t) should be made so that

it produces δJ < 0 and satisfies the q terminal constraints δxi(tf ) = 0. To do this, adjoint

q equations of Eqn. 14 and Eqn. 11 using an constant νi.

δJ +

q
∑

i=1

νiδxi(tf ) =

∫ tf

t0

{

∂L

∂u
+ [p+ νR]T

∂f

∂u

}

δu dt. (17)

If we choose, with a positive scalar constant k,

δu = −k
{

∂L

∂u
+ [p+ νiRi]

T ∂f

∂u

}

(18)

and substitute this into Eqn. 17,

δJ + νiδxi(tf ) = −k
∫ tf

t0

∥

∥

∥

∥

∂L

∂u
+ [p+ νiRi]

T ∂f

∂u

∥

∥

∥

∥

2

dt < 0, (19)

13



which is negative unless the integrand vanishes. Therefore, if we can determine nui so that

it satisfies the terminal constraints(δxi(tf ) = 0), the performance index decreases with δu

of Eqn. 18. Substituting Eqn. 18 into Eqn. 14,

0 = δx(tf ) = −k
∫ tf

t0

RT
∂f

∂u

[

(

∂f

∂u

)T

[p+ νR] +

(

∂L

∂u

)T
]

dt (20)

0 =

∫ tf

t0

RT
∂f

∂u

[

(

∂f

∂u

)T

p+

(

∂L

∂u

)T
]

dt+ ν

∫ tf

t0

RT
(

∂f

∂u

)(

∂f

∂u

)T

Rdt, (21)

from which the appropriate choice of the νi’s is

ν = −Q−1g, (22)

where Q is a (q × q) matrix and g is a q-component vector:

Qij =

∫ tf

t0

RT
(

∂f

∂u

)(

∂f

∂u

)T

Rdt, i, j = 1, · · · , q, (23)

gi =

∫ tf

t0

RT
∂f

∂u

[

(

∂f

∂u

)T

p+

(

∂L

∂u

)T
]

dt, i = 1, · · · , q. (24)

Thus, a δu(t) history that minimizes the performance index has been constructed.

If the terminal state is prescribed as a form of functions

ψ[x(tf ), tf ] = 0 q equations, (25)

the performance index can be written with a multiplier vector ν (a q vector) as follows.

J = φ[x(tf ), tf ] + νTψ[x(tf ), tf ] +

∫ tf

t0

L[x(t), u(t), t] dt. (26)

If we define a scalar function Φ = φ+ νTψ, the development above can be applied without

change. Then necessary conditions for J to have a stationary value are

ẋ = f(x(t), u(t), t) (27)

λ̇ = −∂f
∂x

T

λ− ∂L

∂x

T

(28)

∂H

∂u

T

=
∂f

∂u

T

λ+
∂L

∂u

T

= 0 (29)

λT (tf ) =

(

∂φ

∂x
+ νT

∂ψ

∂x

)

t=tf

(30)

ψ[x(tf ), tf ] = 0 (31)

x(t0) given. (32)
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2.3.3 Inequality Constraints on the Control Variables

Suppose that we have an inequality constraint on the system:

C(u(t), t) ≤ 0. (33)

where u(t) is the m-component control vector, m ≥ 2, and C is a scalar function. For

example, when we would like to limit the Isp level less than or equal to 30,000m/s, C is

expressed as C = Isp − 30, 000 ≤ 0.

If we define the Hamiltonian with a Lagrange multiplier µ(t)

H = λT f + L+ µTC, (34)

the necessary condition on H is

Hu = λT fu + Lu + µTCu = 0 (35)

and µ















≥ 0, C = 0,

= 0, C < 0.

(36)

The positivity of the multiplier µ when C = 0 is interpreted as the requirement that the

gradient of original Hamiltonian (λT fu + Lu) be such that improvement can only come by

violating the constraints.

The differential equations for costate vectors are

λ̇T (t) = −∂H
∂x

= −∂L
∂x

− λT
∂f

∂x
− µTCx = −∂L

∂x
− λT

∂f

∂x
. (37)

Therefore to calculate costate vectors we can use Eqn. 7 because C is not a function

of x. Boundary conditions should be chosen so that the initial and terminal constraints for

state variables are satisfied.

2.3.4 Bang-off-bang Control

This type of control is applied to the fixed-time, minimum-fuel problem with constrained

input magnitude. For example, a CSI rocket that can turn its engine on/off as needed would

obey this control law.
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Consider the problem with the following linear system[57].

ẋ = Ax+Bu (38)

Assume that the fuel used in each component of the input is proportional to the mag-

nitude of that component. Then the cost function to be minimized is

J(t0) =

∫ tf

ti

m
∑

i=1

ci|ui(t)|dt, (39)

where ci is a component of a m vector C = [c1 c2 · · · cm]T and ui(t) is a component of a m

vector |u(t)| = [|u1| |u2| · · · |um|]T .

Suppose that the control is constrained as

|u(t)| ≤ 1 ti ≤ t ≤ tf . (40)

The Hamiltonian is

H = CT |u| + λT (Ax+Bu) (41)

and according to the Pontryagin’s minimum principle, the optimal control must satisfy

CT |u∗| + (λ∗)T (Ax∗ +Bu∗) ≤ CT |u| + (λ∗)T (Ax∗ +Bu) (42)

for all admissible u(t). (∗) denotes optimal quantities. This equation can be reduced to

CT |u∗| + (λ∗)TBu∗ ≤ CT |u| + (λ∗)TBu (43)

If we assume that all of the m components of the control variables are independent,

|u∗i | +
(λ∗)T biu

∗

i

ci
≤ |ui| +

(λ∗)T biui
ci

, (44)

where bi are the columns of B. Since

|ui| =















ui, ui ≥ 0

−ui, ui ≤ 0

(45)

we can write the quantity we are trying to minimize by selection of ui(t) as

qi(t) = |ui| +
bTi λui
ci

=















(

1 + bTi λ/ci
)

|ui|, ui ≥ 0

(

1 − bTi λ/ci
)

|ui|, ui ≤ 0

(46)
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Figure 3: Bang-off-bang Control: Choosing Control to Minimize qi.

Fig.3 shows the relationship between qi and bTi λui for ui = 1, ui = 0, and ui = −1, and

when −1 < ui(t) < 1, qi(t) takes on values inside the shaded area. Therefore, if we neglect

the singular points (bTi λ/ci = 1 or -1), the control can be expressed as

ui(t) =































1, bTi λ/ci < −1

0, −1 < bTi λ/ci < 1

−1, 1 < bTi λ/ci.

(47)

This is called a bang-off-bang control law.

2.4 Literature Review

There have been a number of studies on low thrust trajectories. One of the earliest and

most notable applications of the calculus of variations to the orbit transfer problem was

done by Lawden in 1963[54]. Lawden set the foundations for the functional optimization of

space trajectories. He showed that the thrust direction vector is expressed by the Lagrange

multipliers, and the vector is referred to as the primer vector.

A book by Marec[59] published in 1979, covered a study of optimal space trajectories

comprehensively, including both high thrust and low thrust propulsion systems. He applied

the Contensou-Pontryagin Maximum Principle to obtain equations of optimal trajectories.

In addition to the study of general optimal trajectory problems introduced above, a

number of low thrust trajectory optimization problems have been studied for decades. Most

of the problems deal with trajectories with CSI engines. There are also several studies

on variable thrust, variable Isp trajectories, and in the next few pages these studies are

17



introduced.

In the paper published in 1995, Chang-Diaz, Hsu, Braden, Johnson, and Yang [25]

studied human-crewed fast trajectories with a VSI engine to and from Mars. Their study

does not include planetocentric phases at departure and arrival, but only heliocentric phase

is considered. In addition to completing a nominal round trip scenario (a 101-day outbound

trip, a 30-day stay, and a 104-day return), their work shows that a VSI engine has the

ability to abort a mission when something goes wrong during the outbound phase. Chang-

Diaz, an advocator of VASIMR(VAriable Specific Impulse Magnetoplasma Rocket), and

his colleagues have not only simulated the trajectory analysis but also have conducted a

number of hardware experiments with a VSI engine[65][74][43][66][30][44].

Kechichian(1995)[49] described the method of optimizing a VSI low thrust trajectory

from LEO to GEO using a set of non-singular equinoctial orbital elements. His paper

includes all the equations required to perform the calculus of variations to find the set of

control variables (Isp, pitch, and yaw) for a constant power, variable Isp trajectory. The

upper and lower bounds for the Isp are set to simulate the physical constraints of the engine.

This study is only for the orbit around the Earth and the equations cannot be used for the

escape trajectory as the equinoctial orbital elements are only valid for a trajectory with an

eccentricity of less than one.

Casalino, Colasurdo, and Pastrone(1999)[20] analyzed the optimal 2-dimensional helio-

centric trajectory with a VSI engine. Using the shooting method, they studied trajectories

with and without swing-bys to escape from the solar system. Their main concern was to

obtain the best history of thrust and pitch angle to maximize the specific energy of the

spacecraft at the end of calculation which does not have a planetary capture at the end.

The conclusion of this research was that a trajectory with swing-bys can get more escape

energy than a trajectory without swing-bys.

The research of VSI trajectories done by Nah and Vadali(2001)[61] includes the gravi-

tational effects of the Sun, the departure planet (Earth), and the arrival planet throughout

an entire trajectory. Mars is chosen as the arrival planet, and the actual ephemeris for

Earth and Mars is used. A shooting method was used to obtain the control variables that
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maximize the final mass of the spacecraft at Mars arrival. The upper limit for Isp is set as

a constraint.

Seywald, Roithmayr, and Troutman(2003)[72] studied a circular-to-circular low thrust

orbit transfer with a prescribed transfer time. They solved the optimal control problem an-

alytically and studied the thrust history that minimizes the fuel consumption for a transfer

orbit between two circular orbits with prescribed time of flight. Their work concludes that,

if the thrust magnitude is always low enough such that it qualifies as “low thrust”, the op-

timal thrust magnitude is always proportional to the vehicle mass. They also investigated

how much fuel is saved if a VSI engine, instead of a CSI engine, is used, and concluded that

the percentage of fuel savings depends strongly on the boundary conditions such as flight

time and initial and final values of the semi-major axis.

The work done by Ranieri and Ocampo(2003)[69] is specialized for human missions to

Mars. Using the nonlinear programming boundary value solver, they studied a round trip

to Mars using VASIMR. This trajectory includes a heliocentric outbound trajectory from

Earth to Mars, a several month stay at Mars, then a heliocentric inbound trajectory from

Mars to Earth. Planetary bodies are assumed to be point masses (zero sphere of influence).

The objective is either to minimize the initial mass with a given final mass or to maximize

the final mass with a given initial mass for an unbounded Isp engine and a CSI engine. A

CSI engine can turn its power on and off, resulting in a bang-off-bang thrust profile. In

this paper, the fuel requirements for a round trip with VSI and a trajectory with CSI are

compared. The results show that the fuel consumption with VSI is more than the CSI for

the outbound trajectory, but it is less than CSI for the inbound trajectory. The result is

that VSI requires less fuel than CSI for an overall round trip.

Each of these papers gives interesting features of VSI engines. No paper compares VSI

engines with high thrust engines, and only two papers (by Seywald[72] and by Ranieri[69])

compare a VSI engine with a CSI engine. The paper by Ranieri studied Earth to Mars and

Mars to Earth trajectories, and the paper by Seywald studied circular-to-circular geocentric

transfer orbits. That means there still remains ambiguity of the advantages of a VSI engine
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over a CSI engine in general. A swing-by trajectory was studied in Casalino’s paper[20],

but he does not include planetary capture at the end of the mission.

Therefore, it is still ambiguous if using the VSI engines is more beneficial than using

the CSI engines for any interplanetary missions. Also, the effects of planetary swing-bys for

transfer orbits between two planets are unknown.

Hence, research questions still remain: Is VSI always better than CSI or high thrust for

any trajectory? Or if we apply swing-bys and simulate a planetary capture at the end of

mission, what characteristics does the trajectory have?
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CHAPTER III

EXHAUST-MODULATED PLASMA PROPULSION

SYSTEMS

This chapter contains a brief description of an engine that is capable of modulating thrust

and specific impulse at constant power.

There are several types of exhaust modulated engines under experiment such as VASIMR

(VAriable Specific Impulse Magnetoplasma Rocket), currently studied at the Advanced

Space Propulsion Laboratory at NASA’s Johnson Space Center in Houston (Fig. 4), or EICR

(Electron and Ion Cyclotron Resonance) Plasma Propulsion Systems at Kyushu University,

Japan[2].

Because these systems are similar, the mechanism of the VASIMR engine is presented

in this section.

3.1 Overview

The concept of exhaust modulation has been known theoretically since the early 1950’s[9][25],

but the technology to construct these systems had remained elusive until the late 1960’s.

The electric propulsion systems such as ion engines and the Hall thrusters accelerate ions

present in plasmas by applying electric fields externally or by charging axially. These ion

acceleration features, in turn, result in accelerated exhaust beams that must be neutralized

by electron sources located at the outlets before the exhaust streams leave the engine.

A MPD (Magnetoplasmadynamic thruster) plasma injector includes a cathode in contact

with the plasma. This cathode becomes eroded and the plasma becomes contaminated with

cathode material. This erosion and contamination limit the lifetime of the thruster and

degrade efficiency[23].

The design of the VASIMR avoids those limiting features as VASIMR has an electrode-

less design (a fact that enables the VASIMR to operate at much greater power densities).
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Figure 4: VX-10 Experiment at Johnson Space Center[45].

Instead of heating (or accelerating) the ions with electrodes, VASIMR heats the ions by the

action of electromagnetic waves, similar to a microwave oven. Therefore, contamination is

virtually eliminated and premature failures of components are unlikely. A magnetic field is

used to trap these high temperature particles.

With its long lifetime and reliability, the VASIMR engine is expected to be used for

many purposes including:

• Boosting satellites to higher orbits.

• Retrieving and servicing spacecraft in high Earth orbits.

• Course correction and drag make-up for space station.

• Human and robotic missions to other planets.

A more precise explanation of the mechanics of the VASIMR engine is introduced in the

next section.
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3.2 Mechanism

Rocket thrust, T , is measured in Newtons (kg·m/s2) and is the product of the exhaust

velocity relative to the spacecraft, c(m/s), and the rate of propellant flow, ṁ(kg/s).

T = −ṁc. (48)

The negative sign shows that the direction of the thrust is opposite to the direction of

the exhaust velocity. The same thrust is obtained by ejecting either more material at low

velocity or less material at high velocity. The latter saves fuel but generally entails high

exhaust temperatures.

The rocket performance is measured by its specific impulse, or Isp, which is the exhaust

velocity divided by the acceleration of gravity at sea level, g0(9.806m/s2), as

Isp =
c

g0
. (49)

The specific impulse is a rough measure of how fast the propellant is ejected out of the back

of the rocket. A rocket with a high specific impulse does not need as much fuel as a rocket

with a low specific impulse to achieve the same ∆V. Although thrust is directly proportional

to Isp (because T = −ṁc and c = g0Isp), the power needed to produce it is proportional

to the square of the Isp. Therefore the power required for a given thrust increases linearly

with Isp. These relationships can be expressed in the following equation:

PJ =
T c

2
= −1

2
g0 Isp T = −1

2
ṁ g2

0 I
2
sp where PJ is the jet power. (50)

Chemical rockets obtain this power through the exothermic reaction of fuel and oxidizer.

In other propulsion systems, the power must be imparted to the exhaust by a propellant

heater or accelerator. Solar panels or nuclear reactors may be used to generate this power.

The greatest advantage of the VASIMR engine is that it can change its thrust level and

specific impulse at a constant power level by changing the amount and the velocity of the

exhaust ions. This is how VASIMR modulates its thrust and Isp.

VASIMR uses charged particles called plasma as a source of thrust. The temperature

of the plasma ranges from 10,000 K to more than 10 million K. At these temperatures, the
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Figure 5: Synoptic View of the VASIMR Engine[22].

ions move at a velocity of 300,000 m/s. This is 60 times faster than the particles in the best

chemical rockets whose temperature is only about a few thousand K.

For a given jet power PJ , the relationship between thrust T and Isp is expressed as

PJ = 1

2
T Isp g0. When the power is set constant, thrust and Isp are inversely related.

Increasing one always comes at the expense of the other.

As shown in Fig. 5[22], the VASIMR rocket system consists of three major magnetic cells

called “forward,” “central,” and “aft.” First, a neutral gas, typically hydrogen, is injected

from the injector to the forward cell and ionized by the helicon antenna[5].

Second, this charged gas is heated to reach the desired density in the engine’s central

cell. This heating process is done by the action of electromagnetic waves, which is similar

to what happens in a microwave oven. The plasma is trapped by the magnetic field that is

generated by the magnetic coils so that it can be heated to 10 million K.

Third, heated plasma enters the nozzle at the aft cell, where the plasma detaches from

the magnetic field and is exhausted to provide thrust.

VASIMR can change its thrust and Isp by changing the fraction of power sent to the

Helicon antenna vs. the ICRH antenna (See Fig. 6). The helicon antenna is used to ionize

24



Isp increases


Thrust increases


Power sent to

ICRH antenna


Pmax = constant


Power sent to

Helicon antenna


P1


P2


Pmax = P1 + P2


0


Figure 6: Power Partitioning and Relationship between Thrust and Isp.

gas injected from the gas injector. The ICRH (ion cyclotron resonance heating) antenna

heats the gas and accelerate the particle before these particles are exhausted to space. When

more power is sent to Helicon antenna, more gases are ionized, which means more ions are

ejected. But because the total system power level is constant, power sent to ICRH antenna

decreases, which means these ions exit with a lower velocity. These low speed, large quantity

of ions act as a source of a high thrust, low Isp engine. On the other hand, when less power

is sent to the Helicon antenna and more power is sent to the ICRH antenna, small amount

of gases are ionized and they are accelerated to a higher exit velocity. These high speed

ions act as a source of a low thrust, high Isp rocket engine.

In the absence of any constraints on the time required to perform a given orbital transfer,

it is always optimal to operate the engine at its highest possible specific impulse value.

However, if time is important, then it may be beneficial to trade some of the specific

impulse in return for high thrust[72].

As mentioned in Chap. 1, the choice of the combination of the thrust and Isp could be

considered in a similar way to an automobile transmission. Initially the spacecraft needs

high thrust so that it gets enough speed to begin the transfer. This is similar to a car

starting with low gear from rest. As the spacecraft’s speed increases, Isp is allowed to

gradually increase and therefore thrust decreases for higher fuel efficiency, just as a car

shifts up its gear as its speed increases.
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3.3 Choosing the Power Level

In the last section, the operational power level is assumed to be maximum (therefore con-

stant). As explained so far, a VSI spacecraft needs high thrust near the departure planet

and target planet, but low fuel consumption is desirable for the rest of the path. VASIMR

has two options to lower fuel consumption: either by increasing Isp while the power is kept

constant or by decreasing the power level while Isp is kept constant.

In this section, fuel consumption at a power level other than the maximum is investigated

mathematically[49]. Then the reason the maximum power level should be always chosen to

achieve the least fuel consumption is presented.

The equation of motion of a spacecraft in a vacuum is given by

m~̈r = ṁ~c+m~g (51)

where ~r is the position of spacecraft, ~g is the acceleration of gravity, ~c is the exhaust

velocity, and ṁ is the mass flow rate. The acceleration vector ~a due to the thrust ~T (= ṁ~c)

is expressed as

~a =
~T

m
= ~̈r − ~g. (52)

For an electric-powered ion thruster, the jet power, PJ , can be expressed as, using thrust,

T , and exhaust velocity, c,

PJ =
Tc

2
. (53)

Since T = −ṁc,

PJ = − T 2

2ṁ
. (54)

Then for a given jet power, the thrust versus mass flow rate curve of an ion rocket is written

as

T =
√

−2ṁPJ . (55)

This behavior is very different from that of a conventional constant exhaust velocity rocket,

because for these rockets the thrust versus mass flow rate curve is

T = −ṁc (56)
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Figure 8: Thrust vs. Mass Flow Rate for
a VSI Engine.

as introduced in the last section. Figs. 7 and 8 show the trend of thrust with respect to

mass flow rate for CSI and VSI, respectively.

The mass flow rate, on the other hand, is expressed as:

ṁ = −T
c

for CSI (57)

ṁ = − T 2

2PJ
for VSI (58)

Therefore, it is advantageous to have high exhaust velocity for CSI or high power for VSI

in order to minimize propellant consumption. Although the same level of thrust can be

achieved by different combinations of ṁ and PJ from Eqn. 55, it is the best to choose PJ

at its maximum. This is because ṁ is at a minimum if PJ is chosen at its maximum in

Eqn. 58.

As is shown in Fig. 7, for a rocket with constant exhaust velocity, the thruster operates

at maximum thrust only because c cannot be varied. Fig. 8 corresponds to the variable

c case for a given power. The thruster can operate in Region II, and cannot operate in

Region I, since it corresponds to the power greater than the maximum power Pmax that the

thruster can exert. Note that it is not optimal to operate at a power level less than Pmax.

For the same thrust T1, the operation at Pmax depicted by point 2 results in the minimum

mass flow rate.

For a practical engine, because of the physical restrictions, there is an upper limit for

the exhaust velocity an engine can achieve, and this limit set an upper limit on Isp. As
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Figure 9: Thrust vs. Mass Flow Rate for a VSI Engine with Limitations.

shown in Fig. 9, Region I that is unreachable by an engine is extended by the inclusion

of the boundary OB. This line is defined by the physical constraints of an engine and it

corresponds to the equation T = −ṁcmax, where cmax is the maximum exhaust velocity

the rocket can achieve. Hence, line OB represents the maximum Isp. This boundary

is necessary to prevent Isp from growing to very large values as the thrust is decreased

towards its minimum value. The minimum thrust magnitude the engine can have for Pmax

is defined at point A.
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CHAPTER IV

PRELIMINARY STUDY: COMPARISON OF HIGH

THRUST, CONSTANT ISP , AND VARIABLE ISP WITH

SIMPLE TRAJECTORIES

Before proceeding to the actual interplanetary trajectory optimization problems, it is good

to start by checking the advantages and disadvantages of a VSI engine over a CSI engine

or a high thrust engine with simple examples.

4.1 Problem Formulation

A problem in this chapter is defined as follows: How much fuel is required and how long

does it take if a spacecraft orbiting around a planet leaves the circular orbit to reach a point

P whose distance from the planet’s center is R?

Fig 10 shows an example of this trajectory. To conduct this study, forces other than the

propulsive force from the spacecraft and the gravity forces from the planet are neglected.

By doing this, the problem can be simplified such that the fuel consumption and transfer

time depend only on the engine type. The equations of motion and mass of the spacecraft

are defined as differential equations. By integrating these equations, the time of flight and

required propellant mass to reach the target are calculated. The types of engines considered

R


CSI, VSI
 High thrust


P


Figure 10: Trajectories for Preliminary Study.
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Figure 11: Preliminary Study: Isp for VSI and CSI.

in this study are high thrust, VSI, and CSI. For each of the thrust types, trip time and

propellant mass required to reach the point P are compared. A shorter trip time and a

smaller amount of the propellant mass are desired.

The thrust vector is assumed to be tangential to the path.

For high thrust, two-body orbital mechanics is applied. For that case, the spacecraft

does not follow the spiral trajectory but the trajectory follows either an ellipse, a parabola,

or a hyperbola. The least energy required (but the longest trip time required) trajectory

for high thrust is an ellipse with its apoapsis (farthest point from the planet) located at

P as shown in Fig. 10. It is assumed that the spacecraft fires an instantaneous burn at

the periapsis (closest point from a mass) and follows the half-ellipse toward the apoapsis.

∆V at the departure is used to calculate the required propellant mass in the following way:

with Isp specified, mp = m0(A− 1)/A, where A = exp(∆V/(g0 · Isp)).

For low thrust with constant Isp (CSI), Isp values of 3,000, 5,000, and 8,000 seconds

are considered. The trip time required to reach the point P is obtained by propagating

the equations of motion. From the trip time, propellant mass consumed is calculated as

mp = 2t · PJ/(g0 · Isp), where t is the trip time, PJ is jet power of the thrust, and g0 is

9.806m/s2.

For low thrust with variable Isp (VSI), it is assumed that the thrust is allowed to change

linearly with time as shown in Fig. 11. The starting thrust and the slope of the thrust with

respect to time are adjusted so that the spacecraft reaches the point P with a least trip
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time. Also, the starting thrust and the slope are set so that the required propellant mass is

constrained to be the same amount as the CSI cases. Hence, there are three VSI cases that

are corresponding 3,000, 5,000, and 8,000 sec of CSI cases. The fuel consumption for each

VSI case is the same as the fuel consumption for each CSI case.

At first a CSI with certain Isp case is calculated and the propellant mass is computed.

Then a VSI case is computed by adjusting the slope and the initial Isp so that the required

propellant mass equals the CSI case with an Isp of 3,000 sec. By doing this, only trip

times should be compared when comparing CSI and VSI, with the shorter trip time case

considered to be better than the longer trip time case.

The following cases are considered: the distance between two point masses, R, is set to

100 DU, 500 DU, and 1,000 DU. “DU”, or Distance Unit, is defined as the radius of the

planet. Initial masses of 5 MT, 10 MT, and 20 MT are considered. The jet power is set

to 500 kW for VSI and CSI engines. The values of time of flight for VSI, CSI, and high

thrust are compared and the amount of fuel saved (or increased) is calculated when a VSI

engine was used. Time of flight is measured in TU, or Time Unit. TU is defined such that

the speed of the spacecraft in the hypothetical reference circular orbit (whose radius is 1

DU) is 1 DU/TU. Then the value of the gravitational parameter, µ, will turn out to be 1

DU3/TU3. TU and DU are called canonical units[12].

Because only two-dimensional cases are considered, the equations of motion of the space-

craft in Cartesian Coordinates are

ẋ = u (59)

ẏ = v (60)

u̇ = −µx
r3

+
Tx
m

(61)

v̇ = −µy
r3

+
Ty
m

(62)

(63)

where µ is the gravitational constant (1 DU3/TU3), and r = (x2 + y2)1/2; Tx, and Ty are

the x and y components of the thrust; m is the mass of the spacecraft.
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Figure 12: Results: R = 100 DU, m0 = 20 MT, PJ = 500 kW.

4.2 Results

Fig. 12 shows the comparison of propellant mass and time of flight for high thrust, CSI, and

VSI when R is 100 TU, initial mass is 20 MT, and jet power is 500 kW. For high thrust, three

different realistic Isp cases are computed, resulting in a decrease of the required propellant

mass as Isp increases.

For low thrust cases, CSI cases are first computed. Then, as explained above, VSI cases

are computed so that fuel consumption becomes the same amount of that of CSI cases. The

slope and the initial Isp of the linearly increasing Isp are adjusted so that the spacecraft

reaches the point P with the shortest trip time.

Fig. 13 shows the Isp histories of VSI and CSI when Isp for CSI is 3,000 sec. Isp for VSI

starts at 2,427 sec and ends at 3,605 sec. This figure shows that time of flight for VSI is

133 TU shorter than CSI.

As can be seen from Fig. 12, the high thrust trip time is the smallest, and the trip
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Figure 13: Isp histories for VSI and CSI when CSI Isp is 3,000 sec: R = 100 DU, m0 = 20
MT, PJ = 500 kW.

time for 8,000 sec constant Isp is the longest. When Isp is high, thrust is low. So it was

expected that 8,000 sec of Isp takes longer to reach the point P than both 3,000 sec and

5,000 sec Isp cases. But because 8,000 sec Isp is more efficient than others, it requires the

least propellant. When the thrust (therefore Isp) is modulated, as shown in the figure, the

trip time decreases. From this result, it is possible to say that higher thrust is desirable in

the vicinity of the attracting body while most of the power should be used to escape from

the gravity well of the attracting body. Higher Isp is desirable when the spacecraft is far

from the attracting body and higher fuel efficiency is needed rather than higher thrust.

Fig. 14 and Fig. 15 are the results for R = 500 and 1,000 DU, respectively, with a 20

MT initial mass and 500 kW jet power. For both cases there is a similar tendency to the

R = 100 DU Case. When R becomes very large, trip time for the high thrust becomes

very large too, and high thrust becomes worse for both propellant consumption and trip

time. This is because, when R becomes large, the high thrust trajectory with the minimum

propellant mass becomes close to a parabola. The velocity near apoapsis becomes very

slow, and therefore it takes quite a long time to get to the target.

The above examples are calculated by equating the propellant mass for CSI and VSI. If

trip time, instead of propellant mass, is equated and the results are compared, it is easily

guessed that propellant mass for VSI becomes smaller than that for CSI. That means that by
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Figure 14: Results: R = 500 DU, m0 = 20 MT, PJ = 500 kW.

adjusting trip time and propellant mass, it is possible to make both trip time and propellant

mass of VSI shorter and smaller than those of CSI. Therefore, it is concluded that, for this

simplified example, modulating thrust and specific impulse lowers either propellant mass or

trip time, or possibly both.

Table 2 shows the comparison of trip time for low thrust with a different Isp and a

different distance between two attracting bodies, R. The maximum trip time decrease is

about 11% if Isp is modulated. It is interesting to note that as R increases the benefit of

modulating thrust increases. Considering the trip from Earth to Mars, the closest distance

between Earth and Mars is about 0.5AU, or 11,728 DU. According to these results, the

benefit of variable thrust should therefore be significant.

Next, instead of comparing by the travel distance, fuel requirements for different values

of the initial mass are compared. Fig. 16 shows the results for an initial mass of 5 MT,

R of 100 DU, and PJ of 500 kW, and Fig. 17 shows the results for initial mass of 10 MT,

R of 100 DU, and PJ of 500 kW. These figures show that for all cases, VSI is better than
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Figure 15: Results R = 1,000 DU, m0 = 20 MT, PJ = 500 kW.

CSI. Table 3 presents the summary of the trip time savings for each initial mass and each

Isp. As the initial mass decreases, the effect of using VSI over CSI increases. Therefore, in

order to use a VSI engine efficiently, having a lighter spacecraft is desirable.

These calculations were based on the equations of motion (Eqn. 51) introduced in

Sec. 3.3. The magnitude of acceleration is calculated as a = T/m from Eqn. 52, and

the relationship between thrust and jet power is T =
√
−2ṁPJ (Eqn. 55). Hence, halving

the mass of the spacecraft doubles the magnitude of acceleration, and quadrupling the jet

power also doubles the acceleration. That means that decreasing the spacecraft mass has

the same effect as increasing the jet power.

To deal with the effects of the spacecraft mass and the power level on fuel consumption,

a parameter P/m, the power to mass ratio, is introduced. For the same power, smaller

mass makes P/m higher. For the same mass, higher power makes P/m higher. Therefore,

from the above discussions, having a spacecraft with high P/m is beneficial in reducing the

fuel consumption.
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Figure 16: Results: R = 100 DU, m0 = 5 MT, PJ = 500 kW.

R=100DU, m0=10MT, PJ=500kW
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Figure 17: Results: R = 100 DU, m0 = 10 MT, PJ = 500 kW.
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Table 2: Trip Time Savings(Comparison by Distance): (VSI - CSI)/CSI × 100 (%)

Isp(sec)

R(DU) 3,000 5,000 8,000

100 -2.69 -1.55 -1.20

500 -8.26 -5.08 -3.41

1,000 -11.29 -5.89 -5.25

Table 3: Trip Time Savings(Comparison by Initial Mass): (VSI - CSI)/CSI × 100 (%)

Isp(sec)

m0(MT) 3,000 5,000 8,000

5.0 -5.71 -3.44 -1.94

10.0 -3.74 -2.19 -1.23

20.0 -2.69 -1.55 -1.20

In summary, from the preliminary study conducted in this chapter, these conclusions

have been obtained:

• The merit of using a VSI engine increases as the travel distance increases.

• Increasing the power to mass ratio P/m positively affects using a VSI engine over a

CSI engine or a high thrust engine.

In the following chapters, actual interplanetary trajectories are studied and the fuel

requirements are investigated. If the above conclusions can be applied to the actual trajec-

tories, using a VSI engine for a transfer from Earth to Jupiter is more effective than from

Earth to Mars. Further conclusions are that a lighter, higher-powered spacecraft (higher

power to mass ratio) is relatively more desirable for a VSI propulsion system compared to

a CSI propulsion system.
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CHAPTER V

INTERPLANETARY TRAJECTORY OPTIMIZATION

PROBLEMS

5.1 Assumptions

Consider a spacecraft travelling from one planet to another. The spacecraft, leaving from

the departure planet, must control its thrust direction to reach the target planet. In addition

to the thrust direction, a VSI engine should control its thrust magnitude, and a CSI engine

that is capable of turning the engine on/off should control the switching times.

Normally, a spacecraft launched from the ground with a launch vehicle takes either one

of the following steps.

• If the launch vehicle is not powerful enough or the spacecraft needs docking or other

on-orbit operations, the spacecraft is placed in Earth orbit at first, and then it boosts

to escape the Earth’s gravity well.

• If the launch vehicle has enough power to send the spacecraft out of the Earth’s gravity

well, the spacecraft flies directly to the target.

In either case, at first the spacecraft’s motion is affected by the Earth’s gravitational

force. Then as the spacecraft goes farther away from Earth, the gravitational force from

the Earth becomes smaller and the force from the Sun becomes dominant.

In actual missions, while the spacecraft is travelling from one planet to another, it

is subject to various forces including its own thrust, a gravitational force from the Sun,

and gravitational forces from all the planets and satellites, and other planetary bodies.

However, most of those forces are very small compared to the forces from the Sun or nearby

planets, and therefore most of the forces can be neglected. For example, a gravitational

force from Pluto affecting a spacecraft travelling from Earth to Mars is too small and it can

be neglected.
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Figure 18: Sphere of Influence of m2 with respect to m1.

When analyzing a low-thrust interplanetary trajectory, an approximation technique sim-

ilar to the patched conic concept[37] for high-thrust trajectory is often used. An entire

trajectory is divided into several phases and they are analyzed separately so that a space-

craft is only subject to one gravitational force from one attracting body. The endpoint

conditions of each part of trajectory come from the endpoint conditions of other parts, and

after completing the calculation of each part, the results are combined together. This is

to avoid solving complex multi-body problems. For example, with a Mars mission the first

phase will be a geocentric trajectory as the spacecraft escapes from the Earth’s gravita-

tional attraction. The second phase will be a heliocentric trajectory for the transfer from

Earth’s orbit to Mars, and the third phase will be an approach trajectory with Mars as the

attracting force. In this case there will be two patches and at each patch the velocity is

calculated with the concept of the ”sphere of influence[37].”

The Sphere of Influence Suppose a spacecraft with mass m is travelling in a gravita-

tional field formed by a larger body (usually the Sun) with mass m1 and a smaller body (a

planet) with mass m2 as shown in Fig. 18. The force exerted by m2 on m is

Fm,m2
=

−Gmm2

r2
2

(64)

where r2 is the distance between the spacecraft and the mass m2. Similarly the force exerted

by m1 on m is

Fm,m1
=

−Gmm1

r2
1

(65)

where r1 is the distance between the spacecraft and the mass m1. Then the ratio of the

forces is

Fm2

Fm1

=

(

r1
r2

)2 m2

m1

(66)
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The sphere of influence (or SOI) is defined as the region in which the force exerted by the

smaller mass, m2, is much greater than that exerted on m by m1, we can think of the edge

of the SOI at r2 as being established when the ratio of the forces is approximately a tenth

(Fm1
/Fm2

∼= 0.1). The approximate expression for the radius of the SOI is then

r2 ≈ r

(

10m2

m1

)0.5

(67)

where r is the distance between mass m1 and mass m2. Usually the radius of the SOI is

expressed in the following empirical manner:

rSOI = r

(

m2

m1

)0.4

(68)

For example, the radius of the SOI for the Earth with respect to the Sun can be calculated

as 0.00618 AU or 924,500 km using Eqn. 68.

Suppose that, a spacecraft is launched and when it reaches the edge of the SOI and it

has a velocity VE
sc with respect to Earth, whose velocity is VSun

E with respect to the Sun.

Then the spacecraft’s velocity with respect to the Sun at this moment is

VSun
sc = VSun

E +R[E → Sun]VE
sc (69)

where R[E → Sun] is a transformation matrix from the Earth-centered coordinates to the

heliocentric coordinates. The spacecraft velocity with respect to Earth at the SOI, VE
sc, is

often written as V∞.

In this research, instead of calculating V∞ by integrating the equations of motions inside

the sphere of influence, the planet’s gravity is ignored, and a parameter C3 is used. This is

the square of V∞ (
√
C3 = V∞) and expresses the twice of the kinetic energy of the spacecraft

per unit mass (km2/s2) at the edge of the SOI. This C3 value is often given as a launch

vehicle parameter, and with this value V∞ is calculated, and then the initial velocity of the

spacecraft with respect to the Sun is calculated with Eqn. 69. And even if the magnitude

of C3 is the same for two missions, the velocity of the spacecraft with respect to the Sun

may be different because the direction of the motion of the spacecraft at the edge of the

SOI may be different.
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As for the position of the spacecraft with respect to the Sun when it is the edge of the

Earth’s SOI, another approximation is usually taken by assuming that the spacecraft is at

the center of the Earth. As shown above, the radius of the SOI for the Earth is 0.00618AU,

the error induced by this approximation is considered to be small enough to be neglected.

The same discussion is applied to the arrival planet. Final velocity at the arrival planet

is calculated by the predetermined C3 value. The final position is set to be the center of the

arrival planet at the moment. Of course in real life the spacecraft may circularize around

the planet and/or land on the ground after complicated operations, but these schemes are

not dealt with this research.

Therefore, in this research, the planetocentric phases are neglected and only interplan-

etary trajectories are considered. That means that the spacecraft is first placed in the

position where the Earth’s center exists, and its velocity is calculated by the C3 and the ve-

locity of the Earth. The spacecraft departs from the Earth’s position with Earth’s velocity

without gravitational pull from Earth as if there is no Earth.

We should be careful when neglecting planetocentric phases. When using low thrust

propulsion systems, it may take a long time and require some amount of fuel to escape from

the departure planet’s gravity well. Time and fuel may also be required for orbital insertion

at the arrival planet. The time of flight in this research does not include these times of

flight for spiral-in and spiral-out phases. The fuel requirements are also neglected for these

phases.

The spacecraft controls in-plane thrust angle and the out-of-plane thrust angle to reach

the target planet. For a VSI engine, thrust magnitude is also a control variable in addition

to thrust direction.

At the end of the mission, the target position is the center of the planet, and the final

velocity is calculated from C3 at the target planet and the velocity of the target planet with

respect to the Sun.

Another approximation used in this research is that the spacecraft is assumed to be a

point mass ejecting fuel from it to gain thrust. There is no attitude control problem, and
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the thrust direction is assumed to be able to turn instantaneously.

With those approximations and assumptions stated above, for a given time of flight, the

fuel consumption is calculated for each type of engine and for each mission.

To express the state of the spacecraft, x, y, z components of position and velocity vectors

in the Cartesian coordinates are used.

ẋ = u (70)

ẏ = v (71)

ż = w (72)

u̇ = −µx
r3

+
Tx
m

(73)

v̇ = −µy
r3

+
Ty
m

(74)

ẇ = −µz
r3

+
Tz
m

(75)

where µ is the gravitational constant, r = (x2+y2+z2)1/2; Tx, Ty, and Tz are the components

of the thrust; m is the mass of the spacecraft at the moment.

The merit of using this set of state variables are that these can be used for any type of

trajectory (elliptic, parabolic, or hyperbolic).

There are some other sets of variables that express the state of the spacecraft such as the

six classical orbital elements (the semi-major axis a, the eccentricity e, the inclination i, the

longitude of ascending node Ω, the argument of periapsis ω, and the mean anomaly M) or

equinoctial orbital elements (a = a, h = e sin(ω + Ω), k = e cos(ω + Ω), p = tan(i/2) sin Ω,

q = tan(i/2) cos Ω, and L = ν + ω + Ω)[13]. The equations of motion with the classical

orbital elements can not be used for a trajectory if the inclination is zero or 180 degrees.

The equations with the equinoctial orbital elements can be used only when the eccentricity

is less than one.

In this research, a trajectory with its inclination of zero or 180 degrees may be met with,

so the six classical orbital elements are not desirable. Also, because there is a possibility for

a trajectory to become hyperbolic, equinoctial orbital elements cannot be used. Therefore in

this research, position and velocity vectors in the Cartesian coordinates are used to express

the equations of motion of the spacecraft.
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5.2 Equations of Motion for Low Thrust Trajectories

From rocket propulsion fundamentals and using Newton’s law for a variable mass body, the

equation of motion of a spacecraft is

m~̈r = ṁ~c+m~g (76)

where ~r is the vehicle position vector, ~g is the acceleration of gravity, ~c is the exhaust

velocity, and ṁ is mass flow rate.

This equation of motion is expressed by a set of differential equations for a position

vector ~r = [x y z]T and a velocity vector ~V = [u v w]T . The spacecraft’s mass is also

obtained by a differential equation for mass m.

f =













~̇r

~̇V

ṁ













=













~V

−µ~r/r3 + ~T/m

−T 2/2PJ













(77)

In this research, the expression for the thrust vector ~T = [Tx Ty Tz]
T differs depend-

ing on the problem so that each problem is solved most effectively.

5.2.1 VSI – No Constraints on Isp

For this problem, control variables are the same as the components of the thrust vector.

~u =













u0

u1

u2













=












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


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





(78)

Then the equations of motion are

f =









































ẋ
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(79)
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This type of problem can be solved with the method explained in 2.3.2.

5.2.2 VSI – Inequality Constraints on Isp

For this type of problem, we use the following control variables:

~u =


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(80)

where T is the magnitude of thrust, lx, ly, lz are the direction cosines of the direction of

thrust in the inertial frame, and are subject to l2x + l2y + l2z = 1. Then the equations of

motion are

f =













~̇r

~̇V

ṁ













=













~V

−µ~r/r3 +~lT/m

−T 2/2PJ .













(81)

The Hamiltonian of this system is

H = ~λr · ~V − µ

r3
~λV · ~r +~l · ~λV T/m− λmT

2/2PJ

= ~λr · ~V − µ

r3
~λV · ~r − λm

2PJ

(

T −
~l · ~λV PJ
mλm

)2

+
(~l · ~λV )2PJ

2m2λm
. (82)

According to the Pontryagin’s maximum principle, the thrust vector must be selected in

such a manner so as to maximize H at each instant of time. Therefore, we choose ~l parallel

to ~λV . Then ~l and T are expressed as

~l =

[

lx ly lz

]T

= ~λV /λV , ~λV =

[

λu λv λw

]T

(83)

T =
PJλV
mλm

(84)

The vector ~l is called the primer vector. The equations of motion and the control vector
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. (85)

Therefore, solving this type of problem is the same as finding the Lagrange multipliers.

5.2.3 CSI – Continuous Thrust

For continuous thrust, the propellant mass is proportional to the time of flight. That

means that for a fixed time of flight the propellant mass does not change. The problems

dealt in this research are fixed time problems, so the propellant mass cannot be used as the

performance index. For this type of problem, the following performance index is used:

J = (u(tf ) − utarget)
2 + (v(tf ) − vtarget)

2 + (w(tf ) − wtarget)
2 (86)

and the terminal constraints are

ψ =













x(tf ) − xtarget

y(tf ) − ytarget

z(tf ) − ztarget













= 0. (87)

Because the thrust magnitude is fixed, there are two control variables.

~u =







u0

u1






=







θ

φ






(88)

where θ and φ are in-plane thrust angle and out-of-plane thrust angle in the inertial frame

as shown in
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Figure 19: In-plane Thrust Angle θ and Out-of-plane Thrust Angle φ in Inertial Frame.

Then the equations of motion are
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ẏ

ż

u̇

v̇

ẇ
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. (89)

5.2.4 CSI – Bang-Off-Bang Control

For this type of problem, the thrust level is restricted so that it can take either the maximum

value(Tmax) or the minimum value(0).

Because T = 2PJ/c, the Hamiltonian can be expressed as follows using the primer

vector.

H = ~λr · ~V − µ

r3
~λV · ~r + T

(

~l · ~λV /m− λm/c
)

= ~λr · ~V − µ

r3
~λV · ~r + T S (90)

where S is the switching function

S = ~l · ~λV /m− λm/c (91)
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To maximize the Hamiltonian, we choose the thrust level according to the switching

function.














when S > 0, T = Tmax

when S < 0, T = 0

(92)

The equations of motion and the control vector are the same as the VSI constrained

case.
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(93)

5.3 Solving the High Thrust Trajectory

When a high thrust propulsion system (mostly chemical) is used, usually burn time is

very short compared to the entire mission duration. At the beginning of the mission the

spacecraft fires an engine to accelerate to gain enough velocity to reach the target planet,

and once it reaches near the target planet, it burns again for such as an orbital insertion

or a landing. This burn process can be simulated with two instantaneous burns at the

beginning and at the ending, and the rest of the time the spacecraft is assumed to obey

Newton’s law. Therefore a high thrust trajectory can be solved without integrating the

equations of motion once we know positions of the planets. Gauss problem (or Lambert’s
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Figure 21: Gauss Problem: Direction of Motion for the Same Vectors and the Same Time
of Flight.

problem) solves such a trajectory.

Gauss Problem[12] The Gauss problem (or Lambert’s problem) is defined as follows:

Find ~v1 and ~v2 from given ~r1, ~r2, the time of flight t from ~r1 and ~r2, and the direction of

motion.

Although there are an infinite number of orbits passing through ~r1 and ~r2, there are

only two which have the specified time of flight. The two vectors ~r1 and ~r2 uniquely define

the plane of the transfer orbit unless they are collinear and in opposite directions(∆ν = π,

∆ν is the angle between ~r1 and ~r2), and the relationship between four vectors ~r1, ~r2, ~v1,

and ~v2 are expressed by two scalar functions f , g, and their time derivatives as follows:

~r2 = f~r1 + g~v1 (94)

~v1 =
~r2 − f~r1

g
(95)

~v2 = ḟ~r1 + ġ~v1 (96)
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where

f = 1 − r2
p

(1 − cos ∆ν) = 1 − a

r1
(1 − cos ∆E) (97)

g =
r1r2 sin ∆ν√

µp
= t−

√

a3

µ
(∆E − sin ∆E) (98)

ḟ =

√

µ

p
tan

∆ν

2

(

1 − cos ∆ν

p
− 1

r1
− 1

r2

)

=
−√

µa

r1r2
sin ∆E (99)

ġ = 1 − r1
p

(1 − cos ∆ν) = 1 − a

r2
(1 − cos ∆E). (100)

Here a is semi-major axis, p is semi-latus rectum, and ∆E is difference of the eccentric

anomaly that corresponds to ∆ν.

The above expression is not for any conic section but only for ellipse because the eccentric

anomaly E is defined only when the eccentricity is less than one.

To solve trajectories with any eccentricity, another expression is required. For this

research “Solution via universal variables” is used.

Solution via Universal Variables[12] Using universal variables x and z, Eqn. 97 to

100 are expressed as follows:

f = 1 − r2
p

(1 − cos ∆ν) = 1 − x2

r1
C (101)

g =
r1r2 sin ∆ν√

µp
= t− x3

√
µ
S (102)

ḟ =

√

µ

p

(1 − cos ∆ν)

sin ∆ν

(

1 − cos ∆ν

p
− 1

r1
− 1

r2

)

= −
√
µ

r1r2
x(1 − zS) (103)

ġ = 1 − r1
p

(1 − cos ∆ν) = 1 − x2

r2
C. (104)

Solving for x from Eqn. 101, we get

x =

√

r1r2(1 − cos ∆ν)

p C
. (105)

Substituting for x in Eqn. 103 and cancelling
√

µ/p from both sides, yields,

1 − cos ∆ν

sin ∆ν

(

1 − cos∆ν

p
− 1

r1
− 1

r2

)

= −
√

1 − cos ∆ν

r1r2

(1 − zS)√
C

. (106)

If we multiply both sides by r1r2 and rearrange, the following expression is obtained:

r1r2(1 − cos ∆ν)

p
= r1 + r2 −

√
r1r2 sin ∆ν√
1 − cos ∆ν

(1 − zS)√
C

. (107)

49



If we define parameters A and y as

A =

√
r1r2 sin ∆ν√
1 − cos ∆ν

(108)

y =
r1r2(1 − cos ∆ν)

p
= r1 + r2 −A

(1 − zS)√
C

, (109)

x is expressed as

x =

√

y

C
(110)

and Eqn. 102 becomes

√
µ t = x3S +

r1r2 sin ∆ν√
p

= x3S +A
√
y. (111)

Then equations 101, 102, and 104 become

f = 1 − y

r1
(112)

g = A

√

y

µ
(113)

ġ = 1 − y

r2
(114)

Since ~r2 = f~r1 + g~v1, ~v1 and ~v2 can be computed as

~v1 =
~r2 − f~r1

g
(115)

~v2 = ḟ~r1 + ġ~v1 =
ġ~r2 − ~r1

g
. (116)

The numerical method of computing the Gauss problem is explained in the next chapter.

5.4 Problems with Swing-by

5.4.1 Mechanism

The use of swing-by is a technique that is referred to as “gravity assist”[37]. Studies of

interplanetary flight with gravity assist maneuvers are known to deal with cases where the

spacecraft on its way from one celestial body to another approaches a third attracting body,

which brings about a significant change in the spacecraft trajectory[53]. The use of swing-by

may reduce the propulsive velocity budget, and the mechanism is explained in the following

manner.
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Assume a spacecraft entering an SOI of a planet with incoming velocity V∞i
, a velocity

vector with respect to the planet. V∞i
can be expressed as V∞i

= VH
i −VH

pl , where VH
i is

the heliocentric velocity of the spacecraft and VH
pl is the heliocentric velocity of the planet.

If no propulsive force is added, the energy of the swing-by trajectory with respect to the

swing-by planet remains constant, so the magnitude of the outgoing velocity magnitude

V∞o is equal to the incoming velocity magnitude V∞i
(= |V∞i

|) but the direction has been

changed. Therefore, the outgoing “heliocentric” velocity VH
o (= V∞o + VH

pl ) is not equal

to VH
i , in both magnitude and direction. That means the spacecraft either increases or

decreases its energy with a planetary swing-by. Using the equation of the conservation of

the energy:

msc∆Esc +mpl∆Epl = 0 (117)

where msc and mpl are the mass of spacecraft and planet, and ∆Epl and ∆Esc are the

energy change due to the swing-by for spacecraft and planet, respectively, then the energy

the spacecraft gained is

∆Esc = −mpl

msc
∆Epl. (118)

A Mercury swing-by produces the largest energy change because of its highest heliocen-

tric velocity among all planets, and a Jupiter swing-by gives the largest trajectory deflection

for a given V∞ because of its largest mass.

Next, general expressions for the planetary swing-by are developed.

5.4.2 Equations of Motion

Suppose that the position and velocity of the spacecraft in the heliocentric coordinate system

(~r hsc1 and ~V h
sc1) are known at the moment (time t1). It enters the sphere of influence of a

swing-by body whose position in the heliocentric coordinates is ~r hpl1 = ~rpl(t1) and velocity

is ~V h
pl1 = ~Vpl(t1)(see Fig. 22)[53].

The coordinates are transferred from heliocentric coordinates to planetocentric coordi-

nates and the position and velocity vector of the spacecraft with respect to the swing-by
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Figure 22: Schematic Diagram of Forming of Gravity Assist Maneuver.

planet(~r plsc1 and ~V pl
sc1) are obtained.

~r plsc1 = [x1 y1 z1]
T = R[h→ pl](~r hrc1 − ~r hpl1), |~r plsc1| = rSOI (119)

~V pl
sc1 = [u1 v1 w1]

T = R[h→ pl](~V h
rc1 − ~V h

pl1) (120)

Here rSOI is the radius of the planetary sphere of influence and R[h → pl] is the

transformation matrix from heliocentric coordinates to planetocentric coordinates at this

moment.

The specific energy of spacecraft E, specific angular momentum H, eccentricity ε, and

semi-major axis a of the hyperbolic trajectory are expressed as

E = V pl
sc1

2
/2 − µ/rSOI ≈ V pl

sc1

2
/2 (121)

H = βV pl
sc1 (122)

ε =

√

1 +
2EH2

µ2
pl

(123)

a = −µpl/2E (124)

where β =
√

r2
1
v2
1
− (~r1 · ~v1)2/v1 is the impact parameter(v1 = |~V pl

sc1|), that is the aiming

point distance of the spacecraft swing-by from the center of the planet. Then the closest

approach distance between the spacecraft and the center of the swing-by planet, rp, is

rp = a(1 − ε). (125)

The gravity assist maneuver results in a rotation of the spacecraft velocity vector after
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Figure 23: Swing-by: Inside the SOI.

hyperbolic flyby of the planet. The angle of rotation of the spacecraft velocity is

φ = 2 arctan
µpl
βv2

∞

. (126)

To determine the coordinates of the spacecraft “exit” point on the sphere of influence, the

following relationships are used(See Fig.23):

φ∗ = π + φ− 2γ; φ = arcsin
β

rSOI
. (127)

Here µpl is the gravitational parameter of the swing-by planet, v∞ = (v2
1 − 2µpl/r1)

1/2 is

the hyperbolic excess velocity of the spacecraft at the swing-by planet. Because there is no

propulsive energy added to the spacecraft inside the SOI, v∞ = |~V pl
sc1| = |~V pl

sc2|. Note that

the following restriction may be imposed on β:

β ≥ βmin = rpmin

√

1 +
2µpl

rpminv
2
∞

, (128)

where rpmin is the minimum admissible distance in the periapsis of the swing-by parabola

and is determined by

rpmin = rpl + hatm (129)

where rpl is the radius of the planet and hatm is the height of the atmosphere if one exists.

With above expressions for φ and φ∗, coordinates of the spacecraft exit point from the

sphere of influence, ~r plsc2 = [x2 y2 z2]
T , and the coordinates of the spacecraft velocity in the
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planetocentric coordinate system, ~V pl
sc2 = [u2 v2 w2]

T , can be written as:

~r plsc2 =













x2

y2

z2













= Ω(φ∗)~r plsc1 = Ω(φ∗)













x1

y1

z1













(130)

~V pl
sc2 =













u2

v2

w2













= Ω(φ)~V pl
sc1 = Ω(φ)













u1

v1

w1













(131)

The transformation matrix Ω is written as

Ω =













hxhx(1 − cosφ) + cosφ hxhy(1 − cosφ) − hz sinφ hzhx(1 − cosφ) + hy sinφ

hxhy(1 − cosφ) + hz sinφ hyhy(1 − cosφ) + cosφ hyhz(1 − cosφ) − hx sinφ

hzhx(1 − cosφ) − hy sinφ hyhz(1 − cosφ) + hx sinφ hzhz(1 − cosφ) + cosφ













(132)

where [hx, hy, hz] are the unit vector of angular momentum, ~r plsc1 × ~V pl
sc1/|~r

pl
sc1 × ~V pl

sc1|.

The duration of the spacecraft motion in the swing-by planet’s sphere of influence can

be derived from

∆t = 2

√

a3

µpl

(

csc
φ

2
sinhH −H

)

(133)

coshH =
(

1 +
rSOI
a

)

sin
φ

2
(134)

a =

(

v2
1

µpl
− 2

rSOI

)−1

(135)

Therefore, the spacecraft, entering the sphere of influence at time t1 with position r hsc1

and velocity V h
sc1 in the heliocentric coordinates, leaves the sphere of influence of the swing-

by planet at time t2 = t1 + ∆t whose position is ~r hpl2 = ~rpl(t2) and velocity is ~V h
pl2 = ~Vpl(t2).

The spacecraft position r hsc2 and velocity V h
sc2 at this moment (time t1) is expressed as

r hsc2 = ~r hpl2 +R[pl → h]~r plsc2 (136)

V h
sc2 = ~V h

pl2 +R[pl → h] ~V pl
sc2 (137)

whereR[pl → h] is the transformation matrix from planetocentric coordinates to heliocentric

coordinates at this moment.
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Usually the duration the spacecraft is inside the SOI, ∆t, is assumed to be zero for

an approximation. This is possible because normally ∆t is small compared to the entire

mission duration.

5.4.3 Powered Swing-by

A swing-by trajectory for a high thrust engine consists of a series of conic sections. The

endpoint velocity requirements for each leg are determined by the Gauss method. The time

of flight and position vectors of two planets for each leg are required to conduct the Gauss

method. As explained in the last section, for a swing-by trajectory the initial velocity for

the next leg is calculated from the final velocity of previous leg. In order to obtain the

required initial velocity for the next leg, the impact parameter and the inclination of the

hyperbolic trajectory inside the SOI are adjusted. However, sometimes the required initial

velocity cannot be achieved if the final velocity of previous leg is too fast or too slow. Then

an additional ∆V should be added during the swing-by maneuver.
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Figure 24: Geometry of a Powered Swing-by Maneuver.

Suppose that the final velocity of previous leg in the Heliocentric coordinates is ~V1, and

after a swing-by maneuver the exit velocity at the exit point from the SOI is obtained as

~V2 in the Heliocentric coordinates (see Fig. 24). If the initial velocity for the next leg is

calculated as ~V3 with the Gauss method, an additional burn is required, and it is calculated
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as ∆~V = ~V3 − ~V2.

The only way to adjust ∆V is to adjust the entry point at the SOI because the final

velocity of previous leg cannot be adjusted. Therefore, finding the minimum ∆V for a high

thrust swing-by trajectory is equivalent to finding the proper entry point at the SOI.
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CHAPTER VI

DEVELOPMENT OF THE APPLICATION “SAMURAI”

Using all of the techniques introduced through the last chapter and in the Appendix C, a

numerical analysis software application “SAMURAI” – Simulation and Animation Model

Used for Rockets with Adjustable Isp – has been developed in C++. SAMURAI simulates

interplanetary trajectories with different types of propulsion systems. In this chapter, ca-

pabilities of SAMURAI, classes implemented in SAMURAI, and the flow of calculation are

introduced. A full description of input data is in Appendix D.

6.1 Overview

6.1.1 Capabilities

SAMURAI is an interplanetary trajectory optimization application that calculates the

thrust history (thrust magnitude and direction) for a prescribed condition (initial posi-

tion and velocity, target position and velocity, and time of flight). Several types of engines

can be analyzed. SAMURAI utilizes a calculus of variations algorithm to evaluate the con-

trol history that minimizes the fuel consumption for a transfer trajectory from one planet

to another. A trajectory with a planetary swing-by can also be calculated.

SAMURAI directly integrates the equations of motion for a spacecraft to determine the

spacecraft’s path. Normally, low thrust applications employ perturbation techniques that

require the thrust level to be very small. Because SAMURAI does not use any perturbation

techniques, it can calculate trajectories with any thrust level.

The engine types SAMURAI can deal with are the following:

• VSI engine type I (variable thrust and variable Isp, no limit for Isp)

• VSI engine type II (variable thrust and variable Isp, with an upper limit for Isp)

• CSI engine type I (constant thrust and constant Isp, continuous burn)
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• CSI engine type II (constant thrust and constant Isp, bang-off-bang control)

• High thrust engine (idealized instantaneous burn)

Fig. 25 shows examples of thrust histories for these engines. A VSI engine type I can

modulate its thrust and Isp without limit. Without an upper limit, the Isp for this type

of engine may sometimes reach very high value, such as several hundred thousand seconds,

which is impossible to achieve. In reality, there are some physical constraints on an engine.

For a VSI type II engine users can specify an upper limit for Isp in order to simulate

such a constraint. For both VSI engine types, the power is fixed at its maximum level. Note

that imposing an upper limit on Isp is the same as imposing a lower limit on the thrust.

A CSI type I engine operates with a given thrust magnitude throughout the mission,

so total fuel consumption is proportional to the time of flight. SAMURAI calculates the

minimum thrust level while satisfying the target conditions.

A CSI type II engine can turn its power on and off to avoid unnecessary fuel consumption,

resulting in a bang-off-bang control. Users need to input the thrust level of the engine so

that the switching times will be calculated.

The high thrust engine modeled in this research is a representative engine that fires for

infinitesimally small amounts of time at departure and arrival. Users need to specify the

value of Isp.

For these different types of engines, SAMURAI calculates a control history (thrust

direction and magnitude) that minimizes the fuel consumption for a given time of flight and

given endpoint conditions (position and velocity vectors). Users can specify the endpoint

conditions with the following options:

• If users would like to use the actual ephemeris data of the planets, the departure date,

time of flight, ID number of the departure planet, and ID number of the arrival planet

should be input. From the departure date and time of flight, planets’ positions and

velocities are calculated using the ephemeris data.

• If users would like to create their own planets, positions and velocities of departure

and arrival points and time of flight are required. These values are directly used as
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Figure 25: Examples of Thrust Histories.
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the endpoint conditions.

In addition to calculating the trajectory for one value of the departure date and time

of flight, SAMURAI has the capability to conduct a grid search with these two parameters

by specifying the range of each parameter. Then SAMURAI finds the best launch date and

time of flight for the given initial and final conditions.

Other input data required are jet power (W), initial mass (kg), and C3 values at depar-

ture and arrival which are introduced in Sec. 5.1. Optional data may be input such as the

maximum number of iterations or the tolerance for the convergence criteria to avoid a long

computation time and suboptimal results.

6.1.2 Performance Index for Each Engine

Since the target for VSI engines is to minimize fuel consumption, we would like to maximize

the mass at tf . Therefore, the performance index is expressed as the negative value of the

mass of spacecraft:

J = −m(tf ) (φ = −m(tf ) and L = 0), (138)

subject to the endpoint constraints:
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= 0 (139)

x(ti), y(ti), and z(ti) are position components of the departure planet, and xtarget,

ytarget, and ztarget are position components of the arrival planet. If both C3’s at departure

and arrival are zero, Xtarget is the position and velocity of the arrival planet. If either one of

C3’s or both C3’s are nonzero, then the best thrust direction at the endpoints is calculated

so that it minimizes the fuel consumption. In such a case, u(ti), v(ti), w(ti), and utarget,
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vtarget, wtarget are not the velocity components of the planets, but the sum of the planet’s

velocity and the velocity of the spacecraft with respect to the planet (V∞).

For CSI cases, because the fuel consumption is proportional to the flight time (tf − ti),

the spacecraft mass cannot be used as the performance index. Instead, the performance

index and constraints are defined as follows:

Minimize J =
1

2

[

(u(tf ) − utarget)
2 + (v(tf ) − vtarget)

2 + (w(tf ) − wtarget)
2
]

(140)

subject to

ψ =


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

= 0. (141)

Because the thrust magnitude is fixed for CSI, the control variables are just the components

of the thrust direction.

For CSI type I, the minimum thrust level is obtained through an iterative process. If the

target conditions are not satisfied with a trial thrust level, a new optimization is performed

with a new, slightly bigger thrust level. If the constraints are satisfied, then a calculation

with a lower thrust level is performed. This process is iterated until the minimum thrust

level that satisfies the constraints is found.

For CSI type II, a bang-off-bang thrust profile is created with the switching function

introduced in Sec. 5.2. Switching times (on → off and off → on) that satisfy Eqns. 138 and

139 are calculated.

For high thrust, the Gauss problem is solved to obtain the endpoint velocities for the

input time of flight. No optimization process is required unless the two endpoint vectors

are collinear. When the two endpoint vectors are collinear or almost collinear, endpoint

velocity vectors are computed using Powell’s moethod so that total ∆V is minimized.

6.2 C++ Classes

SAMURAI contains 20 classes. The important classes are introduced here.

• Appli class controls all of the classes. This class creates all the classes, initializes them,
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and then starts calculation. After the minimum-fuel trajectory is obtained, Vrml class

is called and a VRML file is created.

• Inp class reads input data. All of the input parameters are checked and if an inap-

propriate parameter is found, it ends the program. In this class, all the input data is

converted into canonical units: km → DU, day or second → TU, kg → non-dimensional

etc.

• Calc class controls the grid search procedure and calculates the overall minimum-fuel

trajectory for an input range of departure date and time of flight. Departure date

and time of flight are set in this class, and they are sent to Mission class in which the

optimal trajectory for a given departure date and time of flight is calculated.

• Mission class controls the calculation of the minimum-fuel trajectory for the time

interval that is sent from Calc class. At first the planets’ positions and velocities are

calculated with Planet class. Then the spacecraft velocity at the initial point and final

point are calculated. These endpoint conditions are used as the initial condition and

the target condition of the optimization problem. An iterative procedure is required

until the minimum-fuel trajectory for the time interval is found.

• Phase class calculates the minimum-fuel trajectory for a given initial condition, final

condition, and time of flight sent from Mission class. This class is implemented for each

phase(trajectory from one planet to another). Therefore, for a swing-by trajectory

calculation, this class is called twice from Mission class.

• Powell class conducts Powell’s method. This class is used for several optimization

schemes as explained in Chap. C.

• Line class conducts a line search, using three-point quadratic approximations.

• Opt class handles optimal control processes with the first-order gradient algorithm.

From initial state variables and an initial guess of the control history, an optimal

control history that minimizes the cost function is calculated.
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• Ode class solves ordinary differential equations with the Runge-Kutta method. With

state variables at initial time and histories of the control variables throughout the

propagation period, a history of state variables are calculated by integrating the dif-

ferential equations.

• Func class contains required functions. Differential equations for spacecraft’s equa-

tions of motion, the derivatives of these equations with respect to the state variables

and control variables, and other equations to conduct the optimization process are

stored in this class.

• HighThrust class calculates a high thrust trajectory using the Gauss method. From

two position vectors of planets and time of flight, velocity vectors at the initial and

final points are calculated. If the two position vectors are collinear, Powell’s method

is used to minimize the fuel requirement as explained in Chap. C.

• Planet class calculates a planet’s position and velocity. With the input Julian date,

the position and velocity at that instant are calculated using the functions stored in

this class.

• Swingby class controls the swing-by process. With the incoming velocity vector ob-

tained from phase 1 and a guessed value of the impact parameter, the outgoing velocity

vector is calculated. This velocity is used as the initial velocity of the transfer orbit

for phase 2. Powell’s method is used to find a set of the best incoming velocity vec-

tors and the entry point at the sphere of influence that minimizes the overall fuel

consumption.

• Vrml class creates a VRML file that draws an animation of the resulting optimal

trajectory on the web browser. This class converts the state variables and control

variables to the VRML format, and prints them out to a file.
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Figure 26: SAMURAI Flowchart.
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6.3 Flow and Schemes

6.3.1 SAMURAI Flowchart

Fig. 26 shows the flow chart of SAMURAI. At first the input data is read from an input

file. Input parameters such as the number of time steps, jet power, initial mass, and upper

limit for Isp are read and fixed.

In “calc” class, the departure date and the arrival date are set and the planets’ positions

are calculated from them.

Once the positions of the departure and arrival planets are set, the high thrust trajectory

calculation is performed using the Gauss method. With this calculation, velocities at both

endpoints VHTini
and VHTfin

are obtained. These values can be interpreted as the velocities

required to travel between these two planets without any additional propulsive force.

Users can input the maximum C3’s at departure and arrival to simulate the excess

velocity V∞ at each planet. As stated previously,
√
C3 = V∞, and the spacecraft’s possi-

ble maximum velocities at two endpoints are calculated with this value and the planets’

velocities (Vpl): Vini = Vpl ini + V∞ ini and Vfin = Vpl fin + V∞ fin.

If the maximum Vini ≥ VHTini
at departure and the maximum Vfin ≥ VHTfin

at

arrival, we do not need to calculate low thrust trajectories because the spacecraft reaches

the target without any propulsive force. The results from the Gauss problem will be the

answer in this case (See Fig. 27).

If Vini < VHTini
or Vfin < VHTfin

or both, then the computation of a low thrust tra-

jectory is required. With the input value of C3 and the direction of motion of the spacecraft,

Vini and Vfin are calculated and are used as endpoint conditions for optimization.

When the trajectory does not do a swing-by maneuver, class “Opt” calculates the thrust

history that minimizes the fuel consumption. Whereas for an optimization with a swing-by,

a more complicated process is required as shown in Fig. 26.

The first phase of the trajectory from the departure planet to the swing-by planet is

calculated with a guessed value of the final velocity at the swing-by planet.

At the SOI, the swing-by planet’s velocity is subtracted from the final velocity at the

swing-by planet in the Heliocentric coordinates and then converted into the planetocentric
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Figure 27: Input C3 and ∆V requirements.

incoming velocity.

This incoming velocity is used as the initial velocity of the hyperbolic trajectory inside

the SOI. The calculation of the trajectory inside the SOI is executed to compute the outgoing

planetocentric velocity.

This outgoing velocity is then converted back into the Heliocentric velocity and the

swing-by planet’s velocity is added. ∆V is calculated if needed and is added to the spacecraft

velocity. Using this velocity as the initial velocity of the second phase, an optimization is

executed with the “Opt” class from the swing-by planet to the target planet. The overall fuel

consumption for the swing-by trajectory is minimized by adjusting the incoming velocity

and the entry point at the swing-by planet. Therefore, an iterative process is required until

the minimum-fuel trajectory is obtained.

With the above process, the minimum-fuel trajectory for a given time of flight starting

with Vini and ending with Vfin is obtained. But we may improve this trajectory by

adjusting these endpoint velocities while keeping the time of flight fixed. This is done by

adjusting the direction of motion of the spacecraft with respect to the planet. Therefore

the above process is iterated by adjusting the directions of motion of the spacecraft at the

departure and arrival planets until the fuel consumption is minimized.

When the actual ephemeris of planets is used, a grid search may be conducted to find

the best launch opportunity and the time of flight that minimizes the fuel consumption over
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a range of departure dates and times of flight.

After all of the above process are finished, a VRML file that draws a 3D animation is

created.

6.3.2 VSI Constrained Isp

Finding an optimal solution for a VSI unconstrained Isp problem is relatively simple. The

1st-order gradient algorithm introduced in the previous chapter is suitable for this kind of

problem.

However, constrained cases are complicated and require more calculations than uncon-

strained cases. To solve VSI type II problems, the initial guess for the Lagrange multiplier

λ(ti) is required in order to estimate the control vector at initial time.

For VSI type II calculations, the results from VSI type I are used. This is because

the thrust histories are similar to each other for unconstrained arcs, and the Lagrange

multipliers obtained in VSI type I calculations should be used as an initial guess for VSI

type II calculation.

The following steps are taken to obtain the results for VSI type II.

1. Calculate a trajectory for VSI type I.

2. Obtain the Lagrange multipliers ~λ at initial time ti from the previous step.

3. From ~x and ~λ, calculate the control variables:

~l = [lx ly lz]
T = ~λv/λv, T =

PJλV
mλm

. (142)

4. Integrate ẋ and λ̇ forward from ti to final time tf with the control variables obtained

in the step 3:
∫ tf

ti

ẋdt,

∫ tf

ti

λ̇dt (143)

5. Check if the resulting x(tf ) satisfies the terminal constraints ψ(tf ) = 0.

6. If not, return to step 3 with the new values of λ(ti). λ(ti) should be chosen so that it

satisfies ψ(tf ) = 0 AND minimizes the performance index J . Powell’s method is used

to estimate the next λ(ti).
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7. Iterate until J is minimized and ψ(tf ) = 0 is satisfied with the desired degree of

accuracy.

6.3.3 CSI Continuous Thrust

The CSI type I problem (continuous thrust) is not a constrained problem. The control

variables are now only two (in-plane thrust angle and out-of-plane thrust angle), hence it

is simpler to optimize than VSI type I problem that have three control variables (thrust

magnitude in addition to two angles).

For constant thrust problems, sometimes the optimizer cannot find the answer because

the thrust magnitude is not sufficient to reach the target. For example, if we would like to

find a trajectory from Earth to Pluto with a time of flight of 1 year and Isp of 100,000 sec

and 1 kW of jet power, then the optimizer cannot find the answer because the thrust level

is too low. On the other hand, if we would like to find a trajectory from Earth to Mars with

a 300-day time of flight, we do not need 3,000 sec of Isp and 50 MW of jet power because

it is too much.

SAMURAI finds the minimum thrust level while satisfying the terminal conditions using

an iterative process. If the thrust level is not enough to reach the target, the thrust level

of the next step is made a little bit larger than the previous step. On the other hand, if

starting with too much thrust, the thrust level of the next step is a little bit smaller than

the previous step. The process is iterated until the minimum thrust level is found.

6.3.4 CSI Bang-Off-Bang

Finding the solution for CSI type II (bang-off-bang) requires finding the switching times,

and the switching times are determined by the sign of the switching function. As shown in

Sec. 5.2.4, the switching function is a function of the Lagrange multipliers. Therefore, for

CSI type II problems, an initial guess for the Lagrange multipliers is required to start the

calculation. This is similar to the VSI type II case.

The following steps are taken.

1. Calculate a trajectory for VSI type I.
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2. Obtain the Lagrange multipliers ~λ at initial time ti from the previous step.

3. From ~λ(t0), calculate the control variables u(t0) at initial time:

u = [u0 u1 u2 u3]
T = [lx ly lz T ]T , l = [lx ly lz]

T = ~λV /λV (144)

T is determined by the sign of the switching function.

S = ~l · ~λV /m = λm/c (145)

If S is positive, T is the prescribed value, and if S is negative, T = 0.

4. Integrate ẋ and λ̇ forward from ti to final time tf . Control variables need to be

calculated as the time step proceeds. Control variables for the next step can be

calculated by the equations in the previous step.

5. Check if the resulting x(tf ) satisfies the terminal constraints ψ(tf ) = 0.

6. If not, return to step 3 with the new values of λ(ti). λ(ti) should be chosen so that it

satisfies ψ(tf ) = 0 AND minimizes the performance index J . Powell’s method is used

to estimate the next λ(ti).

7. Iterate until J is minimized and ψ(tf ) = 0 is satisfied with the desired degree of

accuracy.

The switching function method described above only estimates the solution, and the

terminal constraints are not usually satisfactorily met. More computation is required by

increasing the burn time step by step. For example, suppose that the total time step is 300

steps, and the switching function estimates switching times as the 50th and 250th steps. If

the terminal condition is not satisfactory, that means more burn time is needed. The first

switching time should be greater than 50, and the second switching time should be smaller

than 250. Therefore, using steps 50 and 250 as initial guesses for the switching times, the

burn time is increased one by one until the terminal constraints are satisfied.
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6.4 Examples of Input and Output

SAMURAI calculates a transfer trajectory between two planets with or without a swing-by.

As stated previously, in addition to the trajectory for the actual planets, users can make

up their own planetary bodies and calculate the transfer trajectory for these planets. The

mandatory input data is as follows:

• Option ID number (1 for VSI type I, 4 for CSI type II, etc.)

• Planet’s position and velocity

– Coordinates of positions and velocities of planets in the Cartesian coordinates.

– ID number for planets (3 for Earth, 4 for Mars, etc.)

• Departure date (yyyy/mm/dd)

• Time of flight (day)

• Jet power (W)

• Initial mass (kg)

• Maximum allowable Isp for constrained case

• Isp for CSI type II and high thrust

In addition to theis input data, users can also specify other parameters such as the

maximum number of iterations and the tolerance for terminal conditions.

Output from SAMURAI is the following:

• History of state variables (x, y, z, u, v, w, m)

• History of control variables (thrust magnitude and direction)

• VRML file

Thrust direction is expressed by two angles in the spacecraft-centered coordinates. α is

the in-plane thrust angle and β is the out-of-plane thrust angle (see Fig. 28). x, y, and z

axes of the spacecraft-centered coordinates are defined as follows:
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Figure 28: α (in-plane thrust angle) and β (out-of-plane thrust angle) in the Spacecraft-
centered Coordinates.

~x = ~r/|~r| (146)

~z = ~r × ~V /|~r × ~V | (147)

~y = ~z × ~x (148)

where ~r and ~V are position and velocity vectors of spacecraft.

A few example input files and corresponding output files are introduced.

The following input data is used to calculate a trajectory with a VSI type I engine. The

spacecraft departs from a planet whose position is (1, 0, 0) and velocity is (0, 1, 0) to a

planet whose position is (-1.5, 0, 0) and velocity is (0, -0.8165, 0). This is to simulate an

Earth to Mars, two-dimensional, coplanar trajectory. The time of flight is 180 days, and

the number of time steps is 30; therefore, the variables are evaluated once every 6 days. Jet

power is 1.0E+07 W or 10 MW, initial mass is 1.0E+05 kg or 100 MT, and the C3 values

are zero for both departure and arrival. A line starting with “//” is a comment line.

//
// VSI, no constraints, no swing-by
//
option 1 // VSI no constraints
timeSteps 100 // Number of time steps
initial 1.0 0.0 0.0 0.0 1.0 0.0 // DU, DU/TU
target -1.5 0.0 0.0 0.0 -0.8165 0.0 // DU, DU/TU
tof 180.0 // Time of Flight (day)
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Pj 1.0e+07 // Jet Power (W)
m0 1.0E+05 // Initial mass (kg)
C3dep 0.0 // C3 at departure (km^2/s^2)
C3arr 0.0 // C3 at arrival (km^2/s^2)
$end

The output for this input data is as follows:

==============================================
== ==
== S A M U R A I ==
== ==
== Simulation and Animation Model ==
== Used for ==
== Rockets with Adjustable Isp ==
== ==
==============================================

Option = 1
Variable Isp, unconstrained Isp

Number of steps 30
Initial condition

1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 1.00000
Target condition

-1.50000 0.00000 0.00000 0.00000 -0.81650 0.00000 0.00000
Time of Flight 180.00 (day) 3.09636 (TU_Sun)

Jet Power 1.000e+07 (W) 1.000e+04 (kW) 10.000 (MW)
Initial mass 1.000e+05 (kg) 100.000 (MT)

maximum C3 at departure planet 0.00000 (km2/s2)
maximum C3 at arrival planet 0.00000 (km2/s2)

a e i(deg) O(deg) o(deg) L(deg) M(deg)
1.00000 0.00000 0.00000 0.00000 0.00000 NaN NaN

a e i(deg) O(deg) o(deg) L(deg) M(deg)
1.50001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000

Optimal State and Control Variables
i TU day x[ 0] x[ 1] x[ 2] x[ 3] x[ 4] x[ 5] x[ 6] u[ 0] u[ 1] u[ 2] u[ 3]
0 0.00 0.0 1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 1.00000 -0.99463 -0.10345 0.00000 0.56289
1 0.10 6.0 0.99169 0.10290 0.00000 -0.15693 0.99018 0.00000 0.97491 -0.99813 -0.06108 0.00000 0.48333
2 0.21 12.0 0.96753 0.20439 0.00000 -0.30770 0.97239 0.00000 0.95619 -0.99997 -0.00825 0.00000 0.42092
3 0.31 18.0 0.92810 0.30360 0.00000 -0.45311 0.94584 0.00000 0.94181 -0.99870 0.05097 0.00000 0.37203
4 0.41 24.0 0.87392 0.39960 0.00000 -0.59341 0.90930 0.00000 0.93043 -0.99383 0.11087 0.00000 0.33352
5 0.52 30.0 0.80553 0.49126 0.00000 -0.72814 0.86128 0.00000 0.92120 -0.98623 0.16536 0.00000 0.30237
6 0.62 36.0 0.72354 0.57733 0.00000 -0.85602 0.80027 0.00000 0.91356 -0.97782 0.20946 0.00000 0.27570
7 0.72 42.0 0.62876 0.65638 0.00000 -0.97485 0.72509 0.00000 0.90723 -0.97067 0.24040 0.00000 0.25094
8 0.83 48.0 0.52226 0.72692 0.00000 -1.08156 0.63533 0.00000 0.90203 -0.96620 0.25781 0.00000 0.22603
9 0.93 54.0 0.40546 0.78744 0.00000 -1.17251 0.53186 0.00000 0.89789 -0.96470 0.26334 0.00000 0.19957
10 1.03 60.0 0.28019 0.83661 0.00000 -1.24410 0.41710 0.00000 0.89474 -0.96558 0.26009 0.00000 0.17089
11 1.14 66.0 0.14863 0.87343 0.00000 -1.29351 0.29502 0.00000 0.89252 -0.96769 0.25216 0.00000 0.13993
12 1.24 72.0 0.01318 0.89741 0.00000 -1.31945 0.17063 0.00000 0.89110 -0.96966 0.24445 0.00000 0.10713
13 1.34 78.0 -0.12372 0.90856 0.00000 -1.32245 0.04912 0.00000 0.89034 -0.96985 0.24371 0.00000 0.07317
14 1.44 84.0 -0.25979 0.90746 0.00000 -1.30478 -0.06506 0.00000 0.89002 -0.96349 0.26776 0.00000 0.03871
15 1.55 90.0 -0.39303 0.89506 0.00000 -1.26979 -0.16883 0.00000 0.88996 -0.69423 0.71976 0.00000 0.00487
16 1.65 96.0 -0.52187 0.87255 0.00000 -1.22118 -0.26066 0.00000 0.88991 0.99440 -0.10570 0.00000 0.03067
17 1.75 102.0 -0.64508 0.84121 0.00000 -1.16240 -0.34040 0.00000 0.88967 0.98710 -0.16008 0.00000 0.06517
18 1.86 108.0 -0.76179 0.80225 0.00000 -1.09626 -0.40882 0.00000 0.88903 0.98270 -0.18518 0.00000 0.10003
19 1.96 114.0 -0.87135 0.75679 0.00000 -1.02481 -0.46729 0.00000 0.88773 0.97871 -0.20524 0.00000 0.13555
20 2.06 120.0 -0.97331 0.70577 0.00000 -0.94940 -0.51735 0.00000 0.88555 0.97468 -0.22358 0.00000 0.17204
21 2.17 126.0 -1.06730 0.64998 0.00000 -0.87081 -0.56056 0.00000 0.88219 0.97063 -0.24056 0.00000 0.20975
22 2.27 132.0 -1.15304 0.59004 0.00000 -0.78935 -0.59835 0.00000 0.87737 0.96669 -0.25594 0.00000 0.24877
23 2.37 138.0 -1.23022 0.52645 0.00000 -0.70503 -0.63198 0.00000 0.87074 0.96302 -0.26943 0.00000 0.28907
24 2.48 144.0 -1.29855 0.45958 0.00000 -0.61761 -0.66250 0.00000 0.86195 0.95976 -0.28081 0.00000 0.33042
25 2.58 150.0 -1.35769 0.38969 0.00000 -0.52671 -0.69076 0.00000 0.85066 0.95703 -0.28998 0.00000 0.37244
26 2.68 156.0 -1.40726 0.31698 0.00000 -0.43181 -0.71744 0.00000 0.83650 0.95490 -0.29691 0.00000 0.41461
27 2.79 162.0 -1.44681 0.24159 0.00000 -0.33236 -0.74307 0.00000 0.81918 0.95342 -0.30164 0.00000 0.45623
28 2.89 168.0 -1.47584 0.16359 0.00000 -0.22770 -0.76800 0.00000 0.79846 0.95261 -0.30420 0.00000 0.49651
29 2.99 174.0 -1.49379 0.08305 0.00000 -0.11716 -0.79246 0.00000 0.77420 0.95247 -0.30465 0.00000 0.53459
30 3.10 180.0 -1.50000 0.00001 0.00000 -0.00001 -0.81650 0.00000 0.74640 0.95310 -0.30267 0.00000 0.56937

target -1.50000 0.00000 0.00000 0.00000 -0.81650 0.00000

Control variables and Isp:
m0 1.000e+05 (kg) Pj 1.000e+07 (W)

i alpha beta -- thrust(N) Isp(s)
0 -95.94 0.00 0.00 333.800 6110.15
1 -84.50 0.00 0.00 286.619 7115.94
2 -72.91 0.00 0.00 249.607 8171.11
3 -61.48 0.00 0.00 220.617 9244.82
4 -50.51 0.00 0.00 197.779 10312.34
5 -40.27 0.00 0.00 179.307 11374.74
6 -30.98 0.00 0.00 163.492 12475.01
7 -22.73 0.00 0.00 148.809 13705.90
8 -15.49 0.00 0.00 134.037 15216.42
9 -9.13 0.00 0.00 118.348 17233.59

10 -3.46 0.00 0.00 101.336 20126.69
11 1.76 0.00 0.00 82.978 24579.66
12 6.78 0.00 0.00 63.530 32103.80
13 11.98 0.00 0.00 43.390 47005.09
14 18.39 0.00 0.00 22.953 88860.33
15 53.61 0.00 0.00 2.890 705635.43
16 -161.88 0.00 0.00 18.185 112155.37
17 -154.47 0.00 0.00 38.647 52774.28
18 -148.88 0.00 0.00 59.318 34383.82
19 -143.64 0.00 0.00 80.380 25374.15
20 -138.49 0.00 0.00 102.022 19991.54
21 -133.31 0.00 0.00 124.382 16397.60
22 -128.01 0.00 0.00 147.524 13825.33
23 -122.50 0.00 0.00 171.418 11898.18
24 -116.68 0.00 0.00 195.939 10409.19
25 -110.47 0.00 0.00 220.861 9234.62
26 -103.77 0.00 0.00 245.865 8295.48
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27 -96.54 0.00 0.00 270.547 7538.67
28 -88.80 0.00 0.00 294.436 6927.03
29 -80.67 0.00 0.00 317.015 6433.67
30 -72.38 0.00 0.00 337.641 6040.64

FinalMass= 74639.88461 (kg)
FuelConsumed= 25360.11539 (kg)

Wall time 0.000 (sec), CPU time 0.125 (sec)

Another example is a grid search for a trajectory from Earth to Jupiter with a VSI type

II engine. The actual planets’ positions and velocities are used for the initial condition and

target condition. The range of the departure date is between 100 days after Sep. 1, 2010,

and 300 days after Sep. 1, 2010, with 20-day increments. Times of flight ranges from 300

days to 500 days with 50-day increments. Therefore 11 × 5 = 55 cases are calculated. Jet

power is 10MW, initial mass is 100MT, and maximum allowable Isp is 30,000 sec.

//
// VSI, constrained Isp, no swing-by
//
option 2
timeSteps 50
depPlanet 3 // Earth
arrPlanet 5 //Jupiter
date 2010 9 1 0 0 0 // yyyy mm dd hr min sec
depRange 100 300 20 // initial final increment
tofRange 300 500 50 // initial final increment
jetPower 1.000E+07 // (W)
initialMass 100000 // (kg)
maxIsp 30000.0 // (sec)
maxC3dep 0.0 // km^2/s^2
maxC3arr 0.0 // km^2/s^2
$end

The output for this input data is as follows:

==============================================
== ==
== S A M U R A I ==
== ==
== Simulation and Animation Model ==
== Used for ==
== Rockets with Adjustable Isp ==
== ==
==============================================

Option = 2
Variable Isp, constrained Isp

Number of steps 50
Departure planet 3 Earth
Arrival planet 5 Jupiter

Calender Date 9/ 1/2010 0: 0: 0
Julian Date 2455440.50000

Departure Date: from 100.00 to 300.00 with 20.00 increment(day)
from 1.72020 to 5.16060 with 0.34404 increment(TU_Sun)

Time of Flight: from 300.00 to 500.00 with 50.00 increment(day)
from 5.16060 to 8.60099 with 0.86010 increment(TU_Sun)

Jet Power 1.000e+07 (W) 1.000e+04 (kW) 10.000 (MW)
Initial mass 1.000e+05 (kg) 100.000 (MT)

Maximum Isp 30000.00 (sec)
maximum C3 at departure planet 0.00000 (km2/s2)
maximum C3 at arrival planet 0.00000 (km2/s2)
mininum T 67.986 (N)

........... (omitted) ...........

Optimal State and Control Variables

Departure date: 2011/ 6/ 8 0: 0: 0 (2455720.50000 Julian date)
Arrival date: 2012/10/20 0: 0: 0 (2456220.50000 Julian date)

i TU day x[ 0] x[ 1] x[ 2] x[ 3] x[ 4] x[ 5] x[ 6] u[ 0] u[ 1] u[ 2] u[ 3]
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0 0.00 0.0 -0.24488 -0.98482 0.00000 0.95432 -0.24514 -0.00000 1.00000 0.95694 -0.29012 -0.00972 0.24428
1 0.17 10.0 -0.07379 -1.01410 -0.00004 1.02152 -0.09302 -0.00048 0.99106 0.98467 -0.17392 -0.01327 0.24097
2 0.34 20.0 0.10651 -1.01645 -0.00017 1.06070 0.06501 -0.00108 0.98249 0.99820 -0.05783 -0.01600 0.23394
3 0.52 30.0 0.29101 -0.99138 -0.00040 1.07055 0.22235 -0.00173 0.97453 0.99835 0.05423 -0.01880 0.22363
4 0.69 40.0 0.47466 -0.93965 -0.00076 1.05223 0.37157 -0.00243 0.96736 0.98706 0.15886 -0.02161 0.21068
5 0.86 50.0 0.65282 -0.86331 -0.00124 1.00962 0.50578 -0.00313 0.96107 0.96717 0.25297 -0.02442 0.19589
6 1.03 60.0 0.82180 -0.76547 -0.00184 0.94881 0.62000 -0.00381 0.95569 0.94202 0.33444 -0.02724 0.18011
7 1.20 70.0 0.97905 -0.64989 -0.00255 0.87686 0.71193 -0.00446 0.95118 0.91496 0.40243 -0.03005 0.16416
8 1.38 80.0 1.12330 -0.52047 -0.00337 0.80043 0.78192 -0.00506 0.94746 0.88871 0.45730 -0.03282 0.14865
9 1.55 90.0 1.25430 -0.38084 -0.00429 0.72477 0.83226 -0.00563 0.94441 0.86513 0.50029 -0.03553 0.13396
10 1.72 100.0 1.37255 -0.23412 -0.00530 0.65343 0.86623 -0.00615 0.94195 0.84519 0.53310 -0.03815 0.12028
11 1.89 110.0 1.47902 -0.08282 -0.00641 0.58887 0.88762 -0.00666 0.93986 0.82916 0.55753 -0.04067 0.11465
12 2.06 120.0 1.57509 0.07125 -0.00760 0.53268 0.90019 -0.00721 0.93786 0.81682 0.57529 -0.04308 0.11465
13 2.24 130.0 1.66225 0.22687 -0.00889 0.48509 0.90678 -0.00781 0.93586 0.80770 0.58784 -0.04540 0.11465
14 2.41 140.0 1.74195 0.38321 -0.01028 0.44549 0.90937 -0.00848 0.93387 0.80127 0.59640 -0.04766 0.11465
15 2.58 150.0 1.81550 0.53972 -0.01180 0.41306 0.90943 -0.00921 0.93187 0.79698 0.60194 -0.04994 0.11465
16 2.75 160.0 1.88405 0.69608 -0.01345 0.38699 0.90802 -0.01000 0.92987 0.79436 0.60519 -0.05231 0.11465
17 2.92 170.0 1.94863 0.85211 -0.01524 0.36645 0.90590 -0.01086 0.92787 0.79306 0.60666 -0.05493 0.11465
18 3.10 180.0 2.01012 1.00774 -0.01719 0.35071 0.90358 -0.01180 0.92588 0.79283 0.60667 -0.05804 0.11465
19 3.27 190.0 2.06928 1.16298 -0.01930 0.33912 0.90141 -0.01282 0.92388 0.79356 0.60532 -0.06203 0.11465
20 3.44 200.0 2.12679 1.31786 -0.02160 0.33112 0.89961 -0.01397 0.92188 0.79537 0.60233 -0.06774 0.11465
21 3.61 210.0 2.18320 1.47248 -0.02411 0.32624 0.89828 -0.01529 0.91989 0.79880 0.59663 -0.07712 0.11465
22 3.78 220.0 2.23903 1.62691 -0.02686 0.32409 0.89742 -0.01693 0.91789 0.80576 0.58437 -0.09628 0.11465
23 3.96 230.0 2.29470 1.78122 -0.02993 0.32450 0.89670 -0.01944 0.91589 0.82447 0.54354 -0.15754 0.11465
24 4.13 240.0 2.35067 1.93541 -0.03355 0.31763 0.87990 -0.01855 0.91390 -0.04890 -0.97405 0.22100 0.11465
25 4.30 250.0 2.40398 2.08394 -0.03631 0.29566 0.85057 -0.01672 0.91190 -0.72875 -0.68121 -0.06988 0.11465
26 4.47 260.0 2.45238 2.22803 -0.03930 0.26734 0.82533 -0.01738 0.90990 -0.75969 -0.65023 -0.00879 0.11465
27 4.64 270.0 2.49596 2.36789 -0.04229 0.23971 0.80108 -0.01719 0.90791 -0.76826 -0.64007 0.00930 0.11465
28 4.82 280.0 2.53485 2.50363 -0.04522 0.21287 0.77746 -0.01672 0.90591 -0.77228 -0.63503 0.01800 0.11465
29 4.99 290.0 2.56919 2.63537 -0.04804 0.18677 0.75436 -0.01611 0.90391 -0.77453 -0.63211 0.02310 0.11465
30 5.16 300.0 2.59911 2.76316 -0.05076 0.16132 0.73168 -0.01540 0.90192 -0.77591 -0.63029 0.02642 0.11465
31 5.33 310.0 2.62469 2.88709 -0.05334 0.13644 0.70937 -0.01464 0.89992 -0.77676 -0.62914 0.02875 0.11465
32 5.50 320.0 2.64605 3.00721 -0.05579 0.11206 0.68738 -0.01384 0.89792 -0.77727 -0.62843 0.03046 0.11465
33 5.68 330.0 2.66325 3.12358 -0.05810 0.08812 0.66566 -0.01301 0.89593 -0.77753 -0.62804 0.03176 0.11465
34 5.85 340.0 2.67636 3.23623 -0.06027 0.06457 0.64419 -0.01216 0.89393 -0.77761 -0.62789 0.03276 0.11465
35 6.02 350.0 2.68546 3.34520 -0.06229 0.04137 0.62293 -0.01129 0.89193 -0.77754 -0.62794 0.03356 0.11465
36 6.19 360.0 2.69059 3.45054 -0.06415 0.01848 0.60184 -0.01040 0.88994 -0.77735 -0.62814 0.03420 0.11465
37 6.36 370.0 2.69182 3.55226 -0.06586 -0.00455 0.58058 -0.00949 0.88784 -0.77705 -0.62848 0.03472 0.12013
38 6.54 380.0 2.68903 3.65028 -0.06742 -0.02814 0.55881 -0.00853 0.88555 -0.77666 -0.62894 0.03515 0.12522
39 6.71 390.0 2.68214 3.74451 -0.06880 -0.05252 0.53631 -0.00752 0.88301 -0.77619 -0.62950 0.03550 0.13358
40 6.88 400.0 2.67096 3.83479 -0.07000 -0.07798 0.51286 -0.00644 0.88012 -0.77564 -0.63016 0.03579 0.14190
41 7.05 410.0 2.65531 3.92095 -0.07102 -0.10455 0.48843 -0.00530 0.87688 -0.77503 -0.63090 0.03602 0.15016
42 7.22 420.0 2.63499 4.00283 -0.07183 -0.13224 0.46299 -0.00409 0.87326 -0.77435 -0.63172 0.03621 0.15834
43 7.40 430.0 2.60981 4.08024 -0.07242 -0.16109 0.43651 -0.00281 0.86925 -0.77360 -0.63262 0.03637 0.16643
44 7.57 440.0 2.57957 4.15300 -0.07279 -0.19110 0.40897 -0.00147 0.86484 -0.77280 -0.63360 0.03650 0.17441
45 7.74 450.0 2.54406 4.22094 -0.07293 -0.22230 0.38032 -0.00007 0.86001 -0.77194 -0.63464 0.03659 0.18227
46 7.91 460.0 2.50309 4.28385 -0.07282 -0.25469 0.35056 0.00140 0.85474 -0.77102 -0.63575 0.03667 0.18997
47 8.08 470.0 2.45643 4.34154 -0.07245 -0.28830 0.31965 0.00294 0.84904 -0.77004 -0.63693 0.03673 0.19751
48 8.26 480.0 2.40390 4.39382 -0.07181 -0.32312 0.28756 0.00454 0.84288 -0.76901 -0.63818 0.03676 0.20484
49 8.43 490.0 2.34527 4.44047 -0.07088 -0.35917 0.25427 0.00621 0.83628 -0.76791 -0.63950 0.03679 0.21194
50 8.60 500.0 2.28033 4.48130 -0.06967 -0.39644 0.21975 0.00794 0.82924 -0.76676 -0.64088 0.03679 0.21876

target 2.28033 4.48130 -0.06967 -0.39644 0.21975 0.00794

Control variables and Isp:
m0 1.000e+05 (kg) Pj 1.000e+07 (W)

i alpha beta -- thrust(N) Isp(s)
0 2.46 -0.56 0.00 144.859 14079.67
1 4.81 -0.73 0.00 142.900 14272.74
2 6.82 -0.86 0.00 138.730 14701.66
3 8.62 -0.99 0.00 132.616 15379.54
4 10.31 -1.11 0.00 124.934 16325.12
5 11.95 -1.24 0.00 116.162 17558.03
6 13.62 -1.36 0.00 106.809 19095.38
7 15.33 -1.49 0.00 97.350 20950.97
8 17.10 -1.61 0.00 88.148 23138.02
9 18.91 -1.73 0.00 79.438 25674.95

10 20.73 -1.85 0.00 71.330 28593.47
11 22.52 -1.97 0.00 67.986 30000.00
12 24.22 -2.08 0.00 67.986 30000.00
13 25.80 -2.18 0.00 67.986 30000.00
14 27.23 -2.29 0.00 67.986 30000.00
15 28.50 -2.39 0.00 67.986 30000.00
16 29.60 -2.50 0.00 67.986 30000.00
17 30.54 -2.63 0.00 67.986 30000.00
18 31.34 -2.79 0.00 67.986 30000.00
19 32.02 -3.00 0.00 67.986 30000.00
20 32.62 -3.32 0.00 67.986 30000.00
21 33.23 -3.85 0.00 67.986 30000.00
22 34.11 -4.95 0.00 67.986 30000.00
23 36.52 -8.48 0.00 67.986 30000.00
24 162.96 11.26 0.00 67.986 30000.00
25 -152.16 -4.68 0.00 67.986 30000.00
26 -148.49 -1.15 0.00 67.986 30000.00
27 -146.46 -0.10 0.00 67.986 30000.00
28 -144.75 0.41 0.00 67.986 30000.00
29 -143.14 0.70 0.00 67.986 30000.00
30 -141.54 0.89 0.00 67.986 30000.00
31 -139.91 1.02 0.00 67.986 30000.00
32 -138.24 1.11 0.00 67.986 30000.00
33 -136.49 1.17 0.00 67.986 30000.00
34 -134.67 1.21 0.00 67.986 30000.00
35 -132.74 1.24 0.00 67.986 30000.00
36 -130.72 1.26 0.00 67.986 30000.00
37 -128.54 1.27 0.00 71.240 28629.58
38 -126.14 1.28 0.00 74.257 27466.19
39 -123.47 1.27 0.00 79.215 25747.16
40 -120.46 1.26 0.00 84.147 24238.10
41 -117.08 1.25 0.00 89.044 22905.11
42 -113.27 1.23 0.00 93.897 21721.37
43 -109.02 1.20 0.00 98.695 20665.35
44 -104.30 1.18 0.00 103.428 19719.60
45 -99.11 1.15 0.00 108.086 18869.88
46 -93.50 1.11 0.00 112.655 18104.49
47 -87.53 1.08 0.00 117.123 17413.90
48 -81.34 1.05 0.00 121.472 16790.45
49 -75.06 1.01 0.00 125.681 16228.18
50 -68.87 0.97 0.00 129.727 15722.01

FinalMass= 82923.72159 (kg)
FuelConsumed= 17076.27841 (kg)

Wall time 3117.000 (sec), CPU time 2998.078 (sec)
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The precise explanation of input data is in Appendix D.

6.5 Validation and Verification

When a new computer application is created, validation is necessary to check if the applica-

tion works properly. In order to validate SAMURAI, several analyses have been performed

and the results with SAMURAI are compared to the results with other existing reliable

interplanetary trajectory calculation programs.

There are no applications to calculate general VSI trajectories. Therefore, validation for

CSI engines and high thrust engines are performed. IPREP is used to compare the results

for high thrust, and ChebyTOP is used for CSI trajectories.

6.5.1 Validation of High Thrust with IPREP

IPREP (Interplanetary PREProcessor) is a rapid grid-search optimizer on launch and arrival

windows, minimum ∆V or mass optimization created by Martin Marietta Astronautics.

IPREP is widely used to estimate ∆V for high thrust trajectories.

To compare the results with SAMURAI and the results with IPREP, transfer trajectories

are calculated from Earth to Venus, Mars, and Jupiter. Times of flight are set to 200 days

for Venus transfer, 360 days for Mars transfer, and 500 days for Jupiter transfer. Twelve

departure dates are considered: the first day of the month in the year 2000.

Figs. 29 to 31 show the ∆V requirements (at departure and arrival, and total) calculated

with SAMURAI and IPREP. They show that the results obtained by SAMURAI match well

with the results obtained by IPREP.

6.5.2 Validation of CSI with ChebyTOP

ChebyTOP (Chebyshev Trajectory Optimization Program) is an analysis tool that enables

the user to conduct rapidly the parametric analysis and optimization of interplanetary

missions employing electrically propelled spacecraft developed by Boeing.

To compare the results with SAMURAI and the results with ChebyTOP, transfer tra-

jectories from Earth to Mars are analyzed for CSI type I and type II engines. The following
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Figure 29: Results with SAMURAI and IPREP: ∆V Requirements for High Thrust Venus
Transfer.
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Figure 30: Results with SAMURAI and IPREP: ∆V Requirements for High Thrust Mars
Transfer.
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Figure 31: Results with SAMURAI and IPREP: ∆V Requirements for High Thrust Jupiter
Transfer.

assumptions are considered: 1,000 kg initial mass, departure date of June 1, 2018, and

120-days TOF for both CSI type I and type II.

CSI type I The results obtained with SAMURAI was the following: the maximum Isp

that satisfies the target conditions was 11,372 sec when the jet power is 100 kW, and the

resulting final mass was 833.25 kg.

Then the same trajectory was calculated using ChebyTOP with input Isp of 11,372 sec.

The resulting jet power requirement was 99.434 kW, and the final mass was calculated as

834.21 kg.

Trajectory is shown in Fig. 32. Although ChebyTOP does not output the history of the

thrust direction, this figure shows that the path obtained with SAMURAI is very close to

that with ChebyTOP.

CSI type II For a trajectory with a CSI type II engine, Isp is set to 5,000 sec in this

section. The following are some important values.

For SAMURAI, jet power was 91.23 kW, the first switching time (t1) was 14.4 day, and
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Figure 32: Results with SAMURAI and ChebyTOP: ∆V Requirements for CSI type I Mars
Transfer.

the second switching time (t2) was 103.2 day. The resulting final mass was 787.5 kg. For

ChebyTOP, jet power was 91.23 kW, t1 was 13.3 day and t2 was 102.0 day. The resulting

final mass was 794.9 kg.

Trajectory is shown in Fig. 33. Again, the trajectories with SAMURAI and ChebyTOP

are similar.

The validation conducted in this section shows that SAMURAI is precise enough to

conduct general trajectory calculations for CSI engines and high thrust engines. In the

following two chapters, SAMURAI is used to analyze various interplanetary trajectories.
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Figure 33: Results with SAMURAI and ChebyTOP: ∆V Requirements for CSI type II
Mars Transfer.
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CHAPTER VII

PRELIMINARY RESULTS: PROOF OF CONCEPT

One of the objectives of this research is to compare different types of engines and discuss

their advantages and disadvantages. In this research comparison is performed by calculating

the fuel consumption of each engine for the same trajectory. The trajectories should have

the same initial condition, the same target condition, and the same time of flight. The

problem should be made as simple as possible so that the comparison of these engines

clearly states the advantages or disadvantages of each engine.

In this chapter, a large database is generated using SAMURAI. Transfer orbits from

Earth that circularizes around the Sun to other planets that circularize around the Sun

are calculated for five different engines(VSI type I and II, CSI type I and II, and high

thrust). The fuel consumption for each engine is calculated and compared against the

results obtained for each.

7.1 Problem Description

The minimum fuel transfer trajectory for each of five engines is calculated. The planets are

assumed to be orbiting around the Sun in a circular orbit (zero eccentricity), and these orbits

are further assumed to be coplanar (zero inclination). This allows for a two-dimensional

transfer orbit to be assumed.

Table 4 shows some orbital data for planets. The eccentricity is less than 0.1 and the

inclination is less than a few percents except Mercury and Pluto. The Earth and the four

destination planets considered in this chapter can be thought to be circular and coplanar.

Therefore, considering the orbits of these planets two-dimensional and circular is a good

approximation to the actual orbits.

The spacecraft is assumed to depart from Earth at a position of (x, y) = (1.0, 0.0) and

a velocity of (u, v) = (0.0, 1.0). C3’s at departure and arrival are assumed to be zero for all
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Table 4: Orbital Data[37].

Semi-major Period Eccentricity Inclination
Planet axis (AU) (day) ε (deg)

Mercury 0.3871 87.97 0.2056 7.004

Venus 0.7233 224.7 0.0068 3.394

Earth 1.000 365.2 0.0167 0.000

Mars 1.524 687.0 0.0934 1.850

Jupiter 5.203 4, 332 0.0482 1.306

Saturn 9.539 10, 760 0.0539 2.489

Uranus 19.18 30, 690 0.0471 0.773

Neptune 30.07 60, 190 0.0050 1.773

Pluto 39.44 90, 460 0.2583 17.14

Earth


Target


TOF1

TOF2


Figure 34: 2D Trajectories for Proof-of-Concept Problems.

cases. The unit of position is in AU (1 AU = 1.4959965E+08km), and the unit of velocity is

in AU/TU (1 TU = 58.132821 day = 5.0226757E+06 sec, 1 AU/TU = 29.78495 km/s). The

target position and velocity are calculated with the semi-major axis of the arrival planet

and the true anomaly difference between Earth and the target planet, ∆ν, as shown in

Fig. 34.

Four planets (Venus, Mars, Jupiter, and Saturn) and an asteroid in the asteroid belt

are considered as destinations in this chapter. Semi-major axes for these destinations are

set to 0.7 AU (Venus), 1.5 AU (Mars), 3.0 AU (asteroid), 5.0 AU (Jupiter), and 10.0 AU

(Saturn). Three to five ∆ν’s are considered: 60◦, 90◦, 120◦, 150◦, 180◦ for Venus, Mars,
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and the asteroid, 90◦, 120◦, 150◦, 180◦ for Jupiter, and 120◦, 150◦, 180◦ for Saturn.

The velocity of a spacecraft on a circular orbit with radius r is expressed as
√

µ/r where

the gravitational parameter µ in the canonical units is 1 AU3/TU2. Hence, if Mars is chosen

as the target planet and ∆ν = 120◦ is used, the target condition is

position (x, y) = (1.5 cos 120◦, 1.5 sin 120◦) = (−0.750, 1.299),

velocity (u, v) = (−
√

1

1.5
sin 120◦,

√

1

1.5
cos 120◦) = (−0.707,−0.408).

Three levels of the jet power (10, 20, and 30MW) are considered for all destinations,

and the initial mass is set to 1.0E+05 kg (100MT) for all cases.

For each target condition and jet power, the trajectory for several values of time of

flight are calculated. The range for the time of flight for each destination is selected so

that it includes the time of flight that minimizes the fuel consumption for high thrust. For

example, the time of flight for a Hohmann transfer from Earth to Mars is 4.454 TU, so the

range of time of flight for Earth → Mars trajectories with ∆ν = 180◦ is chosen between 3.0

TU and 5.0 TU.

For VSI type II (bounded Isp case), the maximum allowable Isp is set to 30,000 seconds.

The Isp is determined by the exhaust velocity of the engine. An Isp of 30,000 seconds is

appropriate with current or near-future technology [22].

For CSI type I, the minimum required thrust level that enables the spacecraft to reach

the target is calculated. For example, higher thrust (and hence lower Isp) is required for fast

transfer and therefore higher fuel consumption is expected for this case. On the other hand,

when the transfer time is very long, less thrust (and higher Isp) is required and therefore

small amount of fuel may be needed.

For CSI type II (bang-off-bang case) the Isp level is set to 5,000 seconds, and he Isp for

high thrust is set to 450 seconds.

7.2 Numerical Accuracy

Before calculating the transfer trajectories, the numerical accuracy is investigated to deter-

mine the tolerance and number of time steps required. Input values for these parameters

are determined based on the discussion in the remaining sections of this paper.
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Figure 35: Tolerance vs. CPU Time for Different Number of Time Steps.

In SAMURAI, users can specify a tolerance for the convergence criteria. SAMURAI

terminates the calculation when it finds a trajectory whose final conditions match the

target condition within this tolerance:

|xi(tf ) − xitarget | ≤ ε, i = 0 − 5 or x, y, w, u, v, and w (149)

where ε is the input convergence criteria. The smaller this value becomes, the longer the

computation takes.

Users can also specify the number of time steps along the trajectory. When the time

of flight is 300 days and the number of the time steps that user specified is 300 steps,

SAMURAI evaluates the state and control variables once a day. The larger the number

of time steps becomes, the more accurate the results become, but a larger number of time

steps requires more computation time.

To determine the appropriate values for these two inputs, 2D trajectories for VSI type

I engine simulating transfer trajectories from Earth to Mars with 150-day time of flight are

calculated for different tolerances and number of time steps. Fig. 35 shows the CPU time

for different tolerance and number of time steps.

The CPU (Pentium 1.90 GHz, 512 MB RAM) requirements increase as the tolerance
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Figure 36: Tolerance vs. Fuel Consumption for Different Number of Time Steps.

decreases, and as the number of time steps increase. We should choose a sufficiently small

tolerance and a sufficiently large number of time steps to give an accurate result, but at

the same time not requiring a large computational commitment. Fig. 36 shows the fuel

consumption for different tolerance and number of time steps. As can be seen in this figure,

the results for tolerances smaller than 1.0E-05 are almost the same for any number of time

steps, and the results for the time steps larger than 300 are almost the same. That means

the tolerance of 1.0E-05 and the number of time steps of 300 are enough to obtain the

accurate results.

Similar calculations have been performed for other planets, and the following numbers

are used: 300 time steps for Venus, Mars, and the asteroids, and 500 time steps for Jupiter

and Saturn. Absolute convergence tolerance of 1.0E-05 is used for the computation for all

the planets.

7.3 Results and Discussion

Table 5 shows the fuel requirements for an Earth to Venus transfer with 10 MW jet power.

For example, the first cell of Table 5 shows the fuel requirement for an Earth to Venus

transfer when ∆ν is 60◦ for a VSI type I engine with 10 MW of jet power. Earth’s position
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is (1, 0) and velocity is (0, 1), and because the ∆ν between Earth and Venus is 60◦, Venus’

position and velocity are (0.3750, 0.6495) and (-1.0, 0.5774), respectively. The fuel required

for this case is 86011.9 kg.

Table 6 shows the fuel requirements for an Earth to Saturn transfer with 30 MW jet

power.

Table 5: Transfer Orbit to Venus with 10MW Jet Power.

Venus Fuel Consumed (kg)

Pj 10.000 (MW) nju 60.000 (deg) r 0.3750 0.6495 V -1.0000 0.5774

TOF (TU_Sun) 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600

VSI type I 86011.9 71244.5 54950.4 47872.8 50044.1 55170.0 60021.5 63884.6 66829.7 69064.3 70772.0

VSI typeII 86027.7 71256.0 54952.2 47874.5 50057.8 55174.9 60022.2 63884.6 66829.7 69064.3 70772.0

CSI type I 99590.9 88666.7 67897.1 55612.1 56315.9 60781.0 65222.9 68922.1 71862.4 74177.9 76002.0

CSI typeII 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0

highThrust 99962.2 99517.3 98209.7 97435.0 98007.0 98951.2 99520.5 99780.0 99893.8 99945.5 99970.3

Pj 10.000 (MW) nju 90.000 (deg) r -0.0000 0.7500 V -1.1547 -0.0000

TOF (TU_Sun) 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

VSI type I 58840.7 39928.5 25648.1 20916.9 23775.7 29842.8 36301.7 42049.9 46845.6 50756.4 53930.5

VSI typeII 58850.0 39968.9 25671.1 20930.4 23820.7 29886.9 36318.7 42055.9 46847.5 50757.2 53930.8

CSI type I 76443.8 54149.2 34152.9 26268.7 29689.5 36000.3 42244.3 47745.0 52392.1 56258.0 59459.7

CSI typeII 100000.0 100000.0 29585.2 28248.0 28080.9 33220.7 40784.1 45464.3 50395.1 53988.8 57666.1

highThrust 99199.9 96601.8 92196.7 90080.6 91669.9 94920.9 97316.9 98602.2 99248.9 99578.9 99753.5

Pj 10.000 (MW) nju 120.000 (deg) r -0.3750 0.6495 V -1.0000 -0.5774

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 85656.1 65896.8 35273.8 12312.3 10614.9 19564.8 29331.5 37193.5 43092.3 47475.3 50757.3

VSI typeII 85658.2 65903.1 35314.8 12433.6 10756.3 19673.3 29388.0 37230.0 43121.1 47501.0 50781.9

CSI type I 98677.9 82543.3 48405.4 17491.5 14841.7 25317.4 35453.9 43510.4 49605.9 54187.6 57652.0

CSI typeII 100000.0 100000.0 45046.4 21395.0 17299.8 25907.9 35853.3 43124.2 48890.8 54991.7 58919.7

highThrust 99995.2 99784.6 96844.2 83979.1 81463.7 91996.8 97086.1 98835.5 99480.0 99743.9 99863.0

Pj 10.000 (MW) nju 150.000 (deg) r -0.6495 0.3750 V -0.5773 -1.0000

TOF (TU_Sun) 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400

VSI type I 67583.6 44162.1 20318.1 6555.6 4886.2 9900.6 16778.1 23327.5 28903.9 33467.7 37157.2

VSI typeII 67608.2 44212.3 20441.7 6849.5 5279.3 10180.5 16981.4 23491.8 29048.2 33601.4 37285.4

CSI type I 83326.0 58324.3 29148.9 9821.0 7436.9 14355.1 22374.0 29676.3 35782.2 40737.7 44725.6

CSI typeII 100000.0 100000.0 28582.3 15043.3 13789.7 18052.0 29334.5 31591.0 38861.9 44127.1 48305.8

highThrust 99879.8 98789.1 92977.7 76848.6 70563.1 83707.4 92446.6 96349.1 98107.2 98950.3 99382.1

Pj 10.000 (MW) nju 180.000 (deg) r -0.7500 -0.0000 V 0.0000 -1.1547

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 26936.8 11677.5 3827.5 2450.2 4937.8 9089.2 13622.2 17932.6 21793.6 25156.8 28048.0

VSI typeII 27052.3 11913.8 4363.8 3346.2 5540.8 9510.2 13965.6 18238.6 22080.7 25434.0 28322.1

CSI type I 37470.2 17397.3 5949.4 3886.6 7945.5 13411.3 19035.8 24217.4 28761.5 32659.0 35970.3

CSI typeII 36772.6 21144.2 12034.7 15210.5 14040.4 21311.4 28080.9 29835.9 34599.6 38109.8 40115.5

highThrust 96465.2 88436.0 73129.6 64867.6 75219.4 85622.9 91707.3 95046.0 96914.4 97999.5 98654.8

Other results are displayed in Appendix A. Tables in Appendix A show the fuel require-

ments (kg) for the different terminal conditions (position and velocity calculated from the

semi-major axis of the orbit of the target planet and ∆ν), the different jet power settings

(MW), and the different engine types.

In these tables, if a result is 100,000.0, that means the calculation does not converge

or the spacecraft consumes all of its mass before it reaches the target because of the Isp

restrictions imposed. For example, in Table 5 when ∆ν is 60◦, a spacecraft with a CSI type
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Table 6: Transfer Orbit to Saturn with 30MW Jet Power.

Saturn Fuel Consumed (kg)

Pj 30.000 (MW) nju 120.000 (deg) r -5.0000 8.6603 V -0.2739 -0.1581

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 6772.1 6242.3 5816.0 5455.4 5140.0 4857.7 4601.3 4365.9 4148.5 3946.7 3758.9

VSI typeII 69645.0 76609.5 83574.0 90538.5 97503.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0

CSI type I 6516.6 5860.9 4089.3 3195.7 6127.5 2493.1 2419.5 3427.4 3845.5 1918.8 2588.0

CSI typeII 50144.4 49643.0 48138.6 45631.4 49141.5 45130.0 48138.6 51147.3 54156.0 57164.6 100000.0

highThrust 99698.5 99640.2 99600.0 99577.6 99570.8 99576.6 99591.8 99613.1 99637.9 99664.0 99689.9

Pj 30.000 (MW) nju 150.000 (deg) r -8.6603 5.0000 V -0.1581 -0.2739

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 4617.4 4255.5 4002.6 3810.7 3654.4 3519.8 3399.1 3288.1 3184.1 3085.6 2991.8

VSI typeII 69645.0 76609.5 83574.0 90538.5 97503.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0

CSI type I 9803.5 5256.5 4229.3 8277.0 3854.2 2294.1 2839.1 9729.8 2769.2 3574.4 1764.6

CSI typeII 50144.4 66190.6 42121.3 45631.4 42121.3 57164.7 72208.0 51147.3 45130.0 57164.6 60173.3

highThrust 99369.4 99086.7 98824.4 98611.2 98460.4 98373.1 98342.9 98358.7 98408.6 98480.9 98566.1

Pj 30.000 (MW) nju 180.000 (deg) r -10.0000 -0.0000 V 0.0000 -0.3162

TOF (TU_Sun) 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000

VSI type I 2795.0 2652.5 2556.5 2487.1 2433.0 2387.5 2347.1 2309.4 2273.3 2237.9 2203.1

VSI typeII 83574.0 90538.5 97503.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0 100000.0

CSI type I 5923.3 4295.8 6359.6 4098.5 8041.8 5758.1 7503.3 2269.8 8679.2 2777.9 5029.6

CSI typeII 42121.3 45631.4 42121.3 67695.0 48138.6 42622.8 54156.0 38109.8 50144.4 52651.6 66190.6

highThrust 99108.2 98745.0 98372.4 98023.9 97725.5 97493.0 97331.2 97236.4 97199.5 97209.0 97253.4

II engine whose Isp is 5,000 sec cannot reach Venus because of an insufficient thrust level.

There is also a time of flight restriction on VSI type II engine, where the maximum

allowable Isp is 30,000 sec. Table 7 shows the time until mass becomes zero for a spacecraft

whose initial mass is 1.0E+05kg (100MT). For example, if the jet power is 30 MW the burn

time should be shorter than 28.717 TU. In Table 6, for VSI type II, all of the spacecraft

mass (100MT) is consumed and therefore the spacecraft cannot reach the target when the

time of flight exceeds 30 TU.

Table 7: Time Until Spacecraft Mass (m0 = 100MT) Becomes Zero (in TU Sun).

Isp Jet Power (MW)
(sec) 10 20 30

10,000 9.572 4.786 3.191

20,000 38.290 19.145 12.763

30,000 96.152 43.076 28.717

From these results, several facts were observed. For almost all the cases (any target

condition, jet power, and time of flight), the VSI type I engine is the most effective. This

is understandable because, if other types of engines are more effective than the VSI type I

engine, the optimizer would not choose the thrust history with variable Isp. For example,

if the constant Isp engine is more effective than the variable Isp engine, then the resulting
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control history for VSI type I should look like that of CSI type I.

There are some exceptions though. If the transfer time is considerably long, the space-

craft with a CSI type I engine sometimes revolves around the Sun more than once before

reaching the target planet. This helps lowering the required thrust level drastically, and

therefore the fuel requirements are less than that of VSI type I. For example, as seen in

table 30, if the target condition is Jupiter with a ∆ν = 90◦ for a 10MW jet power and a

time of flight more than 10 TU, CSI type I requires less fuel than VSI type I. Fig. 37 shows

the VRML screen shot for this result when the time of flight is 14 TU. The spacecraft for

these cases revolves around the Sun more than one time. This happens often when the

target planets are far from the Sun (e.g. Jupiter and Saturn). Currently, SAMURAI does

not always allow the VSI engine to choose a trajectory with more than one revolution.

However, if the appropriate initial guess for control variables is chosen and a trajectory

with more than one revolution could be obtained for VSI type I, VSI type I should require

less propellant mass than CSI type I, or at least the same amount of the fuel should be

required. This is due to the same reasons argued above that if the constant Isp history is

more effective than variable Isp, the control history for variable Isp should look like the one

for constant Isp.

This is confirmed by manually choosing the initial guess of the control variables for

several cases. When the initial guess of the control variables is adjusted for a VSI type I

engine so that the spacecraft travels around the Sun more than one revolution, and if the

resulting trajectory travels around the Sun more than one revolution, the fuel requirement

become less than that of a CSI type I engine.

As explained in Sec. 7.1, the range for the time of flight for each destination is selected

so that it includes the time of flight that minimizes the fuel consumption for high thrust. It

is interesting that when the destination is Venus or Mars, the time of flight that minimizes

the fuel consumption is almost the same value for all of five types of engines. For example,

the trajectories from Earth to Venus with a ∆ν = 120◦ and a jet power of 10 MW, the

fuel consumption is minimized for all of five engines at a time of flight of 1.8 TU. This also

happens for trajectories from Earth to Mars with a ∆ν = 90◦ and a jet power of 10 MW,
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Figure 37: A Trajectory with More Than One Revolution - CSI type I engine.

where the time of flight to minimize the fuel consumption is 2.2 TU.

However, for the destinations far from the Sun (such as the asteroid, Jupiter, and

Saturn), the above statement does not hold. For a trajectory from Earth to an asteroid with

a ∆ν = 180◦ and a jet power of 10 MW, the time of flight that minimizes fuel consumption

for VSI type I is 8.0 TU, 7.0 TU for VSI type II, 7.5 TU for CSI type I, 7.0 TU for CSI type

II, and 9.5 TU for high thrust. This can be explained in the following way: if the destination

is near the Sun (and hence the trajectory is near the Sun), the gravitational force from the

Sun dominates the spacecraft’s motion, and therefore the acceleration exerted by the engine

is less effective than the acceleration due to the force from the Sun. The trajectories will

then look similar for each of the engine types and therefore the flight times are similar

for each. When the spacecraft is far from the Sun, the effect from the acceleration of the

engine is larger than that of the Sun, and the spacecraft gets more freedom compared to

the spacecraft near the Sun. The spacecraft can then choose the time of flight that is best

for its engine type.

For many of the cases where the destination of the spacecraft is Jupiter or Saturn,

the fuel consumption for the VSI type I becomes smaller and smaller as the time of flight

becomes longer and longer (such as the case in Table 27, Earth → Jupiter with a ∆ν of 90◦

and a jet power of 10 MW). Hence for a VSI type I, it is desirable to have a very long flight

time, assuming that there is no constraint on time of flight. It is shown in Fig. 38 that

when the time of flight is considerably long, the spacecraft wanders around between Earth
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Figure 38: A Trajectory with Long Time of Flight - VSI type I engine.

and the target planet and just wastes time. This kind of movement is possible because the

spacecraft is far from the Sun and the gravitational force from the Sun is relatively small.

The VSI type I engine is the fictitious engine that does not have any constraint on Isp.

Because VSI type II has a constraint on Isp, it always requires more propellant than type

I, or at least the same amount of the propellant as type I. When the time of flight is very

short and the constraint on Isp is always inactive and the control is exactly the same as in

type I, then the fuel consumption is also the same. On the other hand, as the time of flight

increases, because a a lower thrust will be used for a longer time of flight, the duration the

constraint is active becomes longer. At a certain point when the time of flight is very long,

the Isp constraint becomes always active, then a VSI type II engine acts like a CSI type I

engine (constant thrust and constant Isp).

Table 8: Fuel Consumption for VSI type II and CSI type I (kg).

TOF (TU Sun) 9.0 10.0 11.0 12.0 13.0 14.0

VSI type II 28647.2 23229.7 31611.1 27858.0 30179.5 32501.0

CSI type I 24109.9 23215.0 25536.5 27858.0 30179.5 32501.0

Initial mass is 100,000 kg.
Maximum allowable Isp for CSI type I is 30,000 sec.

Table 8 shows the fuel consumption for VSI type II and CSI type I for a trajectory

from Earth to Jupiter with a ∆ν of 90◦ and a jet power of 10 MW. The Isp for this case

is constrained at a maximum allowable Isp of 30,000 sec. As seen in this table, when the
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Figure 39: VSI type II: Thrust History for Different Levels of Isp Limit.

time of flight exceeds 12 TU, the fuel consumption for both engines becomes the same. The

thrust level for both engines is constant throughout the travel time with 30,000 sec Isp.

Using a VSI engine in this way is not recommended because the merit of using a VSI engine

is that it can modulate its thrust and Isp.

Figs. 39 and 40 show examples of the relationships among thrust, Isp, and Isp constraints

for the VSI engine. It is shown in Fig. 39 that, as the constrained Isp level decreases, the

thrust level for unconstrained part decreases as well. This is because the spacecraft must

spend unnecessary fuel during the constrained arcs, and therefore during the unconstrained

arcs less thrust is enough. When the constrained Isp level reaches 6,736 sec, the engine does

not have to modulate its thrust and Isp any more, and the thrust level is constant at 302.8

N throughout the trajectory. If the constrained Isp level is less than 6,736 sec the spacecraft

starts wasting the fuel because it has to exhaust more fuel than it needs to accomplish the

mission.

From the discussions up to this point, the following statement could be derived: the fuel

consumption for VSI type II engine with an Isp limit of x seconds is always between that

of the VSI type I and that of the CSI type I engine whose Isp is x seconds.
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Figure 40: VSI type II: Isp History for Different Levels of Isp Limit.

Fig. 41 is the fuel consumption divided by the initial mass (100 MT) for different Isp

constraint levels. The value at an Isp limit of 60,000 sec is the value for unconstrained

case. It is easily seen that as the Isp limit decreases, the thrust level and fuel consumption

increase.

Figs. 42 and 43 show examples of the relationships among thrust, Isp, and the Isp

constraints for the CSI type II engines. The initial and target conditions and time of flight

are the same as the ones used for the VSI type II engines in the above discussion.

When the Isp level is low, the thrust history looks like the one for a high thrust engine.

Short burns are also required at the departure and at the arrival portions of the trajectory.

As the Isp level increases, more burn time will be required because the thrust level decreases,

and when the Isp reaches 6,736 sec, the engine with a thrust of 302.8 N has to be on in

order for the spacecraft to reach the target.

Fig. 44 is the fuel consumption of the CSI type II engines for different Isp levels. For
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Figure 41: VSI type II: Fuel Consumption for Different Levels of Isp Limit.
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Figure 42: CSI type II: Thrust History for Different Levels of Isp.
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Figure 43: CSI type II: Isp History for Different Levels of Isp.

reference, the fuel consumption for high thrust with 450 sec Isp is shown in this figure. It

is interesting that the fuel consumption for a 6,736 sec Isp continuous thrust engine is more

than that of 6,000 sec or 5,000 sec bang-off-bang engine. That means the higher Isp is not

always effective for the CSI engine if the engine has the capability of switching on and off.

In some cases, not firing the engine around the midpoint of the trajectory positively impacts

the fuel consumption. This kind of result is often obtained (such as a trajectory from Earth

to Venus with a ∆ν of 90◦, a jet power of 10 MW, and a 1.4 to 2.0 TU time of flight as

is shown in in Table 5) where the engine should only be fired at the departure and arrival

segments of the trajectory in order to save fuel.

7.4 Relationship among Fuel Consumption, Jet Power, and

Travel Distance

An additional calculation is performed in order to answer the following question: Is it

possible to determine a relationship between the fuel consumption and the jet power, or

between the fuel consumption and the distance between departure and arrival planets?
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Figure 44: CSI type II: Fuel Consumption for Different Levels of Isp.

Several additional trajectories are calculated from Earth to Mercury, Venus, Mars, the

asteroid, Jupiter, and Saturn whose ∆ν’s from Earth are 180◦, and several values of time of

flight are considered. Fuel consumption for the VSI type I and CSI type I engines are calcu-

lated and compared. The shorter time of flight was chosen for examples in this section. This

is because a longer time of flight may result in a trajectory with more than one revolution

for the CSI type I engine, which may cause trouble in comparing fuel consumption.

Fig. 45 shows the relative fuel consumption of the VSI type I with respect to CSI type

I. The values shown in the figure are “fuel consumed with VSI” divided by “fuel consumed

with CSI”. Therefore lower values mean that using a VSI type I engine needs less fuel than

a CSI type I engine. This figure show that a higher power to mass ratio (P/m) is always

better for the VSI engines. This result coincides with the result from the preliminary study

of a simple trajectory outlined in Chap. 4.

Fig. 46 shows the relative fuel consumption as a function of distance between the Sun

and the target planet. Isp for CSI for each mission is maximized so that the fuel consumption

is minimized for each case. From this figure, we may conclude that it is more effective to

use the VSI engine near the Sun. However, because these values are strongly affected by

the time of flight and the jet power, the above conclusion may not hold for every case. If
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Figure 45: Relative Fuel Consumption of VSI with respect to CSI: Comparison by Jet
Power.
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Figure 46: Relative Fuel Consumption of VSI with respect to CSI: Comparison by Distance
from the Sun (The Best Isp is Chosen for Each CSI Mission).

this conclusion is true, the result does not coincide with the result from Chap. 4 because in

Chap. 4 we concluded that the merit of using a VSI engine increases as the travel distance

increases.

In Chap. 4, the Isp values for the CSI engine (type I) are the same for all cases. Hence

the fuel consumption is proportional to the time of flight. Whereas in this chapter the Isp

level for CSI in each case is different because SAMURAI calculates the minimum required

thrust (and therefore maximum required Isp) that allows the spacecraft reach its target. In

such a case the fuel consumption is very likely to decrease as the time of flight increases.

This is because as the time of flight increases, lower thrust level may be sufficient. Fig. 48

shows the fuel consumption for both the VSI and CSI engines where the Isp for the CSI

engine can be freely chosen. As shown in this figure, Isp level for both CSI and VSI decreases

as the time of flight increases because lesser thrust is sufficient for a longer time of flight.

Fig. 47 shows the relative fuel consumption as a function of distance between the Sun

and the target planet. In this figure, Isp for CSI is the same (30,000 sec) for all missions.

This figure shows that as the travel distance increases using VSI engines is more efficient

than using CSI engines. This results coincide with the results from Chap. 4.
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Figure 47: Relative Fuel Consumption of VSI with respect to CSI: Comparison by Distance
from the Sun (Isp for CSI is the Same for All Missions).

Fig. 49 shows the fuel consumption for both the VSI and CSI engines where the Isp of

the CSI is fixed to 15,000 sec for all cases. Some points for CSI are missing because at

these points the Isp of 15,000 sec is too high and therefore the thrust is too low to reach the

target. When the Isp is fixed, the fuel consumption for the CSI increases as time of flight

increases because fuel consumption is proportional to the time of flight. It is apparent that

when a fixed value of Isp is used for the CSI engine, more fuel is required as the distance

from the Sun and the target planet increases, because it usually takes more time to get

there. This means that a VSI engine gets more advantageous than a CSI engine as the

distance between the Sun and the target planet increases.

In summary, these statements are obtained:

• The merit of using a VSI engine against a CSI engine increases as the power to mass

ratio of the spacecraft increases.

• The merit of using a VSI engine over that of a CSI engine may increase or decrease

as the travel distance increases depending on the problem settings.

– If the Isp level of the CSI engine is fixed for any mission profile (any time of flight
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and any target conditions), the relative merit of using a VSI engine increases as

the travel distance increases. Therefore, using a VSI engine for a transfer to

Pluto is the most efficient.

– If the best Isp level for the CSI engine is chosen for each mission depending

on the mission profile, the merit of using a VSI engine decreases as the travel

distance increases. Hence, using a VSI engine for a transfer to Mercury is the

most efficient.

99



CHAPTER VIII

NUMERICAL EXAMPLES: “REAL WORLD” PROBLEMS

In this chapter, the real ephemeris of planets is used to calculate the transfer trajectories

from Earth to various planets. Engines considered in this chapter are VSI type II (con-

strained Isp) with maximum allowable Isp of 30,000 sec, CSI type I (continuous thrust),

CSI type II (bang-off-bang) with 5,000 sec Isp, and high thrust with 450 sec Isp.

Although the result of the VSI type I engine with no constraint on Isp (and therefore

unrealistic) was not compared with the results of other types of engines, it was used to

estimate the departure date and time of flight that minimize fuel consumption for other

types of engines because computationally the VSI type I can be solved faster. As stated in

the last chapter, the value of time of flight that minimizes the fuel consumption is sometimes

the same for each engine type, and therefore the result of the VSI type I is useful. Ten

MW’s of jet power is assumed for all cases.

Before going to the actual calculations, the concept of “synodic period” is introduced.

A synodic period is defined as the time required for any phase angle between two planets

to repeat itself [12]. This parameter is used to determine the launch opportunity. For two

planets whose periods are p and q, the synodic period is expressed as 1/(1/p − 1/q) =

pq/(q − p). If we miss a particular launch opportunity, we must wait until a desirable

phase angle comes around again. For example, the synodic period of Earth and Mars

is 780 days (2.14 years), and Earth and Venus is 584 days (1.6 years). So if we miss a

launch opportunity to Mars, we have to wait until the next opportunity comes 2.14 years

later. Usually transfer trajectory calculation for one synodic period is enough because fuel

requirements show repetitive patterns for each synodic period.
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8.1 Scientific Mission to Venus

8.1.1 Venus Exploration

If Earth had a twin, it would be Venus. Venus is sometimes called Earth’s “sister planet.”

The two planets are similar in size, mass, composition, and distance from the Sun. But

there are also many differences. Venus has no oceans, and it is covered by thick, rapidly

spinning clouds that trap surface heat. Therefore the surface temperature is over 450 ◦C,

hotter than the surface of the planet Mercury. The high density of the atmosphere results

in a surface pressure 90 times that of Earth. Because Venus reflects so much sunlight, it is

usually the brightest planet in the sky.

Several probes have been sent to Venus so far. Two of them landed on the Venusian

surface. The Magellan probe, launched in 1989, was the last spacecraft sent to Venus. This

is partly because Venus seems less interesting than Mars and other outer planets. However,

the ESA (European Space Agency) is planning to launch a Venus orbiter mission named

“Venus Express (VEX)” in November 2005.

8.1.2 Problem Description

Because the synodic period of Earth and Venus is 584 days, a grid search for launch date

is performed for a 600-day range starting from Jan. 1, 2010. At first a wide range in time

of flight is considered, then this range is narrowed down to an appropriate value, and the

state and control variables for minimum fuel transfer for each engine type were analyzed.

The initial mass of the spacecraft is set to 100 MT.

8.1.3 Results

Fig. 50 shows the normalized fuel requirements for VSI type II with a 30,000 sec Isp con-

straint. A 600-day range of launch dates starting from Jan. 1, 2010, with the time of flight

between 100 and 300 days are calculated. A resulting value of 1.0 means either the program

failed to calculate the results, or the mass becomes zero before reaching Venus. As shown

in this figure, there is a region with very low values. For example, if the spacecraft leaves

Earth on Aug. 1, 2010, and time of flight is 160 days, the fuel requirement is just 3,195 kg.

101



0

5
0



1
0
0



1
5
0



2
0
0



2
5
0



3
0
0



3
5
0



4
0
0



4
5
0



5
0
0



5
5
0



6
0
0



100


200


300


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


(
f
u
e
l
 
c
o
n
s
u
m
e
d
)
 
/
 
(
i
n
i
t
i
a
l
 
m
a
s
s
)



Day from Jan. 1, 2010


TOF

(day)


Figure 50: Fuel Consumption for VSI type II: Earth – Venus.

Fig. 51 shows the trajectory for this case drawn using VRML. The short red arrows along

the trajectory shows the thrust directions. For this trajectory, the Isp level is always 30,000

sec. In this case, if the time of flight is not restricted, the fuel consumption could be lowered

by extending time of flight. However, using a VSI engine in this way is not desirable. As

shown in Fig. 51, the thrust vectors are not aligned neatly around the midpoint. This is due

to the fact that an engine that always operates at its maximum Isp has to expel more fuel

than required, because the spacecraft wastes fuel by thrusting in inappropriate directions.

To avoid this from happening, we would rather shorten the time of flight.

The time of flight can be shortened at the expense of higher fuel cost. This would

save mission operating cost and may mitigate the degradation of instruments due to the

radiation from the Sun.

Fig. 52 shows the fuel requirements for the VSI type II for a 600-day range of departure

dates with a time of flight between 60 and 90 days. If we choose Sep. 18, 2010, as the
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Figure 51: Trajectory from Earth to Venus with 160-day Time of Flight.
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Figure 52: Fuel Consumption for VSI type II: Earth – Venus.
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Figure 53: VSI type II Trajectory from Earth to Venus with 90-day Time of Flight.

departure date with a 90-day time of flight, the minimum fuel consumption is achieved

(14,302 kg). Fig. 53 shows the transfer trajectory, with thrust magnitude and direction

displayed. Fig. 54 is the thrust steering angles and Fig. 55 shows the thrust magnitude and

Isp. Note that higher thrust is required at both departure and arrival. The thrust direction

at departure is determined so that the spacecraft slows down and heads into a Venus’ orbit

which is inside the Earth’s orbit. When the spacecraft nears Venus, the spacecraft further

slows down to capture into Venus’ orbit. Around the mid point of the trajectory, the Isp

constraint becomes active and the engine is operated with its maximum Isp of 30,000 sec.

This corresponds to a thrust level of 68 N.

The same grid search is performed for CSI type I. The fuel requirements for a 600-day

departure range with 60 to 90 day time of flight is shown in Fig. 56. The minimum fuel

requirement for a 90-day time of flight is 18,865 kg, when the departure date of Sep. 8,

2010, is used. Fig. 57 is a screen shot of the VRML for this trajectory. Similar to the VSI

type II, in order to reach the inner planet the spacecraft initially slows down its speed by
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Figure 54: Thrust Steering Angle for VSI
type II: Earth to Venus, 90-day Time of
Flight.
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Figure 55: Thrust Magnitude and Isp for
VSI type II: Earth to Venus, 90-day Time
of Flight.

expelling the fuel in the direction opposite to the velocity.

Fig. 58 shows the steering angle, and Fig. 59 is the thrust level and corresponding Isp

used throughout the CSI type I mission. A thrust level of 220 N is required for this 90-day

transfer with corresponding Isp of 9,270 sec.

The trajectory for the CSI type II with a 5,000 sec Isp limit looks similar to the one in

Fig. 60, resulting in a bang-off-bang control. When the departure date is Sep. 18, 2010, the

fuel consumption is minimized (20,702 kg) for the 90-day time of flight.

Fig. 61 shows thrust steering angle, and Fig. 62 shows thrust magnitude and Isp. The

engine is on for 13.5 days at the departure, and 14.4 days at the arrival. The thrust level

corresponding to an Isp of 5,000 sec is 408 N when the jet power is 10 MW.

Fig. 63 shows the fuel requirements for an Earth to Venus transfer orbit with high thrust.

A 60 to 90-day time of flight is considered. When the time of flight is 90 days, the minimum

fuel required departure date is Sep. 8, 2010. The required ∆V at the departure is 4.116

km/s, and the ∆V at the arrival is 5.051 km/s. Wish the assumed 450 sec of Isp, the total

fuel consumption is 87,475 kg. That means the weight of the probe may be restricted to

less than a few percent of the initial mass unless non-zero C3’s are assumed.
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Figure 56: Fuel Consumption for CSI type I: Earth – Venus.

Figure 57: CSI Type I Trajectory from Earth to Venus with 90-day Time of Flight.
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Figure 58: Thrust Steering Angle for CSI
type I: Earth – Venus, Day 250, 90 day
TOF.
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Figure 59: Thrust Magnitude and Isp for
CSI type I: Earth – Venus, Day 250, 90
day TOF.

Figure 60: CSI Type II Trajectory from Earth to Venus with 90-day Time of Flight.
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Figure 61: Thrust Steering Angle for CSI
type II: Earth – Venus, Day 260, 90 day
TOF.
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Figure 62: Thrust Magnitude and Isp for
CSI type II: Earth – Venus, Day 260, 90
day TOF.
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Figure 63: Fuel Consumption for High Thrust: Earth – Venus.
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These results concluded that the VSI type II is most effective engine (least fuel required).

As concluded in the last chapter, the departure date that minimizes the fuel requirements,

is almost the same for all engine types.

8.2 Human Mission to Mars: Round Trip

8.2.1 Mars Exploration

Outside of the Earth-Moon system, Mars is the most hospitable body in the solar system

for humans and is currently the only real candidate for future human exploration and

colonization [1].

In August of 1992, a ”Why Mars” workshop was held in Houston, Texas. Six major

elements behind the motivation for human Mars exploration were introduced by a consultant

team consisting of 16 professionals from across the country.

• Human Evolution – Mars is the next logical step in the expansion of the human race

into the stars.

• Comparative Planetology – by understanding Mars and its evolution as a planet, a

better understanding of Earth will be achieved.

• International Cooperation – an international Mars exploration effort has the potential

to bring about a sense of global unity as never seen before.

• Technological Advancement – the development of new and improved technologies for

the Mars mission will enhance the lives of those on Earth while encouraging high-tech

industry.

• Inspiration – the human Mars exploration mission will test our technological abilities

to their maximum. The ingenuity of the mobilized populace will be tested and our

accomplishments will serve to inspire future generations. A common focus will unite

people from around the world as they expand the envelope of achievability.

• Investment – the cost of a crewed Mars exploration mission is reasonable when com-

pared with the costs of other current societal expenditures.
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8.2.2 Problem Description

Unlike unmanned missions whose time of flight is less important, the travel time for the

human mission should be as short as possible in order to reduce crew exposure to zero

gravity and cosmic radiation.

Therefore, in this section, the time of flight for each leg (outbound and inbound) is

constrained between 90 days and 120 days. This range is much shorter than the planned

missions by the chemical rockets whose time of flight is around 8 months. A grid search for

departure date is conducted to find the best launch date that achieves the minimum fuel

consumption. The range of departure dates for the outbound leg is 3,650 days from Jan. 1,

2010 with 10-day increments, and the range for inbound leg is 4,000 days from April. 1,

2010 with 10-day increments. Because the synodic period of Earth and Mars is about 2.14

years, there should exist about 4 to 5 minima in these search ranges. Time of flight was

considered from 90 to 120 days with 10-day increments.

The initial outbound mass of the spacecraft is set to 100MT. Although the actual initial

mass for inbound leg may vary depending on the fuel consumption during the outbound

leg, 80MT is assumed. The Isp constraint for VSI type II is 30,000sec, and for CSI type II

the Isp is set to 5,000 sec.

8.2.3 Results

At first, a grid search for a VSI type I engine is performed. From this result, search ranges for

VSI type II, CSI, and high thrust are determined. Fig. 64 and 65 show the fuel requirements

for the outbound and inbound segments over a 10-year search range.

Table 9: Earth – Mars Round Trip Fuel Consumption for VSI type I

Outbound Inbound Total

No. Day TOF Fuel Day TOF Fuel Fuel Time

1 760 120 31,055 1,520 120 27,870 58,925 1,640

2 1,530 120 24,573 2,310 120 14,502 39,075 2,430

3 2,310 120 18,149 3,090 120 9,888 28,037 3,210

4 3,080 120 13,182 3,870 120 11,807 24,989 3,990

Day: Day from Jan. 1, 2010, TOF (day), Fuel (kg), Time (day).
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Figure 64: Fuel Consumption for VSI type I, 10 MW Jet Power: Earth – Mars Outbound.
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Figure 65: Fuel Consumption for VSI type I, 10MW Jet Power: Earth – Mars Inbound.
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Figure 66: Fuel Consumption for VSI
type II: Earth – Mars Outbound.
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Figure 67: Fuel Consumption for VSI
type II: Mars – Earth Inbound.

Table 9 shows the opportunities for an Earth – Mars round trip. It shows the departure

date expressed as the number of days from Jan. 1, 2010, as well as the fuel requirements, the

time of flight for outbound and inbound legs, the total fuel requirements, and the total trip

time. It is shown in Table 9 that the launch opportunity for VSI type I which minimizes the

fuel consumption occurs when the spacecraft leaves Earth on the 3,080th day from Jan. 1,

2010, which is May 29, 2018, and leaves Mars on the 3,870the day, which is Aug. 6, 2020.

Figs. 64 and 65 show that the best launch opportunity for the outbound trip may also exist

between Day 3,000 and 3,200, and Day 3,700 to 4,000 for the inbound trip for other types

of rockets. Based on these results, a finer grid search is performed around these departure

dates for VSI type II, CSI type I and II, and high thrust. Figs. 66 and 67 show relative fuel

requirements for a VSI type II engine for outbound trajectory and for inbound trajectory,

respectively. Figs. 68 and 69 show the same quantities for a CSI type I engine, Figs. 70 and

71 are for a CSI type II engine, and Figs. 72 and 73 for a high thrust engine.

From these results, the minimum points for all cases exist around the 3,070th day for

outbound and the 3,780th day for inbound. Further analyses with a finer grid are performed
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Figure 68: Fuel Consumption for CSI
type I: Earth – Mars Outbound.
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Figure 69: Fuel Consumption for CSI
type I: Earth – Mars Inbound.
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Figure 70: Fuel Consumption for CSI
type II: Earth – Mars Outbound.
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Figure 71: Fuel Consumption for CSI
type II: Mars – Earth Inbound.
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Figure 72: Fuel Consumption for High
Thrust: Earth – Mars Outbound.
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Figure 73: Fuel Consumption for High
Thrust: Earth – Mars Inbound.

around these days. Table 10 shows the departure date, time of flight, and required fuel for

the minimum fuel required cases for VSI type II, CSI type I, CSI type II, and high thrust.

For high thrust, ∆V is shown instead of fuel consumption.

Table 10: Earth – Mars Round Trip Fuel Consumption

Outbound Inbound Total
Departure TOF Fuel Departure TOF Fuel Fuel Time

VSI type II 06/02/2018 120 12,959 08/03/2020 120 9,584 22,543 913
CSI type I 06/01/2018 120 16,716 08/02/2020 120 12,441 29,157 913
CSI type II 05/31/2018 120 20,702 07/27/2020 120 17,252 37,954 908
High Thrust 06/02/2018 120 (9.553) 08/04/2020 120 (10.225) (19.778) 914

TOF (day), Fuel (kg), Time (day). For High Thrust ∆V (km/s) is shown in parentheses.

Fig. 74 shows both outbound and inbound trajectories. The spacecraft leaves from Earth

on June 2, 2018, and arrives at Mars on Sep. 30, 2018, with 12,959 kg of fuel consumption.

The crew stay on Mars is 673 days. For the returning leg, the spacecraft departs Mars on

Aug. 3, 2020, and arrives at Earth on Dec. 1, 2020, with 9,484 kg of fuel consumption. The

total trip time is 913 days and total fuel consumption is 22,543 kg. As seen in this figure, a

higher thrust is required at both departure and arrival phases of the trajectory. Fig. 75 is

the steering angle and Fig. 76 is the thrust magnitude and Isp for the outbound trajectory

with a VSI type II engine. Fig. 77 and Fig. 78 are for the inbound trajectory.
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Figure 74: VSI Type II Trajectory from Earth to Mars with 120-day Time of Flight.

The in-plane thrust angle for outbound and for inbound are completely different. The

thrust direction for the first half of the outbound phase is directed outward so that the

spacecraft reaches the Martian orbit which is outside the Earth orbit. Then around the

midpoint where the thrust magnitude is now constrained and has its minimum value, the

thrust direction flips from outward to inward so that the velocity of the spacecraft matches

the velocity of Mars at the arrival date. For the inbound trajectory, the thrust direction for

the first half is made so that the spacecraft decelerates and is sent back into Earth orbit.

Around the midpoint the direction changes so that the spacecraft can satisfy the final

position and velocity requirements. Because the inclination of Martian orbit is small(1.85◦

to ecliptic plane), the out-of-plane thrust angle is small for both outbound and inbound.

Similar trajectories are drawn for CSI type I. Fig. 79 shows both outbound and inbound

trajectories for round trip. The spacecraft leaves from Earth on June 1, 2018, and arrives

at Mars on Sep. 29, 2018, with 16,716 kg of fuel consumption. Then the crew stays on the

Mars surface for 673 days. For returning leg, the spacecraft departs Mars on Aug. 2, 2020,

and arrives at Earth on Nov. 30, 2020, with 12,441 kg fuel consumption. Total trip time is
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Figure 75: Thrust Steering Angle for VSI
type II: Earth – Mars Outbound.
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Figure 76: Thrust Magnitude and Isp for
VSI type II: Earth – Mars Outbound.
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Figure 77: Thrust Steering Angle for VSI
type II: Mars – Earth Inbound.
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Figure 78: Thrust Magnitude and Isp for
VSI type II: Mars – Earth Inbound.
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Figure 79: CSI Type I Trajectory from Earth to Mars with 120-day Time of Flight.

913 days and total fuel consumption is 29,157 kg.

Although the thrust level is fixed throughout the trajectory For CSI type I, the history

of the thrust direction is similar to that of VSI type II. Around the midpoint, the direction

completely changes for both the outbound and inbound trajectories.

Fig. 80 shows the transfer trajectories of both the outbound and inbound for CSI type

II. The spacecraft leaves from Earth on May 31, 2018, and arrives at Mars on Sep. 28, 2018,

with 20,702 kg of fuel consumption. The crew stays on the Mars surface is for 678 days.

For the returning leg, the spacecraft departs Mars on July 27, 2020, and arrives at Earth

on Nov. 24, 2020, with 17,252 kg fuel consumption. Total trip time is 908 days and total

fuel consumption is 37,954 kg.

Fig. 81 is the steering angle, and Fig. 82 is the thrust magnitude and Isp history for

the outbound transfer of a CSI type II engine. The engine is on for 13.2 days at departure

and 19.2 days at arrival. The first burn is made outward and boosts the spacecraft into

the trans-Mars injection. As the spacecraft approaches Mars, an additional inward burn

is made so that the spacecraft satisfies the target conditions. The histories of the same

parameters for inbound transfer are shown in Figs. 83 and 84.
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Figure 80: CSI Type II Trajectory from Earth to Mars with 120-day Time of Flight.

For high thrust, if the time of flight constraint is 120 days for both legs the ∆V is 9.553

km/s for the outbound leg and 10.225 km/s for the inbound leg. Using these values, the

fuel consumption for the outbound leg is 88,712 kg for an initial mass of 100 MT, assuming

that the Isp is 450 sec. Assuming no fuel consumption during the stay, the inbound initial

mass is 11,288 kg. The required fuel for the inbound leg is 10,176kg, and the final mass

is 1,113 kg. These values seems unacceptable because the structural mass would likely be

greater than 1,113 kg. To make the mission plan more realistic, the following option can be

thought:

• Assume non-zero C3 at departure and at arrival.

• Utilize in-situ resource production.

• Conduct aero-capture at Mars arrival and Earth arrival.

• Increase time of flight.
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Figure 81: Thrust Steering Angle for CSI
type II: Mars – Earth Outbound.
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Figure 82: Thrust Magnitude and Isp for
CSI type II: Mars – Earth Outbound.
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Figure 83: Thrust Steering Angle for CSI
type II: Mars – Earth Inbound.
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Figure 84: Thrust Magnitude and Isp for
CSI type II: Mars – Earth Inbound.
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In reality the spacecraft usually has some non-zero value of C3. If a spacecraft leaves

LEO and heads to Mars it should have some velocity when it escapes from the Earth’s

sphere of influence.

In-situ resource utilization is the process of using the materials available in the environ-

ment. For a Mars mission, this typically refers to using atmospheric materials to make fuel.

Mars has an atmosphere of 95% carbon dioxide, or CO2, and can be reacted directly with

the hydrogen brought from Earth as: 3CO2 + 6H2 → CH4 + 2CO + 4H2O. If the water

obtained from this reaction is run through a simple electrolysis process, i.e.: 2H2O → 2H2

+ O2, the hydrogen trapped in the water as a result of the first equation can be brought

back to product more and more methane, with a large amount of oxygen being produced

that could serve as a backup to the life-supporting systems of the Mars habitat.

Aero-capture could also be used to capture into Earth and Mars orbit, this could help

decrease the fuel requirements. The possibility of aero-capture is not analyzed in this

research.

Finally, to explore the possibility of saving the fuel by increasing the time of flight, a

broader range for time of flight is searched. The search range is now 100 to 400 days for both

legs. The minimum fuel transfer is achieved when the spacecraft leaves Earth on May 1,

2018, and arrives at Mars on Nov. 17, 2018, and then leaves Mars on June 29, 2020, and

arrives at Earth on Jan. 5, 2021. The time of flight is 200 days for the outbound leg and 190

days for the inbound leg. The ∆V for the outbound leg is 6.013 km/sec, and 6.810 km/sec

for the inbound leg. The fuel consumption for the outbound leg is 74,403 kg, and if no fuel

is consumed during the stay, then the initial inbound mass is 25,597 kg. The inbound leg

requires 20,127 kg of fuel, and gives a final mass of 5,470 kg. If other techniques introduced

above are used, the fuel consumption could be lowered.
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Figure 85: JIMO: Jupiter Icy Moons Orbiter [3].

8.3 JIMO: Jupiter Icy Moons Orbiter

8.3.1 JIMO Overview

NASA is currently in the preliminary definition phase for a “Jupiter Icy Moons Orbiter

(JIMO)” probe, which will perform detailed observations of Ganymede, Callisto, and par-

ticularly Europa. They may harbor vast oceans beneath their icy surfaces. JIMO is expected

to be powered by an advanced nuclear electric propulsion system [6] [3].

The JIMO mission has three major science goals:

1. Potential for Life: The mission would scout the potential for sustaining life on these

moons.

2. Origins and Evolution: Another main science objective would be to investigate the

origin and evolution of these moons.

3. Radiation Environments: The mission would also determine the radiation environ-

ments around these moons and the rates at which the moons are weathered by material

hitting their surfaces.

Because the proposed JIMO requires the development and testing of many new tech-

nologies, the mission would not launch until 2011 or later.
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Figure 86: Fuel Consumption for VSI type I: Earth – Jupiter.

8.3.2 Problem Description

The synodic period of Earth and Jupiter is 398.9 days. The fuel requirements for a 400-day

range of departure dates are searched starting from Jan. 1, 2010. Initially, a wide range of

time of flight was considered, and then from the results, an appropriate value of time of

flight was chosen and a more precise analyses could be conducted.

For this section, an upper Isp limit for CSI type I is set to 30,000 sec. The Isp limit for

VSI type II is the same as the last sections (30,000 sec), and Isp level for CSI type II is

5,000 sec.

8.3.3 Results

The trajectory for a VSI type I engine was analyzed to narrow the search range. Fig. 86

shows the fuel requirements for a transfer from Earth to Jupiter. The minimum-fuel transfer

occurs when the spacecraft departs around 100 days after Jan. 1, 2010. A more precise

analysis is performed around these days for VSI type II, CSI type I and II, and high thrust.

Fig. 87 shows the fuel requirements for an Earth to Jupiter transfer with VSI type II for
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Figure 87: Fuel Consumption for VSI type II: Earth – Jupiter.

several departure dates. When the time of flight is less than 600 days, the fuel requirements

decrease as the time of flight increases. For a time of flight greater than 600 days, the fuel

requirements increase as time of flight increases. When the time of flight exceeds about

600 days, the Isp constraint (30,000 sec) becomes active throughout the trajectory, and the

engine will operate like a CSI engine with Isp level of 30,000 sec for the entire flight time.

As stated in Sec. 8.1, this is not an appropriate way to operate a VSI engine.

Fig. 88 shows the relative fuel consumption for an Earth to Jupiter transfer with CSI

type I for several departure dates. For CSI type I, similar tendency can be seen in the fuel

consumption vs. time of flight as is seen for VSI type II. If the time of flight is less than

600 days, higher thrust is required, but when the time of flight exceeds 600 days, the Isp is

always on its constraint (30,000 sec) and the spacecraft starts to waste the fuel.

From the results above, a faster transfer is assumed, and the time of flight is fixed to

365 days. The departure date for all of the following calculation is set to April 1, 2010.

Fig. 89 shows the transfer trajectory for a 365-day time of flight. The trajectory goes

inside the Earth’s orbit to achieve a fast transfer. Fig. 90 is the history of thrust steering
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Figure 88: Fuel Consumption for CSI type I: Earth – Jupiter.

angle, and Fig. 91 is the history of thrust and Isp for VSI type II with a 365-day time of

flight. With this flight 41,554.9 kg of fuel is consumed.

Fig. 92 is a screen shot of the VRML for Earth – Jupiter transfer with CSI type I

departing April 1, 2010, and a 365-day time of flight. Fig. 93 is the history of thrust

steering angle, and Fig. 94 is the histories of thrust and Isp for CSI type I. The thrust

direction is similar to that of VSI type II. For a 365-day mission, 173 N of thrust level is

required. The corresponding Isp is 11,816 sec with 46,979.5 kg of fuel consumed for this

transfer.

Fig. 95 is the trajectory from Earth to Jupiter with CSI type II departing April 1, 2010,

with a 365-day time of flight. Fig. 96 is the history of thrust steering angle, and Fig. 97 is

the history of thrust and Isp for CSI type II with a 365-day time of flight. The engine is on

for 48.4 days at departure, and 69.7 days at arrival. Total fuel consumption is 60,344.9 kg.
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Figure 89: Transfer Trajectory for VSI type II: Earth – Jupiter.
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Figure 90: Thrust Steering Angle for VSI
type II: Earth – Jupiter, 365-day TOF.
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Figure 91: Thrust Magnitude and Isp
for VSI type II: Earth – Jupiter, 365-day
TOF.

Figure 92: Transfer Trajectory for CSI type I: Earth – Jupiter.
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Figure 93: Thrust Steering Angle for CSI
type I: Earth – Jupiter, 365-day TOF.
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Figure 94: Thrust Magnitude and Isp for
CSI type I: Earth – Jupiter, 365-day TOF.

Figure 95: Transfer Trajectory for CSI type II: Earth – Jupiter.
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Figure 96: Thrust Steering Angle for CSI
type II: Earth – Jupiter, 365-day TOF.
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Figure 97: Thrust Magnitude and Isp
for CSI type II: Earth – Jupiter, 365-day
TOF.
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8.4 Uranus and beyond

A transfer orbit to planets such as Uranus, Neptune, and Pluto, the launch opportunity

comes about once a year because the synodic period for Earth and these planets is about

one year. In this section a transfer trajectory from Earth to Uranus is analyzed. Transfer

trajectories to other two planets should be similar.

One thing we should remember in computing a transfer trajectory to the planet far

from the Sun is that as the transfer time gets longer, we need to think about the maximum

allowable burn time. Consider a spacecraft with 100 MT (1.0E+05 kg) of initial fuel and a a

VSI type II engine with a 30,000 sec Isp limit. If the jet power is 30 MW the propellant mass

flow becomes ṁprop = 2PJ/(g0 · Isp)2 = 6.933E-04 kg/s. Then it takes 1.0E+05/6.9334E-04

= 1.4424E+08 sec = 1669.4 days = 4.57 years until the spacecraft mass becomes zero. For

a jet power of 10 MW, 5008.2 days or 13.712 years is the time limit. We should reach the

target planet at least by then. For a CSI type II engine with 10 MW jet power and 5,000

sec Isp, ṁprop is 8.3197E-03 kg/s, and the burn time should be less than 139.1 days.

A grid search for a 400-day range of departure date from Jan. 1, 2010, is conducted for

VSI type I engine. The time of flight is fixed to 1,000 days. The minimum fuel trajectory

is achieved when the spacecraft is launched on Aug. 28, 2010. Using this launch date and

a 1,000-day time of flight, transfer trajectories for VSI type II, CSI type I, and CSI type II

are calculated.

Figs. 98 to 103 show the transfer trajectories from Earth to Uranus with 1,000-day time

of flight. 10MW of jet power is powerful enough to get the spacecraft to Uranus within

the 1,000-day limit. For these types of engines, the trajectory is almost straight to Uranus.

Fuel requirements are: 36,361.9 kg for VSI type II, 46,514.0 kg for CSI type I, 69006.7 kg

for CSI type II. The thrust level for CSI type I is 103.8 N (corresponding Isp is 19,656 sec),

and burn time for CSI type II is 94 days (54 days at departure, 40 days at arrival).
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Figure 98: Transfer Trajectory for VSI
type II: Earth – Uranus.

Figure 99: Departure Phase of Trans-
fer Trajectory for VSI type II: Earth –
Uranus.

Figure 100: Transfer Trajectory for CSI
type I: Earth – Uranus.

Figure 101: Departure Phase of Transfer
Trajectory for CSI type I: Earth – Uranus.
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Figure 102: Transfer Trajectory for CSI
type II: Earth – Uranus.

Figure 103: Departure Phase of Trans-
fer Trajectory for CSI type II: Earth –
Uranus.

8.5 Swing-by Trajectories with Mars

The final examples analyzed in this chapter are transfer trajectories utilizing a Mars swing-

by. The spacecraft leaves Earth and conducts a swing-by at Mars en route to Jupiter or

Saturn. A swing-by may save fuel consumption.

Instead of using actual ephemeris, the orbits of planets are assumed to be circular and

coplanar as they are in the last chapter. Therefore the positions of the planets are expressed

as the difference in the true anomaly (∆ν) with respect to Earth.

Swing-by trajectories with VSI type I, VSI type II, CSI type II, and high thrust are

considered and their corresponding fuel consumptions are calculated. CSI type I is omitted

for swing-by analysis.

For CSI type I, SAMURAI calculates the minimum constant thrust required to ac-

complish a mission, and the trajectory is simulated with this thrust level. For swing-by

trajectories, the thrust level required for each phase is normally different. If the thrust

level required for the 1st phase is higher than that for the 2nd phase, redundant fuel is

used throughout the 2nd phase because the engine will be operated with the thrust level
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required for 1st phase for an entire mission. Therefore using a CSI type I engine for a

swing-by mission is not suitable.

The high thrust transfer orbits are initially calculated. A grid search is performed to

find an appropriate configuration of planets to reduce the fuel consumption if the spacecraft

utilizes a swing-by maneuver. The spacecraft is assumed to leave the Earth’s position at

(1.0, 0.0) with a velocity at (0.0, 1.0). ∆ν between Earth and these two planets is set to

180◦, hence the spacecraft arrives at Jupiter whose position is (-5.0, 0.0) and velocity is

(0.0, -0.4472), or at Saturn whose position is (-10.0, 0.0) and the velocity is (0.0, -0.3162).

A time of flight of 6 to 16 TU is considered for Jupiter, and 10 to 20 TU of time of flight is

considered for Saturn. The optimal Mars position and time of flight from Earth is searched

in order to minimize the fuel consumption in each case.

Table 11 and 12 show the ∆V requirements for high thrust with and without Mars

swing-by for an Earth to Jupiter mission and an Earth to Saturn mission, respectively. It

is shown that a maximum savings of 20 % can be achieved using a swing-by maneuver.

Table 11: Comparison of High Thrust ∆V for Earth – Jupiter: With and Without Mars
Swing-by

Total TOF (TU Sun) 6 8 10 12 14 16

Without Swing-by 45.511 30.344 21.914 17.243 14.985 14.296

With Swing-by 43.768 25.402 18.120 14.717 13.695 13.789

Savings (%) 3.984 19.46 20.94 17.16 9.42 3.68

(∆V in km/s)

Table 12: Comparison of High Thrust ∆V for Earth – Saturn: With and Without Mars
Swing-by

Total TOF (TU Sun) 10 12 14 16 18 20

Without Swing-by 57.905 46.420 38.624 32.908 28.611 25.322

With Swing-by 53.862 40.026 31.590 26.147 22.247 19.778

Savings (%) 6.982 13.77 18.21 20.55 22.24 21.89

(∆V in km/s)

Figs. 104 and 105 show the transfer trajectories from Earth to Saturn with and without
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Figure 104: Transfer Trajectory for High
Thrust: Earth to Saturn without Swing-
by.

Figure 105: Transfer Trajectory for High
Thrust: Earth to Saturn with Mars
Swing-by.

swing-by at Mars. The total time of flight for these trajectories is 18 TU for both cases.

For a swing-by case, the minimum fuel trajectory is obtained when the time of flight from

Earth to Mars is 1.6 TU and the ∆ν between Earth and Mars is 85◦. Impact parameter

at Mars is 1.31515 Martian DU (≈ 4423 km), and Turn angle is 29.24◦. The Heliocentric

velocity (AU/TU) changes as:

Before Swing-by (u, v, w) = (−0.79280, 0.52491, 0.00000), V = 0.950822

After Swing-by (u, v, w) = (−1.04188, 0.50742, 0.00000), V = 1.158874.

This energy increase makes the spacecraft with swing-by maneuver possible to reach Saturn

with less propellant than the spacecraft without a swing-by maneuver.

Next, a grid search for VSI type I is performed. Table 13 and 14 show the fuel consump-

tion with or without swing-by. As shown in these tables, a swing-by maneuver can save fuel

for VSI engines by several percent. Figs. 106 through 109 are the transfer trajectories with

and without swing-by to Jupiter and Saturn.

The same grid search is performed for VSI type II and CSI type II. Table 15 through

18 show the fuel consumption with and without swing-by. Figs. 110 through 117 are the

transfer trajectories with and without swing-by for Jupiter and Saturn.
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Figure 106: Transfer Trajectory for VSI
type I: Earth to Jupiter without Swing-by.

Figure 107: Transfer Trajectory for VSI
type I: Earth to Jupiter with Mars Swing-
by.

Figure 108: Transfer Trajectory for VSI
type I: Earth to Saturn without Swing-by.

Figure 109: Transfer Trajectory for VSI
type I: Earth to Saturn with Mars Swing-
by.
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Table 13: Comparison of Fuel Consumption for VSI type I: from Earth to Jupiter With
and Without Mars Swing-by

Total TOF (TU Sun) 6 8 10 12 14 16

Without Swing-by 44764.1 20268.7 10675.1 7920.0 7466.6 7680.3

With Swing-by 45010.9 19625.1 10167.9 7874.3 7497.7 7731.9

Savings (%) -0.548 3.279 4.988 0.580 -0.415 -0.667

(Fuel consumption in kg)

Table 14: Comparison of Fuel Consumption for VSI type I: from Earth to Saturn With
and Without Mars Swing-by

Total TOF (TU Sun) 10 12 14 16 18 20

Without Swing-by 42157.6 27934.4 19061.1 13872.9 10867.5 9090.1

With Swing-by 40983.4 26735.4 17734.3 13365.3 10498.9 8977.8

Savings (%) 2.865 4.485 7.482 3.798 3.511 1.251

(Fuel consumption in kg)

As shown in Tables 15 through 18, fuel can be saved with swing-by for any type of

engines. However, fuel savings for CSI type II are higher than VSI type I and II in general.

Figs. 118 and 119 show the history of specific energy of a spacecraft going from Earth to

Figure 110: Transfer Trajectory for VSI
type II: Earth to Jupiter without Swing-
by.

Figure 111: Transfer Trajectory for VSI
type II: Earth to Jupiter with Mars Swing-
by.
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Figure 112: Transfer Trajectory for VSI
type II: Earth to Saturn without Swing-
by.

Figure 113: Transfer Trajectory for VSI
type II: Earth to Saturn with Mars Swing-
by.

Figure 114: Transfer Trajectory for CSI
type II: Earth to Jupiter without Swing-
by.

Figure 115: Transfer Trajectory for CSI
type II: Earth to Jupiter with Mars Swing-
by.

Figure 116: Transfer Trajectory for CSI
type II: Earth to Saturn without Swing-
by.

Figure 117: Transfer Trajectory for CSI
type II: Earth to Saturn with Mars Swing-
by.
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Table 15: Comparison of Fuel Consumption for VSI type II: from Earth to Jupiter With
and Without Mars Swing-by

Total TOF (TU Sun) 6 8 10 12 14 16

Without Swing-by 44985.3 21230.1 13524.2 16787.5 19318.7 19572.0

With Swing-by 45086.6 20943.7 13426.2 15525.7 17776.9 20077.1

Savings (%) -0.225 1.367 0.730 8.127 8.673 -2.516

(Fuel consumption in kg)

Table 16: Comparison of Fuel Consumption for VSI type II: from Earth to Saturn With
and Without Mars Swing-by

Total TOF (TU Sun) 10 12 14 16 18 20

Without Swing-by 42785.2 29767.3 22030.1 19808.9 20962.1 23215.9

With Swing-by 41661.8 29411.7 20728.6 19600.0 22265.7 24730.9

Savings (%) 2.696 1.209 6.279 1.066 -5.855 -6.126

(Fuel consumption in kg)

Jupiter and Saturn. Before and after swing-by, there is a jump on the specific energy for all

engine types. Throughout the mission, high thrust and CSI type II are operated with the

minimum specific energy required to reach the target. However, both VSI engines increase

their specific energy even after swing-by, and it seems that they waste fuel. VSI type II

has a constraint on Isp and cannot lower the thrust level below its constrained thrust level,

so it may be inevitable that a VSI type II engine wastes fuel. But it is interesting that a

VSI type I engine, that does not have a constraint on Isp, also unnecessarily increases its

specific energy and wastes fuel. That is the reason that the effect of swing-by maneuvers

on VSI engines is smaller compared to high thrust or CSI type II engines. The reason of

the increase of the specific energy for VSI engines should be further investigated.
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Table 17: Comparison of Fuel Consumption for CSI type II: from Earth to Jupiter With
and Without Mars Swing-by

Total TOF (TU Sun) 6 8 10 12 14 16

Without Swing-by 67193.5 46132.9 36772.6 32092.4 35101.1 36104.0

With Swing-by 60913.2 37989.9 31443.7 24703.4 21846.0 24108.8

Savings (%) 10.31 21.43 16.95 29.91 60.68 49.75

(Fuel consumption in kg)

Table 18: Comparison of Fuel Consumption for CSI type II: from Earth to Saturn With
and Without Mars Swing-by

Total TOF (TU Sun) 10 12 14 16 18 20

Without Swing-by 68530.7 60173.3 52651.6 48138.6 43625.6 40115.5

With Swing-by 43271.1 44381.0 45490.9 38780.5 37014.2 36762.8

Savings (%) 58.38 35.58 15.74 24.13 17.86 9.12

(Fuel consumption in kg)
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Figure 118: Specific Energy for Swing-by Trajectory: Earth – Mars – Jupiter.
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Figure 119: Specific Energy for Swing-by Trajectory: Earth – Mars – Saturn.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDED FUTURE

WORK

This paper has presented the methods and results for the comparison of several engine types

used for solar system exploration.

Five different engine types have been investigated in this research. They are

1. VSI type I (variable thrust, variable Isp with no constraint on Isp).

2. VSI type II (variable thrust, variable Isp with upper limit on Isp).

3. CSI type I (constant thrust, constant Isp with continuous thrust).

4. CSI type II (constant thrust, constant Isp with the capability of switching on/off the

engine).

5. High thrust (infinitesimal burn).

At first, a preliminary study was conducted with simple spiral trajectories, and fuel

consumption was calculated for VSI, CSI, and high thrust engines.

An interplanetary trajectory calculation software application SAMURAI was developed

to analyze the characteristics of trajectories for these five engines.

Using SAMURAI, many Earth-originating trajectories have been calculated and some

relationships among fuel consumption, jet power, and travel distance were established.

Finally, using actual ephemeris of planets, three-dimensional trajectories were calculated

to various destination planets to verify the relationships established in the preliminary study.

In this chapter, summary of the results, research accomplishments, and recommended

future work are presented.
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9.1 Conclusions and Observations

In the numerical calculations that have been performed up to the last chapter, the following

statements were obtained.

• For almost all cases considered in this research (any target condition, jet power, and

time of flight), VSI type I is the most efficient. Specifically, a VSI type I engine

requires the least amount of fuel among the five engine classes.

• If the transfer time is very long, it sometimes happens that VSI type I needs more

fuel than CSI type I. A spacecraft with a CSI type I engine sometimes travels around

the Sun for more than one revolution when the time of flight is longer than normally

required. This helps to lower the required thrust level drastically, resulting in a lower

fuel consumption than VSI type I. However, if a good initial guess of control variables

for a VSI type I engine is made, and if a trajectory of a spacecraft with a VSI type I

engine that orbits around the Sun for more than one revolution is obtained, the fuel

consumption of a VSI type I engine is lower than than that of a CSI type I engine.

This is confirmed by manually selecting the initial guess of the control variables for a

VSI type I trajectory and make the trajectory travel around the Sun for more than

one revolution. A VSI type I trajectory requires less fuel than a CSI type I trajectory

if both trajectories travel around the Sun for more than one revolution.

• When the target planet is close to the Sun, the time of flight that minimizes fuel

consumption is almost equal for all engine types. This is because the spacecraft’s

trajectory is more affected by the gravitational force from the Sun than by the accel-

eration from the engine. The trajectory for different types of engines look similar for

each engine type and therefore the time of flight also becomes almost equal for each

engine type.

• If the target is far from the Sun, the above statement does not hold. This is because the

gravitational force from the Sun becomes smaller as the spacecraft travels farther from

the Sun, and therefore the spacecraft’s trajectory is dominated by the force exerted
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Figure 120: Example of Fuel vs. Time of Flight for VSI type I.

by the engine rather than the gravitational force from the Sun. The spacecraft is

allowed more freedom in its movement, and the spacecraft chooses the time of flight

that is best for its engine type.

• When the target planet is far from the Sun, the fuel consumption for VSI type I

becomes smaller as the time of flight becomes longer. But for a target planet close to

the Sun, there is a time of flight that minimizes the fuel consumption, and extending

the time of flight does not necessarily decreases the fuel consumption as shown in

Fig. 120. This can be explained similarly to the previous statement: For a trajectory

to a planet far from the Sun, a spacecraft can choose the best time of flight. This is

not the case for VSI type II or CSI type I whose Isp has an upper bound and therefore

fuel consumption increases as time of flight increases.

• For VSI type II whose Isp limit is x sec, the fuel consumption is always between that

of VSI type I and that of CSI type I whose Isp limit is x sec. As the time of flight gets

shorter, thrust history for VSI type I and type II becomes more and more similar,

and at a certain time of flight, they become identical (constrained arc disappears for

VSI type II). On the other hand, as the time of flight gets longer, the thrust history

for VSI type II and CSI type I becomes more and more similar, and at a certain time

of flight, they become identical: constant thrust and constant Isp at x sec.

• For the same initial mass, the spacecraft with higher jet power is more advantageous
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than lower jet power. That means the merit of using a VSI engine increases as the jet

power increases for a certain mass of spacecraft. This statement can be also rephrased

as the following way: for the same jet power, a lighter spacecraft is more advantageous

than heavier one. Therefore the merit of using a VSI engine increases as the mass of

spacecraft decreases for a certain jet power.

• The merit of using a VSI engine against using a CSI engine may increase or decrease

as the travel distance increases. It depends on how the problem is set:

– If the Isp of the CSI engine is fixed for any mission profile (time of flight and

target conditions), the merit of using a VSI engine increases as the travel distance

increases. Therefore, using a VSI engine for a transfer to Pluto is the most

effective.

– If the best Isp level for the CSI engine is chosen for each mission depending

on the mission profile, the merit of using a VSI engine decreases as the travel

distance increases. Hence, using a VSI engine for a transfer to Mercury is the

most effective.

• Fuel can be saved by applying swing-by maneuvers for VSI engines, CSI type II, and

high thrust. However, effects of swing-by on VSI engines are smaller than that of high

thrust or CSI engines. This is because for VSI engines unnecessary increase of the

specific energy is observed after swing-by maneuvers, and therefore more fuel than

required is consumed. This is an unnecessary increase of the specific energy that is

not observed for high thrust and CSI type II engines.

9.2 Research Accomplishments

In this section, research goals and objectives presented in Chap. 1 are presented.

• The primary goal of this research is to show the advantages and disadvantages of VSI

engines over conventional engines such as CSI engines and high thrust engines that

are currently used for interplanetary missions. As stated in the previous section, it is

concluded that VSI engines are better than CSI engines and high thrust engines.
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• The objective that supports the primary goal is to establish a generalized rule that

1. qualitatively states the advantages and disadvantages of VSI engines

2. quantitatively determines the fuel savings by using VSI engines over CSI or high

thrust engines.

As stated in the last section, the 1st rule was established as the relationship between

the fuel savings and the jet power, or the relationship between the fuel savings and

the travel distance. Establishing the 2nd rule was difficult. The fuel consumption is

a function of many parameters such as jet power, time of flight, Isp constraints, and

the configuration of the two planets. Numerically, it is even affected by the number of

time steps or the tolerance for the convergence criteria. However, estimating the fuel

savings is not impossible. From the parameters such as jet power and configuration

of the planets, Tables 5 to 6 will help roughly estimate the fuel savings.

• To support the above goals, it was also a goal to create an interplanetary trajectory

optimization program that can calculate the trajectories for VSI, CSI, and high thrust

engines. The software application SAMURAI – Simulation and Animation Model

Used for Rockets with Adjustable Isp – was created. This application can calculate the

trajectory for each of the five propulsion systems. SAMURAI also conducts planetary

swing-bys if desired, and SAMURAI has a capability of drawing an animation of the

resulted trajectory on a web browser using VRML. Although this application was

developed for the purpose of study of this research, it has a potential to be widely

used for any interplanetary mission analyses, and that is the hope of the author.

9.3 Recommended Future Work

Multiple Swing-bys Current SAMURAI has a capability of calculating a swing-by tra-

jectory with only one planet, but not more than one. This limitation might not be desirable

if Mars missions are to be analyzed because previous studies show that some missions to

Mars do multiple swing-bys with Venus and Earth before arriving at Mars.
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Using SAMURAI and an existing interplanetary calculation application IPREP (Inter-

planetary PREProcessor), several calculations have been performed for high thrust trajecto-

ries with and without swing-bys. This is to investigate if more ∆V is required for a swing-by

trajectory with only one planet than for a trajectory without swing-by. The results showed

that the ∆V for a trajectory with a single swing-by with Venus is worth than the ∆V for

a trajectory without swing-by.

Therefore, adding a feature of multiple swing-by may improve the mission analysis and

give broader knowledge about VSI engines.

Mission to the Moon In this research only trajectories from Earth to other planets

were investigated. Although VSI engines may be the best for the fast transfers between two

planets, studying about the mission to the Moon with VSI engines may give us interesting

results. Some minor modifications of SAMURAI should make SAMURAI suitable for an-

alyzing the Moon missions because the equations of motion are the same for a trajectory

around the Sun and a trajectory around the Earth.

Optimization Methods for Swing-by, Lagrange Multipliers Currently SAMURAI

employs Powell’s method to find the optimal values for parameters such as conditions at

the entry point of the sphere of influence or the Lagrange multipliers for VSI type II and

CSI type II. Powell’s method works well for most of these problems because in many of

the cases the response surface for these parameters should be near-quadratic. However,

some problems require long computational time or they do not converge. Exploring other

methods such as sequential quadratic programming and applying it to SAMURAI may

improve the robustness and computation time.
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APPENDIX A

ADDITIONAL RESULTS FROM PRELIMINARY STUDY

Table 19: Transfer Orbit to Venus with 20MW Jet Power.

Venus Fuel Consumed (kg)

Pj 20.000 (MW) nju 60.000 (deg) r 0.3750 0.6495 V -1.0000 0.5774

TOF (TU_Sun) 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600

VSI type I 75460.6 55333.1 37883.9 31468.9 33372.4 38092.8 42879.0 46934.2 50183.6 52746.8 54765.5

VSI typeII 75472.9 55374.2 37907.7 31497.4 33441.1 38137.8 42896.0 46939.7 50185.4 52747.3 54765.5

CSI type I 91998.7 70503.4 47570.1 37915.3 39492.3 44013.7 48504.1 52327.1 55439.9 57940.4 59943.2

CSI typeII 100000.0 100000.0 42789.9 36856.1 38444.1 44127.1 48138.6 52150.2 56161.7 58919.7 65522.0

highThrust 99962.2 99517.3 98209.7 97435.0 98007.0 98951.2 99520.5 99780.0 99893.8 99945.5 99970.3

Pj 20.000 (MW) nju 90.000 (deg) r -0.0000 0.7500 V -1.1547 -0.0000

TOF (TU_Sun) 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

VSI type I 41684.2 24944.3 14710.8 11680.0 13491.7 17538.3 22175.9 26622.2 30587.2 34009.2 36921.2

VSI typeII 41741.4 25096.1 14888.4 11872.7 13746.5 17768.4 22332.1 26728.1 30663.5 34068.8 36971.2

CSI type I 55130.8 34204.4 19806.3 15209.7 17879.9 22580.4 27468.1 31995.3 35991.9 39441.8 42392.2

CSI typeII 50144.4 33095.3 24069.3 23902.2 32761.0 28833.0 33429.6 38360.5 43625.6 47637.2 48472.9

highThrust 99199.9 96601.8 92196.7 90080.6 91669.9 94920.9 97316.9 98602.2 99248.9 99578.9 99753.5

Pj 20.000 (MW) nju 120.000 (deg) r -0.3750 0.6495 V -1.0000 -0.5774

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 74914.2 49139.3 21413.7 6560.0 5604.9 10843.1 17186.2 22845.2 27463.5 31126.4 34009.9

VSI typeII 74929.3 49187.9 21618.1 7137.3 6362.2 11376.8 17558.6 23143.6 27728.2 31376.8 34256.9

CSI type I 89850.6 62939.8 29707.6 9353.5 8174.9 14876.2 22025.9 28210.4 33208.6 37160.9 40269.3

CSI typeII 100000.0 57164.6 38611.2 17383.4 18052.0 30086.7 33095.3 38109.8 43458.5 49141.5 52651.6

highThrust 99995.2 99784.6 96844.2 83979.1 81463.7 91996.8 97086.1 98835.5 99480.0 99743.9 99863.0

Pj 20.000 (MW) nju 150.000 (deg) r -0.6495 0.3750 V -0.5773 -1.0000

TOF (TU_Sun) 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400

VSI type I 51039.2 28338.6 11307.8 3388.9 2504.3 5208.1 9157.3 13203.8 16893.4 20096.8 22817.9

VSI typeII 51139.3 28554.0 11813.1 4814.9 5107.3 6593.9 10100.9 13989.7 17604.6 20771.4 23476.3

CSI type I 64679.2 38200.1 16350.2 5082.5 3909.4 7884.5 12857.8 17738.0 22090.5 25814.7 28944.2

CSI typeII 60841.9 40115.5 27078.0 18386.3 12870.4 18052.0 28248.0 30420.9 37608.3 42789.9 42622.8

highThrust 99879.8 98789.1 92977.7 76848.6 70563.1 83707.4 92446.6 96349.1 98107.2 98950.3 99382.1

Pj 20.000 (MW) nju 180.000 (deg) r -0.7500 -0.0000 V 0.0000 -1.1547

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 15564.6 6200.8 1951.1 1240.3 2531.4 4761.0 7308.9 9849.4 12229.4 14388.2 16311.5

VSI typeII 16044.3 7236.2 5571.6 6035.9 6500.2 7074.6 8995.4 11302.9 13569.5 15670.7 17568.1

CSI type I 22038.8 9288.4 3034.1 1995.6 4191.4 7303.0 10692.1 13986.5 17016.5 19723.7 22107.0

CSI typeII 31758.1 45965.7 14040.4 10864.6 16380.5 17550.5 24069.3 28415.2 33095.3 34933.9 40115.5

highThrust 96465.2 88436.0 73129.6 64867.6 75219.4 85622.9 91707.3 95046.0 96914.4 97999.5 98654.8
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Table 20: Transfer Orbit to Venus with 30MW Jet Power.

Venus Fuel Consumed (kg)

Pj 30.000 (MW) nju 60.000 (deg) r 0.3750 0.6495 V -1.0000 0.5774

TOF (TU_Sun) 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600

VSI type I 67214.1 45231.5 28906.2 23437.7 25032.9 29088.7 33353.1 37092.5 40176.4 42666.2 44663.8

VSI typeII 67246.0 45318.8 28989.0 23545.8 25205.9 29226.5 33435.9 37142.6 40209.8 42690.8 44683.8

CSI type I 83392.5 58208.3 36712.9 28924.4 30603.1 34734.7 38880.4 42468.5 45432.6 47840.3 49788.6

CSI typeII 100000.0 53529.2 37106.9 36104.0 42622.8 45506.1 45130.0 66817.4 56161.7 67695.0 58167.5

highThrust 99962.2 99517.3 98209.7 97435.0 98007.0 98951.2 99520.5 99780.0 99893.8 99945.5 99970.3

Pj 30.000 (MW) nju 90.000 (deg) r -0.0000 0.7500 V -1.1547 -0.0000

TOF (TU_Sun) 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

VSI type I 32273.9 18137.6 10312.9 8102.1 9418.0 12418.2 15963.9 19476.5 22706.6 25571.7 28068.5

VSI typeII 32425.2 18474.5 10785.9 8677.7 10062.5 12994.1 16417.3 19835.7 23003.9 25830.4 28303.3

CSI type I 43010.5 24998.0 13960.5 10723.6 12824.1 16505.7 20438.1 24177.5 27555.5 30532.4 33121.5

CSI typeII 43876.4 31716.3 22565.0 21186.0 24570.8 28206.2 32092.4 42622.8 40617.0 45255.3 47637.2

highThrust 99199.9 96601.8 92196.7 90080.6 91669.9 94920.9 97316.9 98602.2 99248.9 99578.9 99753.5

Pj 30.000 (MW) nju 120.000 (deg) r -0.3750 0.6495 V -1.0000 -0.5774

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 66566.4 39176.8 15373.1 4471.1 3807.8 7499.8 12153.7 16485.5 20154.0 23153.2 25572.3

VSI typeII 66609.7 39316.7 15867.5 5941.2 6268.1 8872.0 13150.8 17328.0 20928.4 23902.2 26320.2

CSI type I 81045.0 50691.8 21424.4 6384.8 5645.2 10551.8 16021.6 20946.8 25058.7 28393.7 31069.1

CSI typeII 75216.6 51147.3 31591.0 18052.0 20308.5 22565.0 33095.3 36104.0 45631.4 52651.6 75216.6

highThrust 99995.2 99784.6 96844.2 83979.1 81463.7 91996.8 97086.1 98835.5 99480.0 99743.9 99863.0

Pj 30.000 (MW) nju 150.000 (deg) r -0.6495 0.3750 V -0.5773 -1.0000

TOF (TU_Sun) 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400

VSI type I 41001.9 20863.2 7833.8 2285.1 1683.6 3533.4 6297.0 9207.8 11934.3 14359.8 16464.2

VSI typeII 41233.9 21365.3 9037.3 6964.5 7661.0 8357.4 9053.9 11255.3 13752.9 16080.0 18146.1

CSI type I 52700.8 28396.9 11360.7 3428.3 2652.0 5438.6 9032.2 12673.6 16015.2 18945.8 21459.1

CSI typeII 56161.7 38109.8 24821.5 15043.3 13789.7 18052.0 26075.1 31591.0 33847.5 40115.5 100000.0

highThrust 99879.8 98789.1 92977.7 76848.6 70563.1 83707.4 92446.6 96349.1 98107.2 98950.3 99382.1

Pj 30.000 (MW) nju 180.000 (deg) r -0.7500 -0.0000 V 0.0000 -1.1547

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 10944.2 4221.1 1309.2 830.3 1701.9 3225.1 4994.3 6789.2 8499.4 10075.3 11499.6

VSI typeII 12085.0 7661.0 8357.4 9053.9 9750.3 10446.8 11143.2 11839.7 12536.1 13606.3 14895.9

CSI type I 15610.6 6335.4 2036.2 1342.6 2847.0 5020.2 7439.8 9844.7 12101.6 14154.7 15990.0

CSI typeII 30086.7 22063.5 15043.3 16296.9 17550.5 45130.0 24069.3 100000.0 100000.0 100000.0 100000.0

highThrust 96465.2 88436.0 73129.6 64867.6 75219.4 85622.9 91707.3 95046.0 96914.4 97999.5 98654.8
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Table 21: Transfer Orbit to Mars with 10MW Jet Power.

Mars Fuel Consumed (kg)

Pj 10.000 (MW) nju 60.000 (deg) r 0.7500 1.2990 V -0.7071 0.4082

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 79408.5 61606.1 47004.4 41423.9 41965.7 44635.0 47528.4 50048.1 52091.7 53705.2 54964.0

VSI typeII 79414.2 61614.3 47009.5 41449.5 42047.2 44712.1 47576.1 50077.0 52110.4 53718.3 54974.0

CSI type I 87181.9 69845.2 57111.4 54419.3 57128.6 60687.3 63716.2 66008.5 67660.3 68807.4 69570.4

CSI typeII 100000.0 100000.0 100000.0 48807.2 50395.1 53487.4 56997.5 59170.4 67360.7 65522.0 66441.4

highThrust 99967.2 99643.5 98934.1 98558.6 98794.2 99254.3 99593.6 99781.4 99878.4 99929.2 99956.7

Pj 10.000 (MW) nju 90.000 (deg) r -0.0000 1.5000 V -0.8165 -0.0000

TOF (TU_Sun) 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600

VSI type I 52612.7 34420.2 22335.6 17921.9 18736.4 21928.2 25761.6 29449.8 32714.5 35503.2 37846.4

VSI typeII 52627.3 34477.5 22396.5 18006.8 18911.1 22160.7 25959.4 29604.2 32838.6 35607.1 37938.0

CSI type I 58608.9 40521.7 27802.8 24128.0 27162.8 32041.5 36853.9 41065.3 44567.3 47414.9 49702.4

CSI typeII 56161.7 39112.6 29250.9 26660.1 28080.9 31507.4 36271.1 41369.1 44127.1 48305.8 51147.3

highThrust 99544.1 97903.7 95112.7 93454.1 93878.0 95641.3 97361.7 98473.3 99104.8 99457.6 99658.9

Pj 10.000 (MW) nju 120.000 (deg) r -0.7500 1.2990 V -0.7071 -0.4082

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 49261.4 33360.6 20285.3 11933.7 8234.4 7930.3 9621.9 12265.4 15221.2 18145.8 20874.8

VSI typeII 49278.2 33415.1 20430.7 12185.9 8578.9 8375.6 10127.5 12759.9 15662.1 18538.1 21230.8

CSI type I 55204.5 39177.4 25461.6 15715.4 11051.3 11872.3 15087.1 18902.7 22736.7 26321.4 29540.5

CSI typeII 53487.4 38611.2 29083.8 26075.1 18720.6 18804.2 20057.8 26994.4 27078.0 31758.1 35101.1

highThrust 99644.3 98507.0 95434.2 90129.7 85574.1 84744.6 87331.3 91130.8 94232.7 96288.8 97575.1

Pj 10.000 (MW) nju 150.000 (deg) r -1.2990 0.7500 V -0.4082 -0.7071

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 12905.5 7430.8 4572.3 3700.7 4175.4 5473.8 7219.5 9162.5 11147.5 13081.4 14914.5

VSI typeII 13203.7 7934.8 5356.1 4753.6 5397.9 6588.9 8188.1 10019.7 11933.4 13818.8 15617.8

CSI type I 17181.4 10394.2 6346.7 5428.2 6904.0 9151.1 11765.3 14462.9 16993.3 19474.7 21775.7

CSI typeII 26325.8 20057.8 14207.6 15043.3 14291.2 16714.8 21060.7 22063.5 26910.8 30086.7 33429.6

highThrust 93009.0 86705.5 79495.9 75314.1 76448.8 81046.5 86048.4 90035.3 92892.5 94876.2 96249.8

Pj 10.000 (MW) nju 180.000 (deg) r -1.5000 -0.0000 V 0.0000 -0.8165

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 29615.1 20793.0 13728.2 8527.5 5049.8 3014.4 2100.0 2005.5 2480.1 3328.2 4405.8

VSI typeII 29768.1 21023.1 14075.4 9059.4 5913.8 4643.0 4875.2 5107.3 5339.5 5659.8 7784.6

CSI type I 36181.1 26430.4 18252.6 11895.2 7352.7 4422.1 2962.3 3385.1 6057.8 9658.5 9158.2

CSI typeII 38861.9 36104.0 29835.9 24069.3 17467.0 15043.3 12285.4 12870.4 13455.4 22063.5 16714.8

highThrust 98824.9 97418.4 94892.9 90837.7 85117.1 78401.6 72711.3 70651.6 72753.6 77052.0 81602.4
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Table 22: Transfer Orbit to Mars with 20MW Jet Power.

Mars Fuel Consumed (kg)

Pj 20.000 (MW) nju 60.000 (deg) r 0.7500 1.2990 V -0.7071 0.4082

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 65849.9 44515.0 30722.7 26122.7 26555.2 28729.5 31172.0 33376.3 35219.5 36710.9 37897.2

VSI typeII 65876.5 44570.0 30803.1 26302.2 26864.3 29053.7 31453.6 33617.8 35433.3 36908.0 38085.8

CSI type I 73308.0 51853.8 38181.0 34785.1 36617.2 39583.9 42341.3 44580.5 46299.1 47573.3 48487.3

CSI typeII 71037.9 52150.2 40951.3 37441.2 39112.6 43458.5 49643.0 50144.4 52150.2 60841.9 57666.1

highThrust 99967.2 99643.5 98934.1 98558.6 98794.2 99254.3 99593.6 99781.4 99878.4 99929.2 99956.7

Pj 20.000 (MW) nju 90.000 (deg) r -0.0000 1.5000 V -0.8165 -0.0000

TOF (TU_Sun) 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600

VSI type I 35696.9 20787.7 12571.8 9842.9 10336.5 12314.2 14785.2 17267.5 19556.5 21583.1 23339.7

VSI typeII 35801.6 21060.4 13005.6 10476.9 11177.9 13230.7 15645.1 18052.8 20281.2 22266.4 23998.0

CSI type I 41605.8 25802.7 16198.6 13393.0 15069.8 18116.1 21323.7 24302.1 26918.2 29148.7 31020.4

CSI typeII 45464.3 34599.6 26743.7 25740.8 26075.1 28248.0 35101.1 37608.3 40115.5 45464.3 45130.0

highThrust 99544.1 97903.7 95112.7 93454.1 93878.0 95641.3 97361.7 98473.3 99104.8 99457.6 99658.9

Pj 20.000 (MW) nju 120.000 (deg) r -0.7500 1.2990 V -0.7071 -0.4082

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 32679.9 20019.6 11287.5 6345.5 4294.0 4128.9 5054.1 6533.3 8237.5 9978.3 11654.1

VSI typeII 32826.0 20353.8 11965.7 7541.6 6500.2 6964.5 7609.8 8809.3 10228.2 11769.6 13325.0

CSI type I 38420.8 24897.0 14927.2 8656.4 5835.9 6195.6 7947.9 10115.5 12384.6 14595.5 16662.2

CSI typeII 45130.0 34933.9 26075.1 20280.6 17160.5 17550.5 18720.6 24626.5 25072.2 28582.3 32315.3

highThrust 99644.3 98507.0 95434.2 90129.7 85574.1 84744.6 87331.3 91130.8 94232.7 96288.8 97575.1

Pj 20.000 (MW) nju 150.000 (deg) r -1.2990 0.7500 V -0.4082 -0.7071

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 6897.9 3858.8 2339.6 1885.3 2132.2 2813.9 3744.9 4801.4 5902.9 6998.4 8057.9

VSI typeII 8341.4 7428.8 7893.1 8357.4 8821.7 9286.0 9750.3 10214.6 10678.9 11143.2 11704.0

CSI type I 9585.5 5559.6 3297.9 2771.4 3529.0 4714.7 6158.8 7575.7 9084.9 10518.6 11901.8

CSI typeII 23400.7 17829.1 15154.8 13037.5 13761.9 15600.5 17550.5 20837.8 23066.4 26743.7 27858.0

highThrust 93009.0 86705.5 79495.9 75314.1 76448.8 81046.5 86048.4 90035.3 92892.5 94876.2 96249.8

Pj 20.000 (MW) nju 180.000 (deg) r -1.5000 -0.0000 V 0.0000 -0.8165

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 17381.3 11603.0 7370.0 4453.6 2590.3 1530.3 1061.1 1012.9 1255.6 1692.3 2252.5

VSI typeII 18085.3 12667.3 9093.3 8357.4 8821.7 9286.0 9750.3 10214.6 10678.9 11143.2 11607.5

CSI type I 22434.7 15514.7 10225.1 6419.0 3858.6 2276.3 1504.0 1712.3 3616.8 4837.7 5282.8

CSI typeII 35936.8 30309.5 24626.5 21060.7 16937.7 14486.2 11700.4 12257.5 12814.7 13371.8 16714.8

highThrust 98824.9 97418.4 94892.9 90837.7 85117.1 78401.6 72711.3 70651.6 72753.6 77052.0 81602.4
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Table 23: Transfer Orbit to Mars with 30MW Jet Power.

Mars Fuel Consumed (kg)

Pj 30.000 (MW) nju 60.000 (deg) r 0.7500 1.2990 V -0.7071 0.4082

TOF (TU_Sun) 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

VSI type I 56245.6 34847.5 22818.6 19076.2 19422.7 21181.5 23191.1 25036.3 26602.8 27886.4 28918.1

VSI typeII 56312.3 34999.4 23081.5 19556.1 20113.3 21928.9 23913.2 25723.7 27266.8 28541.3 29576.4

CSI type I 63479.1 41490.0 28785.3 25591.4 26938.8 29346.5 31669.5 33613.7 35146.0 36311.8 37172.4

CSI typeII 61426.9 45631.4 37441.2 35435.4 36856.1 40115.5 43207.8 47135.8 49977.3 53821.7 55158.9

highThrust 99967.2 99643.5 98934.1 98558.6 98794.2 99254.3 99593.6 99781.4 99878.4 99929.2 99956.7

Pj 30.000 (MW) nju 90.000 (deg) r -0.0000 1.5000 V -0.8165 -0.0000

TOF (TU_Sun) 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600

VSI type I 27012.1 14890.2 8747.8 6784.6 7136.9 8560.9 10367.7 12214.7 13946.9 15504.2 16872.9

VSI typeII 27303.7 15555.1 9890.1 8497.3 9301.1 10776.3 12464.3 14187.5 15830.9 17335.4 18680.9

CSI type I 32452.6 19001.4 11450.4 9275.4 10428.6 12626.6 14999.1 17253.7 19277.9 21039.8 22545.1

CSI typeII 42121.3 32343.1 25907.9 23902.2 54156.0 27161.6 30420.9 35101.1 38778.3 41202.0 45130.0

highThrust 99544.1 97903.7 95112.7 93454.1 93878.0 95641.3 97361.7 98473.3 99104.8 99457.6 99658.9

Pj 30.000 (MW) nju 120.000 (deg) r -0.7500 1.2990 V -0.7071 -0.4082

TOF (TU_Sun) 2.000 2.200 2.400 2.600 2.800 3.000 3.200 3.400 3.600 3.800 4.000

VSI type I 24450.0 14300.7 7819.2 4321.7 2904.2 2791.0 3427.1 4452.5 5646.8 6881.0 8083.4

VSI typeII 24877.1 15174.1 9561.4 9053.9 9750.3 10446.8 11143.2 11839.7 12536.1 13232.6 13929.0

CSI type I 29628.8 18313.6 10578.6 5977.9 3965.9 4191.8 5394.9 6904.9 8509.1 10096.6 11603.0

CSI typeII 43458.5 34014.6 26075.1 20642.8 17550.5 17550.5 18720.6 21311.4 25573.7 28582.3 31758.1

highThrust 99644.3 98507.0 95434.2 90129.7 85574.1 84744.6 87331.3 91130.8 94232.7 96288.8 97575.1

Pj 30.000 (MW) nju 150.000 (deg) r -1.2990 0.7500 V -0.4082 -0.7071

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 4706.8 2606.0 1572.0 1264.8 1431.6 1893.7 2528.2 3253.0 4014.2 4777.2 5520.5

VSI typeII 10446.8 11143.2 11839.7 12536.1 13232.6 13929.0 14625.5 15321.9 16018.4 16714.8 17411.3

CSI type I 6653.0 3796.1 2228.1 1860.7 2370.3 3175.3 4447.3 5162.0 6181.7 7204.9 8188.8

CSI typeII 23818.6 18720.6 14207.6 13539.0 14291.2 15043.3 17550.5 22063.5 23066.4 28080.9 29250.9

highThrust 93009.0 86705.5 79495.9 75314.1 76448.8 81046.5 86048.4 90035.3 92892.5 94876.2 96249.8

Pj 30.000 (MW) nju 180.000 (deg) r -1.5000 -0.0000 V 0.0000 -0.8165

TOF (TU_Sun) 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.600 4.800 5.000

VSI type I 12300.2 8046.5 5037.1 3013.8 1741.9 1025.4 709.9 677.5 840.6 1134.6 1513.0

VSI typeII 14082.7 11143.2 11839.7 12536.1 13232.6 13929.0 14625.5 15321.9 16018.4 16714.8 17411.3

CSI type I 16302.1 10998.6 7108.1 4397.4 2616.1 1532.8 1007.9 1294.2 2279.5 2972.4 3427.4

CSI typeII 35101.1 30755.2 25573.7 21060.7 17467.0 15043.3 12285.4 12870.4 13455.4 14040.4 16714.8

highThrust 98824.9 97418.4 94892.9 90837.7 85117.1 78401.6 72711.3 70651.6 72753.6 77052.0 81602.4
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Table 24: Transfer Orbit to Asteroids with 10MW Jet Power.

Asteroids Fuel Consumed (kg)

Pj 10.000 (MW) nju 60.000 (deg) r 1.5000 2.5981 V -0.5000 0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 54518.7 52226.3 50615.2 49368.2 48314.9 47365.1 46470.9 45606.4 44758.8 43921.9 43092.3

VSI typeII 54754.2 52565.3 51006.8 49775.2 48720.7 47762.5 46857.6 46278.5 45125.8 44280.8 43445.2

CSI type I 76035.4 73914.0 70945.9 63355.0 42451.6 36651.8 26349.2 21317.1 17312.0 14098.9 11527.3

CSI typeII 67416.4 65814.5 65466.3 65884.2 66023.5 66093.1 66302.1 66859.2 66859.2 68670.0 67695.0

highThrust 99967.1 99964.3 99966.5 99971.5 99977.0 99982.0 99985.9 99989.0 99991.3 99993.0 99994.4

Pj 10.000 (MW) nju 90.000 (deg) r -0.0000 3.0000 V -0.5774 -0.0000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 39105.7 35795.5 34350.4 33820.1 33688.6 33699.6 33731.2 33731.6 33679.6 33571.4 33409.0

VSI typeII 39220.8 36035.8 34764.0 34395.4 40277.9 34434.1 34484.2 34489.5 34438.3 34330.3 34169.7

CSI type I 54883.4 53077.3 52192.0 51548.0 50910.3 44763.1 36283.3 28483.0 21993.8 16969.2 13705.8

CSI typeII 51815.9 50144.4 50144.4 50562.3 50980.2 52512.3 54601.7 54323.1 55716.0 58014.3 58919.7

highThrust 99770.3 99684.1 99646.4 99657.2 99701.0 99757.3 99811.1 99855.5 99889.7 99915.3 99934.2

Pj 10.000 (MW) nju 120.000 (deg) r -1.5000 2.5981 V -0.5000 -0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 34246.8 26058.3 21775.9 19995.2 19588.6 19854.0 20401.3 21028.4 21635.6 22178.4 22640.2

VSI typeII 34438.6 26340.3 22190.0 20605.1 20428.4 20898.6 21595.1 22778.9 22973.9 23548.2 24033.8

CSI type I 41599.0 34564.4 32124.3 31954.9 32561.5 41801.1 39133.9 36625.4 31467.4 23235.1 17779.9

CSI typeII 45687.1 41369.1 42483.5 42135.2 40951.3 40742.3 40951.3 40742.3 43458.5 43806.7 45130.0

highThrust 99699.9 99248.7 98737.2 98367.9 98225.4 98293.0 98500.5 98763.9 99019.3 99235.7 99406.6

Pj 10.000 (MW) nju 150.000 (deg) r -2.5981 1.5000 V -0.2887 -0.5000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 42016.8 29363.1 20474.1 15067.3 12223.5 11029.3 10805.5 11110.7 11677.2 12349.2 13039.8

VSI typeII 42139.6 29628.2 20956.5 15827.0 13315.9 12496.8 12658.0 13275.0 14032.2 20960.3 22061.4

CSI type I 47717.3 34972.2 25591.8 20142.3 18415.6 18645.2 19515.8 20531.3 21505.1 30516.8 25984.2

CSI typeII 52930.2 45756.8 39001.2 34474.3 33429.6 35310.0 36076.1 42831.7 49030.1 41438.8 73963.0

highThrust 99935.6 99722.7 99178.8 98208.4 96978.2 95875.5 95233.5 95146.7 95498.8 96086.1 96730.5

Pj 10.000 (MW) nju 180.000 (deg) r -3.0000 -0.0000 V 0.0000 -0.5774

TOF (TU_Sun) 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500 11.000

VSI type I 12882.8 9386.3 7424.0 6488.3 6207.2 6325.3 6674.7 7147.9 7676.9 8220.0 8752.4

VSI typeII 13768.9 10752.3 9424.0 9465.2 10009.2 10646.2 11305.7 15828.4 18178.6 20929.8 16629.2

CSI type I 16573.3 12515.7 11336.8 11172.2 11871.1 12755.2 17090.6 21167.9 24284.7 15357.2 12501.8

CSI typeII 33429.6 31688.5 29250.9 31340.3 32315.3 28415.2 31340.3 42344.2 40394.1 38026.2 42901.3

highThrust 98779.1 97738.9 96399.6 94991.9 93826.3 93143.5 93003.4 93300.4 93862.1 94534.8 95215.6

149



Table 25: Transfer Orbit to Asteroids with 20MW Jet Power.

Asteroids Fuel Consumed (kg)

Pj 20.000 (MW) nju 60.000 (deg) r 1.5000 2.5981 V -0.5000 0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 37474.8 35342.1 33882.3 32774.1 31852.3 31031.7 30268.6 29539.2 28831.9 28141.0 27463.6

VSI typeII 38357.0 36513.3 35279.1 34327.7 33543.6 32847.1 16250.5 17411.3 18572.0 19732.8 20893.5

CSI type I 53561.8 50857.4 48572.6 35822.5 29394.4 25010.2 19683.8 11927.9 9480.0 7590.7 6122.3

CSI typeII 60173.3 58919.7 58501.8 59755.4 96945.9 61566.2 62401.9 62680.5 64630.6 63934.1 100000.0

highThrust 99967.1 99964.3 99966.5 99971.5 99977.0 99982.0 99985.9 99989.0 99991.3 99993.0 99994.4

Pj 20.000 (MW) nju 90.000 (deg) r -0.0000 3.0000 V -0.5774 -0.0000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 24305.2 21799.1 20736.7 20351.3 20256.2 20264.2 20287.2 20287.5 20249.9 20171.7 20054.6

VSI typeII 25174.0 23161.2 22608.8 22657.8 22900.8 23174.7 23428.9 23648.7 23835.4 19732.8 20893.5

CSI type I 34499.9 32746.4 31994.2 32579.7 31122.0 30678.8 27221.8 17613.4 12321.4 9382.4 7374.8

CSI typeII 50144.4 52651.6 57108.9 45965.7 83574.0 47080.0 50701.6 52233.8 53487.4 54462.4 72709.4

highThrust 99770.3 99684.1 99646.4 99657.2 99701.0 99757.3 99811.1 99855.5 99889.7 99915.3 99934.2

Pj 20.000 (MW) nju 120.000 (deg) r -1.5000 2.5981 V -0.5000 -0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 20661.2 14980.9 12218.4 11108.2 10857.6 11021.1 11359.5 11749.5 12130.1 12472.3 12765.1

VSI typeII 21632.0 16577.5 14665.6 14693.7 15408.9 20792.4 17147.7 22416.2 18572.0 19732.8 20893.5

CSI type I 26006.4 20212.3 18154.4 17877.9 18196.3 21482.9 21256.1 20641.9 20067.3 13979.6 10060.4

CSI typeII 43458.5 38861.9 39001.2 38304.8 35101.1 38026.2 39001.2 41787.0 42344.2 44990.7 47637.2

highThrust 99699.9 99248.7 98737.2 98367.9 98225.4 98293.0 98500.5 98763.9 99019.3 99235.7 99406.6

Pj 20.000 (MW) nju 150.000 (deg) r -2.5981 1.5000 V -0.2887 -0.5000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 26595.7 17207.8 11404.8 8147.4 6509.6 5836.4 5711.2 5882.2 6200.6 6580.9 6974.6

VSI typeII 27258.9 18476.5 13622.1 12768.3 13929.0 15089.8 16250.5 17411.3 18572.5 19732.8 22667.5

CSI type I 31832.7 21580.3 14811.6 11085.3 9851.1 9897.7 10367.5 10945.5 12828.6 18107.3 14175.7

CSI typeII 54601.7 45130.0 40394.1 32176.0 35101.1 36215.4 35101.1 33429.6 35658.3 33151.0 35101.1

highThrust 99935.6 99722.7 99178.8 98208.4 96978.2 95875.5 95233.5 95146.7 95498.8 96086.1 96730.5

Pj 20.000 (MW) nju 180.000 (deg) r -3.0000 -0.0000 V 0.0000 -0.5774

TOF (TU_Sun) 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500 11.000

VSI type I 6885.3 4924.3 3855.0 3353.0 3203.0 3265.9 3452.6 3706.3 3991.7 4286.2 4576.5

VSI typeII 13929.0 15089.8 16250.5 17411.3 18572.2 19732.8 20903.7 22054.3 23215.0 24375.8 25536.5

CSI type I 9148.9 6677.1 5744.1 5847.3 6138.1 6599.7 7813.8 12453.8 11089.7 9988.9 6734.1

CSI typeII 35101.1 34404.6 29250.9 27161.6 26743.7 30783.1 30086.7 26465.1 36215.4 35101.1 39837.0

highThrust 98779.1 97738.9 96399.6 94991.9 93826.3 93143.5 93003.4 93300.4 93862.1 94534.8 95215.6
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Table 26: Transfer Orbit to Asteroids with 30MW Jet Power.

Asteroids Fuel Consumed (kg)

Pj 30.000 (MW) nju 60.000 (deg) r 1.5000 2.5981 V -0.5000 0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 28549.5 26707.8 25464.1 24529.1 23757.3 23074.7 22443.5 21843.6 21265.0 20702.6 20154.1

VSI typeII 30524.2 31094.3 28547.8 28093.0 20893.5 22634.6 24375.8 31791.4 27858.0 29599.1 31340.3

CSI type I 41167.5 38762.4 36798.1 25440.6 21356.4 14955.0 10917.0 8285.2 6530.5 5194.9 4168.8

CSI typeII 58501.8 56412.5 56412.5 57457.1 60173.3 62471.6 64352.0 65814.5 70202.2 68670.0 63934.1

highThrust 99967.1 99964.3 99966.5 99971.5 99977.0 99982.0 99985.9 99989.0 99991.3 99993.0 99994.4

Pj 30.000 (MW) nju 90.000 (deg) r -0.0000 3.0000 V -0.5774 -0.0000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 17632.0 15671.5 14851.0 14554.9 14482.0 14488.1 14505.7 28947.3 14477.1 14417.1 14327.5

VSI typeII 20021.8 19296.6 19719.1 25341.5 21401.4 22674.2 24375.8 26116.9 27858.0 29599.1 31340.3

CSI type I 25172.7 23661.1 23038.6 23793.8 22636.6 21852.3 16365.8 12409.7 12174.9 6531.0 7281.4

CSI typeII 50144.4 43249.6 43876.4 43667.4 47637.2 46174.7 49726.5 50144.4 53487.4 92349.3 56412.5

highThrust 99770.3 99684.1 99646.4 99657.2 99701.0 99757.3 99811.1 99855.5 99889.7 99915.3 99934.2

Pj 30.000 (MW) nju 120.000 (deg) r -1.5000 2.5981 V -0.5000 -0.2887

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 14793.0 10512.2 8491.4 7690.1 7510.2 7627.5 7871.0 8152.3 8427.5 8675.6 8888.2

VSI typeII 17240.3 15670.1 17411.3 19152.4 23588.5 24949.4 24375.8 26126.8 27858.0 29599.1 31340.3

CSI type I 18997.5 14314.4 12660.6 12409.7 12626.4 15152.1 15818.5 14643.3 14768.3 10464.4 7050.9

CSI typeII 46801.5 41369.1 41787.0 34474.3 37608.3 40742.3 38026.2 43876.4 40115.5 42622.8 63934.1

highThrust 99699.9 99248.7 98737.2 98367.9 98225.4 98293.0 98500.5 98763.9 99019.3 99235.7 99406.6

Pj 30.000 (MW) nju 150.000 (deg) r -2.5981 1.5000 V -0.2887 -0.5000

TOF (TU_Sun) 4.000 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000

VSI type I 19455.2 12170.0 7903.3 5583.2 4435.9 3968.1 3881.4 3999.9 4220.9 4485.7 4760.4

VSI typeII 21168.6 15670.1 17411.3 19152.4 20893.5 22634.6 24375.8 26116.9 27858.0 29599.1 31340.3

CSI type I 24010.2 15658.2 10443.3 7656.3 6726.8 6737.3 7057.8 7461.4 7875.6 8447.2 8619.2

CSI typeII 50144.4 43249.6 37608.3 34474.3 30086.7 27161.6 32176.0 34474.3 30086.7 35519.0 41369.1

highThrust 99935.6 99722.7 99178.8 98208.4 96978.2 95875.5 95233.5 95146.7 95498.8 96086.1 96730.5

Pj 30.000 (MW) nju 180.000 (deg) r -3.0000 -0.0000 V 0.0000 -0.5774

TOF (TU_Sun) 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500 10.000 10.500 11.000

VSI type I 4698.0 3337.6 2603.4 2260.6 2158.4 2201.3 2328.5 2501.8 2697.0 2898.9 3098.2

VSI typeII 20893.5 22634.6 24375.8 26116.9 27858.0 29599.1 31340.3 33081.4 34822.5 36563.6 38304.8

CSI type I 6324.2 4555.7 4248.1 3896.6 4139.1 4456.8 4793.7 10159.3 7011.9 5746.0 5028.4

CSI typeII 35101.1 32593.9 29250.9 28206.2 26743.7 28415.2 33847.5 31758.1 37608.3 35101.1 32176.0

highThrust 98779.1 97738.9 96399.6 94991.9 93826.3 93143.5 93003.4 93300.4 93862.1 94534.8 95215.6
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Table 27: Transfer Orbit to Jupiter with 10MW Jet Power.

Jupiter Fuel Consumed (kg)

Pj 10.000 (MW) nju 90.000 (deg) r -0.0000 5.0000 V -0.4472 -0.0000

TOF (TU_Sun) 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000

VSI type I 68922.4 54109.3 44194.4 38342.0 34862.0 32617.2 31001.3 29711.2 28597.2 27584.5 26636.6

VSI typeII 68994.4 54235.7 44452.2 38861.4 35744.8 33874.4 42448.3 35060.1 31855.4 29766.1 28967.9

CSI type I 82191.1 70667.9 63066.3 58046.7 49407.1 38829.4 29936.5 24986.9 18634.6 14575.0 11552.9

CSI typeII 77222.4 67277.1 61677.6 57916.8 58836.1 60173.3 61009.0 62513.4 67193.5 79311.8 57331.8

highThrust 99999.3 99991.5 99968.0 99934.9 99904.4 99884.1 99876.3 99879.4 99889.8 99903.5 99917.6

Pj 10.000 (MW) nju 120.000 (deg) r -2.5000 4.3301 V -0.3873 -0.2236

TOF (TU_Sun) 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000

VSI type I 37660.5 28892.2 24224.3 21840.1 20604.3 19918.3 19484.3 19157.5 18868.9 18587.5 18299.6

VSI typeII 38009.0 29494.7 25216.5 23351.1 22668.8 34509.0 34375.4 28261.1 22531.8 17411.3 18572.0

CSI type I 48876.4 42256.6 43059.1 41097.5 34475.0 29231.0 21202.5 17776.4 13827.0 13661.1 8826.7

CSI typeII 57164.6 57331.8 52150.2 50395.1 51815.9 49643.0 49141.5 51063.7 46801.5 50144.4 49475.8

highThrust 99946.8 99813.8 99619.5 99436.2 99312.6 99261.3 99273.4 99329.6 99408.4 99492.6 99571.5

Pj 10.000 (MW) nju 150.000 (deg) r -4.3301 2.5000 V -0.2236 -0.3873

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 13407.1 12157.1 12101.6 12246.5 12339.9 12336.6 12246.3 12089.1 11884.3 11647.6 11390.4

VSI typeII 16253.2 17015.2 22551.5 18606.6 28072.7 23215.0 25536.5 27858.0 30179.5 32501.0 34822.5

CSI type I 28756.7 26063.8 15761.6 10220.8 7105.5 6209.5 21280.2 11927.6 5652.2 5674.7 7850.5

CSI typeII 35101.1 43124.2 38611.2 42789.9 43625.6 41787.0 44127.1 48138.6 49977.3 49141.5 50144.4

highThrust 98608.4 97673.4 97543.9 97947.1 98444.9 98849.6 99140.9 99344.5 99487.6 99589.9 99664.7

Pj 10.000 (MW) nju 180.000 (deg) r -5.0000 -0.0000 V 0.0000 -0.4472

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 10675.1 7920.0 7466.6 7680.3 8025.5 8336.4 8571.0 8727.8 8817.4 8852.4 8844.4

VSI typeII 13524.2 16787.5 18806.3 18572.0 20893.5 26293.5 25536.6 27887.6 30179.5 32501.0 34823.0

CSI type I 16642.0 17461.6 18871.0 11500.2 8246.9 6347.1 19293.9 6052.0 13178.8 8717.2 15118.9

CSI typeII 41787.0 41118.4 40951.3 40115.5 43625.6 45130.0 44127.1 44127.1 45631.4 42121.3 47637.2

highThrust 99304.7 97994.9 96654.4 96089.4 96281.1 96800.9 97354.6 97832.8 98216.6 98517.3 98751.9

Table 28: Transfer Orbit to Jupiter with 20MW Jet Power.

Jupiter Fuel Consumed (kg)

Pj 20.000 (MW) nju 90.000 (deg) r -0.0000 5.0000 V -0.4472 -0.0000

TOF (TU_Sun) 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000

VSI type I 52581.6 37089.1 28365.3 23718.1 21110.8 31141.2 18344.1 17447.5 16684.2 15998.9 15364.6

VSI typeII 52937.9 37889.5 29967.7 26490.1 36188.2 28647.2 23229.7 31611.1 27858.0 30179.5 32501.0

CSI type I 63502.3 49153.3 41155.2 36602.8 33208.0 26847.3 17842.6 14434.4 10322.3 7957.7 6132.9

CSI typeII 70870.8 61844.8 57164.6 53821.7 54824.6 52651.6 53487.4 53320.2 54156.0 69533.6 65522.0

highThrust 99999.3 99991.5 99968.0 99934.9 99904.4 99884.1 99876.3 99879.4 99889.8 99903.5 99917.6

Pj 20.000 (MW) nju 120.000 (deg) r -2.5000 4.3301 V -0.3873 -0.2236

TOF (TU_Sun) 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000

VSI type I 23198.5 16885.2 13781.4 12258.5 11485.4 11060.7 10793.7 10593.5 10417.3 10246.0 10071.3

VSI typeII 24994.9 20248.7 19819.7 20967.6 23215.1 25536.5 27858.0 30179.5 32501.0 34822.5 37144.0

CSI type I 30675.8 24971.0 23126.5 21236.8 25901.9 15797.8 11853.5 9884.1 7322.0 5771.5 5353.4

CSI typeII 54156.0 53821.7 45464.3 54156.0 48472.9 49643.0 50144.4 49977.3 46801.5 47637.2 50813.0

highThrust 99946.8 99813.8 99619.5 99436.2 99312.6 99261.3 99273.4 99329.6 99408.4 99492.6 99571.5

Pj 20.000 (MW) nju 150.000 (deg) r -4.3301 2.5000 V -0.2236 -0.3873

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 7098.0 6472.0 6440.5 6522.6 6575.7 6573.9 6522.5 6433.4 6317.6 6184.0 6039.1

VSI typeII 23215.0 27862.0 32501.0 37144.0 41787.0 46458.9 51073.0 55716.0 60360.2 65002.0 69645.0

CSI type I 17436.4 13174.4 9938.4 5600.6 4820.0 3374.2 5554.5 3521.5 5170.9 3058.3 6698.7

CSI typeII 43458.5 44127.1 42121.3 42789.9 45130.0 50144.4 47804.3 48138.6 52150.2 56161.7 55158.9

highThrust 98608.4 97673.4 97543.9 97947.1 98444.9 98849.6 99140.9 99344.5 99487.6 99589.9 99664.7

Pj 20.000 (MW) nju 180.000 (deg) r -5.0000 -0.0000 V 0.0000 -0.4472

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 5638.6 4123.3 3878.1 3993.5 4180.5 4349.5 4477.4 4563.0 4612.0 4631.2 4626.8

VSI typeII 23239.4 27858.0 32501.0 37144.0 41787.0 46430.0 51073.0 55716.0 60359.0 65002.0 69645.0

CSI type I 8774.6 8848.1 8885.8 6560.6 3849.7 3178.0 2092.9 11401.3 5475.0 3433.9 8291.4

CSI typeII 40115.5 50144.4 35101.1 40115.5 42121.3 36772.6 44127.1 40115.5 47804.3 46801.5 45130.0

highThrust 99304.7 97994.9 96654.4 96089.4 96281.1 96800.9 97354.6 97832.8 98216.6 98517.3 98751.9
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Table 29: Transfer Orbit to Jupiter with 30MW Jet Power.

Jupiter Fuel Consumed (kg)

Pj 30.000 (MW) nju 90.000 (deg) r -0.0000 5.0000 V -0.4472 -0.0000

TOF (TU_Sun) 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000

VSI type I 42504.2 28214.2 20884.8 17169.5 15139.3 13893.7 13025.9 12350.0 11777.9 11266.8 10796.0

VSI typeII 43413.9 30371.8 25314.0 25137.0 27892.8 31340.3 34853.6 38304.8 41787.0 45269.3 48751.5

CSI type I 51958.1 37767.8 30533.8 26691.7 24249.9 17712.6 12499.8 10019.3 7146.5 5419.6 4245.6

CSI typeII 69199.3 60173.3 60173.3 59671.9 54156.0 56412.5 55158.9 63432.7 54156.0 61928.4 59671.9

highThrust 99999.3 99991.5 99968.0 99934.9 99904.4 99884.1 99876.3 99879.4 99889.8 99903.5 99917.6

Pj 30.000 (MW) nju 120.000 (deg) r -2.5000 4.3301 V -0.3873 -0.2236

TOF (TU_Sun) 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000

VSI type I 16761.8 11928.5 9630.0 8520.5 7961.8 7656.1 7464.4 7320.8 7194.7 7072.2 6947.4

VSI typeII 21596.9 24375.8 27858.0 31340.3 34822.5 38304.8 41787.0 45269.3 48751.5 52233.8 55716.0

CSI type I 22437.8 17741.4 15924.6 16518.3 14814.4 11065.7 8743.5 6794.0 5039.1 3848.4 3207.5

CSI typeII 52651.6 49141.5 54156.0 49643.0 45130.0 46885.0 48138.6 52150.2 49141.5 45130.0 52150.2

highThrust 99946.8 99813.8 99619.5 99436.2 99312.6 99261.3 99273.4 99329.6 99408.4 99492.6 99571.5

Pj 30.000 (MW) nju 150.000 (deg) r -4.3301 2.5000 V -0.2236 -0.3873

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 4907.7 4409.8 4387.8 4445.0 4482.0 4480.8 4445.0 4382.9 4302.3 4209.4 4108.8

VSI typeII 34822.5 41787.0 48751.5 55716.0 62683.3 69645.0 76609.5 83574.0 90538.5 97503.0 100000.0

CSI type I 10639.5 9546.6 5718.2 3599.7 2652.7 3372.8 2044.2 2413.2 3540.2 3420.7 5788.7

CSI typeII 40115.5 45130.0 35101.1 48138.6 40617.0 50144.4 49643.0 54156.0 52150.2 49141.5 60173.3

highThrust 98608.4 97673.4 97543.9 97947.1 98444.9 98849.6 99140.9 99344.5 99487.6 99589.9 99664.7

Pj 30.000 (MW) nju 180.000 (deg) r -5.0000 -0.0000 V 0.0000 -0.4472

TOF (TU_Sun) 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000

VSI type I 3831.0 2787.2 2619.2 2698.3 2826.4 2942.3 3030.1 3089.0 3122.7 474.5 3132.8

VSI typeII 34822.5 41787.0 48751.5 55716.0 62680.5 69645.0 76609.5 83574.0 90538.5 97503.0 100000.0

CSI type I 5931.2 6264.0 6552.7 4354.4 2711.1 2168.6 1695.4 3563.3 6223.1 3101.7 2383.5

CSI typeII 37608.3 39112.6 35101.1 32092.4 36104.0 40115.5 38611.2 48138.6 45631.4 49141.5 45130.0

highThrust 99304.7 97994.9 96654.4 96089.4 96281.1 96800.9 97354.6 97832.8 98216.6 98517.3 98751.9

Table 30: Transfer Orbit to Saturn with 10MW Jet Power.

Saturn Fuel Consumed (kg)

Pj 10.000 (MW) nju 120.000 (deg) r -5.0000 8.6603 V -0.2739 -0.1581

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 17892.9 16648.4 15629.8 14756.3 13982.6 13282.7 12640.5 12045.9 100000.0 100000.0 100000.0

VSI typeII 31027.5 25536.5 27858.0 30179.5 32501.0 34822.5 37144.0 39465.5 41787.0 44108.5 100000.0

CSI type I 17555.4 16238.1 11293.8 9867.6 8706.0 7882.0 11860.0 8928.3 100000.0 100000.0 100000.0

CSI typeII 56830.3 51481.6 52150.2 56496.0 56161.7 55158.9 56161.7 100000.0 100000.0 100000.0 100000.0

highThrust 99698.5 99640.2 99600.0 99577.6 99570.8 99576.6 99591.8 99613.1 99637.9 99664.0 99689.9

Pj 10.000 (MW) nju 150.000 (deg) r -8.6603 5.0000 V -0.1581 -0.2739

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 12681.2 11765.2 11117.8 10622.6 10216.5 9864.9 9548.3 9255.6 8980.4 8718.8 8468.7

VSI typeII 28541.7 25536.5 27858.0 30179.5 32501.0 34822.5 40193.6 39465.5 41787.0 44108.5 46430.0

CSI type I 15820.9 13901.6 13730.3 17862.9 9131.8 11561.2 6443.6 6717.2 18626.9 15607.2 7536.4

CSI typeII 56830.3 45965.7 52150.2 52150.2 53821.7 49643.0 45464.3 51147.3 48138.6 47637.2 56830.3

highThrust 99369.4 99086.7 98824.4 98611.2 98460.4 98373.1 98342.9 98358.7 98408.6 98480.9 98566.1

Pj 10.000 (MW) nju 180.000 (deg) r -10.0000 -0.0000 V 0.0000 -0.3162

TOF (TU_Sun) 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000

VSI type I 7941.0 7556.6 7296.5 7107.7 6960.2 6836.2 6725.6 6622.4 6523.2 6426.2 6330.2

VSI typeII 27858.0 30179.9 32501.0 37501.6 37144.0 39465.5 41788.3 44108.5 46430.0 48751.5 52091.9

CSI type I 11227.4 15076.9 10948.9 10200.1 16081.4 6412.9 11603.6 31218.0 6418.6 8654.8 21503.5

CSI typeII 46132.9 43458.5 49141.5 37608.3 48138.6 53988.8 45130.0 47637.2 43458.5 49141.5 55158.9

highThrust 99108.2 98745.0 98372.4 98023.9 97725.5 97493.0 97331.2 97236.4 97199.5 97209.0 97253.4
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Table 31: Transfer Orbit to Saturn with 20MW Jet Power.

Saturn Fuel Consumed (kg)

Pj 20.000 (MW) nju 120.000 (deg) r -5.0000 8.6603 V -0.2739 -0.1581

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 9825.5 9080.1 8477.4 7965.9 7516.9 7113.8 6746.7 6409.0 6096.3 5805.5 5534.3

VSI typeII 46430.0 51073.0 55716.0 60359.0 65002.0 69645.0 74288.0 78931.0 83574.0 88217.0 92860.0

CSI type I 9779.7 9039.5 5992.4 5871.0 4476.6 3722.0 6801.8 6352.7 7364.0 5902.9 5045.8

CSI typeII 53487.4 58836.1 48138.6 52150.2 46801.5 50144.4 64184.9 56830.3 60173.3 57164.6 66859.2

highThrust 99698.5 99640.2 99600.0 99577.6 99570.8 99576.6 99591.8 99613.1 99637.9 99664.0 99689.9

Pj 20.000 (MW) nju 150.000 (deg) r -8.6603 5.0000 V -0.1581 -0.2739

TOF (TU_Sun) 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000

VSI type I 6769.8 6250.3 5886.1 5609.2 5383.2 5188.4 5013.5 4852.4 4701.3 4558.1 4421.6

VSI typeII 46430.0 51073.0 55716.0 60359.0 65002.0 69645.0 74288.0 78940.0 83574.0 88218.2 92860.0

CSI type I 8590.8 8695.6 7164.5 5747.0 4666.1 11097.7 3193.3 10011.6 10042.6 5252.3 5206.6

CSI typeII 50144.4 47804.3 44127.1 43458.5 46801.5 50144.4 48138.6 51147.3 42121.3 57164.6 46801.5

highThrust 99369.4 99086.7 98824.4 98611.2 98460.4 98373.1 98342.9 98358.7 98408.6 98480.9 98566.1

Pj 20.000 (MW) nju 180.000 (deg) r -10.0000 -0.0000 V 0.0000 -0.3162

TOF (TU_Sun) 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000

VSI type I 4134.6 3926.7 3786.4 3684.8 3605.6 3539.1 3479.8 3424.6 3371.6 3319.8 3268.6

VSI typeII 55716.0 60359.0 65002.0 69645.0 74288.0 78931.0 83574.0 88217.0 92860.0 97503.0 100000.0

CSI type I 6147.8 5294.3 4591.6 5177.3 3396.0 4198.0 7280.2 24282.9 3362.5 4542.5 6376.2

CSI typeII 48138.6 43458.5 42121.3 50144.4 42789.9 34098.2 42121.3 44461.4 46801.5 42121.3 66190.6

highThrust 99108.2 98745.0 98372.4 98023.9 97725.5 97493.0 97331.2 97236.4 97199.5 97209.0 97253.4
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APPENDIX B

EQUATIONS USED IN THE CODE

B.1 1st-order Gradient Method

For the problems in this research, the Lagrangian L in Eqn. 167 and its derivatives are

zero, so ∂L/∂x in Eqn. 169 and ∂L/∂u in Eqns. 172 and 173 are zero. The matrix W is

set to be an identity matrix of size m×m, where m is the number of control variables. So

we need the expressions for ∂f/∂x and ∂f/∂u.

B.1.1 VSI – Unconstrained Isp

The equations of motion and control variables are expressed as Eqns. 79 and 78. If we

change the notation as

~x =

[

x y z u v w m

]T

=

[

x0 x1 x2 x3 x4 x5 x6

]T

(150)

~u =

[

Tx Ty Tz

]T

=

[

u0 u1 u2

]T

, (151)

Eqn. 79 becomes
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ẋ2

ẋ3
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where ~aA is an acceleration vector from an attracting body

~aA =













−µx0/r
3

−µx1/r
3

−µx2/r
3













(153)
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The derivative of this vector with respect to xj is

∂~aA
∂~x

=
1

r5




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





3µx0x0 − µr2 3µx0x1 3µx0x2

3µx1x0 3µx1x1 − µr2 3µx1x2 03×4

3µx2x0 3µx2x1 3µx2x2 − µr2












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Then ∂f/∂x and ∂f/∂u (7 × 3) become

∂ ~f

∂~x
=
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, i = 0, 1, 2. (155)

∂ ~f

∂~u
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B.1.2 VSI – Constrained Isp

The equations of motion and control variables are expressed as Eqns. 81 and 80. If we again

use Eqn. 150 and

~u =

[

lx ly lz T

]T

=

[

u0 u1 u2 u2

]T

, (157)

Eqn. 79 becomes
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The derivative of this vector with respect to ~x is

∂~aA
∂~x
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1
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Then ∂f/∂x and ∂f/∂u (7 × 4) become
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B.1.3 CSI – Continuous Thrust

The equations of motion and control variables are expressed as Eqns. 89 and 88. If we use

the following expression

~u =

[

θ φ

]T

=

[

u0 u1

]T

, (162)

Eqn. 89 becomes
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Then ∂f/∂x and ∂f/∂u (7 × 2) become
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∂ ~f
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B.1.4 CSI – Bang-Off-bang Control

Equations are the same as VSI – Constrained Isp case.
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APPENDIX C

NUMERICAL TECHNIQUES

In this chapter, numerical techniques that are used to create an interplanetary trajectory

optimization program are introduced. These techniques are used to implement the methods

described in the last chapter into the program and they are as follows:

• A first-order gradient algorithm based on the optimal control technique is used to

compute the optimal control history of the thrust.

• Runge-Kutta integrates the equations of motion with a given initial condition. This

is used along with the first-order gradient algorithm.

• A line search is used with Powell’s method. Three-point quadratic polynomial ap-

proximations are used in this research.

• Powell’s method is a zero-order method that finds the minimum point. This is used

for several purposes:

– to find the best directions of motion of the spacecraft at departure and at arrival.

– to find the best entry velocity and the impact parameter for a swing-by trajectory.

– to find the initial values of the Lagrange multipliers that satisfy the target con-

ditions.

• Among several methods available to solve the Gauss problem that calculate a high

thrust trajectory, the direct p-iteration method is chosen. The procedure and equa-

tions for this method are introduced.

• Penalty functions are used for the trajectory inside the SOI for swing-by cases to

restrict the minimum approaching distance. As the spacecraft approaches the swing-

by planet, the spacecraft must not hit the planet or fly above the planet’s atmosphere
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if there is an atmosphere.

This chapter also includes the brief explanation of VRML (Virtual Reality Modeling

Language).

C.1 Calculus of Variations: First-order Gradient Algorithm

Suppose that we would like to find the control variables u(t) on the time interval [ti, tf ] that

drive the plant

ẋ = f [x(t), u(t), t], x(ti)given, ti ≤ t ≤ tf , (166)

along a trajectory x(t). x(t), an n-vector function, is determined by u(t), an m-vector func-

tion. The control history will be chosen such that the performance index, J , is minimized:

J = φ[x(tf ), tf ] +

∫ tf

ti

L[x(t), u(t), t] dt (167)

φ[x(tf ), tf ] : the final weighting function

L[x(t), u(t), t] : the Lagrangian

and such that the q-vector (q ≤ n− 1 if L = 0, q ≤ n if L 6= 0) side constraints ψ[x(tf ), tf ]

satisfy

ψ[x(tf ), tf ] = 0 (q equations). (168)

The computation method to obtain the histories of the control variables for the above

problem is presented below. This method is called the first-order gradient algorithm[17].

1. Estimate a set of control variable histories, u(t).

2. Integrate the system equations ẋ = f(x, u, t) forward with the specified initial con-

ditions x(ti) and the control variable histories from Step 1. Record x(t), u(t), and

ψ[x(tf )].

3. Determine an n-vector of influence functions p(t), and an (n × q) matrix of influ-

ence functions, R(t), by backward integration of the influence equations, using x(tf )
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obtained in Step 2 to determine the boundary conditions.

ṗ = −
(

∂f

∂x

)T

p−
(

∂L

∂x

)T

; pi(tf ) =















0 i = 1, . . . , q,

(∂φ/∂xi)t=tf i = q + 1, . . . , n,

(169)

Ṙ = −
(

∂f

∂x

)T

R; Rij(tf ) =















1, i = j, i = 1, . . . n,

0, i 6= j, j = 1, . . . q.

(170)

4. Simultaneously with Step 3, compute the following integrals:

Iψψ =

∫ tf

ti

RT
∂f

∂u
W−1

(

∂f

∂u

)T

Rdt [(q × q)-matrix] (171)

IJψ = ITψJ =

∫ tf

ti

(

pT
∂f

∂u
+
∂L

∂u

)

W−1

(

∂f

∂u

)T

Rdt [q-row vector] (172)

IJJ =

∫ tf

ti

(

pT
∂f

∂u
+
∂L

∂u

)

W−1

[

(

∂f

∂u

)T

p+

(

∂L

∂u

)T
]

dt (173)

where W is an (m×m) positive-definite matrix and IJJ is a scalar.

5. Choose values of δψ such that the next nominal solution is closer to the desired values

ψ[x(tf )] = 0. For example, one might choose δψ = −εψ[x(tf )], 0 < ε ≤ 1. Then

determine ν from ν = −[Iψψ]−1(δψ + IψJ).

6. Repeat Steps 1 through 6, using an improved estimate of u(t), where

δu(t) = −[W (t)]−1

[

∂L

∂u
+ [p(t) +R(t)ν]T

∂f

∂u

]T

. (174)

Stop when ψ[x(tf )] = 0 and IJJ − IJψI
−1

ψψIψJ = 0 to the desired degree of accuracy.

The explicit forms of the derivatives (∂f/∂x), (∂L/∂x), (∂L/∂x), (∂L/∂u) are in Ap-

pendix B.1.

C.2 Numerical Integration: Runge-Kutta

The Runge-Kutta algorithm lets us solve a differential equation numerically. Consider a

single variable problem

y′ = f(x, y) (175)
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with initial condition y(0) = y0. Suppose that yn is the value of the variable at xn. The

Runge-Kutta formula takes yn and xn and calculates an approximation for yn+1 at xn+1(=

xn + h, where h is assumed to be small).

For a second-order Runge-Kutta[11],

yn+1 = yn +
h

2
[f(xn, yn) + f(xn+1, yn + hf(xn, yn)] (176)

or

yn+1 = yn +
h

2
[F1 + F2] (177)

F1 = hf(xn, yn) (178)

F2 = hf(xn+1, yn + hf(xn, yn)) (179)

For a fourth-order Runge-Kutta,

yn+1 = yn +
h

6
[F1 + 2F2 + 2F3 + F4] (180)

F1 = f(xn, yn) (181)

F2 = f

(

xn +
1

2
h, yn +

1

2
hF1

)

(182)

F3 = f

(

xn +
1

2
h, yn +

1

2
hF2

)

(183)

F4 = f(xn + h, hn + hV3) (184)

C.3 Line Search: Three-point Polynomial Approximations

There are several line search methods. Golden Section Method[78] converges rapidly, but a

disadvantage is that the region where the minimum point lies should be known beforehand.

Most of the problems dealt with in this paper cannot use this method because there is

little information on the minimum points in these problems. In this research, three-point

polynomial approximations are used. This method can easily change the range and the

direction of the search vector. Therefore, this method is appropriate to the problems dealt

with in this research.

The second-order approximating polynomial is[78]

F = a0 + a1X + a2X
2 (185)
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For a three-point quadratic approximation, there are three known points: (X1, F1), (X2, F2),

and (X3, F3). From these points and Eqn. 185, coefficients a0, a1, a2 are obtained:

a0 = F1 − a1X1 − a2X
2
1 (186)

a1 =
F2 − F1

X2 −X1

− a2(X1 +X2) (187)

a2 =
(F3 − F1)/(X3 −X1) − (F2 − F1)/(X2 −X1)

X3 −X2

. (188)

Assuming that the distance between X1 and X2 and between X2 and X3 are the same and

is expressed as dX, the value of X that minimizes the value of this polynomial is

X∗ = − a1

2a2

=
4F2 − 3F1 − F3

4F2 − 2F3 − 2F1

dX. (189)

In the case where F1 > F2 > F3 or F1 < F2 < F3, that is, if the minimum does not

lie between X1 and X3, the accuracy of this polynomial approximation is questionable. In

such cases we can find a region where F2 is smaller than both F1 and F3 by either increasing

or decreasing the value of dX.

If the minimum does not exist between X1 and X3, the following steps are taken.

• If F1 > F2 > F3, it is likely that the minimum should lie a point beyond X3. By

doubling dX, the same search described above is repeated.

• If F1 < F2 < F3, the minimum is in the opposite direction. Change the search

direction by multiplying dX by -1, then repeat the same search.

C.4 Numerical Optimization: Powell’s Method

There are several types of methods for finding the minimum point of unconstrained prob-

lems. For example, first-order methods for finding the minimum utilize gradient information.

Examples of these methods are the steepest-decent method and Fletcher-Reeves method.

Second-order methods, such as Newton’s method, use gradients and the Hessian matrix and

usually converge faster than first-order methods. These gradient-based methods require the

calculation of the gradient of functions, but sometimes computing gradients is extremely

difficult or time-consuming, especially if the functions are complicated. Compared to these
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methods, zero-order methods do not require tedious computation or complicated program-

ming, although thousands of function calls may be required. In this research Powell’s

method, one of the most efficient and reliable zero-order methods, is applied.
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Figure 121: Flowchart of Powell’s method[78].

The flow of Powell’s method is shown in Fig. 121. The basic concept of Powell’s method is

to first search in n-orthogonal directions, where Si, i = 1, · · ·n, are the coordinate directions

and each search consists of updating of the X vector. The starting point of i-th iteration,

Xi, can be calculated by Xi = Xi−1 +α∗

iS
i where α∗

i is a scalar multiplier determining the

amount of change in X for this iteration. These directions are not usually conjugate but

provide a starting point from which conjugate directions are built. Having completed the

n unidirectional searches, a new search direction is created by connecting the first and last

design points. This becomes the n + 1 search direction. At the end of the n-th iteration,
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the n+1-th search diretion Sn+1 is found by connecting all the points from X0 through the

point Xn.

Sn+1 =
n
∑

i=1

α∗

iS
i (190)

It is convenient to store the search information in an n×n array H. Initially, the identity

matrix is used for this array. The columns of H correspond to the unidirectional search

vectors Si, i = 1 · · ·n. After finding the minimum in each direction, we replace Si in matrix

H by α∗

iS
i.

H = [α∗

1S
1 α∗

2S
2 · · · α∗

nS
n] (191)

For the n + 1-th search, we create a conjugate direction using Eqn. 190. With this search

vector the minimum point is calculated to determine the parameter α∗

i+1. Now each column

of the H matrix is shifted by one to the left, eliminating the α∗

1S
1 entry, and storing

α∗

n+1S
n+1 in n-th column. This provides a new H matrix containing n search directions to

start the entire search process over. Therefore for this new search, the first search direction

is α∗

2S
2.

Note that as the search goes on, the search directions may gradually become parallel. To

avoid the searches becoming stuck in the same direction, the H matrix should be periodically

reset to the identity matrix, in this case every 2n+ 1 iterations.

C.5 Solving High Thrust Problems: Gauss Problem

In this section, numerical method for solving Gauss problem is presented. The method used

in this research is “Solution via universal variables” explained in Sec. 5.3

C.5.1 Solution via Universal Variables

As explained above, this method requires the “direction of motion” to obtain ∆V . Following

this procedure:

1. From ~r1 and ~r2 and the “direction of motion,” evaluate the constant, A, using

A =

√
r1r2 sin ∆ν√
1 − cos ∆ν

(192)
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where ∆ν is obtained from

∆ν = arccos

(

~r1 · ~r2
|~r1||~r2|

)

. (193)

2. Pick a trial value for z. Since z = ∆E2 and −z = ∆F 2, this amounts to guessing

the change in the eccentric anomaly. The usual range for z is from negative values to

(2π)2. Values of z greater than (2π)2 correspond to a change in the eccentric anomaly

of more than 2π and can occur only if the satellite passes back through ~r1 enroute to

~r2.

3. Evaluate the functions S and C for the selected trial value of z using the following

equations.

C(z) ≡ 1 − cos
√
z

z
=

1 − cosh
√
−z

z
=

1

2!
− z

4!
+
z2

6!
− z3

8!
+ . . .

=
∞
∑

k=0

(−z)k
(2k + 2)!

(194)

S(z) ≡
√
z − sin

√
z√

z3
=

sinh
√
−z −

√
−z

√

(−z)3
=

1

3!
− z

5!
+
z2

7!
− z3

9!
+ . . .

=

∞
∑

k=0

(−z)k
(2k + 3)!

. (195)

4. Determine the auxiliary variable, y, from

y = r1 + r2 −A
(1 − zS)√

C
. (196)

5. Determine x from

x =

√

y

C
. (197)

6. Check the trial value of z by computing t from the equation

√
µt = x3S +A

√
y (198)

and compare it with the desired time of flight. If the two values are not nearly equal,

adjust the trial value of z and repeat the procedure until the desired value of t is

obtained. A Newton iteration is typically used to calculate next value of z.

zn+1 = zn +
t− tn

dt/dz|z=zn

(199)
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where

√
µ
dt

dz
= x3

(

S′ − 3SC ′

2C

)

+
A

8

(

3S
√
y

C
+
A

x

)

. (200)

S′ and C ′ are the derivatives of S and C with respect to z. These derivatives may be

evaluated from these equations except when z is nearly zero (near-parabolic orbit).

dS

dz
=

1

2z
(C − 3S) (201)

dC

dz
=

1

2z
(1 − zS − 2C). (202)

If z is near zero, these equations may be used.

C ′ = − 1

4!
+

2z

6!
− 3z2

8!
+

4z3

10!
− . . . (203)

S′ = − 1

5!
+

2z

7!
− 3z2

9!
+

4z3

11!
− . . . (204)

7. When the method has converged to a solution, evaluate f , g, and ġ from Eqns. 97,

98, and 100, then compute ~v1 and ~v2 from

~v1 =
~r2 − f~r1

g
(205)

~v2 =
ġ~r2 − ~r1

g
. (206)

When ∆ν = π, the Gauss problem cannot be solved because two collinear vectors cannot

determine a unique orbital plane and therefore a unique solution for ~v1 and ~v2 is not possible.

In such a case, ∆V is calculated in the same way as the ∆V for a Hohmann transfer.

The semi-major axis of the transfer orbit is a = (r1 + r2)/2, and the specific energy is

E = −µ/(2a). The speeds at r1 and r2 are

V1 =

√

2

(

E +
µ

r1

)

(207)

V2 =

√

2

(

E +
µ

r2

)

(208)

Although the magnitude of the velocity is defined by the above equations, the velocity of the

spacecraft can be freely chosen. SAMURAI calculates the departure and arrival velocities
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so that the total ∆V is minimized. The components of these velocities are adjusted with

Powell’s method until the following value is minimized:

total ∆V =
√

(u(ti) − uinitial)2 + (v(ti) − vinitial)2 + (w(ti) − winitial)2

+
√

(u(tf ) − utarget)2 + (v(tf ) − vtarget)2 + (w(tf ) − wtarget)2 (209)

where uinitial, vinitial, winitial are the velocity components of the departure planet, and

utarget, vtarget, and wtarget are the velocity components of the arrival planet.

C.6 Solving Swing-by Problems

A trajectory with a swing-by is solved based on the method shown previously(Sec.5.4).

Assume that we know the following numbers from the inputs: initial position and ve-

locity of the spacecraft, position of the swing-by planet, target position and velocity of the

spacecraft, times of flight for two phases (initial planet to swing-by planet, swing-by planet

to target planet). We would like to find the best thrust history that minimizes the fuel

consumption over an entire trajectory. Then we need to find the best velocity vector of

the spacecraft at the entrance of the SOI of the swing-by planet that minimizes the fuel

consumption. Once we set this velocity, fuel consumption for each phase can be solved.

Therefore, the velocity components are the parameters that we need to optimize. In ad-

dition, the impact parameter β determines the trajectory’s characteristics. Powell’s method

is used for the optimization to minimize the fuel consumption by changing these four pa-

rameters: u, v, w, and β.

Intuitively, Powell’s method is appropriate for this type of problem because there is only

one possible solution for the combination of u, v, w, and β. However, Powell’s method is

valid only for an unconstrained problem. As shown in Eqn. 128, there is a restriction on β

such that the spacecraft will not be decelerated by the atmosphere of the swing-by planet.

To deal with a constrained problem, while still using Powell’s method, a method of

penalty function is used.
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C.6.1 Penalty Functions

The general approach for constrained minimization problems is to minimize the objec-

tive function as an unconstrained function but to add some penalty to limit constraint

violations[78]. The common approach is to create a pseudo-objective function of the form

Φ(X, k) = F (X) + kP (X) (210)

where F (X) is the original objective function and P (X) is an imposed penalty function.

The scalar k is a multiplier which determines the magnitude of the penalty, and k is held

constant for a complete unconstrained minimization. There are several types of penalty

functions[78].

C.6.1.1 Exterior Penalty Functions

This type of penalty function is the easiest to incorporate into the optimization process.

The exterior penalty function P (X) is given by

P (X) =
m
∑

i=1

max[0, gj(X)]2 +
l
∑

k=1

[hk(X)]2 (211)

This means that no penalty is imposed if all constraints are satisfied(all gj(X) ≤ 0

and all hk(X) = 0), but whenever one or more constraints are violated, the square of this

constraint is included in the penalty function.

We usually start with a small k and minimize Φ(X, k). Then increase k by a factor of

γ, for example γ = 3, and minimize Φ again. This process continues until a satisfactory

result is obtained.

The disadvantage of the exterior penalty function is that it begins from an infeasible

region, and the solution becomes feasible only in the limit as k → ∞. Therefore, if the

optimization process is stopped prematurely, the result is unusable.

C.6.1.2 Interior Penalty Functions

Unlike exterior penalty functions, interior penalty functions start within the feasible region,

and even if the optimization is prematurely stopped, the design will at least be feasible,

even though it may not be optimum.
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Figure 122: Example of Exterior Penalty Function [78].

A common form of this type of penalty function is

P (X) =
m
∑

j=1

−1

gj(X)
(212)

Using this equation and including equality constraints via the exterior penalty function of

Eqn. 211,

Φ(X, k′, k) = F (X) + k′
m
∑

j=1

−1

gj(X)
+ k

l
∑

k=1

[hk(X)]2 (213)

The reason we use the exterior penalty function for hk is that we wish to drive hk to zero.

The penalty parameter k′ for the interior penalty function begins as a large positive

number and decreases as the iterations progress, while k for the exterior penalty function

begins as a small positive number and increases.

With this method, the function is discontinuous at the boundaries gj(X) = 0. Therefore

extreme caution must be used in developing a line search algorithm.

C.6.1.3 Linear Extended Penalty Functions

This approach attempts to incorporate the best features of the interior and exterior methods

for inequality constraints. For equality constraints, the exterior penalty can still be used.
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Figure 123: Example of Interior Penalty Function [78].

The linear extended penalty function has the following form:

P (X) =
m
∑

i=1

g̃j(X) (214)

where g̃j = − 1

gj(X)
if gj(X) ≤ ε (215)

g̃j = −2ε− gj(X)

ε2
if gj(X) > ε (216)

The parameter ε is a small negative number which marks the transition from the interior

penalty given by Eqn. 215 to the extended penalty given by Eqn. 216, and the value of ε

is recommended as

ε = −C(k′)a
1

3
≤ a ≤ 1

2
(217)

where C and a are constants and C ≈ 0.15 and a ≈ 0.50 are typically used.
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Figure 124: Example of Extended Penalty Function [78].

C.6.1.4 Application to Swing-by problems

Among the penalty functions explained above, the method of extended penalty functions

seems to be the most reliable. Therefore, in this research, extended penalty functions are

applied.

The parameter to be restricted is the distance of closest approach between the spacecraft

and the center of the swing-by planet, rp. This parameter is bounded with lower limit (rpmin
)

and upper limit (rpmax). Then g and k′ can be defined as

g1 = rpmin
− rp

g2 = rp − rpmax

k′ = 1.0/(number of iterations)

C.7 Trajectory Visualization with VRML

C.7.1 Virtual Reality Modeling Language

VRML is an acronym for the Virtual Reality Modeling Language[10]. Using VRML one
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can craft three-dimensional virtual worlds on the internet. With a text file as an input file,

VRML draws many types of objects as well as animations.

In this research, the trajectory is drawn with VRML for easy visualization. SAMURAI

outputs a file that is used as a VRML input file. A three dimensional trajectory is drawn on

a web browser with the thrust direction vectors shown at several points along the trajectory.

It is sometimes difficult to choose the departure date or time of flight. If a user chooses

a bad combination of these two values, the calculation will not converge. Because this

drawing displays the positions of departure and arrival planets, it is helpful to determine

when to depart and what time of flight to choose.

C.7.2 Input and Output in General

Several simple examples shown introduce how VRML works.

A VRML input file must start with the line

#VRML V2.0 utf8

The following very simple file sphere.wrl draws a sphere with a radius of 1.0 with its center
at the origin.

#VRML V2.0 utf8 Sphere{}

A red cone with a bottom radius of 2.0 and a height of 3.0 is:

#VRML V2.0 utf8 Shape {
appearance Appearance {

material Material {
emissiveColor 1 0 0 # red=1 green=0 blue=0

}
}
geometry Cone{

bottomRadius 2.0
height 3.0

}
}

Comment lines can be written beginning with “#” except for the first line. By grouping

a cone and a cylinder, we can make a simple house as shown in Fig. 125. We need to move

either a cone or a cylinder with the translation command because all of the shapes are

drawn with its center at the origin unless otherwise specified.

#VRML V2.0 utf8 Group {
children [

Shape {
appearance Appearance {

material Material {
emissiveColor 0 0 1 # blue
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Figure 125: VRML Example – Simple House.

}
}
geometry Cone{

bottomRadius 3.0
height 2.0

}
}
Transform {

translation 0 -2 0 # move -2 in y-direction
children Shape {

appearance Appearance {
material Material {

emissiveColor 1 1 1 # white
}

}
geometry Cylinder{

radius 2.0
height 3.0

}
}

}
]

}

By combining different types of shapes, we can draw any complicated objects.

C.7.3 Making an Animation

VRML provides animation for position, orientation, and scale. In this research, we would

like to check the movement of the spacecraft and planets, so position animation is mostly

used. The following simple example is an animation of a planet’s movement. A path of the

planet is drawn, with a sphere following the path.

#VRML V2.0 utf8 Group {
children [

#== Clock ==
DEF Clock TimeSensor { # Define a clock.

cycleInterval 2.0 # Two seconds per cycle.
loop TRUE # Loop the animation.

}
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#== Planet ==
DEF Planet Transform { # A sphere that moves.

children [
Shape {

appearance Appearance {
material Material {

emissiveColor 1 1 1
}

}
geometry Sphere { radius 0.05 }

}
]

}
#== Trajectory ==
Shape {

appearance Appearance {
material Material {

emissiveColor 1 1 1 # Color of path
}

}
geometry IndexedLineSet { # Draws a line connecting

coord Coordinate { # the following points.
point [

1.000 0.000 0.000 # 0
0.951 0.309 0.000 # 1
0.809 0.588 0.000 # 2
0.588 0.809 0.000 # 3
0.309 0.951 0.000 # 4
-0.000 1.000 0.000 # 5
-0.309 0.951 0.000 # 6
-0.588 0.809 0.000 # 7
-0.809 0.588 0.000 # 8
-0.951 0.309 0.000 # 9
-1.000 0.000 0.000 # 10

]
}
coordIndex [ # connect points 0 - 10, end with -1

0 1 2 3 4 5 6 7 8 9 10 -1
]

}
}
#== Planet’s position ==
DEF Path PositionInterpolator { # Animate position

key [ # Scaled time to draw points, end with 1.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

]
keyValue [ # Points to be animated

1.000 0.000 0.000 # 0
0.951 0.309 0.000 # 1
0.809 0.588 0.000 # 2
0.588 0.809 0.000 # 3
0.309 0.951 0.000 # 4
-0.000 1.000 0.000 # 5
-0.309 0.951 0.000 # 6
-0.588 0.809 0.000 # 7
-0.809 0.588 0.000 # 8
-0.951 0.309 0.000 # 9
-1.000 0.000 0.000 # 10

]
}

]
}
ROUTE Clock.fraction_changed TO Path.set_fraction # Line 1
ROUTE Path.value_changed TO Planet.set_translation # Line 2
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The last two lines (Line 1 and Line 2) make the animation work. VRML checks the

clock of the computer, and the clock information is brought to TimeSensor that induces

the change of fraction of Clock. The change of fraction (Clock.fraction changedin

Line 1) is routed to PositionInterpolator, which is defined as Path, and sets the fraction

of Path. Setting the fraction is notified to Line 2 as the change of value in Path, and

this information is routed to Planet. Planet then draws a sphere to the coordinates (or

keyValue) specified by Path. These two lines are looped and a sphere is drawn according

to the coordinates specified at keyValue, resulting in an animation of a moving sphere.

176



APPENDIX D

“SAMURAI” CODE MANUAL

D.1 Input data

Mandatory Inputs

Variable Type Default Description

option integer – = 1, VSI type I(unlimited Isp), no swing-by

= 2, VSI type II(bounded Isp), no swing-by

= 3, CSI type I(continuous thrust), no swing-by

= 4, CSI type II(bang-off-bang), no swing-by

= 5, High thrust, no swing by

= 6, VSI type I(unlimited Isp), swing-by

= 7, VSI type II(bounded Isp), swing-by

= 8, CSI type I(continuous thrust), swing-by

= 9, CSI type II(bang-off-bang), swing-by

= 10, High thrust, swing by

jetPower real – Jet power(W) (for options 1 – 4, 6 – 9)

initialMass real – Initial mass(kg)

tof 1 or 2 real – Time of flight(day) (one value for options 1 – 5, two

values for options 6 – 10)

Input either one of the following sets to locate the planets

(1) For actual ephemeris data

date 6 integer – Calender date of epoch

(yyyy,mm, dd, hr,min, sec)

depPlanet integer – Departure planet index

arrPlanet integer – Arrival planet index

sbyPlanet integer – Swing-by planet index(for options 6 – 10)
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= 1, Mercury

= 2, Venus

= 3, Earth

= 4, Mars

= 5, Jupiter

= 6, Saturn

= 7, Uranus

= 8, Neptune

= 9, Pluto/Caron

(2) For user-defined planets

initial 6 real – Position(x, y, z) and velocity(u, v, w) of departure

planet

target 6 real – Position(x, y, z) and velocity(u, v, w) of arrival planet

swingby 6 real – Position(x, y, z) and velocity(u, v, w) of swing-by

planet(for options 6 – 10)

The following inputs are required for grid search.

depRange 3 real – Days from epoch for departure date (starting, ending,

increment) (day)

tofRange 3 real – Time of flight (starting, ending, increment) (day)

tofRange2 3 real – tofRange for the 2nd phase (for options 6 – 10)

Additional Inputs

Variable Type Default Description

Isp real 30,000 Specific impulse (sec)

For options 2, 3, 7, 8: maximum allowable Isp

For options 4, 9: Isp value when the engine is on

For options 5, 10: Isp value for high thrust

maxC3 2 real 0, 0 Maximum C3 values at departure planet and arrival

planet(km2/s2)

rp min real * Minimum allowable distance of periapsis at swing-by planet

(radii of swing-by planet)(for options 6 – 10)
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rp max real * Maximum allowable distance of periapsis at swing-by planet

(radii of swing-by planet)(for options 6 – 10)

rSOI sby real 9.245E+05 SOI radius of swing-by planet (km) (for options 6 – 10)

TU sby real 806.812 Time unit of swing-by planet (sec) (for options 6 – 10)

DU sby real 6378.145 Distance unit of swing-by planet (km) (for options 6 – 10)

Optional Inputs

Variable Type Default Description

timeSteps 1 or 2 100, Number of time steps for each leg (one value for

integer 100 options 1 – 5, two values for options 6 – 10)

max ite integer 300 Maximum number of iterations for optimal control process

D.2 Executing “SAMURAI”

SAMURAI reads an input data file (e.g. INPUT.txt) and the results are written to an

output data file (e.g. OUTPUT.txt). A VRML file (e.g. VRML.wrl) is also created. Users

must specify these three files from the command line.

> samurai INPUT.txt OUTPUT.txt VRML.wrl

The computation time strongly depends on the option (option) and the number of time

steps (timeSteps). If the number of time steps is 300, approximate computation time with

Pentium 4, 1.9GHz for each option is: less than 10 sec for option 1, less than a few minutes

for option 2, less than 10 minutes for option 3 and 4, and less than 1 sec for option 5.

It is not recommended to conduct a grid search for swing-by trajectories with CSI

engines with a wide search range because it may take very long time to complete.
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